Nothing Special   »   [go: up one dir, main page]

JP3851201B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3851201B2
JP3851201B2 JP2002088155A JP2002088155A JP3851201B2 JP 3851201 B2 JP3851201 B2 JP 3851201B2 JP 2002088155 A JP2002088155 A JP 2002088155A JP 2002088155 A JP2002088155 A JP 2002088155A JP 3851201 B2 JP3851201 B2 JP 3851201B2
Authority
JP
Japan
Prior art keywords
defrosting operation
compressor
heat exchanger
way valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002088155A
Other languages
Japanese (ja)
Other versions
JP2003287319A (en
Inventor
一則 小内
孝夫 椎名
裕志 八藤後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002088155A priority Critical patent/JP3851201B2/en
Publication of JP2003287319A publication Critical patent/JP2003287319A/en
Application granted granted Critical
Publication of JP3851201B2 publication Critical patent/JP3851201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、逆サイクル除霜運転時の配管振動を抑制した技術に関する。
【0002】
【従来の技術】
一般に、圧縮機、四方弁、室外熱交換器、室外膨張弁、室内熱交換器及び室内膨張弁を備え、暖房運転中に四方弁を逆位置に切り替えて、圧縮機から吐出される冷媒を、暖房運転サイクルとは逆のサイクルで室外熱交換器に流す逆サイクル除霜運転を行い、この逆サイクル除霜運転が、室内熱交換器のファンを停止させての無風除霜運転と、室内熱交換器のファンを運転させての有風除霜運転とを備える空気調和装置が知られている。
【0003】
図3は、逆サイクル除霜運転の従来のタイミングチャートである。
【0004】
暖房運転時には、圧縮機が駆動され、四方弁が暖房位置に切り替えられ、室外電動弁が暖房負荷に応じて制御され、室内電動弁が全開で制御される。これに対し、除霜運転が必要になると、それに先立って1分間、圧縮機が停止され、室外電動弁が全閉にされる。1分間を経た後、圧縮機が駆動されると同時に、四方弁が逆位置に切り替えられ、室外電動弁が全開にされ、室内電動弁が約半開に制御されて逆サイクル除霜運転が行われる。
【0005】
この除霜運転の終了後には、1分間、圧縮機が停止され、室外電動弁と室内電動弁の両方が全閉に制御される。その後、圧縮機が駆動され、四方弁が暖房位置に切り替えられ、室外電動弁が暖房負荷に応じて制御され、室内電動弁が全開に制御され、元の暖房運転に復帰する。
【0006】
【発明が解決しようとする課題】
しかし、従来の構成では、除霜運転の停止後、室外電動弁と室内電動弁とを全閉にしているため、配管内の高低圧のバランスがとれず、この状態から暖房運転に復帰する場合、圧縮機の起動によって、配管内にショックが発生し、大きな配管振動が生じるという問題があった。
【0007】
また、逆サイクル除霜運転が、室内熱交換器のファンを停止させての無風除霜運転と、室内熱交換器のファンを運転させての有風除霜運転とを備える場合がある。この場合、どちらの除霜運転が行われるかによって、配管内の高低圧のバランスをとるための時間、すなわち、上記1分間の時間が変動するという問題があった。
【0008】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、暖房運転への復帰時、圧縮機の起動による配管振動の発生を抑制することができる空気調和装置を提供することにある。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、暖房運転中に四方弁を逆位置に切り替えて、圧縮機から吐出される冷媒を、暖房運転サイクルとは逆のサイクルで室外熱交換器に流す逆サイクル除霜運転を行い、この逆サイクル除霜運転が、室内熱交換器のファンを停止させての無風除霜運転と、室内熱交換器のファンを運転させての有風除霜運転とを備える空気調和装置において、逆サイクル除霜運転が終了した後、四方弁を逆位置としたまま、所定時間、圧縮機の運転を停止する手段と、この時間が経過した後、四方弁を暖房位置に復帰させ、圧縮機を起動して元の暖房運転に復帰させる手段と、無風除霜運転又は有風除霜運転に応じて、前記所定時間を変化させる手段とを備えたことを特徴とする。
【0010】
請求項2記載の発明は、圧縮機、四方弁、室外熱交換器、室外膨張弁、室内電動弁及び室内熱交換器を備え、暖房運転中に四方弁を逆位置に切り替えて、圧縮機から吐出される冷媒を、暖房運転サイクルとは逆のサイクルで室外熱交換器に流す逆サイクル除霜運転を行い、この逆サイクル除霜運転が、室内熱交換器のファンを停止させての無風除霜運転と、室内熱交換器のファンを運転させての有風除霜運転とを備える空気調和装置において、逆サイクル除霜運転が終了した後、四方弁を逆位置としたまま、所定時間、圧縮機の運転を停止する手段と、この時間が経過した後、四方弁を暖房位置に復帰させ、圧縮機を起動して元の暖房運転に復帰させる手段と、無風除霜運転又は有風除霜運転に応じて、前記所定時間を変化させる手段とを備えたことを特徴とする。
【0011】
請求項3記載の発明は、請求項1又は2記載のものにおいて、所定時間が経過した後、四方弁を暖房位置に復帰させ、時間間隔をあけて圧縮機を起動して元の暖房運転に復帰させる手段を備えたことを特徴とする。
【0012】
請求項4記載の発明は、請求項2又は3記載のものにおいて、逆サイクル除霜運転中から元の暖房運転に復帰するまでの間、室外膨張弁を全開に維持する手段を備えたことを特徴とする。
【0013】
請求項5記載の発明は、請求項2乃至4のいずれか一項記載のものにおいて、逆サイクル除霜運転中から元の暖房運転に復帰するまでの間、室内膨張弁を略半開に維持する手段を備えたことを特徴とする。
【0014】
請求項6記載の発明は、請求項1乃至5のいずれか一項記載のものにおいて、前記有風除霜運転はファンの風速が微風であることを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。
【0016】
図1において、1は圧縮機を示しており、この圧縮機1には四方弁3を介して室外熱交換器5が接続されている。この室外熱交換器5には室外電動膨張弁(以下、室外電動弁)6を介してレシーバタンク7が接続され、このレシーバタンク7には管路9を介して蓄熱槽電動弁11、サブクール弁13、逆止弁14および室内電動膨張弁(以下、電動弁)15が接続され、この電動弁15は管路20を介して室内機17の室内熱交換器19に接続されている。この室内機17の室内熱交換器19は管路20を介して四方弁3に接続され、この四方弁3にはアキュムレータ21および圧縮機1が接続されている。
【0017】
本空気調和装置では、上述したサブクール弁13、逆止弁14、電動弁15および室内機17をバイパスするように管路22が接続され、この管路22には蓄熱コイル23および二方弁24が接続されている。上述した蓄熱コイル23は蓄熱槽25中に水没状態で設置されている。
【0018】
レシーバタンク7は、解氷弁26および逆止弁27を有した管路28を介して、蓄熱コイル23と二方弁24を接続する管路22に接続され、また、レシーバタンク7は液ライン弁29を有した管路30を介して逆止弁14と電動弁15を接続する管路9に接続されている。室外電動弁6とレシーバタンク7の間にはリキッド弁31およびキャピラリチューブ32を有した管路32が接続され、この管路32は圧縮機21の吸込に接続されている。
【0019】
製氷運転時には、四方弁3が実線位置に切り替わり、圧縮機1から吐出された冷媒が、四方弁3、室外熱交換器5、室外電動弁6の順に流れてレシーバタンク7に入り、ここから管路9、蓄熱槽電動弁11、管路22を経て、蓄熱槽25中の蓄熱コイル23に流入し、ここで蒸発して蓄熱槽25中に製氷し、二方弁24、四方弁3、アキュムレータ21を経て圧縮機1に戻される。
【0020】
通常冷房運転時には、四方弁3が実線位置に切り替わり、圧縮機1から吐出された冷媒が、四方弁3、室外熱交換器5、室外電動弁6の順に流れてレシーバタンク7に入り、ここから管路30、液ライン弁29に至り、さらに電動弁15を経て、室内機17の室内熱交換器19に流入し、ここで蒸発して気化し、管路20、四方弁3、アキュムレータ21を経て圧縮機1に戻される。
【0021】
蓄熱冷房運転時には、四方弁3が実線位置に切り替わり、圧縮機1から吐出された冷媒が、四方弁3、室外熱交換器5、室外電動弁6の順に流れてレシーバタンク7に入り、ここから管路28、解氷弁26、逆止弁27を経て、蓄熱槽25中の蓄熱コイル23に流入し、ここで冷却され氷から冷熱を得て、管路22、サブクール弁13、逆止弁14に至り、さらに電動弁15を経て、室内機17の室内熱交換器19に流入し、ここで蒸発して気化し、管路20、四方弁3、並びにアキュムレータ21を経て圧縮機1に戻される。
【0022】
暖房運転時には、四方弁3が破線位置に切り替わり、圧縮機1から吐出された冷媒が、四方弁3を介して、室内機17の室内熱交換器19に流入し、ここで凝縮した後に、電動弁15、液ライン弁29を経てレシーバタンク7に入り、ここから室外電動弁6を経て、室外熱交換器5に流入し、ここで蒸発して気化した後、四方弁3、アキュムレータ21を経て圧縮機1に戻される。
【0023】
つぎに、除霜運転について説明する。
【0024】
暖房運転中に、室外熱交換器5への着霜が検知されると、四方弁3が逆位置(実線位置)に切り替えられ、圧縮機1から吐出された冷媒が、上述した暖房運転サイクルとは逆のサイクル(冷房運転サイクル)に沿って流れ、いわゆるホットガスが室外熱交換器5に流入し、この室外熱交換器5が除霜される。すなわち、逆サイクル除霜運転である。
【0025】
本実施形態では、逆サイクル除霜運転が、室内熱交換器19のファン19Aを停止させての無風除霜運転と、室内熱交換器19のファン19Aを微風運転させての微風除霜運転とを備えて構成される。短時間で除霜運転を終了させる場合、微風除霜運転が選択される。ただし、微風除霜運転では、被調和室内に冷風が吹き出されるため、室内温度が低下する。この室内温度を低下させたくない場合、無風除霜運転が選択される。
【0026】
図2は、逆サイクル除霜運転の内、室内熱交換器19のファン19Aを停止させての無風除霜運転のタイミングチャートである。
【0027】
上記の暖房運転時には、圧縮機1が駆動され、四方弁3が暖房位置A(図1の破線位置)に切り替えられ、室外電動弁6が暖房負荷に応じて制御され、室内電動弁15が略半開B(中間開度)で制御される。
【0028】
除霜運転が必要になると、それに先立って1分間、四方弁3は暖房位置Aのまま、圧縮機1が停止される。この場合、室外電動弁6及び室内電動弁15は全開C,Dにされる。1分間を経た後、圧縮機1が駆動されると同時に、四方弁3が逆位置Eに切り替えられ、室外電動弁6が全開Cのまま、室内電動弁15が約半開Fに制御されて逆サイクル除霜運転が行われる。
【0029】
この除霜運転の終了後、80秒間、四方弁3が逆位置Eで、室外電動弁6が全開Cで、室内電動弁15が約半開Fのまま、圧縮機1の運転が停止される。80秒間が経過した後、室外電動弁6が全開Cで、室内電動弁15が約半開Fのまま、四方弁3が暖房位置Aに切り替えられ、ついで、10秒間、時間間隔をあけて圧縮機1が起動されて元の暖房運転に復帰する。
【0030】
ところで、四方弁3は、配管内の高低圧にある程度の圧力差が生じないと、切り替えられない構造である。従って、圧縮機1を停止させる80秒間があまり長く設定されると、配管内の高低圧がバランスし、四方弁3を切り替えることができなくなる。そこで、配管内に若干の高低圧差が生じている間、すなわち配管内の高低圧がほぼ完全にバランスする前に、まず四方弁3を切り替え、その後、配管内の高低圧がほぼ完全にバランスした後、圧縮機1を起動させて、元の暖房運転に復帰させることとした。
【0031】
本実施形態では、逆サイクル除霜運転が、無風除霜運転であるか、或いは、微風除霜運転であるかによって、上述した圧縮機1の80秒の停止時間が変更される。すなわち、無風除霜運転では、圧縮機1の停止時間が80秒に設定されていたが、微風除霜運転では、その時間が60秒に変更して設定される。この微風除霜運転では無風除霜運転に比べ、比較的短時間で配管内の高低圧がバランスするため、圧縮機1の停止時間を80秒に設定したのでは、四方弁3の切り替えに支障を来す恐れがあるからである。
【0032】
上記構成では、圧縮機1の起動時に、すでに四方弁3は切り替えられ、しかも、配管内に高低圧差がほとんどないため、この圧縮機1の起動時にショックが発生することがなく、配管の振動が大幅に抑制された。ちなみに、配管内の高低圧がほぼ完全にバランスした後であっても、圧縮機1の起動と、四方弁3の切り替えとを同時に行った場合、配管内に液ハンマが生じ、大きな配管振動の発生することが判明している。
【0033】
図2において、逆サイクル除霜運転から元の暖房運転に復帰するまでの間(90秒間)、室外電動弁6が全開Cに維持され、室内電動弁15が略半開Fに維持されるため、従来のように各弁を全閉に制御した場合に比べ、短時間で高低圧のバランスをとることができる。
【0034】
また、暖房運転から逆サイクル除霜運転に移行するまでの間(1分間)、室外電動弁6が全開Cに維持されるため、従来のように当該弁を全閉に制御した場合に比べ、高低圧のバランスを効率よくとることができる。従って、逆サイクル除霜運転への移行時に、圧縮機1を起動する際のショックが低減されて、配管振動を抑制することができる。
【0035】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0036】
【発明の効果】
本発明では、暖房運転に復帰する際の圧縮機の起動時、すでに四方弁が切り替えられ、しかも配管内の高低圧差が少ないため、液ハンマによるショックが少なく、配管振動が大幅に抑制される。
【図面の簡単な説明】
【図1】本発明に係る空気調和装置の一実施形態を示す冷媒回路図である。
【図2】逆サイクル除霜運転のタイミングチャートである。
【図3】従来の逆サイクル除霜運転のタイミングチャートである。
【符号の説明】
1 圧縮機
3 四方弁
5 室外熱交換器
6 室外電動膨張弁
15 室内電動膨張弁
19 室内熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for suppressing pipe vibration during a reverse cycle defrosting operation.
[0002]
[Prior art]
Generally, a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, an indoor heat exchanger, and an indoor expansion valve are provided, and the refrigerant discharged from the compressor is switched to a reverse position during heating operation. A reverse cycle defrosting operation that flows through the outdoor heat exchanger in a cycle opposite to the heating operation cycle is performed, and this reverse cycle defrosting operation is performed by stopping the fan of the indoor heat exchanger and the indoor heat exchanger. 2. Description of the Related Art An air conditioner including a windy defrosting operation by operating a fan of an exchanger is known.
[0003]
FIG. 3 is a conventional timing chart of the reverse cycle defrosting operation.
[0004]
During the heating operation, the compressor is driven, the four-way valve is switched to the heating position, the outdoor electric valve is controlled according to the heating load, and the indoor electric valve is controlled to be fully opened. On the other hand, when the defrosting operation is necessary, the compressor is stopped for one minute prior to that, and the outdoor motor-operated valve is fully closed. After one minute, the compressor is driven, and at the same time, the four-way valve is switched to the reverse position, the outdoor motor-operated valve is fully opened, the indoor motor-operated valve is controlled to about half-open, and the reverse cycle defrosting operation is performed. .
[0005]
After the completion of this defrosting operation, the compressor is stopped for 1 minute, and both the outdoor motor-operated valve and the indoor motor-operated valve are controlled to be fully closed. Thereafter, the compressor is driven, the four-way valve is switched to the heating position, the outdoor motor-operated valve is controlled in accordance with the heating load, the indoor motor-operated valve is fully opened, and the original heating operation is restored.
[0006]
[Problems to be solved by the invention]
However, in the conventional configuration, after the defrosting operation is stopped, the outdoor motor-operated valve and the indoor motor-operated valve are fully closed, so the high / low pressure in the piping cannot be balanced, and the heating operation is resumed from this state. When the compressor is started, there is a problem that a shock is generated in the pipe and a large pipe vibration is generated.
[0007]
The reverse cycle defrosting operation may include a windless defrosting operation in which the fan of the indoor heat exchanger is stopped and a windy defrosting operation in which the fan of the indoor heat exchanger is operated. In this case, there is a problem that the time for balancing the high and low pressures in the pipe, that is, the time for the one minute varies depending on which defrosting operation is performed.
[0008]
Accordingly, an object of the present invention is to provide an air conditioner that solves the problems of the conventional techniques described above and can suppress the occurrence of pipe vibration due to the start of the compressor when returning to the heating operation. is there.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is the reverse cycle defrosting operation in which the four-way valve is switched to the reverse position during the heating operation, and the refrigerant discharged from the compressor is caused to flow to the outdoor heat exchanger in a cycle opposite to the heating operation cycle. And the reverse cycle defrosting operation includes an airless defrosting operation in which the fan of the indoor heat exchanger is stopped and a windy defrosting operation in which the fan of the indoor heat exchanger is operated. Then, after the reverse cycle defrosting operation is finished, the four-way valve is returned to the heating position after the elapse of this time with means for stopping the operation of the compressor while keeping the four-way valve in the reverse position. It is characterized by comprising means for starting the compressor and returning to the original heating operation, and means for changing the predetermined time according to a windless defrosting operation or a windy defrosting operation.
[0010]
The invention according to claim 2 includes a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, an indoor motorized valve, and an indoor heat exchanger, and the four-way valve is switched to a reverse position during heating operation. A reverse cycle defrosting operation is performed in which the discharged refrigerant flows through the outdoor heat exchanger in a cycle opposite to the heating operation cycle, and this reverse cycle defrosting operation removes no wind by stopping the fan of the indoor heat exchanger. In an air conditioner having a frost operation and a wind-driven defrost operation by operating a fan of an indoor heat exchanger, after the reverse cycle defrost operation is finished, the four-way valve remains in the reverse position for a predetermined time, A means for stopping the operation of the compressor, a means for returning the four-way valve to the heating position after this time has elapsed, starting the compressor to return to the original heating operation, and a windless defrosting operation or wind removal Means for changing the predetermined time according to the frost operation. Characterized in that was.
[0011]
According to a third aspect of the present invention, in the first or second aspect, after a predetermined time has elapsed, the four-way valve is returned to the heating position, and the compressor is started after a time interval to return to the original heating operation. A means for returning is provided.
[0012]
The invention according to claim 4 is the one according to claim 2 or 3, further comprising means for keeping the outdoor expansion valve fully open during the reverse cycle defrosting operation until returning to the original heating operation. Features.
[0013]
According to a fifth aspect of the present invention, in the one according to any one of the second to fourth aspects, the indoor expansion valve is maintained substantially half-open during the period from reverse cycle defrosting operation to returning to the original heating operation. Means are provided.
[0014]
The invention described in claim 6 is characterized in that, in the apparatus according to any one of claims 1 to 5, the windy defrosting operation is characterized in that the fan has a light wind speed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0016]
In FIG. 1, reference numeral 1 denotes a compressor, and an outdoor heat exchanger 5 is connected to the compressor 1 via a four-way valve 3. A receiver tank 7 is connected to the outdoor heat exchanger 5 via an outdoor electric expansion valve (hereinafter referred to as an outdoor electric valve) 6, and a heat storage tank electric valve 11 and a subcool valve are connected to the receiver tank 7 via a conduit 9. 13, a check valve 14 and an indoor electric expansion valve (hereinafter referred to as an electric valve) 15 are connected. The electric valve 15 is connected to an indoor heat exchanger 19 of the indoor unit 17 via a pipe line 20. The indoor heat exchanger 19 of the indoor unit 17 is connected to the four-way valve 3 via a pipe line 20, and the accumulator 21 and the compressor 1 are connected to the four-way valve 3.
[0017]
In the present air conditioner, a pipe line 22 is connected so as to bypass the above-described subcool valve 13, check valve 14, electric valve 15, and indoor unit 17, and a heat storage coil 23 and a two-way valve 24 are connected to the pipe line 22. Is connected. The heat storage coil 23 described above is installed in the heat storage tank 25 in a submerged state.
[0018]
The receiver tank 7 is connected to a pipe line 22 that connects the heat storage coil 23 and the two-way valve 24 via a pipe line 28 having an ice-breaking valve 26 and a check valve 27, and the receiver tank 7 is a liquid line. It is connected to a pipeline 9 that connects the check valve 14 and the motor operated valve 15 via a pipeline 30 having a valve 29. A conduit 32 having a liquid valve 31 and a capillary tube 32 is connected between the outdoor motor operated valve 6 and the receiver tank 7, and this conduit 32 is connected to the suction of the compressor 21.
[0019]
During the ice making operation, the four-way valve 3 is switched to the solid line position, and the refrigerant discharged from the compressor 1 flows in the order of the four-way valve 3, the outdoor heat exchanger 5, and the outdoor motorized valve 6, and enters the receiver tank 7. It flows into the heat storage coil 23 in the heat storage tank 25 through the path 9, the heat storage tank electric valve 11, and the pipe line 22 and evaporates here to make ice in the heat storage tank 25. The two-way valve 24, the four-way valve 3, and the accumulator 21 is returned to the compressor 1.
[0020]
During the normal cooling operation, the four-way valve 3 is switched to the solid line position, and the refrigerant discharged from the compressor 1 flows in the order of the four-way valve 3, the outdoor heat exchanger 5, and the outdoor electric valve 6, and enters the receiver tank 7. It reaches the pipe line 30 and the liquid line valve 29, and further flows into the indoor heat exchanger 19 of the indoor unit 17 via the motor operated valve 15, where it evaporates and vaporizes, and the pipe line 20, the four-way valve 3, and the accumulator 21 are connected. After that, it is returned to the compressor 1.
[0021]
During the heat storage cooling operation, the four-way valve 3 is switched to the solid line position, and the refrigerant discharged from the compressor 1 flows in the order of the four-way valve 3, the outdoor heat exchanger 5, and the outdoor electric valve 6 into the receiver tank 7, and from here It flows into the heat storage coil 23 in the heat storage tank 25 through the pipe line 28, the ice-breaking valve 26, and the check valve 27, and is cooled here to obtain cold heat from the ice. The pipe line 22, the subcool valve 13, and the check valve 14, and further flows through the motor-operated valve 15 into the indoor heat exchanger 19 of the indoor unit 17, where it evaporates and vaporizes, and returns to the compressor 1 through the conduit 20, the four-way valve 3, and the accumulator 21. It is.
[0022]
During the heating operation, the four-way valve 3 is switched to the broken line position, and the refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 19 of the indoor unit 17 through the four-way valve 3 and condenses here. It enters the receiver tank 7 through the valve 15 and the liquid line valve 29, and flows from here through the outdoor electric valve 6 into the outdoor heat exchanger 5, where it evaporates and vaporizes, and then passes through the four-way valve 3 and the accumulator 21. Returned to the compressor 1.
[0023]
Next, the defrosting operation will be described.
[0024]
When frost formation on the outdoor heat exchanger 5 is detected during the heating operation, the four-way valve 3 is switched to the reverse position (solid line position), and the refrigerant discharged from the compressor 1 is changed to the above-described heating operation cycle. Flows along the reverse cycle (cooling operation cycle), so-called hot gas flows into the outdoor heat exchanger 5, and the outdoor heat exchanger 5 is defrosted. That is, it is a reverse cycle defrosting operation.
[0025]
In this embodiment, the reverse cycle defrosting operation includes a windless defrosting operation in which the fan 19A of the indoor heat exchanger 19 is stopped, and a light wind defrosting operation in which the fan 19A of the indoor heat exchanger 19 is operated in a slight wind. It is configured with. When the defrosting operation is finished in a short time, the light wind defrosting operation is selected. However, in the light breeze defrosting operation, the cold air is blown out into the conditioned room, so that the room temperature decreases. When it is not desired to lower the room temperature, the windless defrosting operation is selected.
[0026]
FIG. 2 is a timing chart of the windless defrosting operation in which the fan 19A of the indoor heat exchanger 19 is stopped in the reverse cycle defrosting operation.
[0027]
During the heating operation, the compressor 1 is driven, the four-way valve 3 is switched to the heating position A (the broken line position in FIG. 1), the outdoor electric valve 6 is controlled according to the heating load, and the indoor electric valve 15 is substantially omitted. It is controlled by half-open B (intermediate opening).
[0028]
When the defrosting operation is required, the compressor 1 is stopped while the four-way valve 3 remains in the heating position A for 1 minute prior to that. In this case, the outdoor motor-operated valve 6 and the indoor motor-operated valve 15 are fully opened C and D. After 1 minute, the compressor 1 is driven, and at the same time, the four-way valve 3 is switched to the reverse position E, the outdoor motor-operated valve 6 remains fully open C, and the indoor motor-operated valve 15 is controlled to about half-open F. A cycle defrosting operation is performed.
[0029]
After the defrosting operation is completed, the compressor 1 is stopped for 80 seconds while the four-way valve 3 is in the reverse position E, the outdoor electric valve 6 is fully open C, and the indoor electric valve 15 is approximately half open F. After 80 seconds have passed, the outdoor motor-operated valve 6 is fully open C, the indoor motor-operated valve 15 remains approximately half-opened F, the four-way valve 3 is switched to the heating position A, and then the compressor is separated by a time interval of 10 seconds. 1 is activated to return to the original heating operation.
[0030]
By the way, the four-way valve 3 has a structure that cannot be switched unless a certain pressure difference occurs between high and low pressures in the pipe. Therefore, if the 80 seconds for stopping the compressor 1 is set too long, the high and low pressures in the piping balance and the four-way valve 3 cannot be switched. Therefore, while there is a slight high-low pressure difference in the pipe, that is, before the high and low pressure in the pipe is almost completely balanced, the four-way valve 3 is first switched, and then the high and low pressure in the pipe is almost completely balanced. After that, the compressor 1 was started to return to the original heating operation.
[0031]
In the present embodiment, the 80-second stop time of the compressor 1 described above is changed depending on whether the reverse cycle defrosting operation is a windless defrosting operation or a light wind defrosting operation. That is, in the windless defrosting operation, the stop time of the compressor 1 is set to 80 seconds, but in the light wind defrosting operation, the time is changed to 60 seconds. In this light wind defrosting operation, the high and low pressures in the pipes are balanced in a relatively short time compared to the windless defrosting operation. Therefore, if the stop time of the compressor 1 is set to 80 seconds, the switching of the four-way valve 3 is hindered. Because there is a fear of coming.
[0032]
In the above configuration, when the compressor 1 is started, the four-way valve 3 has already been switched, and since there is almost no high / low pressure difference in the pipe, no shock is generated when the compressor 1 is started, and vibration of the pipe does not occur. It was greatly suppressed. By the way, even after the high and low pressures in the pipes are almost completely balanced, if the compressor 1 is started and the four-way valve 3 is switched at the same time, a liquid hammer is generated in the pipes, resulting in large pipe vibrations. It has been found to occur.
[0033]
In FIG. 2, since the outdoor motor-operated valve 6 is maintained at the fully open C and the indoor motor-operated valve 15 is maintained at the substantially half-open F until the return to the original heating operation from the reverse cycle defrosting operation (90 seconds). Compared to the case where each valve is controlled to be fully closed as in the prior art, a balance between high and low pressures can be achieved in a short time.
[0034]
In addition, since the outdoor motor-operated valve 6 is maintained in the fully open C until the transition from the heating operation to the reverse cycle defrosting operation (for 1 minute), compared to the case where the valve is controlled to be fully closed as in the past, High and low pressure can be balanced efficiently. Therefore, the shock at the time of starting the compressor 1 at the time of transfer to reverse cycle defrost operation is reduced, and piping vibration can be suppressed.
[0035]
As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.
[0036]
【The invention's effect】
In the present invention, at the time of starting the compressor when returning to the heating operation, the four-way valve is already switched, and the difference between high and low pressures in the pipe is small, so there is little shock due to the liquid hammer, and pipe vibration is greatly suppressed.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner according to the present invention.
FIG. 2 is a timing chart of a reverse cycle defrosting operation.
FIG. 3 is a timing chart of a conventional reverse cycle defrosting operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 3 Four-way valve 5 Outdoor heat exchanger 6 Outdoor electric expansion valve 15 Indoor electric expansion valve 19 Indoor heat exchanger

Claims (6)

暖房運転中に四方弁を逆位置に切り替えて、圧縮機から吐出される冷媒を、暖房運転サイクルとは逆のサイクルで室外熱交換器に流す逆サイクル除霜運転を行い、この逆サイクル除霜運転が、室内熱交換器のファンを停止させての無風除霜運転と、室内熱交換器のファンを運転させての有風除霜運転とを備える空気調和装置において、
逆サイクル除霜運転が終了した後、四方弁を逆位置としたまま、所定時間、圧縮機の運転を停止する手段と、この時間が経過した後、四方弁を暖房位置に復帰させ、圧縮機を起動して元の暖房運転に復帰させる手段と、無風除霜運転又は有風除霜運転に応じて、前記所定時間を変化させる手段とを備えたことを特徴とする空気調和装置。
During the heating operation, the four-way valve is switched to the reverse position, and the reverse cycle defrosting operation is performed in which the refrigerant discharged from the compressor flows to the outdoor heat exchanger in a cycle opposite to the heating operation cycle. In an air conditioner, the operation includes a windless defrosting operation in which the fan of the indoor heat exchanger is stopped, and a windy defrosting operation in which the fan of the indoor heat exchanger is operated,
After the reverse cycle defrosting operation is completed, the compressor is stopped for a predetermined time while the four-way valve is in the reverse position, and after this time has elapsed, the four-way valve is returned to the heating position, and the compressor An air conditioner comprising: means for starting and returning to the original heating operation; and means for changing the predetermined time according to a windless defrosting operation or a windy defrosting operation.
圧縮機、四方弁、室外熱交換器、室外膨張弁、室内電動弁及び室内熱交換器を備え、暖房運転中に四方弁を逆位置に切り替えて、圧縮機から吐出される冷媒を、暖房運転サイクルとは逆のサイクルで室外熱交換器に流す逆サイクル除霜運転を行い、この逆サイクル除霜運転が、室内熱交換器のファンを停止させての無風除霜運転と、室内熱交換器のファンを運転させての有風除霜運転とを備える空気調和装置において、
逆サイクル除霜運転が終了した後、四方弁を逆位置としたまま、所定時間、圧縮機の運転を停止する手段と、この時間が経過した後、四方弁を暖房位置に復帰させ、圧縮機を起動して元の暖房運転に復帰させる手段と、無風除霜運転又は有風除霜運転に応じて、前記所定時間を変化させる手段とを備えたことを特徴とする空気調和装置。
It is equipped with a compressor, four-way valve, outdoor heat exchanger, outdoor expansion valve, indoor motorized valve, and indoor heat exchanger. The four-way valve is switched to the reverse position during heating operation, and the refrigerant discharged from the compressor is heated. A reverse cycle defrosting operation that flows through the outdoor heat exchanger in a cycle opposite to the cycle is performed, and this reverse cycle defrosting operation includes a non-wind defrosting operation with the indoor heat exchanger fan stopped, and an indoor heat exchanger. In an air conditioner equipped with windy defrosting operation by operating a fan of
After the reverse cycle defrosting operation is completed, the compressor is stopped for a predetermined time while the four-way valve is in the reverse position, and after this time has elapsed, the four-way valve is returned to the heating position, and the compressor An air conditioner comprising: means for starting and returning to the original heating operation; and means for changing the predetermined time according to a windless defrosting operation or a windy defrosting operation.
所定時間が経過した後、四方弁を暖房位置に復帰させ、時間間隔をあけて圧縮機を起動して元の暖房運転に復帰させる手段を備えたことを特徴とする請求項1又は2記載の空気調和装置。The apparatus according to claim 1 or 2, further comprising means for returning the four-way valve to the heating position after a predetermined time has elapsed, starting the compressor at a time interval, and returning to the original heating operation. Air conditioner. 逆サイクル除霜運転中から元の暖房運転に復帰するまでの間、室外膨張弁を全開に維持する手段を備えたことを特徴とする請求項2又は3記載の空気調和装置。The air conditioner according to claim 2 or 3, further comprising means for keeping the outdoor expansion valve fully open during the period from the reverse cycle defrosting operation to the return to the original heating operation. 逆サイクル除霜運転中から元の暖房運転に復帰するまでの間、室内膨張弁を略半開に維持する手段を備えたことを特徴とする請求項2乃至4のいずれか一項記載の空気調和装置。The air conditioning according to any one of claims 2 to 4, further comprising means for maintaining the indoor expansion valve substantially half-opened during the period from the reverse cycle defrosting operation to the return to the original heating operation. apparatus. 前記有風除霜運転はファンの風速が微風であることを特徴とする請求項1乃至5のいずれか一項記載の空気調和装置。The air conditioner according to any one of claims 1 to 5, wherein in the windy defrosting operation, a fan has a light wind speed.
JP2002088155A 2002-03-27 2002-03-27 Air conditioner Expired - Fee Related JP3851201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088155A JP3851201B2 (en) 2002-03-27 2002-03-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088155A JP3851201B2 (en) 2002-03-27 2002-03-27 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003287319A JP2003287319A (en) 2003-10-10
JP3851201B2 true JP3851201B2 (en) 2006-11-29

Family

ID=29234107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088155A Expired - Fee Related JP3851201B2 (en) 2002-03-27 2002-03-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP3851201B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145572A (en) * 2013-01-30 2014-08-14 Denso Corp Heat pump device
US10753658B2 (en) 2015-01-23 2020-08-25 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6183425B2 (en) * 2015-08-18 2017-08-23 ダイキン工業株式会社 Air conditioner
JP6274168B2 (en) * 2015-08-18 2018-02-07 ダイキン工業株式会社 Air conditioner
JP6634731B2 (en) * 2015-08-18 2020-01-22 ダイキン工業株式会社 Air conditioner
JPWO2017037891A1 (en) * 2015-09-02 2018-04-19 三菱電機株式会社 Refrigeration cycle equipment
JP6253731B2 (en) * 2016-08-09 2017-12-27 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2003287319A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
WO2010032430A1 (en) Air conditioning device
JP4622921B2 (en) Air conditioner
JPH0799297B2 (en) Air conditioner
JP2008082589A (en) Air conditioner
CN101344335A (en) Refrigeration circulation device
JP2003185307A (en) Control apparatus of air conditioner
JP2003240391A (en) Air conditioner
JP2007051825A (en) Air-conditioner
JP2011080733A (en) Air conditioner
JP2009210139A (en) Multiple-type air conditioner
JP2002005537A (en) Refrigerant heating apparatus and air conditioning apparatus
JP3851201B2 (en) Air conditioner
CN112856717A (en) Air conditioner, control method thereof and storage medium
JP2007255866A (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP2018080899A (en) Refrigeration unit
JP2003172560A (en) Air-conditioner
JP2017194201A (en) Air conditioner
CN112856718A (en) Air conditioner, control method thereof and storage medium
JP2003302131A (en) Air conditioner and method for controlling the same
JP2003287311A (en) Air-conditioner, and air-conditioner control method
JP2006349258A (en) Air conditioner
JP3941817B2 (en) Air conditioner
JPH08159621A (en) Air conditioner
JP4169526B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees