Nothing Special   »   [go: up one dir, main page]

JP3632457B2 - Manufacturing method of liquid crystal device - Google Patents

Manufacturing method of liquid crystal device Download PDF

Info

Publication number
JP3632457B2
JP3632457B2 JP24603098A JP24603098A JP3632457B2 JP 3632457 B2 JP3632457 B2 JP 3632457B2 JP 24603098 A JP24603098 A JP 24603098A JP 24603098 A JP24603098 A JP 24603098A JP 3632457 B2 JP3632457 B2 JP 3632457B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
surrounding frame
manufacturing
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24603098A
Other languages
Japanese (ja)
Other versions
JP2000075307A (en
Inventor
正明 ▲もたい▼
稔 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24603098A priority Critical patent/JP3632457B2/en
Publication of JP2000075307A publication Critical patent/JP2000075307A/en
Application granted granted Critical
Publication of JP3632457B2 publication Critical patent/JP3632457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶装置の製造方法に関する。
【0002】
【従来の技術】
従来、液晶パネルの製造方法は、2枚の基板をスペーサー及びシールを介して貼り合わせ、更に数十枚積み重ね最上位基板全面に所定の圧力を印加し、硬化処理する方法が主流である。この製造方法の概略構成を図4に示す。一定間隔を有する定盤401、402の間に高さ調節の為のダミー基板403と異物混入等による集中荷重緩和の為の間紙404と更に前記2枚の基板を貼り合せたパネル基板405を積み重ね、上部定盤に固定されたゴム板(通称風船)406に気体を流入し任意の圧力をパネル基板に印加し所定セル厚のパネルを形成している。また、前記方法の改善法として特開平5−113571号公報の実施例中で述べられている方法がある。この方法は基板をシールを介し貼り合わせたものを樹脂フィルムの袋の中に入れ、樹脂フィルムの袋内を減圧にした状態で樹脂フィルムの口を封止し、更にシールの硬化条件下で加熱しシールを硬化するものである。
【0003】
【発明が解決しようとする課題】
しかしながら、パネル基板を積み重ねて圧力印加する方法においては、重ねた基板の上側と下側で荷重及び熱の加わり方が大きく異なるとともに、用いる基板の厚さのばらつきや異物等の混入によりパネル基板に均一な圧力がかからない。そのためでき上がった液晶パネルにセル厚ムラを生じ易い。また、特開平5−113571号公報の実施例中で述べられている方法については、セル厚均一性においては比較的良好であるが、パネル基板面と樹脂フィルム間が直接接触するためパネル基板に静電気を帯び易く静電気によるパネルの素子破壊を起こし易い。更にはパネル基板を積み重ねると前記方法と同一の課題を有する為、処理できる枚数が限定される問題点を有する。また樹脂フィルムの袋を用いることで作業性が悪く、異物等の混入もし易い。
【0004】
そこで本発明は、上述した課題を解決しパネルのセル厚を精度良く安定して形成する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために本発明の液晶装置の製造方法は、シール部材を介して2枚の基板を貼り合わせ、前記シール部材の内側領域に液晶を封入する液晶装置の製造方法であって、前記基板間に前記シール部材を設けるとともに、該シール部材を包囲するようにして開口部を有する包囲枠を設ける工程と、前記包囲枠の内側領域を第1の気圧とする工程と、前記第1の気圧中で前記包囲枠の開口部をふさぐことにより、前記シール部材の内側領域を前記第1の気圧に保持する工程と、前記包囲枠の開口部をふさいだ後に、前記第1の気圧より高い第2の気圧中で前記シール部材を硬化させる工程と、前記シール部材を硬化させた後に、前記シール部材と前記包囲枠との間において前記基板を切断する工程と、を具備してなり、前記の包囲枠を設ける工程において、前記基板を切断する工程での前記包囲枠の切断部分の幅を、該包囲枠の他の部分の幅より細く形成することを特徴とする。
【0006】
本発明の液晶装置の製造方法によれば、貼り合わせた2枚の基板に剛体をもちいずに圧力をかけることができるので、圧力及び温度が均一に基板に伝達される。また基板の厚さのバラツキや、異物等があった場合にも圧力ムラが全くでない。そのためパネル基板に均一に同一圧力が加わり、従来技術に見られるような異物等の混入による集中荷重が基板に全くかからないため、集中荷重が原因で生じるセル厚ムラが全くないという効果を有する。更には圧着工程時における液晶パネルの積み重ねがないので剥離作業がなく静電気による不良がでにくいという効果を有する。
また、包囲枠の切断部分の幅を、該包囲枠の他の部分の幅より細く形成するので、基板を切断した際、例えば電極端子部のように上下基板で段差を生じる部分のブレーク(切断)が容易となり、ブレーク時の基板割れ、欠け等による歩留まり低下が防止される。
【0007】
また、前記液晶装置の製造方法においては、前記包囲枠の前記開口部を、前記シール部材に設けられた液晶の注入口の近傍に設けるのが好ましい。
こうすると、液晶の注入口の脱気が効率よく行えるので、シール部材の内側領域と外側領域とに差圧が生じにくくなりシール切れがおきにくくなる。
【0008】
また、前記シール部材と前記包囲枠との一方は熱硬化樹脂であり、他方は紫外線硬化樹脂であることが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0014】
参考例1)
図1は発明液晶装置製造方法に係わる第1の参考例の要部を示す図である。構成を説明すると、スイッチング素子が形成されているガラス基板101とカラーフィルターを有するガラス基板102にそれぞれ配向膜塗布およびラビング処理を施す。次にガラス基板101上のシールパターン(シール部材)104に該当する部分にスペーサーとなるシリカボール103を混在したエポキシ系熱硬化樹脂をディスペンサー法により描画し、樹脂パターン(包囲枠)105に該当する部分にはアクリル系紫外線硬化樹脂を別ノズルより描画した。またガラス基板102上には樹脂ボール106を散布し、両基板101,102を対向して貼り合わせて紫外線照射し樹脂パターン105を硬化させる。次に、この貼り合せた基板を真空装置中に入れ樹脂パターン105で囲まれた空隙107、108を7.6*10−3Torrに減圧し、その後この圧力雰囲気中で樹脂パターンの開口部109を紫外線硬化樹脂110で塗布硬化してふさぎ、さらにこの基板を大気圧雰囲気中で加熱しながらシールパターン104を硬化した。この基板をパネル形状にそって切断ライン111を入れ切断し、最後に液晶を注入、封止し液晶パネルを作成した。ここで、前記樹脂パターン(包囲枠)105の、前記切断ライン111に対応する部分(切断ライン相当部)の幅、すなわち切断部分の幅を、後述するように該樹脂パターン105の他の部分の幅より細く形成することにより、本参考例1は本発明の実施例となる。本製造方法で得られたパネルは、セル厚均一性に優れ、パネル内16点でのセル厚分布を測定したところσが±0.02μmを示し極めて良好であった。尚、比較のために図4に示した従来圧着方法で作成したパネルはセル厚ばらつきσが±0.05μm〜±0.1μmであった。さらに従来方法では静電気による素子破壊が僅か発生したが、本実施例パネルにおいては全く見られず、表示品質の高い液晶パネルが得られた。また、樹脂パターン105の開口部109をふさぐ圧力雰囲気を上記以外に380、100、7.6、7.6×10−1、7.6×10−2、1×10−3Torrと変化させ、他は同一条件で液晶パネルを作成したところ得られたパネルのセル厚ばらつきσは380Torrでは±0.07μm、100Torrでは±0.03μm 、7.6、7.6×10−1、7.6×10−2、1×10−3Torrでも±0.03μm〜±0.01μm であり特に100Torr以下の圧力で優れたセル厚均一性が得られた。
【0015】
参考例2)
図1を用いて本発明の液晶装置の製造方法に係わる第2の参考例を説明する。参考例1と異なるところは樹脂パターン105内を減圧せず、大気雰囲気中で開口部109を紫外線硬化樹脂110で塗布硬化してふさいだ。その後このガラス基板を3kgf/cmの加圧釜中に入れ、シールパターン104の硬化温度まで加熱して液晶パネルを作成した。本製造方法で得られた液晶パネルはセル厚均一性が良好で、パネル内の16点のセル厚測定値のばらつきσが±0.03μmの値を示した。さらに静電気による素子破壊や配向不良は全くなく表示品質は良好であった。また、樹脂パターンの開口部109をふさいだ後のシールパターン104の硬化圧力を上記以外に0.5、1、2、4、5kgf/cmと変化させセル厚ばらつきσを測定したところ0.5kgf/cmでは±0.07μm、1、2、4、5kgf/cmではそれぞれ±0.03μm であり特に1kgf/cm以上の圧力で優れたセル厚均一性が得られた。
なお、この例においても、前記樹脂パターン(包囲枠)105の、前記切断ライン111に対応する部分(切断ライン相当部)の幅、すなわち切断部分の幅を、後述するように該樹脂パターン105の他の部分の幅より細く形成することにより、本参考例は本発明の実施例となる。
【0016】
参考例3)
図1を用いて本発明液晶装置の製造方法に係わる第3の参考例を説明する。参考例1、2と異なるところは樹脂パターン105内を1×10−1Torrに減圧した後、開口部109を紫外線硬化樹脂110で塗布硬化してふさぎ、この基板をさらに1kgf/cmの加圧釜中に入れシールパターン104の硬化温度まで加熱した。本製造方法で得られた液晶パネルはセル厚均一性が良好で、16点のセル厚測定値のばらつきσが±0.02〜0.03μmの値を示した。さらに静電気による素子の破壊や配向不良についても良好な結果が得られた。また、樹脂パターンの開口部109をふさぐ圧力を上記以外に760(大気圧)、380、100、7.6、7.6×10−1、7.6×10−2、1×10−3Torrと変化させ、さらに樹脂パターンの開口部109をふさいだ後のシール104の硬化圧力も上記以外に0.5、2、4、5kgf/cmと変化させセル厚ばらつきσを測定したところ、開口部109をふさぐ圧力が760Torrでシールパターン104の硬化圧力が0.5kgf/cmの組み合わせはセル厚ばらつきσが±0.07μm と若干大きかったものの、それ以外の組み合わせは±0.02〜0.03μmの値を示し均一性が良好であった。
なお、この例においても、前記樹脂パターン(包囲枠)105の、前記切断ライン111に対応する部分(切断ライン相当部)の幅、すなわち切断部分の幅を、後述するように該樹脂パターン105の他の部分の幅より細く形成することにより、本参考例は本発明の実施例となる。
【0017】
参考例4)
図2は本発明液晶装置の製造方法に係わる他の参考例の要部を示す図である。本参考例では、図2(a)に示すように樹脂パターン205の開口部209とシールパターン204の開口部212の方向を揃えた構成にし、他は実施例1の構成で液晶パネルを作成した。本製造方法により得られたパネルは減圧時に、シールの変形や切れを起こすことが全くなくシール幅が均一でまたセル厚均一性もばらつきσが±0.01μmと優れた値を示した。また表示品質も極めて高い液晶パネルが得られた。
なお、この例においても、前記樹脂パターン(包囲枠)105の、前記切断ライン111に対応する部分(切断ライン相当部)の幅、すなわち切断部分の幅を、後述するように該樹脂パターン105の他の部分の幅より細く形成することにより、本参考例は本発明の実施例となる。
【0018】
(実施例)
図3は本発明液晶装置の製造方法の実施例の要部を示す図である。本実施例では、図3に示したごとく樹脂パターン305のパターン幅の切断ライン相当部313をおよそ1mmと細く他部はおよそ3mmとした。またそれ以外のところは参考例1の構成で液晶パネルを作成した。本製造方法により得られたパネルは、パネルサイズに切断時の特に電極端子部のように上下基板で段差を生じる部分のブレークが容易となりブレーク時の基板割れ、欠け等による歩留まり低下が全く見られなかった。また、樹脂パターンの幅は用いる材料基板構成により任意に設定でき、シールが硬化するまでパターン内の圧力が保持できる形状であれば本実施例寸法に限定されなかった。
【0019】
(参考例
再び図1を用い本発明液晶装置の製造方法に係わる参考例について説明する。本参考例では、図1の樹脂パターン105の材質をPET(ポリエチレンテレフタレート)樹脂フィルムを用い、それ以外のところは参考例1の構成で液晶パネルを作成した。本製造方法によれば、樹脂パターン105内の減圧時に樹脂フィルムが基板に密着し圧力保持が十分にでき、得られたパネルの均一性も良好でありセル厚ばらつきσが±0.03μmであった。またフィルムのため樹脂パターンとして数回再利用できた。さらにPETフィルムの代わりにポリエチレン、ナイロン、テトロン樹脂を用いた場合においてもシールが硬化するまでの差圧が保持でき良好であった。
なお、この例においても、前記樹脂パターン(包囲枠)105の、前記切断ライン111に対応する部分(切断ライン相当部)の幅、すなわち切断部分の幅を、後述するように該樹脂パターン105の他の部分の幅より細く形成することにより、本参考例は本発明の実施例となる。
【0020】
上記実施例及び参考例は本発明の一部を示すもので、これら実施例及び参考例ではスイッチング素子およびカラーフィルタ基板の組み合わせ構成において説明しているが、スイッチング素子、カラーフィルタのない基板構成においても同様に作成することができ、材質もプラスチック、シリコン、セラミックス基板等を用いることも可能である。
【0021】
またシール、樹脂パターンの材質および組み合わせについてもシールパターンを熱硬化性樹脂、樹脂パターンを紫外線硬化樹脂で説明したが、逆であっても或は同一材料構成であっても、シールと樹脂パターンの硬化条件をずらして行えば同様に製造できるとともに、全く異なるシリコーン樹脂のような室温硬化型樹脂等の材料を用いても良い。さらに基板内のシールパターンは2パネル以上の取り個数のシール形状であっても、またダミーシールパターンがあってもその周囲に樹脂パターンが設けられていれば同様に効果が期待できるものである。
【0022】
【発明の効果】
以上述べたように、本発明の液晶パネルの製造方法によれば、液晶パネルのセル厚均一性を著しく向上できるため、TFT、MIM、STNパネルの表示性能を一層高めることはもとより、ギャップ精度がより要求されるFLC(強誘電性液晶)、BTN(双安定性カイラルネマチック液晶)パネル等への展開が可能である。さらにパネル基板を金属、絶縁体等で押さえ付けることがないため剥離帯電等の静電気による素子破壊も全くなく、歩留まり向上にも多大な効果をもたらすものである。
また、包囲枠の切断部分の幅を、該包囲枠の他の部分の幅より細く形成するので、基板を切断した際、例えば電極端子部のように上下基板で段差を生じる部分のブレーク(切断)が容易となり、ブレーク時の基板割れ、欠け等による歩留まり低下が防止される。
【図面の簡単な説明】
【図1】本発明に係わる参考例1,参考例2,参考例3,参考例5における液晶装置の構造の要部を示す図であり、(a)は平面図、(b)はaのA−B断面図。
【図2】本発明に係わる参考例4における、樹脂パターン開口部と注入口の方向の違いによる気流の違いを示した図であり、(a)開口部を揃えた図、(b)は開口部を反対にした図。
【図3】本発明の実施例における、切断ラインと樹脂パターンとの交点部の拡大図であり、(a)は基板全体図、(b)13の拡大図。
【図4】従来技術における圧着構成を示す平面略図。
【符号の説明】
101、102 ガラス基板
103 シリカボール
104 シールパターン
105 樹脂パターン
106 樹脂ボール
107、108 樹脂パターンで囲まれた空隙
109 樹脂パターンの開口部
110 紫外線硬化樹脂
111 切断ライン
204 シールパターン
205 樹脂パターン
209 樹脂パターン開口部
212 シールパターン開口部
305 樹脂パターン
313 切断ライン相当部
401、402 定盤
403 ダミー基板
404 間紙
405 パネル基板
406 ゴム板(風船)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a liquid crystal device.
[0002]
[Prior art]
Conventionally, a method for manufacturing a liquid crystal panel is mainly a method in which two substrates are bonded together via a spacer and a seal, and several tens of substrates are stacked, and a predetermined pressure is applied to the entire uppermost substrate to perform a curing process. A schematic configuration of this manufacturing method is shown in FIG. A dummy substrate 403 for height adjustment between a surface plate 401, 402 having a certain interval, a slip sheet 404 for reducing concentrated load due to foreign matter mixing, and a panel substrate 405 obtained by bonding the two substrates together. Stacking and injecting gas into a rubber plate (commonly called balloon) 406 fixed on the upper surface plate and applying arbitrary pressure to the panel substrate form a panel having a predetermined cell thickness. Further, as an improvement method of the above method, there is a method described in an example of JP-A-5-113571. In this method, a substrate bonded with a seal is put in a resin film bag, the resin film bag is sealed under reduced pressure, and heated under the curing conditions of the seal. The seal is cured.
[0003]
[Problems to be solved by the invention]
However, in the method of applying pressure by stacking panel substrates, the method of applying load and heat is greatly different between the upper side and the lower side of the stacked substrates, and due to variations in the thickness of the substrates used and contamination by foreign substances, etc. Uniform pressure is not applied. Therefore, cell thickness unevenness is likely to occur in the finished liquid crystal panel. The method described in the example of JP-A-5-113571 is relatively good in cell thickness uniformity, but the panel substrate surface and the resin film are in direct contact with each other, so It is easy to be charged with static electricity, and it is easy to cause destruction of panel elements due to static electricity. Furthermore, since stacking panel substrates has the same problem as the above method, there is a problem that the number of sheets that can be processed is limited. In addition, the use of a resin film bag results in poor workability and facilitates entry of foreign substances and the like.
[0004]
Accordingly, an object of the present invention is to solve the above-described problems and to provide a method for forming a cell thickness of a panel accurately and stably.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a method for manufacturing a liquid crystal device according to the present invention is a method for manufacturing a liquid crystal device in which two substrates are bonded via a seal member, and liquid crystal is sealed in an inner region of the seal member, Providing the sealing member between the substrates, providing an enclosing frame having an opening so as to surround the sealing member, setting an inner region of the enclosing frame to a first atmospheric pressure, and the first The step of holding the inner region of the sealing member at the first atmospheric pressure by closing the opening of the enclosure frame in the atmospheric pressure, and after the opening of the enclosure frame is blocked, from the first atmospheric pressure A step of curing the sealing member at a high second atmospheric pressure, and a step of cutting the substrate between the sealing member and the surrounding frame after the sealing member is cured, The surrounding frame In the step of providing, the width of the cutting portion of said enclosure frame in the step of cutting the substrate, characterized by narrower than the width of the other portions of the surrounding frame.
[0006]
According to the method for manufacturing a liquid crystal device of the present invention, pressure can be applied to two bonded substrates without using a rigid body, so that the pressure and temperature are uniformly transmitted to the substrates. In addition, even when there are variations in the thickness of the substrate, foreign matter, etc., there is no pressure unevenness at all. Therefore, the same pressure is uniformly applied to the panel substrate, and the concentrated load due to the mixing of foreign substances and the like as seen in the prior art is not applied to the substrate at all, so that there is no cell thickness unevenness caused by the concentrated load. Furthermore, since there is no stacking of the liquid crystal panels during the crimping process, there is no peeling work, and there is an effect that defects due to static electricity are difficult to occur.
In addition, since the width of the cutting part of the surrounding frame is formed to be narrower than the width of the other part of the surrounding frame, when the substrate is cut, the break (cutting) of the part that causes a step in the upper and lower substrates, for example, the electrode terminal portion ), And a decrease in yield due to breakage, chipping, etc. of the substrate during a break is prevented.
[0007]
In the method for manufacturing the liquid crystal device, it is preferable that the opening of the surrounding frame is provided in the vicinity of a liquid crystal injection port provided in the seal member.
In this case, the liquid crystal injection port can be efficiently degassed, so that a differential pressure is hardly generated between the inner region and the outer region of the seal member, and the seal is not easily broken.
[0008]
Moreover, it is preferable that one of the sealing member and the surrounding frame is a thermosetting resin and the other is an ultraviolet curable resin.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
( Reference Example 1)
FIG. 1 is a diagram showing a main part of a first reference example relating to a method of manufacturing a liquid crystal device according to the present invention. Explaining the configuration, alignment film application and rubbing treatment are performed on the glass substrate 101 on which the switching elements are formed and the glass substrate 102 having a color filter, respectively. Next, an epoxy thermosetting resin in which silica balls 103 serving as spacers are mixed in a portion corresponding to a seal pattern (seal member) 104 on the glass substrate 101 is drawn by a dispenser method, and corresponds to a resin pattern (enclosure frame) 105. Acrylic ultraviolet curable resin was drawn on the part from another nozzle. Also, resin balls 106 are dispersed on the glass substrate 102, the substrates 101 and 102 are bonded to each other, and irradiated with ultraviolet rays to cure the resin pattern 105. Next, the bonded substrate is put in a vacuum apparatus, and the gaps 107 and 108 surrounded by the resin pattern 105 are reduced to 7.6 * 10 −3 Torr. Thereafter, the opening 109 of the resin pattern is formed in this pressure atmosphere. The seal pattern 104 was cured while being coated and cured with an ultraviolet curable resin 110 and further heating the substrate in an atmospheric pressure atmosphere. The substrate was cut along a panel shape by inserting a cutting line 111, and finally liquid crystal was injected and sealed to prepare a liquid crystal panel. Here, the width of the portion (corresponding to the cutting line) corresponding to the cutting line 111 of the resin pattern (enclosure frame) 105, that is, the width of the cutting portion is set to the width of the other portion of the resin pattern 105 as will be described later. By forming it thinner than the width, the present reference example 1 becomes an embodiment of the present invention. The panel obtained by this production method was excellent in cell thickness uniformity, and the cell thickness distribution at 16 points in the panel was measured. As a result, σ was ± 0.02 μm, which was very good. For comparison, the panel produced by the conventional crimping method shown in FIG. 4 had a cell thickness variation σ of ± 0.05 μm to ± 0.1 μm. Further, although the device destruction due to static electricity slightly occurred in the conventional method, it was not observed at all in the panel of this example, and a liquid crystal panel with high display quality was obtained. Further, the pressure atmosphere that covers the opening 109 of the resin pattern 105 is changed to 380, 100, 7.6, 7.6 × 10 −1 , 7.6 × 10 −2 , 1 × 10 −3 Torr other than the above. In other cases, when the liquid crystal panel was prepared under the same conditions, the cell thickness variation σ of the obtained panel was ± 0.07 μm at 380 Torr, ± 0.03 μm at 100 Torr, 7.6, 7.6 × 10−1, 7. Even at 6 × 10 −2 and 1 × 10 −3 Torr, it was ± 0.03 μm to ± 0.01 μm, and excellent cell thickness uniformity was obtained particularly at a pressure of 100 Torr or less.
[0015]
( Reference Example 2)
A second reference example relating to the method of manufacturing a liquid crystal device of the present invention will be described with reference to FIG. The difference from Reference Example 1 was that the inside of the resin pattern 105 was not decompressed, and the opening 109 was coated and cured with an ultraviolet curable resin 110 in an air atmosphere. Thereafter, the glass substrate was placed in a 3 kgf / cm 2 pressure kettle and heated to the curing temperature of the seal pattern 104 to prepare a liquid crystal panel. The liquid crystal panel obtained by this production method had good cell thickness uniformity, and the variation σ of the measured cell thickness at 16 points in the panel showed a value of ± 0.03 μm. Furthermore, there was no element destruction or orientation failure due to static electricity, and the display quality was good. Further, when the curing pressure of the seal pattern 104 after covering the opening 109 of the resin pattern was changed to 0.5, 1, 2 , 4, 5 kgf / cm 2 in addition to the above, the cell thickness variation σ was measured. 5 kgf / cm 2 at ± 0.07 .mu.m, excellent cell thickness uniformity 1,2,4,5kgf / cm at 2 respectively are ± 0.03 .mu.m particularly 1 kgf / cm 2 or more pressure was obtained.
Also in this example, the width of the portion corresponding to the cutting line 111 (the portion corresponding to the cutting line) of the resin pattern (enclosure frame) 105, that is, the width of the cutting portion, is described below. This reference example becomes an embodiment of the present invention by forming it thinner than the width of other portions.
[0016]
( Reference Example 3)
A third reference example related to the method for manufacturing a liquid crystal device of the present invention will be described with reference to FIG. The difference from Reference Examples 1 and 2 is that after the pressure inside the resin pattern 105 is reduced to 1 × 10 −1 Torr, the opening 109 is coated and cured with an ultraviolet curable resin 110, and this substrate is further heated by 1 kgf / cm 2 . It was put in a pressure cooker and heated to the curing temperature of the seal pattern 104. The liquid crystal panel obtained by this manufacturing method had good cell thickness uniformity, and the variation σ of the measured cell thickness at 16 points showed a value of ± 0.02 to 0.03 μm. In addition, good results were obtained with respect to the destruction of elements and poor alignment due to static electricity. Moreover, the pressure which closes the opening part 109 of a resin pattern is 760 (atmospheric pressure) other than the above, 380, 100, 7.6, 7.6 * 10 < -1 >, 7.6 * 10 <-2>, 1 * 10 < -3 >. In addition to the above, the curing pressure of the seal 104 after sealing the opening 109 of the resin pattern was changed to 0.5, 2 , 4, 5 kgf / cm 2 and the cell thickness variation σ was measured. In the combination of 760 Torr for sealing the opening 109 and 0.5 kgf / cm 2 for the curing pressure of the seal pattern 104, the cell thickness variation σ was slightly large as ± 0.07 μm, but the other combinations were ± 0.02 The value was 0.03 μm and the uniformity was good.
Also in this example, the width of the portion corresponding to the cutting line 111 (the portion corresponding to the cutting line) of the resin pattern (enclosure frame) 105, that is, the width of the cutting portion, is described below. This reference example becomes an embodiment of the present invention by forming it thinner than the width of other portions.
[0017]
( Reference Example 4)
FIG. 2 is a diagram showing a main part of another reference example related to the method for manufacturing a liquid crystal device of the present invention. In the present embodiment, a configuration in which alignment direction of the opening 212 of the aperture 209 and the seal pattern 204 of the resin pattern 205 as shown in FIG. 2 (a), the other is created a liquid crystal panel in the configuration of Example 1 . The panel obtained by this manufacturing method did not cause any deformation or breakage of the seal at the time of decompression, and the seal width was uniform, and the cell thickness uniformity varied with an excellent value of ± 0.01 μm. A liquid crystal panel with extremely high display quality was obtained.
Also in this example, the width of the portion corresponding to the cutting line 111 (the portion corresponding to the cutting line) of the resin pattern (enclosure frame) 105, that is, the width of the cutting portion, is described below. This reference example becomes an embodiment of the present invention by forming it thinner than the width of other portions.
[0018]
( Example)
FIG. 3 is a diagram showing the main part of one embodiment of the method for manufacturing a liquid crystal device of the present invention. In this embodiment, as shown in FIG. 3, the cutting line equivalent portion 313 of the pattern width of the resin pattern 305 is as thin as about 1 mm, and the other portion is about 3 mm. Other than that, a liquid crystal panel having the configuration of Reference Example 1 was prepared. The panel obtained by this manufacturing method can be easily broken at the panel size, especially at the upper and lower substrates, such as the electrode terminal portion, and the yield is reduced due to substrate cracks, chips, etc. There wasn't. The width of the resin pattern can be arbitrarily set depending on the material substrate configuration to be used, and is not limited to the dimensions of this embodiment as long as the pressure in the pattern can be maintained until the seal is cured.
[0019]
(Reference Example 5 )
A reference example relating to the manufacturing method of the liquid crystal device of the present invention will be described with reference again to FIG. In the present embodiment, using the material of PET (polyethylene terephthalate) resin film of the resin pattern 105 of FIG. 1, it is created a liquid crystal panel in the configuration of Example 1 other place. According to this manufacturing method, the resin film is in close contact with the substrate when the pressure in the resin pattern 105 is reduced, and the pressure can be sufficiently maintained, the uniformity of the obtained panel is good, and the cell thickness variation σ is ± 0.03 μm. It was. Moreover, it was reusable several times as a resin pattern because of the film. Furthermore, even when polyethylene, nylon, or tetron resin was used in place of the PET film, the differential pressure until the seal was cured was good.
Also in this example, the width of the portion corresponding to the cutting line 111 (the portion corresponding to the cutting line) of the resin pattern (enclosure frame) 105, that is, the width of the cutting portion, is described below. This reference example becomes an embodiment of the present invention by forming it thinner than the width of other portions.
[0020]
The above-mentioned examples and reference examples show a part of the present invention, and in these examples and reference examples , the description is given in the combination configuration of the switching element and the color filter substrate, but in the substrate configuration without the switching element and the color filter. Can be made in the same manner, and the material can be plastic, silicon, a ceramic substrate, or the like.
[0021]
Also, regarding the material and combination of the seal and the resin pattern, the seal pattern is described as a thermosetting resin, and the resin pattern is described as an ultraviolet curable resin. If the curing conditions are shifted, they can be produced in the same manner, and materials such as room temperature curable resins such as completely different silicone resins may be used. Further, even if the sealing pattern in the substrate has a number of sealing shapes of two or more panels, or there is a dummy sealing pattern, the same effect can be expected if a resin pattern is provided around it.
[0022]
【The invention's effect】
As described above, according to the method for manufacturing a liquid crystal panel of the present invention, since the cell thickness uniformity of the liquid crystal panel can be remarkably improved, not only the display performance of the TFT, MIM, and STN panel is further improved, but also the gap accuracy is improved. It can be applied to FLC (ferroelectric liquid crystal), BTN (bistable chiral nematic liquid crystal) panels and the like which are more demanded. Further, since the panel substrate is not pressed by a metal, an insulator, etc., there is no element destruction due to static electricity such as peeling charging, and a great effect is obtained for improving the yield.
In addition, since the width of the cutting part of the surrounding frame is formed to be narrower than the width of the other part of the surrounding frame, when the substrate is cut, the break (cutting) of the part that causes a step in the upper and lower substrates, for example, the electrode terminal portion ), And a decrease in yield due to breakage, chipping, etc. of the substrate during a break is prevented.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams illustrating a main part of a structure of a liquid crystal device according to Reference Example 1, Reference Example 2, Reference Example 3, and Reference Example 5 according to the present invention , in which FIG. 1A is a plan view, and FIG. FIG.
FIGS. 2A and 2B are diagrams showing a difference in air flow due to a difference in the direction of the resin pattern opening and the injection port in Reference Example 4 according to the present invention , wherein FIG. The figure which reversed the part.
[3] in Example of the present invention, it is an enlarged view of the intersection portion of the cutting line and the resin pattern, (a) shows the overall view substrate, (b) 3 13 enlarged view of.
FIG. 4 is a schematic plan view showing a crimping configuration in the prior art.
[Explanation of symbols]
101, 102 Glass substrate 103 Silica ball 104 Seal pattern 105 Resin pattern 106 Resin ball 107, 108 A space surrounded by the resin pattern 109 Resin pattern opening 110 UV curable resin 111 Cutting line 204 Seal pattern 205 Resin pattern 209 Resin pattern opening Portion 212 Seal pattern opening 305 Resin pattern 313 Cutting line equivalent portion 401, 402 Surface plate 403 Dummy substrate 404 Interleaf 405 Panel substrate 406 Rubber plate (balloon)

Claims (3)

シール部材を介して2枚の基板を貼り合わせ、前記シール部材の内側領域に液晶を封入する液晶装置の製造方法であって、
前記基板間に前記シール部材を設けるとともに、該シール部材を包囲するようにして開口部を有する包囲枠を設ける工程と、
前記包囲枠の内側領域を第1の気圧とする工程と、
前記第1の気圧中で前記包囲枠の開口部をふさぐことにより、前記シール部材の内側領域を前記第1の気圧に保持する工程と、
前記包囲枠の開口部をふさいだ後に、前記第1の気圧より高い第2の気圧中で前記シール部材を硬化させる工程と、
前記シール部材を硬化させた後に、前記シール部材と前記包囲枠との間において前記基板を切断する工程と、を具備してなり、
前記の包囲枠を設ける工程において、前記基板を切断する工程での前記包囲枠の切断部分の幅を、該包囲枠の他の部分の幅より細く形成することを特徴とする液晶装置の製造方法。
A method of manufacturing a liquid crystal device in which two substrates are bonded via a seal member, and liquid crystal is sealed in an inner region of the seal member,
Providing the sealing member between the substrates, and providing an enclosing frame having an opening so as to surround the sealing member;
A step of setting the inner region of the surrounding frame to a first atmospheric pressure;
Maintaining the inner region of the seal member at the first atmospheric pressure by closing the opening of the surrounding frame in the first atmospheric pressure;
Curing the seal member in a second air pressure higher than the first air pressure after closing the opening of the surrounding frame;
Cutting the substrate between the sealing member and the surrounding frame after curing the sealing member, and
In the step of providing the surrounding frame, the width of the cut portion of the surrounding frame in the step of cutting the substrate is formed to be narrower than the width of the other portion of the surrounding frame. .
前記包囲枠の前記開口部を、前記シール部材に設けられた液晶の注入口の近傍に設けることを特徴とする請求項1記載の液晶装置の製造方法。2. The method of manufacturing a liquid crystal device according to claim 1, wherein the opening of the surrounding frame is provided in the vicinity of a liquid crystal injection port provided in the seal member. 前記シール部材と前記包囲枠との一方は熱硬化樹脂であり、他方は紫外線硬化樹脂であることを特徴とする請求項1又は2記載の液晶装置の製造方法。3. The method of manufacturing a liquid crystal device according to claim 1, wherein one of the sealing member and the surrounding frame is a thermosetting resin, and the other is an ultraviolet curable resin.
JP24603098A 1998-08-31 1998-08-31 Manufacturing method of liquid crystal device Expired - Fee Related JP3632457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24603098A JP3632457B2 (en) 1998-08-31 1998-08-31 Manufacturing method of liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24603098A JP3632457B2 (en) 1998-08-31 1998-08-31 Manufacturing method of liquid crystal device

Publications (2)

Publication Number Publication Date
JP2000075307A JP2000075307A (en) 2000-03-14
JP3632457B2 true JP3632457B2 (en) 2005-03-23

Family

ID=17142416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24603098A Expired - Fee Related JP3632457B2 (en) 1998-08-31 1998-08-31 Manufacturing method of liquid crystal device

Country Status (1)

Country Link
JP (1) JP3632457B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129270A (en) * 2006-11-20 2008-06-05 Fujitsu Ltd Manufacturing method and manufacturing apparatus for display panel
US10802346B1 (en) 2019-05-23 2020-10-13 Himax Display, Inc. Display panel
TWI728378B (en) * 2019-06-10 2021-05-21 立景光電股份有限公司 Display panel
CN115453758B (en) * 2022-09-20 2024-08-06 浙江至格科技有限公司 AR lens, dispensing, laminating and edge sealing method of AR lens and AR glasses

Also Published As

Publication number Publication date
JP2000075307A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JPS63109413A (en) Production of liquid crystal display
JP2001255542A (en) Method and device for laminating substrate and method and device for manufacturing liquid crystal display device
JPH055890A (en) Liquid crystal display panel and production thereof
KR100343084B1 (en) Stress-free liquid crystal cell assembly
JP2001337335A (en) Production method for liquid crystal display element
JP3632457B2 (en) Manufacturing method of liquid crystal device
US6191841B1 (en) Method of manufacturing liquid crystal display cell
US20050122464A1 (en) One-drop fill spacerless process for liquid crystal cell on a silicon backplane or microdisplays
US6562175B1 (en) Method of controlling ultraviolet glue size for liquid crystal display devices
JP2010249923A (en) Liquid crystal display device and method for manufacturing mother board of the same
JPH11281988A (en) Production of liquid crystal display element
US7292306B2 (en) Apparatus for dispensing sealant, method of manufacturing a liquid crystal display device using the same, and liquid crystal display device manufactured by the same
JPH07318957A (en) Liquid crystal display device and its production
JP2014119675A (en) Manufacturing method of liquid crystal display device, and mother substrate
KR100870658B1 (en) Liquid crystal display device and manufacturing method thereof
JP4021258B2 (en) Liquid crystal display device manufacturing method
JP4286352B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JPH01114822A (en) Manufacture of liquid crystal display device
JP2003149630A (en) Panel for forming liquid crystal cell and manufacturing method for liquid crystal cell
JP2000029051A (en) Manufacture of liquid crystal display device
JP2000199911A (en) Production of liquid crystal display device and its apparatus thereof
JP2000275656A (en) Method and device for producing liquid crystal display device
JP3383556B2 (en) Manufacturing method of liquid crystal display device
JPH1195183A (en) Production of liquid crystal panel and liquid crystal panel as well and electronic apparatus
JP3978319B2 (en) Manufacturing method of spacerless liquid crystal display element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees