Nothing Special   »   [go: up one dir, main page]

JP3843506B2 - Manufacturing method of mineral fiberboard - Google Patents

Manufacturing method of mineral fiberboard Download PDF

Info

Publication number
JP3843506B2
JP3843506B2 JP28587596A JP28587596A JP3843506B2 JP 3843506 B2 JP3843506 B2 JP 3843506B2 JP 28587596 A JP28587596 A JP 28587596A JP 28587596 A JP28587596 A JP 28587596A JP 3843506 B2 JP3843506 B2 JP 3843506B2
Authority
JP
Japan
Prior art keywords
weight
expansion
mineral
fine particles
thermally expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28587596A
Other languages
Japanese (ja)
Other versions
JPH10114583A (en
Inventor
一功 小池
英俊 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP28587596A priority Critical patent/JP3843506B2/en
Priority to US08/916,360 priority patent/US5800676A/en
Priority to KR1019970040693A priority patent/KR100245484B1/en
Priority to CNB971176892A priority patent/CN1148506C/en
Publication of JPH10114583A publication Critical patent/JPH10114583A/en
Application granted granted Critical
Publication of JP3843506B2 publication Critical patent/JP3843506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/465Coatings containing composite materials
    • C03C25/47Coatings containing composite materials containing particles, fibres or flakes, e.g. in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Panels For Use In Building Construction (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Paper (AREA)
  • Building Environments (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、鉱滓綿等の鉱物質繊維を主成分とする軽量性、吸音性、生産性に優れた鉱物質繊維板の製造方法に関する。
【0002】
【従来の技術】
鉱滓綿を主成分とする湿式又は半湿式製法による鉱物質繊維板は主に建築物の内装材として天井面に用いられている。材料に要求される本来の性能としては防火性、吸音性が基本となっているが、潜在的な課題として施工効率の向上、より一層の吸音性の向上、経済的側面から運送費の低減、原材料の低減、生産性の向上がある。これらを満足する手段としては材料の軽量化を図ることが考えられる。現状鉱物質繊維板の密度は400kg/m3 前後であるがこれらの課題を満足する軽量化技術として特願平8−241006号が提示されている。これにより得られた鉱物質繊維板の密度は190〜300kg/m3 で従来技術の400kg/m3 と比較し、かなりの軽量化レベルに達した。
【0003】
【発明が解決しようとする課題】
本発明は前記特願平8−241006号に提示されている技術に新たな工夫を加え、一層の軽量性を有する鉱物質繊維板の製造方法を提供することにある。
【0004】
【課題を解決するための手段】
前記課題は鉱物質繊維70〜90重量%、叩解パルプ0.5〜5重量%、ポバール完全けん化品1.5〜8重量%、無機質微繊維1〜10重量%、凝集剤0.5〜3重量%、膨張後の直径が0.03mm以上1.0mm未満であり、直径の膨張倍率が3倍以上であり、かつ膨張開始温度が50〜105℃である熱膨張性微粒子0.5〜6重量%を組成成分とし水中に均一に分散してスラリーとした後抄造、乾燥する鉱物質繊維板の製造方法によって解決される。
【0005】
【発明の実施の形態】
本発明にかかる鉱物質繊維は鉱滓綿、ロックウール等であり使用量は70〜90重量%である。
【0006】
本発明にかかる叩解パルプはスラリー分散の向上材、歩留まりの向上材、結合材として働き、0.5〜5重量%使用される。0.5重量%未満では上記の働きが発揮されず5重量%より多いと熱膨張性微粒子の膨脹を妨げるほか防火性の低下につながる。
【0007】
本発明にかかるポバール完全けん化品は主結合材として働き1.5〜8重量%使用される。1.5重量%より少ないと強度が不十分で、8重量%より多いと防火性能が低下し準不燃をクリアできなくなる。完全けん化品である理由は、調合、成型工程での凝集、ベタツキ現象を防止するためである。またポバールは熱水により膨潤溶解し透明な液体となるが、抄造成型されたウェットマットにおいては、含水率から推定すると、少なくとも10%以上の濃度の水溶液に相当するくらいの状態で存在していると考えられるが、充分流動性を有しており、デンプンの様に糊状になって組織を固着し熱膨張性樹脂微粒子の膨脹現象を妨げるという様なことはなく、従って一層の膨脹増になるためデンプン系接着剤よりも密度低減ができる。
【0008】
本発明にかかる無機質微繊維はセピオライト、アタパルジャイト等で結合材や熱膨張性樹脂微粒子の歩留向上材及び自身が固着剤として強度物性の向上に寄与する。使用量は1〜10重量%で、1重量%より少ないと歩留向上や強度物性の向上の効果が不十分であり、10重量%を越えると、熱膨張性樹脂微粒子の膨脹を妨げ、さらに20重量%を越えると成型時の濾水の低下が著しくなることと、鉱物質繊維量の比率が相対的に下がってくることから密度増の傾向になる。
【0009】
本発明にかかる凝集剤はポリアクリルアミド、ポリアクリルアミド変性物、硫酸アルミニウム等あり、0.5〜3重量%使用される。0.5重量%未満では充分な効果が見られず、3重量%を越えても効果の更なる上昇は見られない。
【0010】
本発明にかかる熱膨張性微粒子はスチレン、ポリエチレン、ポリプロピレン、アクリロニトリルと塩化ビニリデンの共重合体、エチレン酢酸ビニル共重合体等の樹脂にプロパン、ブタン、ペンタン、イソブタン等の発泡剤を1種またはそれ以上内包した微粒子である。前記熱膨張性樹脂の微粒子の中膨張後の直径が0.03mm以上1.0mm未満、直径の膨張倍率が3倍以上、かつ膨張開始温度が50〜105℃のものが使用される。膨張後の直径が0.03mm以上1.0mm未満である理由は0.3mm未満では鉱物質繊維で主として構成される組織の空隙に納まってしまい鉱物質繊維板の厚さを増す効果が得られず1.0mmを越えると表面及び断面の風合が従来の汎用天井板と異なってくるため好ましくない。直径の膨張倍率が3倍以上の理由は鉱物質繊維板の十分な軽量効果得るためである。膨張開始温度が50〜105℃である理由は常温膨張を避けるためと結合剤の硬化開始前に膨張を開始し結合剤の硬化セッティングされる前に膨張が終わるのが好ましいためである。
熱膨張性微粒子の使用量は0.5〜6重量%である。0.5重量%より少ないと十分な軽量性が得られず、6重量%を越えると防火性が低下し準不燃をクリアできなくなる。
本発明にかかる熱膨張性微粒子は原料スラリーの中に存在するときは微粒であり、比重が1.0近辺であるためスラリー中に容易に均一に分散し製品に密度斑が生じることはない。抄造工程を経てマット状に裁断され乾燥工程において熱膨張性微粒子は加熱され膨張温度に達すると膨張を始めマットはその厚さを増してゆき、配合された結合剤が硬化セッティングされる前に膨張は終わる。マット中の水分が全て蒸発するとほぼドライマットとなり結合剤のセッティングはほぼ終了する。マットの温度は更に上昇してゆくがこの過程で膨張した熱膨張性微粒子は自身の融点に達する。そこで熱膨張性微粒子は溶融破泡し膨張前の容積に戻ってゆき、乾燥終了後結合剤の1部として作用する。膨張した樹脂微粒子により形成された空隙はそのまま残り吸音効果、断熱効果として有効に働く。
【0011】
本発明の鉱物質繊維板は調合工程で鉱物質繊維と有機結合剤と無機質微繊維と凝集剤と熱膨張性微粒子を所定の割合で水に添加し均一に分散し、前記成分の合計量が約5%となるスラリーを得る。スラリーは抄造工程で脱水し、所定寸法に切断した後乾燥硬化して原板を得る。原板を化粧仕上げ工程に送り、吸音のためのピン穴加工、ロールによる模様付け、塗装工程のうちの1種又は2種以上のプロセスを必要に応じて施し、最終製品を得る。
【0012】
【実施例】
[実施例1〜3]
表1に示す配合割合で各成分を水に添加し、均一に分散し合計成分が5重量%となるスラリーを得、長網式抄造機により抄造し、乾燥・硬化し本発明の鉱物質繊維板を得た。
【0013】
[比較例1〜4]
表1に示す配合割合で各成分を水に添加し、均一に分散し合計成分が5重量%となるスラリーを得、長網式抄造機により抄造し、乾燥・硬化し比較用の鉱物質繊維板を得た。
【0014】
実施例1〜3及び比較例1〜4のそれぞれの抄造性及び得られた鉱物質繊維板の物性を測定し表1に示した。
【0015】
【表1】

Figure 0003843506
【0016】
【発明の効果】
表1に示す抄造性及び物性から理解される通り本発明の製造方法によると抄造時濾水時間は20〜25秒と短く、抄造後厚さを最終製品厚さよりも大巾に薄く設定できるためウエットマットの絶対含水量が大巾にに下がるのでライン速度指数も従来品を代表する比較例1の205に比べ295〜340と1.4倍以上と極めて生産性に優れる。また物性は乾燥後密度が140〜160kg/m3 と目的の180kg/m3 以下の軽量化を達成し、吸音率においても0.85と十分な効果が認められる。[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a method for producing a mineral fiber board that is mainly composed of mineral fibers such as slag and is excellent in lightness, sound absorption, and productivity.
[0002]
[Prior art]
Mineral fiberboard made by a wet or semi-wet manufacturing method mainly composed of mineral wool is mainly used on the ceiling as an interior material for buildings. Fire protection and sound absorption are the basic properties required for materials, but as a potential issue, improvement in construction efficiency, further improvement in sound absorption, reduction in transportation costs from an economic perspective, There are reduction of raw materials and improvement of productivity. As means for satisfying these, it is conceivable to reduce the weight of the material. Japanese Patent Application No. 8-241006 has been proposed as a weight reduction technique that satisfies these problems, although the density of mineral fiber boards is currently around 400 kg / m 3 . This density of the obtained mineral fiberboard by the comparison with the 400 kg / m 3 of the prior art in 190~300kg / m 3, reaches a considerable weight reduction levels.
[0003]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method for manufacturing a mineral fiber board having further lightness by adding a new device to the technique presented in the above Japanese Patent Application No. 8-241006.
[0004]
[Means for Solving the Problems]
The above subjects are 70 to 90% by weight of mineral fibers, 0.5 to 5% by weight of beaten pulp, 1.5 to 8% by weight of poval fully saponified product, 1 to 10% by weight of inorganic fine fibers, and 0.5 to 3 of a flocculant. Thermally expandable fine particles having a weight percentage of 0.03 mm to less than 1.0 mm, an expansion ratio of the diameter of 3 times or more, and an expansion start temperature of 50 to 105 ° C. This can be solved by a method for producing a mineral fiberboard, in which a weight percent is a composition component and is uniformly dispersed in water to form a slurry, followed by papermaking and drying.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The mineral fiber according to the present invention is mineral cotton, rock wool or the like, and the amount used is 70 to 90% by weight.
[0006]
The beaten pulp according to the present invention functions as a slurry dispersion improver, a yield improver, and a binder, and is used in an amount of 0.5 to 5% by weight. If the amount is less than 0.5% by weight, the above function is not exhibited, and if the amount is more than 5% by weight, the expansion of the thermally expandable fine particles is prevented and the fire resistance is lowered.
[0007]
The poval fully saponified product according to the present invention serves as a main binder and is used in an amount of 1.5 to 8% by weight. If it is less than 1.5% by weight, the strength is insufficient, and if it is more than 8% by weight, the fireproof performance is lowered and the quasi-incombustibility cannot be cleared. The reason why it is a completely saponified product is to prevent aggregation and stickiness in the blending and molding processes. In addition, poval swells and dissolves with hot water to become a transparent liquid. However, in a wet mat formed by papermaking, it is present in a state corresponding to an aqueous solution having a concentration of at least 10%, as estimated from the water content. However, it has sufficient fluidity and does not have a paste like starch to fix the structure and prevent the expansion phenomenon of the thermally expandable resin particles. Therefore, the density can be reduced as compared with the starch-based adhesive.
[0008]
The inorganic fine fiber according to the present invention is a sepiolite, attapulgite or the like, and contributes to the improvement of strength properties as a binder or a yield improving material for thermally expandable resin fine particles as a fixing agent. The amount used is 1 to 10% by weight, and if it is less than 1% by weight, the effect of improving yield and strength properties is insufficient, and if it exceeds 10% by weight, the expansion of the thermally expandable resin fine particles is hindered. If it exceeds 20% by weight, the drainage at the time of molding will be remarkably reduced, and the ratio of the amount of mineral fiber will be relatively lowered, so that the density tends to increase.
[0009]
The flocculant according to the present invention includes polyacrylamide, polyacrylamide-modified product, aluminum sulfate, etc., and is used in an amount of 0.5 to 3% by weight. If the amount is less than 0.5% by weight, a sufficient effect is not observed, and if the amount exceeds 3% by weight, no further increase in the effect is observed.
[0010]
The thermally expandable fine particles according to the present invention include one or more blowing agents such as propane, butane, pentane, and isobutane in a resin such as styrene, polyethylene, polypropylene, a copolymer of acrylonitrile and vinylidene chloride, and an ethylene vinyl acetate copolymer. Fine particles encapsulated above. The heat-expandable resin fine particles having a diameter after expansion of 0.03 mm or more and less than 1.0 mm, a diameter expansion ratio of 3 times or more, and an expansion start temperature of 50 to 105 ° C. are used. The reason why the diameter after expansion is 0.03 mm or more and less than 1.0 mm is that if it is less than 0.3 mm, it will fit in the voids of the structure mainly composed of mineral fibers, and the effect of increasing the thickness of the mineral fiber board will be obtained. If it exceeds 1.0 mm, the texture of the surface and cross section is different from that of a conventional general-purpose ceiling board, which is not preferable. The reason why the expansion ratio of the diameter is 3 times or more is to obtain a sufficient light weight effect of the mineral fiber board. The reason why the expansion start temperature is 50 to 105 ° C. is to avoid expansion at normal temperature and to start expansion before the curing of the binder is started and to end the expansion before setting the binder to be cured.
The amount of the thermally expandable fine particles used is 0.5 to 6% by weight. If it is less than 0.5% by weight, sufficient lightness cannot be obtained, and if it exceeds 6% by weight, fire resistance is lowered and quasi-incombustibility cannot be cleared.
The heat-expandable fine particles according to the present invention are fine particles when present in the raw slurry, and since the specific gravity is around 1.0, they are easily and uniformly dispersed in the slurry, and density spots do not occur in the product. After the paper making process, it is cut into a mat shape, and in the drying process, the thermally expandable fine particles are heated and when the temperature reaches the expansion temperature, the mat begins to expand and the mat increases in thickness, expanding before the compounded binder is cured and set. Is over. When all the water in the mat is evaporated, the mat becomes almost dry mat and the setting of the binder is almost finished. The temperature of the mat further increases, but the thermally expandable fine particles expanded in this process reach their melting point. Therefore, the thermally expandable fine particles melt and foam, return to the volume before expansion, and act as a part of the binder after drying. The void formed by the expanded resin fine particles remains as it is, and works effectively as a sound absorbing effect and a heat insulating effect.
[0011]
The mineral fiber board of the present invention is a blending process in which mineral fibers, organic binders, inorganic fine fibers, flocculants and thermally expandable fine particles are added to water in a predetermined ratio and uniformly dispersed, and the total amount of the above components is A slurry of about 5% is obtained. The slurry is dehydrated in a paper making process, cut to a predetermined size, and then dried and cured to obtain an original plate. The original plate is sent to a decorative finishing process, and one or more processes of pin hole processing for sound absorption, patterning with a roll, and painting process are performed as necessary to obtain a final product.
[0012]
【Example】
[Examples 1 to 3]
Each component is added to water at the blending ratio shown in Table 1 to obtain a slurry that is uniformly dispersed to give a total component of 5% by weight, made by a long net paper machine, dried and cured, and the mineral fiber of the present invention. I got a plate.
[0013]
[Comparative Examples 1-4]
Each component is added to water in the blending ratio shown in Table 1, and a slurry is obtained which is uniformly dispersed to give a total component of 5% by weight. The slurry is made by a long net paper machine, dried and cured, and a mineral fiber for comparison. I got a plate.
[0014]
The papermaking properties of Examples 1 to 3 and Comparative Examples 1 to 4 and the physical properties of the obtained mineral fiberboard were measured and shown in Table 1.
[0015]
[Table 1]
Figure 0003843506
[0016]
【The invention's effect】
As understood from the papermaking properties and physical properties shown in Table 1, according to the manufacturing method of the present invention, the drainage time at the time of papermaking is as short as 20 to 25 seconds, and the post-papermaking thickness can be set much thinner than the final product thickness. Since the absolute water content of the wet mat is greatly reduced, the line speed index is 295 to 340, which is 1.4 times or more higher than 205 of Comparative Example 1 representing a conventional product, and is extremely excellent in productivity. The physical properties after drying densities achieved 140~160kg / m 3 and 180 kg / m 3 or less of the weight of the object, a sufficient effect is observed even 0.85 and the sound absorption rate.

Claims (1)

鉱物質繊維70〜90重量%、叩解パルプ0.5〜5重量%、ポバール完全けん化品1.5〜8重量%、無機質微繊維1〜10重量%、凝集剤0.5〜3重量%、膨張後の直径が0.03mm以上1.0mm未満であり、直径の膨張倍率が3倍以上であり、かつ膨張開始温度が50〜105℃である熱膨張性微粒子0.5〜6重量%を組成成分とし水中に均一に分散してスラリーとした後抄造、乾燥することを特徴とする鉱物質繊維板の製造方法Mineral fiber 70-90 wt%, beaten pulp 0.5-5 wt%, Poval fully saponified product 1.5-8 wt%, inorganic fine fiber 1-10 wt%, flocculant 0.5-3 wt%, 0.5-6% by weight of thermally expandable fine particles having a diameter after expansion of 0.03 mm or more and less than 1.0 mm, a diameter expansion ratio of 3 times or more, and an expansion start temperature of 50 to 105 ° C. A method for producing a mineral fiberboard, characterized in that it is uniformly dispersed in water as a composition component to form a slurry, followed by papermaking and drying
JP28587596A 1996-08-26 1996-10-09 Manufacturing method of mineral fiberboard Expired - Lifetime JP3843506B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28587596A JP3843506B2 (en) 1996-10-09 1996-10-09 Manufacturing method of mineral fiberboard
US08/916,360 US5800676A (en) 1996-08-26 1997-08-22 Method for manufacturing a mineral fiber panel
KR1019970040693A KR100245484B1 (en) 1996-08-26 1997-08-25 Method for manufacturing a mineral fiber panel
CNB971176892A CN1148506C (en) 1996-08-26 1997-08-25 Method for mfg. mineral fiber panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28587596A JP3843506B2 (en) 1996-10-09 1996-10-09 Manufacturing method of mineral fiberboard

Publications (2)

Publication Number Publication Date
JPH10114583A JPH10114583A (en) 1998-05-06
JP3843506B2 true JP3843506B2 (en) 2006-11-08

Family

ID=17697169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28587596A Expired - Lifetime JP3843506B2 (en) 1996-08-26 1996-10-09 Manufacturing method of mineral fiberboard

Country Status (1)

Country Link
JP (1) JP3843506B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154738B2 (en) * 2004-07-26 2013-02-27 日本板硝子株式会社 Heat resistant ceramic sheet
JP2010158850A (en) * 2009-01-09 2010-07-22 Daiken Corp Method of manufacturing wood fiber board
CN108585719B (en) * 2018-04-25 2020-09-18 上海新冠美家具有限公司 Processing and manufacturing method of fireproof furniture

Also Published As

Publication number Publication date
JPH10114583A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
KR100245484B1 (en) Method for manufacturing a mineral fiber panel
US4433020A (en) Sheet-like material, heat-insulating material derived therefrom and methods of manufacturing same
US4818583A (en) Use of a fibrous web incorporating microspheres for preparing reinforced objects
JP2003140661A (en) Thermoformable acoustic panel
CN104592697B (en) Low-density and high-flame-retardant composite porous material and preparation method and application thereof
JP2017535649A (en) Prepreg, core and composite article comprising expandable graphite material
JP3843506B2 (en) Manufacturing method of mineral fiberboard
JPH0711053A (en) Fire-resistant composite material
CN103270229A (en) Ceiling tile base mat
JPS6319622B2 (en)
US20070202326A1 (en) Fiber reinforced foam structure
JPS5869047A (en) Sheet-shaped body, its manufacture and heat insulating material
JP3546607B2 (en) Method of manufacturing mineral fiberboard
CN106746999B (en) A kind of humiture Self-adjusting protective plate for building and preparation method thereof
DE102004043837A1 (en) Heat and sound insulating floor leveling fill
CN115925328B (en) High-sound-insulation fireproof building material and preparation method thereof
JP3635806B2 (en) Manufacturing method of mineral fiberboard
CN103243827B (en) A kind of complex heat-preservation superimposed sheet
US3533907A (en) Method of forming water-laid vermiculite roof insulation board
JP4939144B2 (en) Mineral fiberboard and manufacturing method thereof
JPS6014685B2 (en) Method for producing nonflammable coated paper
JPS63305146A (en) Fiber-reinforced phenolic resin foam and its production
JP3914528B2 (en) Mineral fiberboard and manufacturing method thereof
JP2678781B2 (en) Manufacturing method of lightweight foam mineral wool panel
WO1988005098A1 (en) Low density frothed mineral wool panel and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term