Nothing Special   »   [go: up one dir, main page]

JP2003287311A - Air-conditioner, and air-conditioner control method - Google Patents

Air-conditioner, and air-conditioner control method

Info

Publication number
JP2003287311A
JP2003287311A JP2002087950A JP2002087950A JP2003287311A JP 2003287311 A JP2003287311 A JP 2003287311A JP 2002087950 A JP2002087950 A JP 2002087950A JP 2002087950 A JP2002087950 A JP 2002087950A JP 2003287311 A JP2003287311 A JP 2003287311A
Authority
JP
Japan
Prior art keywords
indoor
heat storage
heat exchanger
valve
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002087950A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatsutougo
裕志 八藤後
Kazunori Kouchi
一則 小内
Takao Shiina
孝夫 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002087950A priority Critical patent/JP2003287311A/en
Publication of JP2003287311A publication Critical patent/JP2003287311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of the defrosting operation, to shorten the period of the defrosting operation, and to suppress generation of refrigerant noise. <P>SOLUTION: In an air-conditioner to perform the reverse cycle defrosting operation to allow the refrigerant discharged from a compressor in an outdoor heat exchanger by the cycle reverse to the heating operation cycle, the difference between the input temperature and the output temperature of the refrigerant in the indoor heat exchanger is detected, and the opening of an indoor electric-driven expansion valve is controlled based on the detected difference between the input temperature and the output temperature. In addition, when performing the reverse cycle defrosting operation with the heat accumulated in a heat accumulation tank as a heat source in an air-conditioner having a heat accumulation unit to perform the reverse cycle defrosting operation, the difference between the input temperature and the output temperature of the refrigerant is detected in a heat accumulation heat exchanger, and the opening of the heat accumulation electric-driven expansion valve is controlled based on the detected difference between the input temperature and the output temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、氷や温水により熱
エネルギーを蓄え、蓄えた熱エネルギーを冷暖房運転に
利用する蓄熱式の空気調和装置およびその制御方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner for storing heat energy by ice or hot water and utilizing the stored heat energy for heating and cooling operation, and a control method thereof.

【0002】[0002]

【従来の技術】従来より空気調和装置の一種として圧縮
機、室外熱交換器およびアキュームレータなどを収容し
た室外ユニットと、蓄熱槽内に蓄熱コイルを収容した蓄
熱ユニットと、室内熱交換器を収容した室内ユニットと
を冷媒配管により接続した蓄熱式の空気調和装置が知ら
れている。
2. Description of the Related Art Conventionally, as an air conditioner, an outdoor unit containing a compressor, an outdoor heat exchanger, an accumulator, etc., a heat storage unit containing a heat storage coil in a heat storage tank, and an indoor heat exchanger have been housed. A heat storage type air conditioner in which an indoor unit is connected by a refrigerant pipe is known.

【0003】この蓄熱式の空気調和装置は、電力料金の
比較的安価な深夜電力を利用して、蓄熱槽に冷熱(氷)
または温熱(温水)を蓄え、昼間の時間帯に蓄熱槽内の
熱(熱エネルギー)を利用して、冷暖房運転を行い、あ
るいは、冷暖房運転能力を向上させている。
In this heat storage type air conditioner, cold heat (ice) is stored in the heat storage tank by using the late-night power, which has a relatively low power charge.
Alternatively, warm heat (hot water) is stored, and heat (heat energy) in the heat storage tank is used during the daytime to perform cooling / heating operation or improve cooling / heating operation capacity.

【0004】このような蓄熱式の空気調和装置において
は、暖房運転中に四方弁を通常の暖房運転時とは逆位置
に切り替えて、圧縮機から吐出される冷媒を、暖房運転
サイクルとは逆のサイクルで室外熱交換器に流すことよ
り、除霜運転を行うものがある。
In such a heat storage type air conditioner, during heating operation, the four-way valve is switched to a position opposite to that during normal heating operation, so that the refrigerant discharged from the compressor is reversed from the heating operation cycle. In some cycles, the defrosting operation is performed by flowing the heat through the outdoor heat exchanger.

【0005】ここで、従来の除霜運転について説明す
る。
The conventional defrosting operation will be described below.

【0006】暖房運転時には、圧縮機が駆動され、四方
弁が暖房位置に切り替えられ、室外電動弁が暖房負荷に
応じて制御され、室内電動弁が全開で制御される。これ
に対し、除霜運転が必要になると、それに先立って所定
時間(例えば、1分間)圧縮機が停止され、室外電動弁
が全閉にされる。所定時間の経過後、圧縮機が駆動され
ると同時に、四方弁が通常の暖房運転時とは逆位置に切
り替えられ、室外電動弁が全開にされ、室内電動弁が一
定の所定開度(例えば、約半開)に制御されて除霜運転
が行われる。
During the heating operation, the compressor is driven, the four-way valve is switched to the heating position, the outdoor electric valve is controlled according to the heating load, and the indoor electric valve is fully opened. On the other hand, when the defrosting operation is required, the compressor is stopped for a predetermined time (for example, 1 minute) and the outdoor electric valve is fully closed. After the elapse of a predetermined time, the compressor is driven, and at the same time, the four-way valve is switched to the position opposite to the normal heating operation, the outdoor electric valve is fully opened, and the indoor electric valve is opened at a predetermined opening degree (for example, , About half open) and the defrosting operation is performed.

【0007】この除霜運転の終了後には、再び所定時間
(例えば、1分間)、圧縮機が停止され、室外電動弁と
室内電動弁の両方が全閉に制御される。その後、圧縮機
が駆動され、四方弁が通常の暖房運転の位置に切り替え
られ、室外電動弁が暖房負荷に応じて制御され、室内電
動弁が全開に制御され、元の暖房運転に復帰することと
なっていた。
After completion of the defrosting operation, the compressor is stopped again for a predetermined time (for example, 1 minute), and both the outdoor electric valve and the indoor electric valve are controlled to be fully closed. After that, the compressor is driven, the four-way valve is switched to the position for normal heating operation, the outdoor electric valve is controlled according to the heating load, the indoor electric valve is controlled to fully open, and the original heating operation is restored. It was.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記従来の
蓄熱式空気調和装置においては、除霜運転時の室内電動
弁の開度は、一定の所定開度とされていたため、除霜条
件によっては除霜時間が長くなったり、室内機側から冷
媒音が発生してしまう場合があった。
In the conventional heat storage type air conditioner described above, the opening degree of the indoor motor-operated valve during the defrosting operation is set to a constant predetermined opening degree. There were cases where the defrosting time became long and refrigerant noise was generated from the indoor unit side.

【0009】すなわち、除霜条件に対して室内電動弁の
開度が絞りすぎの状態になっている場合には、除霜時間
が長くなってしまうという問題点が生じていた。一方、
除霜条件に対して室内電動弁の開度が開きすぎの状態に
なっている場合には、熱交換が不完全であることに起因
して冷媒が気液混合状態となり、室内機側において、冷
媒音が発生してしまうという問題点が生じていた。
That is, when the opening degree of the indoor electric valve is too narrow for the defrosting condition, there is a problem that the defrosting time becomes long. on the other hand,
When the opening degree of the indoor electric valve is too open for the defrosting condition, the refrigerant becomes a gas-liquid mixed state due to incomplete heat exchange, and on the indoor unit side, There has been a problem that a refrigerant noise is generated.

【0010】そこで、本発明の目的は、除霜運転を効率
化し、除霜運転期間の短縮化を図るとともに、冷媒音の
発生も抑制することが可能な空気調和装置及び空気調和
装置の制御方法を提供することにある。
Therefore, an object of the present invention is to improve the efficiency of defrosting operation, shorten the defrosting operation period, and suppress the generation of refrigerant noise, and an air conditioner control method. To provide.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、圧縮機、室外熱交換器、室内電動膨張弁および室内
熱交換器を有し、暖房運転中に四方弁を暖房運転時とは
逆位置に切り替えて、前記圧縮機から吐出される冷媒
を、暖房運転サイクルとは逆のサイクルで前記室外熱交
換器に流す逆サイクル除霜運転を行う空気調和装置は、
空気を熱源として前記逆サイクル除霜運転を行うに際
し、室内熱交換器における冷媒の入出力温度差を検出す
る室内温度差検出部と、前記入出力温度差に基づいて前
記室内熱交換器の冷媒圧力を調整する室内電動膨張弁の
開度を制御する室内弁開度制御部と、を備える。
In order to solve the above-mentioned problems, a compressor, an outdoor heat exchanger, an indoor electric expansion valve and an indoor heat exchanger are provided, and a four-way valve during heating operation is reverse to that during heating operation. Switching to the position, the refrigerant discharged from the compressor, an air conditioner that performs a reverse cycle defrosting operation in which the heating operation cycle is passed through the outdoor heat exchanger in the reverse cycle,
When performing the reverse cycle defrosting operation using air as a heat source, an indoor temperature difference detection unit that detects the input / output temperature difference of the refrigerant in the indoor heat exchanger, and the refrigerant of the indoor heat exchanger based on the input / output temperature difference. And an indoor valve opening degree control unit that controls the opening degree of the indoor electric expansion valve that adjusts the pressure.

【0012】上記構成によれば、室内温度差検出部は、
空気を熱源として逆サイクル除霜運転を行うに際し、室
内熱交換器における冷媒の入出力温度差を検出する。
According to the above construction, the indoor temperature difference detecting section is
When performing the reverse cycle defrosting operation using air as a heat source, the difference in input / output temperature of the refrigerant in the indoor heat exchanger is detected.

【0013】室内弁開度制御部は、入出力温度差に基づ
いて室内電動膨張弁の開度を制御する。
The indoor valve opening control section controls the opening of the indoor electric expansion valve based on the input / output temperature difference.

【0014】この場合において、前記室内弁開度制御部
は、前記入出力温度差が所定の基準温度より大きい場合
に前記室内電動膨張弁の開度を大きくする方向に制御
し、前記入出力温度差が所定の基準温度以下である場合
に前記室内電動膨張弁の開度を小さくする方向に制御す
るようにしてもよい。
In this case, the indoor valve opening degree control unit controls the opening degree of the indoor electric expansion valve to increase when the input / output temperature difference is larger than a predetermined reference temperature, When the difference is less than or equal to a predetermined reference temperature, the opening degree of the indoor electric expansion valve may be controlled to be decreased.

【0015】また、圧縮機および室外熱交換器を有する
室外ユニットと、蓄熱電動膨張弁、蓄熱槽および蓄熱熱
交換器を有する蓄熱ユニットと、室内熱交換器を有する
室内ユニットと、を備え、暖房運転中に四方弁を暖房運
転時とは逆位置に切り替えて、前記圧縮機から吐出され
る冷媒を、暖房運転サイクルとは逆のサイクルで前記室
外熱交換器に流す逆サイクル除霜運転を行う空気調和装
置は、前記蓄熱槽内に蓄えられた熱を熱源として前記逆
サイクル除霜運転を行うに際し、前記蓄熱熱交換器にお
ける冷媒の入出力温度差を検出する室内温度差検出部
と、前記入出力温度差に基づいて前記蓄熱電動膨張弁の
開度を制御する蓄熱弁開度制御部と、を備えたことを特
徴としている。
Further, an outdoor unit having a compressor and an outdoor heat exchanger, a heat storage electric expansion valve, a heat storage unit having a heat storage tank and a heat storage heat exchanger, and an indoor unit having an indoor heat exchanger are provided. During operation, the four-way valve is switched to the position opposite to that during heating operation, and the reverse cycle defrosting operation is performed in which the refrigerant discharged from the compressor is supplied to the outdoor heat exchanger in a cycle opposite to the heating operation cycle. The air conditioner, when performing the reverse cycle defrosting operation using the heat stored in the heat storage tank as a heat source, an indoor temperature difference detection unit that detects the input / output temperature difference of the refrigerant in the heat storage heat exchanger, and And a heat storage valve opening control unit that controls the opening of the heat storage electric expansion valve based on the written output temperature difference.

【0016】上記構成によれば、室内温度差検出部は、
蓄熱槽内に蓄えられた熱を熱源として逆サイクル除霜運
転を行うに際し、前記蓄熱熱交換器における冷媒の入出
力温度差を検出する。
According to the above configuration, the indoor temperature difference detecting section is
When performing the reverse cycle defrosting operation using the heat stored in the heat storage tank as a heat source, the input / output temperature difference of the refrigerant in the heat storage heat exchanger is detected.

【0017】蓄熱弁開度制御部は、入出力温度差に基づ
いて蓄熱電動膨張弁の開度を制御する。
The heat storage valve opening control unit controls the opening of the heat storage electric expansion valve based on the input / output temperature difference.

【0018】この場合において、前記蓄熱弁開度制御部
は、前記入出力温度差が所定の基準温度より大きい場合
に前記蓄熱電動膨張弁の開度を大きくする方向に制御
し、前記入出力温度差が所定の基準温度以下である場合
に前記蓄熱電動膨張弁の開度を小さくする方向に制御す
るようにしてもよい。
In this case, the heat storage valve opening control unit controls the heat storage electric expansion valve so as to increase the opening when the input / output temperature difference is larger than a predetermined reference temperature, When the difference is less than or equal to a predetermined reference temperature, the opening degree of the heat storage electric expansion valve may be controlled to be decreased.

【0019】また、圧縮機、室外熱交換器、室内電動膨
張弁および室内熱交換器を有し、暖房運転中に四方弁を
暖房運転時とは逆位置に切り替えて、前記圧縮機から吐
出される冷媒を、暖房運転サイクルとは逆のサイクルで
前記室外熱交換器に流す逆サイクル除霜運転を行う空気
調和装置の制御方法は、空気を熱源として前記逆サイク
ル除霜運転を行うに際し、室内熱交換器における冷媒の
入出力温度差を検出する室内温度差検出過程と、前記入
出力温度差に基づいて前記室内熱交換器の冷媒圧力を調
整する室内電動膨張弁の開度を制御する室内弁開度制御
過程と、を備えたことを特徴としている。
Further, it has a compressor, an outdoor heat exchanger, an indoor electric expansion valve, and an indoor heat exchanger, and switches the four-way valve to a position opposite to that during the heating operation during the heating operation and discharges from the compressor. Refrigerant is a heating operation cycle, the control method of the air conditioner performing a reverse cycle defrosting operation to flow in the outdoor heat exchanger in a cycle opposite to the heating operation cycle, when performing the reverse cycle defrosting operation using air as a heat source, the indoor Indoor temperature difference detection process for detecting the input / output temperature difference of the refrigerant in the heat exchanger, and indoor for controlling the opening degree of the indoor electric expansion valve that adjusts the refrigerant pressure of the indoor heat exchanger based on the input / output temperature difference And a valve opening control process.

【0020】この場合において、前記室内弁開度制御過
程は、前記入出力温度差が所定の基準温度より大きい場
合に前記室内電動膨張弁の開度を大きくする方向に制御
する弁開制御過程と、前記入出力温度差が所定の基準温
度以下である場合に前記室内電動膨張弁の開度を小さく
する方向に制御する弁閉制御過程と、を備えるようにし
てもよい。
In this case, the indoor valve opening degree control step is a valve opening control step in which the opening degree of the indoor electric expansion valve is controlled to increase when the input / output temperature difference is larger than a predetermined reference temperature. And a valve closing control step of controlling the opening degree of the indoor electric expansion valve to be decreased when the input / output temperature difference is equal to or lower than a predetermined reference temperature.

【0021】また、圧縮機および室外熱交換器を有する
室外ユニットと、蓄熱電動膨張弁、蓄熱槽および蓄熱熱
交換器を有する蓄熱ユニットと、室内熱交換器を有する
室内ユニットと、を備え、暖房運転中に四方弁を暖房運
転時とは逆位置に切り替えて、前記圧縮機から吐出され
る冷媒を、暖房運転サイクルとは逆のサイクルで前記室
外熱交換器に流す逆サイクル除霜運転を行う空気調和装
置の制御方法は、前記蓄熱槽内に蓄えられた熱を熱源と
して前記逆サイクル除霜運転を行うに際し、前記蓄熱熱
交換器における冷媒の入出力温度差を検出する室内温度
差検出過程と、前記入出力温度差に基づいて前記蓄熱熱
交換器の冷媒圧力を調整する蓄熱電動膨張弁の開度を制
御する蓄熱弁開度制御過程と、を備えたことを特徴とし
ている。
An outdoor unit having a compressor and an outdoor heat exchanger, a heat storage electric expansion valve, a heat storage unit having a heat storage tank and a heat storage heat exchanger, and an indoor unit having an indoor heat exchanger are provided. During operation, the four-way valve is switched to the position opposite to that during heating operation, and the reverse cycle defrosting operation is performed in which the refrigerant discharged from the compressor is supplied to the outdoor heat exchanger in a cycle opposite to the heating operation cycle. The control method of the air conditioner, when performing the reverse cycle defrosting operation using the heat stored in the heat storage tank as a heat source, an indoor temperature difference detection process of detecting the input / output temperature difference of the refrigerant in the heat storage heat exchanger. And a heat storage valve opening degree control process for controlling the opening degree of the heat storage electric expansion valve for adjusting the refrigerant pressure of the heat storage heat exchanger based on the input / output temperature difference.

【0022】この場合において、前記蓄熱弁開度制御過
程は、前記入出力温度差が所定の基準温度より大きい場
合に前記蓄熱電動膨張弁の開度を大きくする方向に制御
する弁開制御過程と、前記入出力温度差が所定の基準温
度以下である場合に前記蓄熱電動膨張弁の開度を小さく
する方向に制御する弁閉制御過程と、を備えるようにし
てもよい。
In this case, the heat storage valve opening control process is a valve opening control process for controlling the heat storage electric expansion valve to increase its opening when the input / output temperature difference is larger than a predetermined reference temperature. And a valve closing control step of controlling the opening degree of the heat storage electric expansion valve to decrease when the input / output temperature difference is equal to or lower than a predetermined reference temperature.

【0023】[0023]

【発明の実施の形態】以下、本発明の好適な実施形態
を、図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings.

【0024】図1は、本実施形態の空気調和装置の冷媒
回路を示す回路図である。
FIG. 1 is a circuit diagram showing a refrigerant circuit of the air conditioner of this embodiment.

【0025】圧縮機1には四方弁3を介して室外熱交換
器5が接続されている。この室外熱交換器5には、リニ
アに弁開度を調整可能な室外電動膨張弁(以下、室外電
動弁という)6を介してレシーバタンク7が接続されて
いる。このレシーバタンク7には管路9を介してリニア
に弁開度を調整可能な蓄熱電動膨張弁(以下、蓄熱電動
弁という)11、サブクール弁13、逆止弁14および
リニアに弁開度を調整可能な室内電動膨張弁(以下、室
内電動弁という)15が接続されている。室内電動弁1
5は管路20を介して室内機17の室内熱交換器19に
接続されている。この室内機17の室内熱交換器19は
管路20を介して四方弁3に接続され、この四方弁3に
はアキュムレータ21および圧縮機1が接続されてい
る。
An outdoor heat exchanger 5 is connected to the compressor 1 via a four-way valve 3. A receiver tank 7 is connected to the outdoor heat exchanger 5 via an outdoor electric expansion valve (hereinafter, referred to as an outdoor electric valve) 6 whose valve opening can be adjusted linearly. The receiver tank 7 has a heat storage electric expansion valve (hereinafter referred to as a heat storage electric valve) 11, a subcool valve 13, a check valve 14, and a linear valve opening whose valve opening can be linearly adjusted via a pipe 9. An adjustable indoor electric expansion valve (hereinafter referred to as indoor electric valve) 15 is connected. Indoor motor operated valve 1
5 is connected to the indoor heat exchanger 19 of the indoor unit 17 via the pipe 20. The indoor heat exchanger 19 of the indoor unit 17 is connected to the four-way valve 3 via a pipe 20, and the four-way valve 3 is connected to the accumulator 21 and the compressor 1.

【0026】本空気調和装置では、上述したサブクール
弁13、逆止弁14、室内電動弁15および室内機17
をバイパスするように管路22が接続され、この管路2
2には蓄熱コイル23および二方弁24が接続されてい
る。蓄熱コイル23は蓄熱槽25中に水没状態で設置さ
れている。
In this air conditioner, the subcool valve 13, the check valve 14, the indoor motor-operated valve 15 and the indoor unit 17 described above are used.
The conduit 22 is connected so as to bypass the
A heat storage coil 23 and a two-way valve 24 are connected to 2. The heat storage coil 23 is installed in the heat storage tank 25 in a submerged state.

【0027】レシーバタンク7は、解氷弁26および逆
止弁27を有した管路28を介して、蓄熱コイル23と
二方弁24を接続する管路22に接続されている。ま
た、レシーバタンク7は、液ライン弁29を有した管路
30を介して逆止弁14と室内電動弁15を接続する管
路9に接続されている。室外電動弁6とレシーバタンク
7の間にはリキッド弁31およびキャピラリチューブ3
2を有した管路32が接続され、この管路32は圧縮機
21の吸込に接続されている。
The receiver tank 7 is connected to a pipe line 22 connecting the heat storage coil 23 and the two-way valve 24 via a pipe line 28 having a thaw valve 26 and a check valve 27. Further, the receiver tank 7 is connected to a pipe line 9 connecting the check valve 14 and the indoor electric valve 15 via a pipe line 30 having a liquid line valve 29. A liquid valve 31 and a capillary tube 3 are provided between the outdoor electric valve 6 and the receiver tank 7.
A line 32 with 2 is connected, which line 32 is connected to the suction of the compressor 21.

【0028】製氷運転時には、四方弁3が実線位置に切
り替わり、圧縮機1から吐出された冷媒が、四方弁3、
室外熱交換器5、室外電動弁6の順に流れてレシーバタ
ンク7に入る。さらに冷媒はレシーバタンク7から管路
9、蓄熱電動弁11、管路22を経て、蓄熱槽25中の
蓄熱コイル23に流入する。そして、冷媒は、蓄熱コイ
ル23内で蒸発して蓄熱槽25中に製氷し、二方弁2
4、四方弁3、アキュムレータ21を経て圧縮機1に戻
される。
During the ice making operation, the four-way valve 3 is switched to the solid line position, and the refrigerant discharged from the compressor 1 is transferred to the four-way valve 3,
The outdoor heat exchanger 5 and the outdoor electric valve 6 flow in this order and enter the receiver tank 7. Further, the refrigerant flows from the receiver tank 7 into the heat storage coil 23 in the heat storage tank 25 via the pipe 9, the heat storage motor-operated valve 11, and the pipe 22. Then, the refrigerant evaporates in the heat storage coil 23 to make ice in the heat storage tank 25, and the two-way valve 2
4, the four-way valve 3, and the accumulator 21 are returned to the compressor 1.

【0029】通常冷房運転サイクル時には、四方弁3が
実線位置に切り替わり、圧縮機1から吐出された冷媒
が、四方弁3、室外熱交換器5、室外電動弁6の順に流
れてレシーバタンク7に入る。続いて冷媒はレシーバタ
ンク7から管路30、液ライン弁29に至る。さらに室
内電動弁15を経て、室内機17の室内熱交換器19に
流入し、ここで蒸発して気化し、管路20、四方弁3、
アキュムレータ21を経て圧縮機1に戻される。
During the normal cooling operation cycle, the four-way valve 3 is switched to the solid line position, and the refrigerant discharged from the compressor 1 flows to the receiver tank 7 in the order of the four-way valve 3, the outdoor heat exchanger 5 and the outdoor electric valve 6. enter. Subsequently, the refrigerant flows from the receiver tank 7 to the pipe line 30 and the liquid line valve 29. Further, it passes through the indoor motor-operated valve 15 and flows into the indoor heat exchanger 19 of the indoor unit 17, where it is evaporated and vaporized, and the pipeline 20, the four-way valve 3,
It is returned to the compressor 1 via the accumulator 21.

【0030】蓄熱冷房運転サイクル時には、四方弁3が
実線位置に切り替わり、圧縮機1から吐出された冷媒
が、四方弁3、室外熱交換器5、室外電動弁6の順に流
れてレシーバタンク7に入り、ここから管路28、解氷
弁26、逆止弁27を経て、蓄熱槽25中の蓄熱コイル
23に流入し、冷媒は蓄熱槽25内の氷によって過冷却
作用を受ける。
During the heat storage cooling operation cycle, the four-way valve 3 is switched to the solid line position, and the refrigerant discharged from the compressor 1 flows to the receiver tank 7 in the order of the four-way valve 3, the outdoor heat exchanger 5, and the outdoor electric valve 6. After entering, through the pipe 28, the thaw valve 26, and the check valve 27, the refrigerant flows into the heat storage coil 23 in the heat storage tank 25, and the refrigerant is supercooled by the ice in the heat storage tank 25.

【0031】一方、レシーバタンク7内の冷媒の一部
は、膨張弁11の開度によって過冷却作用を受けた管路
22を経た冷媒と合流して、サブクール弁13、逆止弁
14に至る。さらに室内電動弁15を経て、室内機17
の室内熱交換器19に流入し、ここで蒸発して気化し、
管路20、四方弁3、並びにアキュムレータ21を経て
圧縮機1に戻される。
On the other hand, a part of the refrigerant in the receiver tank 7 merges with the refrigerant passing through the pipe line 22 which is supercooled by the opening degree of the expansion valve 11 and reaches the subcool valve 13 and the check valve 14. . Further, through the indoor electric valve 15, the indoor unit 17
Flows into the indoor heat exchanger 19 of, where it evaporates and vaporizes,
It is returned to the compressor 1 via the pipe line 20, the four-way valve 3, and the accumulator 21.

【0032】暖房運転サイクル時には、四方弁3が破線
位置に切り替わり、圧縮機1から吐出された冷媒が、四
方弁3を介して、室内機17の室内熱交換器19に流入
する。冷媒は、室内熱交換器19で凝縮した後に、室内
電動弁15、液ライン弁29を経てレシーバタンク7に
入る。さらに冷媒はレシーバタンク7から室外電動弁6
を経て、室外熱交換器5に流入し、ここで蒸発して気化
した後、四方弁3、アキュムレータ21を経て圧縮機1
に戻される。
During the heating operation cycle, the four-way valve 3 is switched to the broken line position, and the refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 19 of the indoor unit 17 via the four-way valve 3. After being condensed in the indoor heat exchanger 19, the refrigerant enters the receiver tank 7 via the indoor electric valve 15 and the liquid line valve 29. Further, the refrigerant flows from the receiver tank 7 to the outdoor electric valve 6
Flow into the outdoor heat exchanger 5, where it is evaporated and vaporized, and then passes through the four-way valve 3 and the accumulator 21 to the compressor 1
Returned to.

【0033】次に、除霜運転サイクルの概要動作につい
て説明する。
Next, the general operation of the defrosting operation cycle will be described.

【0034】暖房運転サイクル中に、室外熱交換器5へ
の着霜が検知されると、四方弁3が逆位置(実線位置)
に切り替えられ、圧縮機1から吐出された冷媒が、上述
した暖房運転サイクルとは逆のサイクル(通常冷房運転
サイクルまたは蓄熱冷房運転サイクル)に沿って流れ、
いわゆるホットガスが室外熱交換器5に流入し、この室
外熱交換器5が逆サイクル除霜運転(空気除霜運転)が
なされ、除霜されることとなる。なお、蓄熱槽25内の
温水を利用した温水除霜運転も可能であり、この場合
は、室外熱交換器5からの冷媒は、膨張弁11を通って
蓄熱槽25に入り、温水熱源の利用後、二方弁24を介
して、四方弁3、アキュームレータ21、圧縮機1へと
戻る。
When frost formation on the outdoor heat exchanger 5 is detected during the heating operation cycle, the four-way valve 3 is in the reverse position (solid line position).
And the refrigerant discharged from the compressor 1 flows along a cycle (a normal cooling operation cycle or a heat storage cooling operation cycle) opposite to the heating operation cycle described above,
So-called hot gas flows into the outdoor heat exchanger 5, and the outdoor heat exchanger 5 is defrosted by performing a reverse cycle defrosting operation (air defrosting operation). Note that a hot water defrosting operation using hot water in the heat storage tank 25 is also possible. In this case, the refrigerant from the outdoor heat exchanger 5 enters the heat storage tank 25 through the expansion valve 11 and uses the hot water heat source. Then, it returns to the four-way valve 3, the accumulator 21, and the compressor 1 via the two-way valve 24.

【0035】次に除霜運転時の弁開度制御について図2
を参照して説明する。
Next, regarding the valve opening control during the defrosting operation, FIG.
Will be described with reference to.

【0036】暖房運転サイクル中に、室外熱交換器5へ
の着霜が検知されると、空気調和装置のコントローラ7
0は、温度センサ53の出力に基づいて、蓄熱槽25内
の温水温度が温水除霜を行うのに十分な温水除霜基準温
度Tw以上であるか否かを判別する(ステップS1)。
When frost formation on the outdoor heat exchanger 5 is detected during the heating operation cycle, the controller 7 of the air conditioner.
Based on the output of the temperature sensor 53, 0 determines whether or not the hot water temperature in the heat storage tank 25 is equal to or higher than the hot water defrosting reference temperature Tw sufficient for performing hot water defrosting (step S1).

【0037】ステップS1の判別において、蓄熱槽25
内の温水温度が温水除霜を行うのに十分な温水除霜基準
温度Tw未満である場合には(ステップS1;No)、
温水よりも外気温の方が温度が高いと考えられるので、
空気除霜運転を開始する(ステップS2)。
In the determination of step S1, the heat storage tank 25
When the hot water temperature inside is lower than the hot water defrosting reference temperature Tw sufficient to perform hot water defrosting (step S1; No),
Since it is considered that the outside temperature is higher than the warm water,
The air defrosting operation is started (step S2).

【0038】すなわち、四方弁3が実線位置に切り替わ
り、圧縮機1から吐出された冷媒が、四方弁3、室外熱
交換器5、室外電動弁6の順に流れてレシーバタンク7
に入る。続いて冷媒はレシーバタンク7から管路30、
液ライン弁29に至る。さらに室内電動弁15を経て、
室内機17の室内熱交換器19に流入し、ここで蒸発し
て気化し、管路20、四方弁3、アキュムレータ21を
経て圧縮機1に戻される。そして再び四方弁3、室外熱
交換器5へ流入し除霜を開始することとなる。
That is, the four-way valve 3 is switched to the position indicated by the solid line, and the refrigerant discharged from the compressor 1 flows in the order of the four-way valve 3, the outdoor heat exchanger 5, and the outdoor electric valve 6 to receive the receiver tank 7.
to go into. Subsequently, the refrigerant flows from the receiver tank 7 to the pipe 30,
It reaches the liquid line valve 29. Furthermore, via the indoor motor-operated valve 15,
It flows into the indoor heat exchanger 19 of the indoor unit 17, where it is evaporated and vaporized, and returned to the compressor 1 via the pipe 20, the four-way valve 3, and the accumulator 21. Then, it again flows into the four-way valve 3 and the outdoor heat exchanger 5 to start defrosting.

【0039】ところで、本実施形態では、逆サイクル除
霜運転において、室内熱交換器19のファン19Aを停
止させての無風除霜運転と、室内熱交換器19のファン
19Aを微風運転させての微風除霜運転と、のいずれか
が選択的に実施される(ステップS3)。すなわち、短
時間で除霜運転を終了させる場合、微風除霜運転が選択
される。ただし、微風除霜運転では、被調和室内に冷風
が吹き出されるため、室内温度が低下する。この室内温
度を低下させたくない場合、無風除霜運転が選択され
る。
By the way, in the present embodiment, in the reverse cycle defrosting operation, the fan 19A of the indoor heat exchanger 19 is stopped and the fan 19A of the indoor heat exchanger 19 is operated in a slight wind. Either of the breeze defrosting operation is selectively performed (step S3). That is, when the defrosting operation is finished in a short time, the breeze defrosting operation is selected. However, in the breeze defrosting operation, the cold air is blown into the room to be conditioned, so that the indoor temperature decreases. If it is not desired to lower the indoor temperature, the windless defrosting operation is selected.

【0040】次にコントローラ70は、室内電動弁15
の開度を中間開度とする(ステップS4)。具体的に
は、室内電動弁15の全閉状態を0パルス(弁駆動用ス
テップモータのパルス数)、全開状態を480パルスと
した場合に200パルス程度とする。
Next, the controller 70 controls the indoor electric valve 15
The opening of is set to the intermediate opening (step S4). Specifically, the fully closed state of the indoor motor-operated valve 15 is set to 0 pulse (the number of pulses of the valve driving step motor), and the fully opened state is set to 480 pulses, and is set to about 200 pulses.

【0041】続いてコントローラ70は、温度センサ4
1および温度センサ42の出力に基づいて室内熱交換器
19における冷媒の入出力温度差ΔT1を検出する(ス
テップS5)。すなわち、温度センサ41の出力に対応
する温度をT11、温度センサ42の出力に対応する温度
をT12とすると、入出力温度差ΔT1は、ΔT1=|T
11−T12|となる。
Subsequently, the controller 70 controls the temperature sensor 4
1 and the output of the temperature sensor 42, the input / output temperature difference ΔT1 of the refrigerant in the indoor heat exchanger 19 is detected (step S5). That is, assuming that the temperature corresponding to the output of the temperature sensor 41 is T11 and the temperature corresponding to the output of the temperature sensor 42 is T12, the input / output temperature difference ΔT1 is ΔT1 = | T
11-T12 |

【0042】次にコントローラ70は、入出力温度差Δ
T1が当該室内熱交換器19の能力により定められる基
準温度Tref11よりも高いか否か、すなわち、室内電動
弁15が絞りすぎていないか否かを判別する(ステップ
S6)。
Next, the controller 70 controls the input / output temperature difference Δ.
It is determined whether or not T1 is higher than a reference temperature Tref11 determined by the capacity of the indoor heat exchanger 19, that is, whether or not the indoor electric valve 15 is excessively throttled (step S6).

【0043】ステップS6の判別において、入出力温度
差ΔT1が当該室内熱交換器19の能力により定められ
る基準温度Tref11よりも高い、すなわち、室内電動弁
15が絞りすぎている場合には(ステップS6;Ye
s)、室内電動弁15の開度を大きくする方向へ制御す
る(ステップS7)。上述の例の場合、弁駆動用ステッ
プモータのパルス数が現在のパルス数よりも大きくなる
方に制御を行い、処理をステップS8に移行する。
In the determination in step S6, if the input / output temperature difference ΔT1 is higher than the reference temperature Tref11 determined by the capacity of the indoor heat exchanger 19, that is, if the indoor electric valve 15 is excessively throttled (step S6). ; Ye
s), the opening degree of the indoor motor-operated valve 15 is controlled to increase (step S7). In the case of the above example, control is performed so that the pulse number of the valve driving step motor becomes larger than the current pulse number, and the process proceeds to step S8.

【0044】ステップS6の判別において、入出力温度
差ΔT1が当該室内熱交換器19の能力により定められ
る基準温度Tref11以下である、すなわち、室内電動弁
15が開けすぎている場合には(ステップS6;N
o)、室内電動弁15の開度を小さくする方向へ制御す
る(ステップS9)。上述の例の場合、弁駆動用ステッ
プモータのパルス数が現在のパルス数よりも小さくなる
方に制御を行い、処理をステップS8に移行する。
In the determination of step S6, if the input / output temperature difference ΔT1 is equal to or lower than the reference temperature Tref11 determined by the capacity of the indoor heat exchanger 19, that is, if the indoor electric valve 15 is opened too much (step S6). ; N
o), the opening degree of the indoor motor-operated valve 15 is controlled to decrease (step S9). In the case of the above example, control is performed so that the pulse number of the valve driving step motor becomes smaller than the current pulse number, and the process proceeds to step S8.

【0045】続いてコントローラ70は、温度センサ6
1の出力に基づいて室外熱交換器5における冷媒温度T
OUTが除霜完了と判断するのに十分な除霜終了基準温度
TEND以上であるか否かを判別する(ステップS8)。
Subsequently, the controller 70 controls the temperature sensor 6
Based on the output of No. 1, the refrigerant temperature T in the outdoor heat exchanger 5
It is determined whether OUT is equal to or higher than the defrosting end reference temperature TEND sufficient to determine that defrosting is completed (step S8).

【0046】ステップS8の判別において、室外熱交換
器5における冷媒温度TOUTが除霜終了基準温度TENDよ
りも低い場合には、除霜運転を継続する必要があるの
で、処理を再びステップS5に移行し、ステップS5〜
ステップS8の処理を繰り返す。
If it is determined in step S8 that the refrigerant temperature TOUT in the outdoor heat exchanger 5 is lower than the defrosting termination reference temperature TEND, it is necessary to continue the defrosting operation, and thus the process proceeds to step S5 again. And step S5
The process of step S8 is repeated.

【0047】ステップS8の判別において、温度センサ
61の出力に基づいて室外熱交換器5における冷媒温度
TOUTが除霜終了基準温度TEND以上である場合には、コ
ントローラ70は、除霜運転を終了する。
When it is determined in step S8 that the refrigerant temperature TOUT in the outdoor heat exchanger 5 is equal to or higher than the defrosting termination reference temperature TEND based on the output of the temperature sensor 61, the controller 70 terminates the defrosting operation. .

【0048】そして、コントローラ70は、所定時間
(例えば、60秒)、除霜運転と同様の状態で四方弁3
を維持し、室外電動弁6が全開状態、かつ、室内電動弁
15を約半開状態として、圧縮機1の運転を停止する。
Then, the controller 70 keeps the four-way valve 3 in a state similar to the defrosting operation for a predetermined time (for example, 60 seconds).
Is maintained, the outdoor electric valve 6 is fully opened, and the indoor electric valve 15 is approximately half opened, and the operation of the compressor 1 is stopped.

【0049】所定時間が経過した後、室外電動弁6を全
開状態とし、室内電動弁15が約半開状態のままで、四
方弁3を暖房運転の位置(図1中、波線状態)に切り替
え、所定時間(例えば、10秒間)待機した後、圧縮機
1が起動されて元の暖房運転に復帰する。
After the elapse of a predetermined time, the outdoor electric valve 6 is fully opened, the indoor electric valve 15 is left in a half open state, and the four-way valve 3 is switched to the heating operation position (indicated by a wavy line in FIG. 1). After waiting for a predetermined time (for example, 10 seconds), the compressor 1 is activated and the original heating operation is restored.

【0050】一方、ステップS1の判別において、蓄熱
槽25内の温水温度が温水除霜基準温度Tw以上である
場合には(ステップS1;Yes)、温水除霜運転(室
内機17には冷媒を流さない運転)を開始する(ステッ
プS10)。
On the other hand, when it is determined in step S1 that the hot water temperature in the heat storage tank 25 is equal to or higher than the hot water defrosting reference temperature Tw (step S1; Yes), the hot water defrosting operation (the indoor unit 17 is supplied with a refrigerant). A non-flow operation) is started (step S10).

【0051】すなわち、四方弁3が実線位置に切り替わ
り、圧縮機1から吐出された冷媒が、四方弁3、室外熱
交換器5、室外電動弁6の順に流れてレシーバタンク7
に入る。さらに冷媒は、レシーバタンク7から膨張弁1
1、管路22を経て、蓄熱槽25中の蓄熱コイル23に
流入する。この蓄熱コイル23を蒸発器として作用させ
て冷媒を加熱し、冷媒は管路22、二方弁24、管路2
0、四方弁3並びにアキュムレータ21を経て圧縮機1
に戻される。そして冷媒は再び四方弁3、室外熱交換器
5へ流入し除霜を開始することとなる。
That is, the four-way valve 3 is switched to the position indicated by the solid line, and the refrigerant discharged from the compressor 1 flows in the order of the four-way valve 3, the outdoor heat exchanger 5, and the outdoor electric valve 6 to receive the receiver tank 7.
to go into. Further, the refrigerant flows from the receiver tank 7 to the expansion valve 1
1, through the pipe line 22, flows into the heat storage coil 23 in the heat storage tank 25. This heat storage coil 23 acts as an evaporator to heat the refrigerant, and the refrigerant is supplied to the pipe 22, the two-way valve 24, and the pipe 2.
0, four-way valve 3 and accumulator 21 and then compressor 1
Returned to. Then, the refrigerant again flows into the four-way valve 3 and the outdoor heat exchanger 5 to start defrosting.

【0052】次にコントローラ70は、無風除霜運転
と、微風除霜運転と、のいずれかを選択的に実施する
(ステップS11)。
Next, the controller 70 selectively performs either the windless defrosting operation or the breeze defrosting operation (step S11).

【0053】次にコントローラ70は、蓄熱電動弁11
の開度を室内電動弁15の場合と同様に中間開度とする
(ステップS12)。
Next, the controller 70 causes the heat storage motor-operated valve 11 to operate.
The opening is set to the intermediate opening as in the case of the indoor motor-operated valve 15 (step S12).

【0054】続いてコントローラ70は、温度センサ5
1および温度センサ52の出力に基づいて蓄熱槽25に
おける冷媒の入出力温度差ΔT2を検出する(ステップ
S13)。すなわち、温度センサ51の出力に対応する
温度をT21、温度センサ52の出力に対応する温度をT
22とすると、入出力温度差ΔT1は、ΔT2=|T21−
T22|となる。
Subsequently, the controller 70 controls the temperature sensor 5
Based on the outputs of 1 and the temperature sensor 52, the input / output temperature difference ΔT2 of the refrigerant in the heat storage tank 25 is detected (step S13). That is, the temperature corresponding to the output of the temperature sensor 51 is T21, and the temperature corresponding to the output of the temperature sensor 52 is T21.
22, the input / output temperature difference ΔT1 is ΔT2 = | T21−
T22 |

【0055】次にコントローラ70は、入出力温度差Δ
T2が当該蓄熱槽25の能力により定められる基準温度
Tref21よりも高いか否か、すなわち、蓄熱電動弁11
が絞りすぎていないか否かを判別する(ステップS1
4)。
Next, the controller 70 controls the input / output temperature difference Δ.
Whether T2 is higher than a reference temperature Tref21 determined by the capacity of the heat storage tank 25, that is, the heat storage motor-operated valve 11
It is determined whether the aperture is too narrow (step S1).
4).

【0056】ステップS14の判別において、入出力温
度差ΔT2が当該蓄熱槽25の能力により定められる基
準温度Tref21よりも高い、すなわち、蓄熱電動弁11
を絞りすぎている場合には(ステップS14;Ye
s)、蓄熱電動弁11の開度を大きくする方向へ制御す
る(ステップS15)。上述の例の場合、弁駆動用ステ
ップモータのパルス数が現在のパルス数よりも大きくな
る方に制御を行い、処理をステップS16に移行する。
In the determination of step S14, the input / output temperature difference ΔT2 is higher than the reference temperature Tref21 determined by the capacity of the heat storage tank 25, that is, the heat storage electrically operated valve 11
If the aperture is too narrow (step S14; Ye
s), the heat storage motor-operated valve 11 is controlled to increase the opening degree (step S15). In the case of the above example, control is performed so that the pulse number of the valve driving step motor becomes larger than the current pulse number, and the process proceeds to step S16.

【0057】ステップS14の判別において、入出力温
度差ΔT1が当該蓄熱槽25の能力により定められる基
準温度Tref21以下である、すなわち、蓄熱電動弁11
が開けすぎてい場合には(ステップS14;No)、蓄
熱電動弁11の開度を小さくする方向へ制御する(ステ
ップS17)。上述の例の場合、弁駆動用ステップモー
タのパルス数が現在のパルス数よりも小さくなる方に制
御を行い、処理をステップS16に移行する。
In the determination of step S14, the input / output temperature difference ΔT1 is equal to or lower than the reference temperature Tref21 determined by the capacity of the heat storage tank 25, that is, the heat storage electrically operated valve 11
If is too open (step S14; No), the opening degree of the heat storage motor-operated valve 11 is controlled to be decreased (step S17). In the case of the above example, control is performed so that the pulse number of the valve driving step motor becomes smaller than the current pulse number, and the process proceeds to step S16.

【0058】続いてコントローラ70は、温度センサ6
1の出力に基づいて室外熱交換器5における冷媒温度T
OUTが除霜完了と判断するのに十分な除霜終了基準温度
TEND以上であるか否かを判別する(ステップS1
6)。
Subsequently, the controller 70 controls the temperature sensor 6
Based on the output of No. 1, the refrigerant temperature T in the outdoor heat exchanger 5
It is determined whether OUT is equal to or higher than the defrosting termination reference temperature TEND sufficient to determine that defrosting is completed (step S1).
6).

【0059】ステップS16の判別において、室外熱交
換器5における冷媒温度TOUTが除霜終了基準温度TEND
よりも低い場合には、除霜運転を継続する必要があるの
で、処理を再びステップS13に移行し、ステップS1
3〜ステップS16の処理を繰り返す。
In the determination in step S16, the refrigerant temperature TOUT in the outdoor heat exchanger 5 is determined to be the defrosting end reference temperature TEND.
If it is lower than the above, it is necessary to continue the defrosting operation, and therefore, the process proceeds to step S13 again, and step S1
The processing from 3 to step S16 is repeated.

【0060】ステップS16の判別において、温度セン
サ61の出力に基づいて室外熱交換器5における冷媒温
度TOUTが除霜終了基準温度TEND以上である場合には、
コントローラ70は、除霜運転を終了し、上述したのと
同様の手順で元の暖房運転に復帰する。
When it is determined in step S16 that the refrigerant temperature TOUT in the outdoor heat exchanger 5 is equal to or higher than the defrosting termination reference temperature TEND based on the output of the temperature sensor 61,
The controller 70 ends the defrosting operation and returns to the original heating operation in the same procedure as described above.

【0061】以上の説明のように、本実施形態によれ
ば、空気除霜運転時においては、室内電動弁15の開度
を最適な開度に保つことにより、室内熱交換器19をよ
り熱効率の高い状態で動作させることができ、除霜時間
を短縮できるとともに、室内機からの冷媒音の発生を抑
制することができる。
As described above, according to the present embodiment, during the air defrosting operation, by keeping the opening degree of the indoor motor-operated valve 15 at the optimum opening degree, the indoor heat exchanger 19 is made more efficient. Can be operated in a high temperature state, the defrosting time can be shortened, and the generation of refrigerant noise from the indoor unit can be suppressed.

【0062】同様に、温水除霜運転時においては、蓄熱
電動弁11の開度を最適な開度に保つことにより、蓄熱
槽25をより熱効率の高い状態で動作させることがで
き、外気温度にも除霜能力が左右されないことから除霜
時間を短縮できるとともに、室内機に冷媒が流れないこ
とから室内機からの冷媒音の発生を抑制することができ
る。
Similarly, during the hot water defrosting operation, by keeping the opening degree of the heat storage motor-operated valve 11 at the optimum opening degree, the heat storage tank 25 can be operated in a state of higher thermal efficiency, and the outside air temperature can be maintained. In addition, since the defrosting capacity is not affected, the defrosting time can be shortened, and the refrigerant does not flow into the indoor unit, so that the generation of refrigerant noise from the indoor unit can be suppressed.

【0063】以上の説明においては、蓄熱槽を有する空
気調和装置を例として説明したが、圧縮機、室外熱交換
器、室内電動膨張弁および室内熱交換器を有し、暖房運
転中に四方弁を暖房運転時とは逆位置に切り替えて、圧
縮機から吐出される冷媒を、暖房運転サイクルとは逆の
サイクルで室外熱交換器に流す逆サイクル除霜運転を行
う空気調和装置であれば、空気を熱源として逆サイクル
除霜運転を行うに際し、室内熱交換器における冷媒の入
出力温度差を検出し、検出した入出力温度差に基づいて
室内熱交換器の冷媒圧力を調整する室内電動弁の開度を
制御するようにすればよい。
In the above description, an air conditioner having a heat storage tank has been described as an example, but the compressor has an outdoor heat exchanger, an indoor electric expansion valve, and an indoor heat exchanger, and a four-way valve is provided during heating operation. Is switched to the position opposite to the heating operation, the refrigerant discharged from the compressor is an air conditioner that performs a reverse cycle defrosting operation in which the refrigerant is discharged to the outdoor heat exchanger in the cycle opposite to the heating operation cycle. Indoor electrically operated valve that detects the input / output temperature difference of the refrigerant in the indoor heat exchanger when performing reverse cycle defrosting operation using air as the heat source and adjusts the refrigerant pressure in the indoor heat exchanger based on the detected input / output temperature difference. It suffices to control the opening degree of.

【0064】この場合に、室内電動弁の開度を制御する
に際しては、入出力温度差が所定の基準温度より大きい
場合に室内電動弁の開度を大きくする方向に制御し、前
記入出力温度差が所定の基準温度以下である場合に室内
電動弁の開度を小さくする方向に制御するようにすれば
よい。
In this case, when controlling the opening degree of the indoor motor-operated valve, when the input / output temperature difference is larger than a predetermined reference temperature, the opening degree of the indoor motor-operated valve is controlled so as to increase. When the difference is less than or equal to the predetermined reference temperature, the opening degree of the indoor motor-operated valve may be controlled to be decreased.

【0065】[0065]

【発明の効果】本発明によれば、除霜運転の効率化を図
り、除霜時間の短縮化が図れるとともに、気液混合冷媒
が室内機側に流れることによる冷媒音の発生を抑制する
ことができる。
According to the present invention, the efficiency of defrosting operation can be improved, the defrosting time can be shortened, and the generation of refrigerant noise due to the flow of gas-liquid mixed refrigerant to the indoor unit side can be suppressed. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空気調和装置の一実施形態を示す
冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner according to the present invention.

【図2】逆サイクル除霜運転時の処理フローチャートで
ある。
FIG. 2 is a processing flowchart during a reverse cycle defrosting operation.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 四方弁 5 室外熱交換器 6 室外電動膨張弁(室外電動弁) 11 蓄熱電動膨張弁(蓄熱電動弁) 15 室内電動膨張弁(室内電動弁) 19 室内熱交換器 25 蓄熱槽 41、42、51、52、61 温度センサ 70 コントローラ 1 compressor 3 four-way valve 5 outdoor heat exchanger 6 Outdoor electric expansion valve (outdoor electric valve) 11 Heat storage electric expansion valve (heat storage electric valve) 15 Indoor electric expansion valve (indoor electric valve) 19 Indoor heat exchanger 25 heat storage tank 41, 42, 51, 52, 61 Temperature sensor 70 controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F24F 11/02 F24F 11/02 101Z F25B 47/02 550 F25B 47/02 550F (72)発明者 小内 一則 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 椎名 孝夫 栃木県足利市大月町1番地 三洋電機空調 株式会社内 Fターム(参考) 3L092 AA09 DA02 EA03 FA02 WA25─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F24F 11/02 F24F 11/02 101Z F25B 47/02 550 F25B 47/02 550F (72) Inventor Kazunori Ouchi Sanyo Denki Air Conditioning Co., Ltd., 1 Otsuki-cho, Ashikaga City, Tochigi Prefecture (72) Inventor Takao Shiina 1 Otsuki-cho, Ashikaga-shi, Tochigi Sanyo Denki Air Conditioning Co., Ltd. F-term (reference) 3L092 AA09 DA02 EA03 FA02 WA25

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外熱交換器、室内電動膨張弁
および室内熱交換器を有し、暖房運転中に四方弁を暖房
運転時とは逆位置に切り替えて、前記圧縮機から吐出さ
れる冷媒を、暖房運転サイクルとは逆のサイクルで前記
室外熱交換器に流す逆サイクル除霜運転を行う空気調和
装置において、 空気を熱源として前記逆サイクル除霜運転を行うに際
し、室内熱交換器における冷媒の入出力温度差を検出す
る室内温度差検出部と、 前記入出力温度差に基づいて前記室内電動膨張弁の開度
を制御する室内弁開度制御部と、 を備えたことを特徴とする空気調和装置。
1. A compressor, an outdoor heat exchanger, an indoor electric expansion valve, and an indoor heat exchanger are provided, and during heating operation, a four-way valve is switched to a position opposite to that during heating operation and discharged from the compressor. In the air conditioner that performs the reverse cycle defrosting operation in which the refrigerant that flows through the outdoor heat exchanger in a cycle opposite to the heating operation cycle, the indoor heat exchanger is used when performing the reverse cycle defrosting operation using air as a heat source. And an indoor valve opening control section that controls the opening degree of the indoor electric expansion valve based on the input / output temperature difference. Air conditioner.
【請求項2】 請求項1記載の空気調和装置において、 前記室内弁開度制御部は、前記入出力温度差が所定の基
準温度より大きい場合に前記室内電動膨張弁の開度を大
きくする方向に制御し、前記入出力温度差が所定の基準
温度以下である場合に前記室内電動膨張弁の開度を小さ
くする方向に制御することを特徴とする空気調和装置。
2. The air conditioner according to claim 1, wherein the indoor valve opening control section increases the opening of the indoor electric expansion valve when the input / output temperature difference is larger than a predetermined reference temperature. The air conditioner is controlled so that the opening degree of the indoor electric expansion valve is reduced when the input / output temperature difference is equal to or lower than a predetermined reference temperature.
【請求項3】 圧縮機および室外熱交換器を有する室外
ユニットと、蓄熱電動膨張弁、蓄熱槽および蓄熱熱交換
器を有する蓄熱ユニットと、室内熱交換器を有する室内
ユニットと、を備え、暖房運転中に四方弁を暖房運転時
とは逆位置に切り替えて、前記圧縮機から吐出される冷
媒を、暖房運転サイクルとは逆のサイクルで前記室外熱
交換器に流す逆サイクル除霜運転を行う空気調和装置に
おいて、 前記蓄熱槽内に蓄えられた熱を熱源として前記逆サイク
ル除霜運転を行うに際し、前記蓄熱熱交換器における冷
媒の入出力温度差を検出する室内温度差検出部と、 前記入出力温度差に基づいて前記蓄熱電動膨張弁の開度
を制御する蓄熱弁開度制御部と、 を備えたことを特徴とする空気調和装置。
3. An outdoor unit having a compressor and an outdoor heat exchanger, a heat storage electric expansion valve, a heat storage unit having a heat storage tank and a heat storage heat exchanger, and an indoor unit having an indoor heat exchanger, and heating. During operation, the four-way valve is switched to the position opposite to that during heating operation, and the reverse cycle defrosting operation is performed in which the refrigerant discharged from the compressor is supplied to the outdoor heat exchanger in a cycle opposite to the heating operation cycle. In the air conditioner, when performing the reverse cycle defrosting operation using the heat stored in the heat storage tank as a heat source, an indoor temperature difference detection unit that detects the input / output temperature difference of the refrigerant in the heat storage heat exchanger, and An air conditioner comprising: a heat storage valve opening control unit that controls the opening of the heat storage electric expansion valve based on a written output temperature difference.
【請求項4】 請求項3記載の空気調和装置において、 前記蓄熱弁開度制御部は、前記入出力温度差が所定の基
準温度より大きい場合に前記蓄熱電動膨張弁の開度を大
きくする方向に制御し、前記入出力温度差が所定の基準
温度以下である場合に前記蓄熱電動膨張弁の開度を小さ
くする方向に制御することを特徴とする空気調和装置。
4. The air conditioner according to claim 3, wherein the heat storage valve opening control section increases the opening degree of the heat storage electric expansion valve when the input / output temperature difference is larger than a predetermined reference temperature. The air conditioner is controlled so that the opening degree of the heat storage electric expansion valve is reduced when the input / output temperature difference is equal to or lower than a predetermined reference temperature.
【請求項5】 圧縮機、室外熱交換器、室内電動膨張弁
および室内熱交換器を有し、暖房運転中に四方弁を暖房
運転時とは逆位置に切り替えて、前記圧縮機から吐出さ
れる冷媒を、暖房運転サイクルとは逆のサイクルで前記
室外熱交換器に流す逆サイクル除霜運転を行う空気調和
装置の制御方法において、 空気を熱源として前記逆サイクル除霜運転を行うに際
し、室内熱交換器における冷媒の入出力温度差を検出す
る室内温度差検出過程と、 前記入出力温度差に基づいて前記室内電動膨張弁の開度
を制御する室内弁開度制御過程と、 を備えたことを特徴とする空気調和装置の制御方法。
5. A compressor, an outdoor heat exchanger, an indoor electric expansion valve, and an indoor heat exchanger are provided, and the four-way valve is switched to a position opposite to that during heating operation during heating operation and discharged from the compressor. In a method of controlling an air conditioner that performs a reverse cycle defrosting operation in which a refrigerant that flows through the outdoor heat exchanger in a cycle opposite to the heating operation cycle, in performing the reverse cycle defrosting operation using air as a heat source, An indoor temperature difference detection step of detecting an input / output temperature difference of the refrigerant in the heat exchanger; and an indoor valve opening degree control step of controlling an opening degree of the indoor electric expansion valve based on the input / output temperature difference. A method for controlling an air conditioner, comprising:
【請求項6】 請求項5記載の空気調和装置の制御方法
において、 前記室内弁開度制御過程は、前記入出力温度差が所定の
基準温度より大きい場合に前記室内電動膨張弁の開度を
大きくする方向に制御する弁開制御過程と、 前記入出力温度差が所定の基準温度以下である場合に前
記室内電動膨張弁の開度を小さくする方向に制御する弁
閉制御過程と、 を備えたことを特徴とする空気調和装置の制御方法。
6. The method for controlling an air conditioner according to claim 5, wherein in the indoor valve opening control process, the opening of the indoor electric expansion valve is adjusted when the input / output temperature difference is larger than a predetermined reference temperature. A valve opening control step of controlling in a direction of increasing the temperature, and a valve closing control step of controlling in a direction of decreasing the opening degree of the indoor electric expansion valve when the input / output temperature difference is equal to or lower than a predetermined reference temperature. A method for controlling an air conditioner characterized by the above.
【請求項7】 圧縮機および室外熱交換器を有する室外
ユニットと、蓄熱電動膨張弁、蓄熱槽および蓄熱熱交換
器を有する蓄熱ユニットと、室内熱交換器を有する室内
ユニットと、を備え、暖房運転中に四方弁を暖房運転時
とは逆位置に切り替えて、前記圧縮機から吐出される冷
媒を、暖房運転サイクルとは逆のサイクルで前記室外熱
交換器に流す逆サイクル除霜運転を行う空気調和装置の
制御方法において、 前記蓄熱槽内に蓄えられた熱を熱源として前記逆サイク
ル除霜運転を行うに際し、前記蓄熱熱交換器における冷
媒の入出力温度差を検出する室内温度差検出過程と、 前記入出力温度差に基づいて前記蓄熱電動膨張弁の開度
を制御する蓄熱弁開度制御過程と、 を備えたことを特徴とする空気調和装置の制御方法。
7. An outdoor unit having a compressor and an outdoor heat exchanger, a heat storage electric expansion valve, a heat storage unit having a heat storage tank and a heat storage heat exchanger, and an indoor unit having an indoor heat exchanger, and heating. During operation, the four-way valve is switched to the position opposite to that during heating operation, and the reverse cycle defrosting operation is performed in which the refrigerant discharged from the compressor is supplied to the outdoor heat exchanger in a cycle opposite to the heating operation cycle. In the control method of an air conditioner, when performing the reverse cycle defrosting operation using the heat stored in the heat storage tank as a heat source, an indoor temperature difference detection process of detecting an input / output temperature difference of the refrigerant in the heat storage heat exchanger And a heat storage valve opening degree control process of controlling the opening degree of the heat storage electric expansion valve based on the input / output temperature difference, the control method of the air conditioner.
【請求項8】 請求項7記載の空気調和装置の制御方法
において、 前記蓄熱弁開度制御過程は、前記入出力温度差が所定の
基準温度より大きい場合に前記蓄熱電動膨張弁の開度を
大きくする方向に制御する弁開制御過程と、 前記入出力温度差が所定の基準温度以下である場合に前
記蓄熱電動膨張弁の開度を小さくする方向に制御する弁
閉制御過程と、 を備えたことを特徴とする空気調和装置の制御方法。
8. The method for controlling an air conditioner according to claim 7, wherein the heat storage valve opening control step adjusts the opening of the heat storage electric expansion valve when the input / output temperature difference is larger than a predetermined reference temperature. A valve opening control step of controlling in a direction of increasing the temperature, and a valve closing control step of controlling in a direction of decreasing the opening degree of the heat storage electric expansion valve when the input / output temperature difference is equal to or lower than a predetermined reference temperature. A method for controlling an air conditioner characterized by the above.
JP2002087950A 2002-03-27 2002-03-27 Air-conditioner, and air-conditioner control method Pending JP2003287311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087950A JP2003287311A (en) 2002-03-27 2002-03-27 Air-conditioner, and air-conditioner control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087950A JP2003287311A (en) 2002-03-27 2002-03-27 Air-conditioner, and air-conditioner control method

Publications (1)

Publication Number Publication Date
JP2003287311A true JP2003287311A (en) 2003-10-10

Family

ID=29233969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087950A Pending JP2003287311A (en) 2002-03-27 2002-03-27 Air-conditioner, and air-conditioner control method

Country Status (1)

Country Link
JP (1) JP2003287311A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145020A (en) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp Heat pump device, and heat pump water heater and air conditioner loaded with the same
WO2014061132A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
KR20140062878A (en) * 2012-11-15 2014-05-26 엘지전자 주식회사 Air conditioner
JP5829761B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
CN107179205A (en) * 2017-06-07 2017-09-19 广东工业大学 A kind of frosting cloud test method and system
CN109140725A (en) * 2018-08-31 2019-01-04 广东美的暖通设备有限公司 Multi-online air-conditioning system and its defrosting control method
CN109631438A (en) * 2018-11-02 2019-04-16 广东芬尼克兹节能设备有限公司 Heat pump unit, multisystem heat pump unit and its defrosting control method, device
CN112413817A (en) * 2019-08-23 2021-02-26 青岛海尔空调器有限总公司 Air conditioner heating control method and device, air conditioner and storage medium
CN113465242A (en) * 2021-06-17 2021-10-01 青岛海尔空调电子有限公司 Defrosting control method of air source heat pump unit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145020A (en) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp Heat pump device, and heat pump water heater and air conditioner loaded with the same
WO2014061132A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
JP5829762B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
JP5829761B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
KR20140062878A (en) * 2012-11-15 2014-05-26 엘지전자 주식회사 Air conditioner
KR101639837B1 (en) * 2012-11-15 2016-07-14 엘지전자 주식회사 Air conditioner
CN107179205A (en) * 2017-06-07 2017-09-19 广东工业大学 A kind of frosting cloud test method and system
CN109140725A (en) * 2018-08-31 2019-01-04 广东美的暖通设备有限公司 Multi-online air-conditioning system and its defrosting control method
CN109140725B (en) * 2018-08-31 2021-01-05 广东美的暖通设备有限公司 Multi-split air conditioning system and defrosting control method thereof
CN109631438A (en) * 2018-11-02 2019-04-16 广东芬尼克兹节能设备有限公司 Heat pump unit, multisystem heat pump unit and its defrosting control method, device
CN112413817A (en) * 2019-08-23 2021-02-26 青岛海尔空调器有限总公司 Air conditioner heating control method and device, air conditioner and storage medium
WO2021036872A1 (en) * 2019-08-23 2021-03-04 青岛海尔空调器有限总公司 Air conditioning heating control method, device, air conditioner, and storage medium
CN113465242A (en) * 2021-06-17 2021-10-01 青岛海尔空调电子有限公司 Defrosting control method of air source heat pump unit

Similar Documents

Publication Publication Date Title
CN109959120B (en) Defrosting method of air conditioner and air conditioner
WO2003083381A1 (en) Refrigerating cycle device
JP2008082589A (en) Air conditioner
JP2003240391A (en) Air conditioner
JP2001248937A (en) Heat pump hot water supply air conditioner
JP2002005537A (en) Refrigerant heating apparatus and air conditioning apparatus
JP3737357B2 (en) Water heater
JP2003287311A (en) Air-conditioner, and air-conditioner control method
JP4654828B2 (en) Air conditioner
JP2007255866A (en) Air conditioner
JP4694457B2 (en) Air conditioner
CN111322784A (en) Air conditioning unit capable of continuously heating and control method thereof
JP2003302131A (en) Air conditioner and method for controlling the same
JP4622901B2 (en) Air conditioner
JP4269476B2 (en) Refrigeration equipment
JP3851201B2 (en) Air conditioner
JP2003294342A (en) Air conditioner and control method of air conditioner
JP2000028185A (en) Air conditioner
CN114135946A (en) Defrosting system and method of air conditioner and air conditioner
JP4046828B2 (en) Air conditioner
JP2976431B2 (en) Heat pump type air conditioner
JPH08285393A (en) Air conditioner for multi-room
JPH06281299A (en) Defrosting control system for air conditioner
JP2003222416A (en) Heat storage type air conditioner
JPH0799298B2 (en) Defrosting method for heat pump type air conditioner