Nothing Special   »   [go: up one dir, main page]

JP3613033B2 - Circulating water heater - Google Patents

Circulating water heater Download PDF

Info

Publication number
JP3613033B2
JP3613033B2 JP30615398A JP30615398A JP3613033B2 JP 3613033 B2 JP3613033 B2 JP 3613033B2 JP 30615398 A JP30615398 A JP 30615398A JP 30615398 A JP30615398 A JP 30615398A JP 3613033 B2 JP3613033 B2 JP 3613033B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
pipe
check valve
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30615398A
Other languages
Japanese (ja)
Other versions
JP2000130789A (en
Inventor
栄一 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP30615398A priority Critical patent/JP3613033B2/en
Publication of JP2000130789A publication Critical patent/JP2000130789A/en
Application granted granted Critical
Publication of JP3613033B2 publication Critical patent/JP3613033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はカランを開放すると、殆ど捨て水無しで適温の湯を給湯可能な、循環式給湯装置に関する。
【0002】
【従来の技術】
従来、この種の循環式給湯装置においては、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプと戻り湯温度を測定するサーミスタを配し、即湯用循環時には、循環回路内の湯を一定時間毎に、若しくはサーミスタの温度が所定の温度以下に下がると、若しくはこれらを組み合わせて、サーミスタの検知温度が所定の温度に上昇するまで循環ポンプにより循環し、給湯熱源機のバーナに点火して給湯熱源機の熱交換器を介し、循環回路内の水を適温に制御しつつ加熱するか、又は、当該循環回路にヒータを配し、循環回路内の水を適温に制御しつつ加熱し、カランからの給湯時にはカランを開放すると当該循環ポンプを停止し、且つ、給湯熱源機のバーナの制御を循環運転から給湯運転に変更し、若しくは、当該ヒータへの通電を止め、往き配管を通じてカランから給湯していた。
【0003】
【発明が解決しようとする課題】
しかしながら頻繁に給湯するような、即ち、殆ど即湯用循環運転をしないような使い方をすると、戻り配管内の水は滞留水となり、長期間この状態が継続すると配管内の錆を伴った赤水が発生したり、又、不衛生であるという問題が有った。多くの一般ユーザーの使用方法では、定期的に循環運転に入るが、それでも上水道から給湯熱源機に入水した水が、全て給湯個所のカランから排出されるわけでは無く、更なる改良が望まれる。
又一方、大能力、大量出湯に対する需要が年々高まってきており、より一層の大量出湯が望まれている。
【0004】
本発明は上記問題に鑑み、滞留水が発生しにくく、且つ、従来以上に大量出湯が可能な循環式給湯装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の循環式給湯装置は、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通し、且つ、該逆止弁Aよりも循環流れ方向上流側と、往き配管の途中とを開閉可能な切替弁を介して連通したことを第1の特徴としている。
【0006】
請求項1記載の循環式給湯装置によれば、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通し、且つ、該逆止弁Aよりも循環流れ方向上流側と、往き配管の途中とを開閉可能な切替弁を介して連通したことにより、カランからの給湯時には給湯熱源機から吐出した湯は往き配管を通って、及び、バイパス管を経由して戻り配管を通ってカランから吐出されるのみならず、往き配管に流入した湯は、途中で各カランに向かう短絡管にも分流される為、通水抵抗が非常に小さくなり、大量出湯が可能となる。循環時には、往き配管から戻り配管にショートサイクルする事が無く、循環運転に支障をきたす事は無い。また、給湯運転、即湯用循環運転を問わず往き配管も、戻り配管も通水に供される為、水が滞留する事が無く衛生的である。
【0007】
又、本発明の循環式給湯装置は 給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環用ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に、循環流れ方向と逆方向には流れないように逆止弁Aを設け、該逆止弁Aよりも循環流れ方向上流側で、且つ、循環用ポンプよりも下流側と、往き配管の途中とを該往き配管の上流側から戻り配管の逆止弁A方向に流れるように逆止弁Bを介して連通したことを第2の特徴としている。
【0008】
請求項2記載の循環式給湯装置によれば、戻り配管と給水配管との接続部よりも循環流れ方向上流側に、循環流れ方向と逆方向には流れないように逆止弁Aを設け、該逆止弁Aよりも循環流れ方向上流側で、且つ、循環用ポンプよりも下流側と、往き配管の途中とを該往き配管の上流側から戻り配管の逆止弁A方向に流れるように逆止弁Bを介して連通したことにより、電動或いは手動の切替弁を用いずとも即湯用循環運転、給湯運転の通路切り替えができ、複雑なアクチュエータを用いるよりも信頼性が向上すると共に通水抵抗を小さくでき、製造コストも低減できる。又、給湯時には給湯用の通水路として、往き配管と戻り配管の両方を使用することになり、通水抵抗が小さく抑えられ大量出湯が可能となると共に、給湯運転、即湯用循環運転を問わず往き配管も、戻り配管も通水される為、水が滞留する事が無く衛生的である。
【0009】
又、本発明の循環式給湯装置は、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通したことを第3の特徴としている。
【0010】
請求項3記載の循環式給湯装置によれば、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通したことにより、給湯時には給湯用の通水路として、往き配管と戻り配管の両方を使用することになり、通水抵抗が小さく抑えられ大量出湯が可能となる。
即湯用循環運転時には、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配している為に、往き配管から戻り配管にショートサイクルする事が無く、循環回路を全て用いて確実に循環動作をする事が可能で、循環回路に滞留水が発生する事が無い。
【0011】
又、本発明の循環式給湯装置は、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通したことを特徴とする循環式給湯装置であり、且つ、請求項2に記載の循環式給湯装置であることを第4の特徴としている。つまり、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通し、且つ、請求項2に記載のように、該逆止弁Aよりも循環流れ方向上流側で、且つ、循環用ポンプよりも下流側と、往き配管の途中とを該往き配管の上流側から戻り配管の逆止弁A方向に流れるように逆止弁Bを介して連通したことを第4の特徴としている。
【0012】
請求項4記載の循環式給湯装置によれば、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通し、且つ、該逆止弁Aよりも循環流れ方向上流側で、且つ、循環用ポンプよりも下流側と、往き配管の途中とを該往き配管の上流側から戻り配管の逆止弁A方向に流れるように逆止弁Bを介して連通したことにより、カランからの給湯時には給湯熱源機から吐出した湯は往き配管を通って、及び、バイパス管を経由して戻り配管を通ってカランから吐出されるのみならず、往き配管に流入した湯は、途中で各カランに向かう短絡管にも分流される為、通水抵抗が非常に小さくなり、大量出湯が可能となる。循環時には、往き配管から戻り配管にショートサイクルする事が無く、循環運転に支障をきたす事は無い。
【0013】
以下これらを図示の実施例に基づいて説明する。図1は、本発明を適用した循環式給湯装置の第1の実施例の概略構成図である。図2は本発明を適用した循環式給湯装置の第2の実施例の概略構成図である。図3は本発明を適用した循環式給湯装置の第3の実施例の概略構成図である。図4は本発明を適用した循環式給湯装置の第4の実施例の概略構成図である。図5は本発明を適用した循環式給湯装置の第5の実施例の概略構成図である。図6は従来の循環式給湯装置の一例を示す概略構成図である。図7は従来の循環式給湯装置の他の一例を示す概略構成図である。
【0014】
【発明の実施の形態】
図1を参照して本発明の第1の実施例の構成について説明する。
給湯熱源機は従来例と同様に、バーナ2とバーナ2により加熱される熱交換器1、及び、往き配管6と戻り配管7からなる循環回路内の湯を循環するポンプ3、入水管8から循環回路への逆流を防止する逆止弁Aよりなり、更に本発明の第1の実施例ではポンプ3の吸込側と熱交換器1の出口部とを、途中に通路を開閉可能な切替弁12を介してバイパス管13で連通させている。又、給湯個所の各カラン5は湯水混合栓であり、戻り配管7から湯を供給すべく、又、給水源に接続された給水管9を通じて冷水を供給すべく配管されている。
【0015】
図1において、循環運転時、つまりポンプ3起動時、バイパス管13は切替弁12により閉止されており、従来の循環式給湯装置と同様に、循環回路内の湯は図示しないコントローラにより、サーミスタ10の検知温度が所定の温度になるようにポンプ3により循環され、熱交換器2でバーナ2により適宜加熱されることにより制御される。ここで熱交換器1から流出した湯は往き配管6を通過後、戻り配管7を通り、サーミスタ10によって温度を検知されてポンプ3から吐出され、逆止弁Aを通過して、熱交換器1でバーナ2に加熱され往き配管6に吐出される。
【0016】
一方、カラン5からの給湯時には、ポンプ3を停止してカラン5を開放すると、給水源から流入した水の一部は入水管8を通って熱交換器1に至り、図示しない水量センサ、入水温度センサ、出湯温度センサ等のデータを元に、図示しないコントローラで制御されるバーナ2により設定温度に加熱され、熱交換器1から吐出される。ここで切替弁12は開放されており、熱交換器1出口と、戻り配管7のポンプ3よりも上流側とがバイパス管13により連通される。故に、熱交換器1から吐出された湯の一部は、往き配管6に流入し、戻り配管7に至るが、残りはバイパス管13を通って戻り配管7とポンプ3の吸込口との交差部に至る。この位置の水圧は、入水管8の水圧よりも低い為、湯はポンプ3側には流れず、戻り配管7を通って往き配管6から流入してきた湯と合流し、各カラン5の湯側に至り、給水源から給水管9に流入してカラン5の水側に至った冷水と適温に混合され、カラン5から吐出する。
【0017】
次に図2を参照して本発明の第2の実施例の構成について説明する。
給湯熱源機は従来例と同様に、バーナ2とバーナ2により加熱される熱交換器1、及び、循環回路内の湯を循環するポンプ3、入水管8から循環回路への逆流を防止する逆止弁Aよりなり、更に本発明の第2の実施例では該逆止弁Aよりも循環流れ方向上流側で、且つ、ポンプ3よりも下流側と、往き配管6の熱交換器1出口部とを該往き配管6の上流側から戻り配管7の逆止弁A方向に流れるように逆止弁Bを介してバイパス管13で連通している。又、各カラン5は湯水混合栓であり、戻り配管7から湯を供給すべく、又、給水源に接続された給水管9を通じて冷水を供給すべく配管されている。
【0018】
図2において、循環運転時、つまりポンプ3起動時、ポンプ3の吐出側に逆止弁Bが配されている為、その圧力バランスによって、バイパス管13においては往き配管6から戻り配管7に向かう流れは発生せず、且つ、その逆に戻り配管7から往き配管に向かう流れも発生しない。よって、従来の循環式給湯装置と同様に、循環回路内の湯は図示しないコントローラにより、サーミスタ10の検知温度が所定の温度になるようにポンプ3により循環され、熱交換器2でバーナ2により適宜加熱されることにより制御される。ここで熱交換器から流出した湯は往き配管6を通過後、戻り配管7を通り、サーミスタ10によって温度を検知されてポンプ3から吐出され、逆止弁Aを通過して、熱交換器1でバーナ2に加熱され往き配管6に吐出される。
【0019】
一方、カラン5からの給湯時には、ポンプ3を停止してカラン5を開放すると、給水源から流入した水の一部は入水管8を通って熱交換器1に至り、図示しない水量センサ、入水温度センサ、出湯温度センサ等のデータを元に、図示しないコントローラで制御されるバーナ2により設定温度に加熱され、熱交換器1から吐出される。ここでポンプ3は停止している為、バイパス管13においては逆止弁Bを介して戻り配管7に向かう流れが発生する。故に、熱交換器1から吐出された湯の一部は、往き配管6に流入し、戻り配管7に至るが、残りは逆止弁Bを介してバイパス管13を通り、ポンプ3を循環流れ方向とは逆方向に流れて、往き配管6から流入してきた湯と合流し、各カラン5の湯側に至り、給水源から給水管9に流入してカラン5の水側に至った冷水と適温に混合され、カラン5から吐出する。
【0020】
次に図3を参照して本発明の第3の実施例の構成について説明する。
給湯熱源機は従来例と同様に、バーナ2とバーナ2により加熱される熱交換器1、及び、循環回路内の湯を循環するポンプ3、入水管8から循環回路への逆流を防止する逆止弁Aよりなり、更に本発明の第3の実施例では、戻り配管7と給湯個所のカラン5との間に、逆止弁Cをカラン5方向にのみ通水可能な方向に配し、且つ、往き配管6と当該逆止弁C・カラン間を短絡管で連通している。又、各カラン5は湯水混合栓であり、戻り配管7から当該逆止弁Cを介して、及び往き配管6から短絡管を介して湯を供給すべく、又、給水源に接続された給水管9を通じて冷水を供給すべく配管されている。
【0021】
図3において、循環運転時、つまりポンプ3起動時、戻り配管7のポンプ3よりも上流側に、逆止弁Cがカラン5方向にのみ通水可能な方向に配されている為、循環回路内の湯が短絡管15を介して、往き配管6から戻り配管7へショートサイクルするという事は無く、従来の循環式給湯装置と同様に、循環回路内の湯は図示しないコントローラにより、サーミスタ10の検知温度が所定の温度になるようにポンプ3により循環され、熱交換器2でバーナ2により適宜加熱されることにより制御される。ここで熱交換器から流出した湯は往き配管6を通過後、戻り配管7を通り、サーミスタ10によって温度を検知されてポンプ3から吐出され、逆止弁Aを通過して、熱交換器1でバーナ2に加熱され往き配管6に吐出される。
【0022】
一方、カラン5からの給湯時には、ポンプ3を停止してカラン5を開放すると、給水源から流入した水の一部は入水管8を通って熱交換器1に至り、図示しない水量センサ、入水温度センサ、出湯温度センサ等のデータを元に、図示しないコントローラで制御されるバーナ2により設定温度に加熱され、熱交換器1から吐出され往き配管6に流入する。往き配管6に流入した湯の一部はそのまま戻り配管7を通り、各逆止弁Cを通過して各カラン5の湯側に至るが、残りは短絡管15を通って、そのまま各カラン5の湯側に至り、給水源から給水管9に流入してカラン5の水側に至った冷水と適温に混合され、カラン5から吐出する。
【0023】
次に図4を参照して本発明の第4の実施例の構成について説明する。
本発明の第4の実施例の構成は、本発明の第3の実施例の構成と本発明の第1の実施例の構成を兼ね備えたものである。つまり、給湯熱源機は従来例と同様に、バーナ2とバーナ2により加熱される熱交換器1、及び、循環回路内の湯を循環するポンプ3、入水管8から循環回路への逆流を防止する逆止弁Aよりなり、更に本発明の第4の実施例では、本発明の第3の実施例と同様に、戻り配管7と給湯個所のカラン5との間に、逆止弁Cをカラン5方向にのみ通水可能な方向に配し、且つ、往き配管6と当該逆止弁C・カラン間を短絡管で連通している。又、更に本発明の第1の実施例のようにポンプ3の吸込側と熱交換器1の出口部とを、途中に通路を開閉可能な切替弁12を介してバイパス管13で連通させている。
各カラン5は湯水混合栓であり、戻り配管7から当該逆止弁Cを介して、及び往き配管6から短絡管を介して湯を供給すべく、又、給水源に接続された給水管9を通じて冷水を供給すべく配管されている。
【0024】
図4において、循環運転時つまりポンプ3起動時、バイパス管13は切替弁12により閉止されており、従来の循環式給湯装置と同様に、循環回路内の湯は図示しないコントローラにより、サーミスタ10の検知温度が所定の温度になるようにポンプ3により循環され、熱交換器2でバーナ2により適宜加熱されることにより制御される。又、戻り配管7のポンプ3よりも上流側に、逆止弁Cがカラン5方向にのみ通水可能な方向に配されている為、循環回路内の湯が短絡管15を介して、往き配管6から戻り配管7へショートサイクルするという事は無い。
ここで熱交換器1から流出した湯は往き配管6を通過後、戻り配管7を通り、サーミスタ10によって温度を検知されてポンプ3から吐出され、逆止弁Aを通過して、熱交換器1でバーナ2に加熱され往き配管6に吐出される。
【0025】
一方、カラン5からの給湯時には、ポンプ3を停止してカラン5を開放すると、給水源から流入した水の一部は入水管8を通って熱交換器1に至り、図示しない水量センサ、入水温度センサ、出湯温度センサ等のデータを元に、図示しないコントローラで制御されるバーナ2により設定温度に加熱され、熱交換器1から吐出される。ここで切替弁12は開放されており、熱交換器1出口と、戻り配管7のポンプ3よりも上流側とがバイパス管13により連通される。故に、熱交換器1から吐出した湯の一部は、往き配管6に流入する。往き配管6に流入した湯の一部はそのまま戻り配管7を通り、各逆止弁Cを通過して各カラン5の湯側に至るが、残りは短絡管15を通って、そのまま各カラン5の湯側に至る。熱交換器1から吐出した湯の残りは、バイパス管13を通って戻り配管7とポンプ3の吸込口との交差部に至る。この位置の水圧は、入水管8の水圧よりも低い為、湯はポンプ3側には流れず、戻り配管7を通って各逆止弁Cを通過して各カラン5の湯側に至る。又、ここで給水源から給水管9に流入してカラン5の水側に至った冷水と適温に混合され、カラン5から吐出する。
【0026】
次に図5を参照して本発明の第5の実施例の構成について説明する。
本発明の第5の実施例の構成は、本発明の第3の実施例の構成と本発明の第2の実施例の構成を兼ね備えたものである。つまり、給湯熱源機は従来例と同様に、バーナ2とバーナ2により加熱される熱交換器1、及び、循環回路内の湯を循環するポンプ3、入水管8から循環回路への逆流を防止する逆止弁Aよりなり、更に本発明の第5の実施例では、本発明の第3の実施例と同様に、戻り配管7と給湯個所のカラン5との間に、逆止弁Cをカラン5方向にのみ通水可能な方向に配し、且つ、往き配管6と当該逆止弁C・カラン間を短絡管で連通している。又、本発明の第2の実施例と同様に、該逆止弁Aよりも循環流れ方向上流側で、且つ、ポンプ3よりも下流側と、往き配管6の熱交換器1出口部とを該往き配管6の上流側から戻り配管7の逆止弁A方向に流れるように逆止弁Bを介してバイパス管13で連通している。又、各カラン5は湯水混合栓であり、戻り配管7から当該逆止弁Cを介して、及び往き配管6から短絡管を介して湯を供給すべく、又、給水源に接続された給水管9を通じて冷水を供給すべく配管されている。
【0027】
図5において、循環運転時つまりポンプ3起動時、ポンプ3の吐出側に逆止弁Bが配されている為、その圧力バランスによって、バイパス管13においては往き配管6から戻り配管7に向かう流れは発生せず、且つ、その逆に戻り配管7から往き配管に向かう流れも発生しない。よって、従来の循環式給湯装置と同様に、循環回路内の湯は図示しないコントローラにより、サーミスタ10の検知温度が所定の温度になるようにポンプ3により循環され、熱交換器2でバーナ2により適宜加熱されることにより制御される。又、戻り配管7のポンプ3よりも上流側に、逆止弁Cがカラン5方向にのみ通水可能な方向に配されている為、循環回路内の湯が短絡管15を介して、往き配管6から戻り配管7へショートサイクルするという事は無い。ここで熱交換器から流出した湯は往き配管6を通過後、戻り配管7を通り、サーミスタ10によって温度を検知されてポンプ3から吐出され、逆止弁Aを通過して、熱交換器1でバーナ2に加熱され往き配管6に吐出される。
【0028】
一方、カラン5からの給湯時には、ポンプ3を停止してカラン5を開放すると、給水源から流入した水の一部は入水管8を通って熱交換器1に至り、図示しない水量センサ、入水温度センサ、出湯温度センサ等のデータを元に、図示しないコントローラで制御されるバーナ2により設定温度に加熱され、熱交換器1から吐出される。ここでポンプ3は停止している為、バイパス管13においては逆止弁Bを介して戻り配管7に向かう流れが発生する。故に、熱交換器1から吐出された湯の一部は、往き配管6に流入し、戻り配管7に至るが、残りは逆止弁Bを介してバイパス管13を通り、ポンプ3を循環流れ方向とは逆方向に流れて、往き配管6から流入してきた湯と合流し、各逆止弁Cを通過して各カラン5の湯側に至る。又、往き配管6に流入した湯の一部はそのまま戻り配管7を通り、各逆止弁Cを通過して各カラン5の湯側に至るが、残りは短絡管15を通って、そのまま各カラン5の湯側に至り、給水源から給水管9に流入してカラン5の水側に至った冷水と適温に混合され、カラン5から吐出する。
【0029】
尚、以上の本発明の実施例の説明では、熱源機は図7に示す従来例を元に説明したが、これに限定する必要は無く、図6に示すように循環回路内の湯を加熱する為にヒータ11を配したものであっても良く、又、熱源機の加熱部構成が電気温水器や、オイルボイラーであっても構わない。又、サーミスタ10の取り付け位置もこの場所に限定するものではなく、循環回路内の湯温が測定できる位置に取り付けられていれば良い。又、カランも湯水混合栓に限定するものではなく、給水管9の接続をせず、単栓を用いても構わない。又、説明では短絡管15を、往き配管の最後の系統のカランには設けていないが、勿論設けても良く、その場合、往き配管の最後の系統のカランの出湯量は更に増加する。
【0030】
【発明の効果】
以上説明したように、請求項1に記載の循環式給湯装置では、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通し、且つ、該逆止弁Aよりも循環流れ方向上流側と、往き配管の途中とを開閉可能な切替弁を介して連通したことにより、カランからの給湯時には給湯熱源機から吐出した湯は往き配管を通って、及び、バイパス管を経由して戻り配管を通ってカランから吐出されるのみならず、往き配管に流入した湯は、途中で各カランに向かう短絡管にも分流される為、通水抵抗が非常に小さくなり、大量出湯が可能となる。循環時には、往き配管から戻り配管にショートサイクルする事が無く、循環運転に支障をきたす事は無い。また、給湯運転、即湯用循環運転を問わず往き配管も、戻り配管も通水に供される為、水が滞留する事が無く衛生的である。
【0031】
又、請求項2に記載の循環式給湯装置では、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環用ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に、循環流れ方向と逆方向には流れないように逆止弁Aを設け、該逆止弁Aよりも循環流れ方向上流側で、且つ、循環用ポンプよりも下流側と、往き配管の途中とを該往き配管の上流側から戻り配管の逆止弁A方向に流れるように逆止弁Bを介して連通したことにより、電動或いは手動の切替弁を用いずとも即湯用循環運転、給湯運転の通路切り替えができ、複雑なアクチュエータを用いるよりも信頼性が向上すると共に通水抵抗を小さくでき、製造コストも低減できる。又、給湯時には給湯用の通水路として、往き配管と戻り配管の両方を使用することになり、通水抵抗が小さく抑えられ大量出湯が可能となると共に、給湯運転、即湯用循環運転を問わず往き配管も、戻り配管も通水される為、水が滞留する事が無く衛生的である。
【0032】
又、 請求項3に記載の循環式給湯装置では、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通したことにより、給湯時には給湯用の通水路として、往き配管と戻り配管の両方を使用することになり、通水抵抗が小さく抑えられ大量出湯が可能となる。又、即湯用循環運転時には、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配している為に、往き配管から戻り配管にショートサイクルする事が無く、循環回路を全て用いて確実に循環動作をする事が可能で、循環回路に滞留水が発生する事が無い。
【0033】
又、請求項4に記載の循環式給湯装置では、給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通し、且つ、該逆止弁Aよりも循環流れ方向上流側で、且つ、循環用ポンプよりも下流側と、往き配管の途中とを該往き配管の上流側から戻り配管の逆止弁A方向に流れるように逆止弁Bを介して連通したことにより、カランからの給湯時には給湯熱源機から吐出した湯は往き配管を通って、及び、バイパス管を経由して戻り配管を通ってカランから吐出されるのみならず、往き配管に流入した湯は、途中で各カランに向かう短絡管にも分流される為、通水抵抗が非常に小さくなり、大量出湯が可能となる。循環時には、往き配管から戻り配管にショートサイクルする事が無く、循環運転に支障をきたす事は無い。
【図面の簡単な説明】
【図1】本発明を適用した循環式給湯装置の第1の実施例の概略構成図である。
【図2】本発明を適用した循環式給湯装置の第2の実施例の概略構成図である。
【図3】本発明を適用した循環式給湯装置の第3の実施例の概略構成図である。
【図4】本発明を適用した循環式給湯装置の第4の実施例の概略構成図である。
【図5】本発明を適用した循環式給湯装置の第5の実施例の概略構成図である。
【図6】従来の循環式給湯装置の一例を示す概略構成図である。
【図7】従来の循環式給湯装置の他の一例を示す概略構成図である。
【符号の説明】
1 熱交換器
2 バーナ
3 ポンプ
5 カラン
6 往き配管
7 戻り配管
10 サーミスタ
12 切替弁
13 バイパス管
15 短絡管
A 逆止弁
B 逆止弁
C 逆止弁
[0001]
BACKGROUND OF THE INVENTION
The present invention is a circulation type hot water supply device that can supply hot water at an appropriate temperature with almost no waste water when the currant is opened.About.
[0002]
[Prior art]
Conventionally, in this type of circulating hot water supply apparatus, a hot water supply piping from the hot water supply source to the hot water supply location and a hot water supply return piping from the hot water supply location to the hot water supply device are provided, and the circulation composed of these return piping and return piping In the middle of the circuit, a circulation pump and a thermistor that measures the return hot water temperature are arranged, and during the hot water circulation, the hot water in the circulation circuit is reduced at regular intervals, or when the temperature of the thermistor falls below a predetermined temperature, or these In combination, the thermistor circulates by a circulation pump until the temperature detected rises to a predetermined temperature, ignites the burner of the hot water supply heat source, and controls the water in the circulation circuit to an appropriate temperature via the heat exchanger of the hot water supply heat source. However, if a heater is provided in the circulation circuit and the water in the circulation circuit is heated while controlling the water at an appropriate temperature, the circulation pump is stopped when the curan is released during hot water supply from the curan. And, and, a control of the burner of the water heater heat source apparatus to change in hot-water supply operation from circulation operation, or to stop the current supply to the heater, was hot water from Curran through forward pipe.
[0003]
[Problems to be solved by the invention]
However, if it is used in such a way as to supply hot water frequently, that is, with almost no circulation operation for immediate hot water, the water in the return pipe becomes stagnant water, and if this state continues for a long time, red water with rust in the pipe will be generated. There was a problem that it occurred or was unsanitary. Although many general users regularly enter the circulation operation, the water that has entered the hot water supply heat source from the water supply is not all discharged from the hot water supply station, and further improvement is desired.
On the other hand, the demand for large capacity and a large amount of hot water is increasing year by year, and a larger amount of hot water is desired.
[0004]
In view of the above problems, an object of the present invention is to provide a circulation type hot water supply apparatus that is unlikely to generate stagnant water and that can discharge a large amount of hot water more than before.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the circulating hot water supply apparatus of the present invention is provided with a hot water supply piping from the hot water supply source to the hot water supply location, and a hot water supply return piping from the hot water supply location to the hot water supply device, and these return piping and return A circulation pump is arranged in the middle of the circulation circuit consisting of the piping, and a check valve A is installed upstream of the connection portion between the return piping and the water supply piping so that it does not flow in the direction opposite to the circulation flow direction. Provided,A check valve C is arranged between the return pipe and the hot water supply station in a direction that allows water to flow only in the direction of the curan, and the forward pipe and the check valve C / curan are connected with a short-circuit pipe. and,The first feature is that the upstream side of the check valve A in the circulating flow direction and the middle of the outgoing pipe communicate with each other via a switching valve that can be opened and closed.
[0006]
According to the circulating hot water supply apparatus of claim 1,A hot water supply piping from the hot water supply source to the hot water supply location, and a hot water supply return piping that returns from the hot water supply location to the hot water supply device, and a circulation pump is arranged in the middle of the circulation circuit consisting of these return piping and return piping,A check valve A is provided on the upstream side of the circulation flow direction from the connection between the return pipe and the water supply pipe so as not to flow in the direction opposite to the circulation flow direction.A check valve C is arranged between the return pipe and the hot water supply station in a direction that allows water to flow only in the direction of the curan, and the forward pipe and the check valve C / curan are connected with a short-circuit pipe. and,By communicating with the switching valve which can be opened and closed between the check valve A upstream in the circulating flow direction and the middle of the outgoing pipe,Hot water discharged from the hot water supply source during hot water supply from Karan is not only discharged from the Karan through the return pipe and via the return pipe, but the hot water flowing into the forward pipe is not Since the current is also diverted to the short-circuit pipes going to each currant, the resistance to water flow becomes very small and a large amount of hot water can be discharged. At the time of circulation, there is no short cycle from the return pipe to the return pipe, and there is no hindrance to the circulation operation. Also,Regardless of whether it is a hot water supply operation or an immediate hot water circulation operation, both the outgoing pipe and the return pipe are used for water flow, so that water does not stay and is hygienic.
[0007]
The circulation type hot water supply apparatus of the present invention is provided with a hot water supply return pipe from the hot water supply source to the hot water supply location, and a hot water supply return pipe that returns from the hot water supply location to the hot water supply source, and a circulation circuit comprising these return piping and return piping is provided. A circulation pump is arranged on the way, and a check valve A is provided upstream from the connection between the return pipe and the water supply pipe so as not to flow in the direction opposite to the circulation flow direction. Check valve so that it flows upstream of the valve A in the direction of the circulation flow and downstream of the circulation pump and in the middle of the forward piping from the upstream side of the forward piping in the direction of the check valve A of the return piping. The second feature is that the communication is made via B.
[0008]
According to the circulation type hot water supply apparatus of claim 2, the check valve A is provided on the upstream side in the circulation flow direction from the connection portion between the return pipe and the water supply pipe so as not to flow in the direction opposite to the circulation flow direction. Flow upstream of the check valve A in the circulation flow direction, downstream of the circulation pump, and in the middle of the forward piping from the upstream side of the forward piping in the direction of the check valve A of the return piping. By communicating with the check valve B, it is possible to switch the passage between the hot water circulation operation and the hot water supply operation without using an electric or manual switching valve. Water resistance can be reduced and manufacturing costs can be reduced. In addition, both the forward and return pipes are used as hot water flow paths for hot water supply, and the water flow resistance is kept small, enabling a large amount of hot water to be discharged. Since both the return pipe and the return pipe are passed through, water does not stay and is hygienic.
[0009]
Further, the circulating hot water supply apparatus of the present invention is provided with a hot water supply return pipe from the hot water supply source to the hot water supply location, and a hot water supply return pipe returning from the hot water supply location to the hot water supply source, and a circulation circuit comprising these return piping and return piping In addition to the circulation pump, a check valve A is provided upstream of the connection between the return pipe and the water supply pipe so that it does not flow in the reverse direction of the circulation flow direction. The third point is that the check valve C is arranged in a direction that allows water to flow only in the direction of the karan between the parts of the karan, and that the outgoing pipe and the check valve C and the karan are connected by a short-circuit pipe. It is a feature.
[0010]
According to the circulation type hot water supply apparatus according to claim 3, the check valve C is arranged between the return pipe and the hot water supply point curan in a direction in which water can be passed only in the currant direction, and the reverse pipe and the reverse flow. By connecting the stop valve C and Karan with a short-circuit pipe, both the forward and return pipes are used as hot water flow paths when hot water is supplied. Become.
During circulation operation for immediate hot water, the check valve C is arranged between the return pipe and the hot water supply station in a direction that allows water to flow only in the direction of the hot water. There is no problem, and it is possible to reliably perform the circulation operation using the entire circulation circuit, and no stagnant water is generated in the circulation circuit.
[0011]
In addition, the circulation type hot water supply apparatus of the present invention has a check valve C arranged between the return pipe and the hot water supply location in a direction in which water can flow only in the direction of the hot water, and the forward pipe and the check valve. A circulating hot water supply device characterized in that a short circuit pipe is used between C and Karan.And claim 2The fourth feature is that it is a circulating hot water supply device. In other words, a hot water supply return pipe from the hot water supply source to the hot water supply point and a hot water return pipe to return from the hot water supply point to the hot water supply unit are provided, and a circulation pump is arranged in the middle of the circulation circuit consisting of these return pipes and the return pipe. A check valve A is provided on the upstream side of the circulation flow direction from the connection between the return pipe and the water supply pipe so that it does not flow in the direction opposite to the circulation flow direction. The stop valve C is arranged in a direction that allows water to flow only in the direction of the currant, and the forward piping and the check valve C and the currant are connected by a short-circuit pipe,And claim 2As described in the above, the check valve of the return pipe is located upstream from the check valve A in the circulating flow direction, downstream from the circulation pump, and in the middle of the forward pipe from the upstream side of the forward pipe. A fourth feature is that the valve communicates with the check valve B so as to flow in the A direction.
[0012]
According to the circulation type hot water supply apparatus of the fourth aspect, the hot water supply return pipe from the hot water supply source to the hot water supply point and the hot water return pipe to return from the hot water supply point to the hot water supply unit are provided. A circulation pump is arranged in the middle of the circulation circuit, and a check valve A is provided on the upstream side of the circulation flow direction upstream of the connection between the return pipe and the water supply pipe so as not to flow in the direction opposite to the circulation flow direction. The check valve C is arranged in a direction that allows water to flow only in the direction of the currant, and the outlet pipe and the check valve C and the currant are connected by a short-circuit pipe,And the check valve AThe check valve B so that it flows in the direction of the check valve A of the return pipe from the upstream side of the forward pipe through the downstream side of the circulation pump and in the middle of the forward pipe. As a result, the hot water discharged from the hot water supply source during hot water supply from the currant is not only discharged from the currant through the return pipe and the return pipe via the bypass pipe, but also the forward pipe. Since the hot water that has flowed into the pipe is also diverted to the short-circuit pipes that go to each currant, the resistance to water flow becomes very small and a large amount of hot water can be discharged. During circulation, there is no short cycle from the return pipe to the return pipe, and there is no hindrance to the circulation operation.
[0013]
These will be described below based on the illustrated embodiment. FIG. 1 is a schematic configuration diagram of a first embodiment of a circulating hot water supply apparatus to which the present invention is applied. FIG. 2 is a schematic configuration diagram of a second embodiment of the circulating hot water supply apparatus to which the present invention is applied. FIG. 3 is a schematic configuration diagram of a third embodiment of the circulating hot water supply apparatus to which the present invention is applied. FIG. 4 is a schematic configuration diagram of a fourth embodiment of the circulating hot water supply apparatus to which the present invention is applied. FIG. 5 is a schematic configuration diagram of a fifth embodiment of the circulating hot water supply apparatus to which the present invention is applied. FIG. 6 is a schematic configuration diagram showing an example of a conventional circulating hot water supply apparatus. FIG. 7 is a schematic configuration diagram showing another example of a conventional circulating hot water supply apparatus.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The configuration of the first embodiment of the present invention will be described with reference to FIG.
As in the conventional example, the hot water supply heat source machine includes a burner 2 and a heat exchanger 1 heated by the burner 2, a pump 3 that circulates hot water in a circulation circuit composed of an outgoing pipe 6 and a return pipe 7, and an inlet pipe 8. In the first embodiment of the present invention, a switching valve capable of opening and closing the passage between the suction side of the pump 3 and the outlet portion of the heat exchanger 1 in the first embodiment of the present invention. 12 is communicated by a bypass pipe 13. Further, each of the currants 5 at the hot water supply point is a hot water mixing plug, and is connected to supply hot water from a return pipe 7 and to supply cold water through a water supply pipe 9 connected to a water supply source.
[0015]
In FIG. 1, during the circulation operation, that is, when the pump 3 is activated, the bypass pipe 13 is closed by the switching valve 12. The hot water in the circulation circuit is supplied from the thermistor 10 by a controller (not shown) as in the conventional circulation hot water supply device. It is circulated by the pump 3 so that the detected temperature becomes a predetermined temperature and is controlled by being appropriately heated by the burner 2 in the heat exchanger 2. Here, the hot water flowing out of the heat exchanger 1 passes through the return pipe 6, passes through the return pipe 7, is detected by the thermistor 10, is discharged from the pump 3, passes through the check valve A, and passes through the heat exchanger. 1 is heated by the burner 2 and discharged to the outgoing pipe 6.
[0016]
On the other hand, when hot water is supplied from the caran 5, when the pump 3 is stopped and the caran 5 is opened, part of the water flowing in from the water supply source reaches the heat exchanger 1 through the water intake pipe 8, and a water quantity sensor (not shown) Based on data such as a temperature sensor and a tapping temperature sensor, it is heated to a set temperature by a burner 2 controlled by a controller (not shown) and discharged from the heat exchanger 1. Here, the switching valve 12 is opened, and the outlet of the heat exchanger 1 and the upstream side of the return pipe 7 with respect to the pump 3 are communicated by a bypass pipe 13. Therefore, a part of the hot water discharged from the heat exchanger 1 flows into the return pipe 6 and reaches the return pipe 7, but the rest passes through the bypass pipe 13 and intersects the return pipe 7 and the suction port of the pump 3. To the department. Since the water pressure at this position is lower than the water pressure in the inlet pipe 8, hot water does not flow to the pump 3 side, but joins the hot water flowing in from the return pipe 6 through the return pipe 7, and the hot water side of each currant 5. The cold water flowing into the water supply pipe 9 from the water supply source and reaching the water side of the currant 5 is mixed at an appropriate temperature and discharged from the currant 5.
[0017]
Next, the configuration of the second embodiment of the present invention will be described with reference to FIG.
Similarly to the conventional example, the hot water supply heat source machine is a burner 2, a heat exchanger 1 heated by the burner 2, a pump 3 that circulates hot water in the circulation circuit, and a reverse flow that prevents backflow from the inlet pipe 8 to the circulation circuit. Further, in the second embodiment of the present invention, in the second embodiment of the present invention, the upstream side of the check valve A in the circulating flow direction and the downstream side of the pump 3, and the outlet portion of the heat exchanger 1 of the outgoing pipe 6 Are communicated by a bypass pipe 13 via a check valve B so as to flow in the direction of the check valve A of the return pipe 7 from the upstream side of the forward pipe 6. Each of the currants 5 is a hot and cold water mixing plug, and is connected to supply hot water from a return pipe 7 and to supply cold water through a water supply pipe 9 connected to a water supply source.
[0018]
In FIG. 2, since the check valve B is arranged on the discharge side of the pump 3 during the circulation operation, that is, when the pump 3 is started, the bypass pipe 13 is directed from the forward pipe 6 to the return pipe 7 due to the pressure balance. No flow is generated, and conversely, no flow from the return pipe 7 to the forward pipe is generated. Therefore, similarly to the conventional circulation type hot water supply apparatus, the hot water in the circulation circuit is circulated by the pump 3 so that the temperature detected by the thermistor 10 becomes a predetermined temperature by a controller (not shown), and the heat exchanger 2 uses the burner 2. It is controlled by heating appropriately. Here, the hot water flowing out from the heat exchanger passes through the outgoing pipe 6, passes through the return pipe 7, is detected by the thermistor 10, is discharged from the pump 3, passes through the check valve A, and passes through the heat exchanger 1. Then, it is heated by the burner 2 and discharged to the outgoing pipe 6.
[0019]
On the other hand, when hot water is supplied from the caran 5, when the pump 3 is stopped and the caran 5 is opened, part of the water flowing in from the water supply source reaches the heat exchanger 1 through the water intake pipe 8, and a water quantity sensor (not shown) Based on data such as a temperature sensor and a tapping temperature sensor, it is heated to a set temperature by a burner 2 controlled by a controller (not shown) and discharged from the heat exchanger 1. Here, since the pump 3 is stopped, a flow toward the return pipe 7 is generated in the bypass pipe 13 via the check valve B. Therefore, a part of the hot water discharged from the heat exchanger 1 flows into the return pipe 6 and reaches the return pipe 7, but the rest passes through the bypass pipe 13 via the check valve B and circulates through the pump 3. Cold water flowing in a direction opposite to the direction, joining the hot water flowing in from the outgoing pipe 6, reaching the hot water side of each currant 5, flowing into the water supply pipe 9 from the water supply source, and reaching the water side of the currant 5. It is mixed at an appropriate temperature and discharged from the currant 5.
[0020]
Next, the configuration of the third embodiment of the present invention will be described with reference to FIG.
Similarly to the conventional example, the hot water supply heat source machine is a burner 2, a heat exchanger 1 heated by the burner 2, a pump 3 that circulates hot water in the circulation circuit, and a reverse flow that prevents backflow from the inlet pipe 8 to the circulation circuit. Further, in the third embodiment of the present invention, the check valve C is arranged between the return pipe 7 and the hot water supply point caran 5 in a direction in which water can flow only in the direction of the caran 5, In addition, the forward pipe 6 and the check valve C / curan are communicated with each other through a short-circuit pipe. Each of the currants 5 is a hot and cold water mixing plug, and water is supplied from the return pipe 7 via the check valve C and from the outgoing pipe 6 via the short-circuit pipe, and is connected to a water supply source. A pipe 9 is provided to supply cold water through the pipe 9.
[0021]
In FIG. 3, since the check valve C is arranged in a direction that allows water to flow only in the direction of the currant 5 at the upstream side of the pump 3 of the return pipe 7 during the circulation operation, that is, when the pump 3 is started, The hot water in the internal circuit is not short-cycled from the outgoing pipe 6 to the return pipe 7 via the short-circuit pipe 15, and the hot water in the circulation circuit is controlled by a thermistor 10 by a controller (not shown) as in the conventional circulating hot water supply apparatus. It is circulated by the pump 3 so that the detected temperature becomes a predetermined temperature and is controlled by being appropriately heated by the burner 2 in the heat exchanger 2. Here, the hot water flowing out from the heat exchanger passes through the outgoing pipe 6, passes through the return pipe 7, is detected by the thermistor 10, is discharged from the pump 3, passes through the check valve A, and passes through the heat exchanger 1. Then, it is heated by the burner 2 and discharged to the outgoing pipe 6.
[0022]
On the other hand, when hot water is supplied from the caran 5, when the pump 3 is stopped and the caran 5 is opened, part of the water flowing in from the water supply source reaches the heat exchanger 1 through the water intake pipe 8, and a water quantity sensor (not shown) Based on data such as a temperature sensor and a tapping temperature sensor, it is heated to a set temperature by a burner 2 controlled by a controller (not shown), discharged from the heat exchanger 1 and flows into the forward piping 6. A part of the hot water flowing into the outgoing pipe 6 passes through the return pipe 7 as it is, passes through each check valve C and reaches the hot water side of each currant 5, but the rest passes through the short-circuit pipe 15 and passes through each currant 5 as it is. To the hot water side, flows into the water supply pipe 9 from the water supply source, is mixed with cold water reaching the water side of the currant 5 at an appropriate temperature, and is discharged from the currant 5.
[0023]
Next, the configuration of the fourth embodiment of the present invention will be described with reference to FIG.
The configuration of the fourth embodiment of the present invention combines the configuration of the third embodiment of the present invention and the configuration of the first embodiment of the present invention. That is, the hot water supply heat source apparatus prevents the backflow from the burner 2 and the heat exchanger 1 heated by the burner 2, the pump 3 circulating the hot water in the circulation circuit, and the water inlet pipe 8 to the circulation circuit, as in the conventional example. Further, in the fourth embodiment of the present invention, as in the third embodiment of the present invention, a check valve C is provided between the return pipe 7 and the currant 5 at the hot water supply location. It is arranged in a direction that allows water to flow only in the direction of the currant 5, and the forward piping 6 and the check valve C and the currant are connected by a short-circuit pipe. Further, as in the first embodiment of the present invention, the suction side of the pump 3 and the outlet portion of the heat exchanger 1 are communicated with each other by a bypass pipe 13 via a switching valve 12 capable of opening and closing the passage. Yes.
Each of the currants 5 is a hot and cold water mixing plug, and supplies water from the return pipe 7 via the check valve C and from the outgoing pipe 6 via a short-circuit pipe, and a water supply pipe 9 connected to a water supply source. It is piped to supply cold water through it.
[0024]
In FIG. 4, the bypass pipe 13 is closed by the switching valve 12 during the circulation operation, that is, when the pump 3 is started, and the hot water in the circulation circuit is controlled by the controller (not shown) of the thermistor 10 as in the conventional circulation hot water supply device. It is circulated by the pump 3 so that the detected temperature becomes a predetermined temperature, and is controlled by being appropriately heated by the burner 2 in the heat exchanger 2. In addition, since the check valve C is arranged upstream of the pump 3 of the return pipe 7 in a direction that allows water to flow only in the direction of the currant 5, hot water in the circulation circuit travels through the short-circuit pipe 15. There is no short cycle from the pipe 6 to the return pipe 7.
Here, the hot water flowing out of the heat exchanger 1 passes through the return pipe 6, passes through the return pipe 7, is detected by the thermistor 10, is discharged from the pump 3, passes through the check valve A, and passes through the heat exchanger. 1 is heated by the burner 2 and discharged to the outgoing pipe 6.
[0025]
On the other hand, when hot water is supplied from the caran 5, when the pump 3 is stopped and the caran 5 is opened, part of the water flowing in from the water supply source reaches the heat exchanger 1 through the water intake pipe 8, and a water quantity sensor (not shown) Based on data such as a temperature sensor and a tapping temperature sensor, it is heated to a set temperature by a burner 2 controlled by a controller (not shown) and discharged from the heat exchanger 1. Here, the switching valve 12 is opened, and the outlet of the heat exchanger 1 and the upstream side of the return pipe 7 with respect to the pump 3 are communicated by a bypass pipe 13. Therefore, a part of the hot water discharged from the heat exchanger 1 flows into the outgoing pipe 6. A part of the hot water flowing into the outgoing pipe 6 passes through the return pipe 7 as it is, passes through each check valve C and reaches the hot water side of each currant 5, but the rest passes through the short-circuit pipe 15 and passes through each currant 5 as it is. To the hot water side. The remaining hot water discharged from the heat exchanger 1 passes through the bypass pipe 13 and reaches the intersection of the return pipe 7 and the suction port of the pump 3. Since the water pressure at this position is lower than the water pressure of the inlet pipe 8, hot water does not flow to the pump 3 side, passes through the check valve C through the return pipe 7, and reaches the hot water side of each currant 5. In addition, the cold water flowing from the water supply source into the water supply pipe 9 and reaching the water side of the currant 5 is mixed at an appropriate temperature and discharged from the currant 5.
[0026]
Next, the configuration of the fifth embodiment of the present invention will be described with reference to FIG.
The configuration of the fifth embodiment of the present invention combines the configuration of the third embodiment of the present invention and the configuration of the second embodiment of the present invention. That is, the hot water supply heat source apparatus prevents the backflow from the burner 2 and the heat exchanger 1 heated by the burner 2, the pump 3 circulating the hot water in the circulation circuit, and the water inlet pipe 8 to the circulation circuit, as in the conventional example. In the fifth embodiment of the present invention, as in the third embodiment of the present invention, a check valve C is provided between the return pipe 7 and the currant 5 at the hot water supply location. It is arranged in a direction that allows water to flow only in the direction of the currant 5, and the forward piping 6 and the check valve C and the currant are connected by a short-circuit pipe. Similarly to the second embodiment of the present invention, the upstream side of the check valve A in the circulating flow direction and the downstream side of the pump 3 and the outlet portion of the heat exchanger 1 of the outgoing pipe 6 are provided. The bypass pipe 13 communicates with the return pipe 7 via the check valve B so as to flow in the direction of the check valve A from the upstream side of the return pipe 6. Each of the currants 5 is a hot and cold water mixing plug, and water is supplied from the return pipe 7 via the check valve C and from the outgoing pipe 6 via the short-circuit pipe, and is connected to a water supply source. A pipe 9 is provided to supply cold water through the pipe 9.
[0027]
In FIG. 5, since the check valve B is arranged on the discharge side of the pump 3 during the circulation operation, that is, when the pump 3 is started, the flow from the forward pipe 6 to the return pipe 7 in the bypass pipe 13 due to the pressure balance. On the contrary, there is no flow from the return pipe 7 to the forward pipe. Therefore, similarly to the conventional circulation type hot water supply apparatus, the hot water in the circulation circuit is circulated by the pump 3 so that the temperature detected by the thermistor 10 becomes a predetermined temperature by a controller (not shown). It is controlled by heating appropriately. In addition, since the check valve C is arranged upstream of the pump 3 of the return pipe 7 in a direction that allows water to flow only in the direction of the currant 5, hot water in the circulation circuit travels through the short-circuit pipe 15. There is no short cycle from the pipe 6 to the return pipe 7. Here, the hot water flowing out from the heat exchanger passes through the outgoing pipe 6, passes through the return pipe 7, is detected by the thermistor 10, is discharged from the pump 3, passes through the check valve A, and passes through the heat exchanger 1. Then, it is heated by the burner 2 and discharged to the outgoing pipe 6.
[0028]
On the other hand, when hot water is supplied from the caran 5, when the pump 3 is stopped and the caran 5 is opened, a part of the water flowing in from the water supply source reaches the heat exchanger 1 through the water intake pipe 8, and a water quantity sensor (not shown) Based on data such as a temperature sensor and a tapping temperature sensor, it is heated to a set temperature by a burner 2 controlled by a controller (not shown) and discharged from the heat exchanger 1. Here, since the pump 3 is stopped, a flow toward the return pipe 7 is generated in the bypass pipe 13 via the check valve B. Therefore, a part of the hot water discharged from the heat exchanger 1 flows into the return pipe 6 and reaches the return pipe 7, but the rest passes through the bypass pipe 13 via the check valve B and circulates through the pump 3. It flows in the direction opposite to the direction, merges with the hot water flowing in from the outgoing pipe 6, passes through the check valves C, and reaches the hot water side of each currant 5. A part of the hot water flowing into the outgoing pipe 6 passes through the return pipe 7 as it is, passes through each check valve C and reaches the hot water side of each currant 5, and the rest passes through the short-circuit pipe 15 as it is. The water reaches the hot water side of the curan 5, flows into the water supply pipe 9 from the water supply source, is mixed with the cold water that reaches the water side of the caran 5, and is discharged from the curan 5.
[0029]
In the above description of the embodiment of the present invention, the heat source apparatus has been described based on the conventional example shown in FIG. 7, but it is not necessary to limit to this, and hot water in the circulation circuit is heated as shown in FIG. For this purpose, the heater 11 may be disposed, and the heating unit configuration of the heat source device may be an electric water heater or an oil boiler. Further, the attachment position of the thermistor 10 is not limited to this place, and it may be attached to a position where the hot water temperature in the circulation circuit can be measured. Further, the curan is not limited to the hot water / water mixing tap, and a single plug may be used without connecting the water supply pipe 9. Further, in the description, the short-circuit pipe 15 is not provided in the last line of the outgoing pipe, but of course, it may be provided. In this case, the amount of hot water discharged from the last line of the outgoing pipe is further increased.
[0030]
【The invention's effect】
As described above, the circulating hot water supply apparatus according to claim 1 includes a hot water supply piping from the hot water supply source to the hot water supply location, and a hot water return pipe that returns from the hot water supply location to the hot water supply device. A circulation pump is arranged in the middle of the circulation circuit composed of the return pipe, and a check valve A is provided so that it does not flow in the direction opposite to the circulation flow direction upstream of the connection portion between the return pipe and the water supply pipe in the circulation flow direction. Provided,A check valve C is arranged between the return pipe and the hot water supply station in a direction that allows water to flow only in the direction of the curan, and the forward pipe and the check valve C / curan are connected with a short-circuit pipe. and,By communicating with the switching valve that can be opened and closed between the check valve A and the upstream side in the circulating flow direction and in the middle of the forward piping,Hot water discharged from the hot water supply source during hot water supply from Karan is not only discharged from the Karan through the return pipe and via the return pipe, but the hot water flowing into the forward pipe is not Since the current is also diverted to the short-circuit pipes going to each currant, the resistance to water flow becomes very small and a large amount of hot water can be discharged. At the time of circulation, there is no short cycle from the return pipe to the return pipe, and there is no hindrance to the circulation operation. Also,Regardless of whether it is a hot water supply operation or an immediate hot water circulation operation, both the outgoing pipe and the return pipe are used for water flow, so that water does not stay and is hygienic.
[0031]
Further, in the circulating hot water supply apparatus according to claim 2, a hot water supply return pipe from the hot water supply source to the hot water supply location and a hot water return pipe returning from the hot water supply location to the hot water supply source are provided. A circulation pump is arranged in the middle of the circulation circuit, and a check valve A is provided upstream from the connection between the return pipe and the water supply pipe so as not to flow in the direction opposite to the circulation flow direction. , So as to flow upstream in the circulation flow direction from the check valve A and downstream from the circulation pump and in the middle of the forward piping from the upstream side of the forward piping in the direction of the check valve A of the return piping. In addition, the passage through the hot water circulation operation and the hot water supply operation can be switched without using an electric or manual switching valve, and the reliability is improved as compared with the use of a complicated actuator. Can reduce water flow resistance, made Cost can be reduced. In addition, both the forward and return pipes are used as hot water flow paths when hot water is supplied, and water flow resistance is kept small and large quantities of hot water can be discharged. Since both the return pipe and the return pipe are passed through, water is not retained and is hygienic.It is.
[0032]
The circulating hot water supply apparatus according to claim 3 is provided with a hot water supply piping from the hot water supply source to the hot water supply location, and a hot water supply return piping from the hot water supply location to the hot water supply device, and from these return piping and return piping. A circulation pump is arranged in the middle of the circulation circuit, and a check valve A is provided on the upstream side of the circulation flow direction upstream of the connection between the return pipe and the water supply pipe so as not to flow in the direction opposite to the circulation flow direction. By arranging the check valve C in a direction that allows water to flow only in the direction of the currant between the piping and the hot water supply location, and connecting the forward piping and the check valve C / curan with a short-circuit pipe. When hot water is supplied, both the forward piping and the return piping are used as the water supply passage for hot water supply, so that the resistance to water flow is kept small and a large amount of hot water can be discharged. In addition, during circulation operation for immediate hot water, the check valve C is arranged between the return pipe and the hot water supply station in a direction that allows water to flow only in the direction of the hot water. There is no cycle, and it is possible to reliably perform the circulation operation using the entire circulation circuit, and no stagnant water is generated in the circulation circuit.
[0033]
The circulation type hot water supply apparatus according to claim 4 includes a hot water supply piping from the hot water supply source to the hot water supply location, and a hot water return piping that returns from the hot water supply location to the hot water supply source. A circulation pump is arranged in the middle of the circulation circuit, and a check valve A is provided on the upstream side of the circulation flow direction upstream of the connection between the return pipe and the water supply pipe so as not to flow in the direction opposite to the circulation flow direction. A check valve C is arranged between the piping and the hot water supply point in a direction that allows water to flow only in the direction of the curan, and the outgoing pipe and the check valve C / curan are connected with a short-circuit pipe.And the check valve AThe check valve B so that it flows in the direction of the check valve A of the return pipe from the upstream side of the forward pipe through the downstream side of the circulation pump and in the middle of the forward pipe. As a result, the hot water discharged from the hot water supply source during hot water supply from the currant is not only discharged from the currant through the return pipe and the return pipe via the bypass pipe, but also the forward pipe. Since the hot water that has flowed into the pipe is also diverted to the short-circuit pipes that go to each currant, the resistance to water flow becomes very small and a large amount of hot water can be discharged. During circulation, there is no short cycle from the return pipe to the return pipe, which hinders circulation operation.There is nothing.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of a circulating hot water supply apparatus to which the present invention is applied.
FIG. 2 is a schematic configuration diagram of a second embodiment of the circulating hot water supply apparatus to which the present invention is applied.
FIG. 3 is a schematic configuration diagram of a third embodiment of a circulating water heater to which the present invention is applied.
FIG. 4 is a schematic configuration diagram of a fourth embodiment of a circulating water heater to which the present invention is applied.
FIG. 5 is a schematic configuration diagram of a fifth embodiment of a circulating water heater to which the present invention is applied.
FIG. 6 is a schematic configuration diagram showing an example of a conventional circulation type hot water supply apparatus.
FIG. 7 is a schematic configuration diagram showing another example of a conventional circulating hot water supply apparatus.
[Explanation of symbols]
1 heat exchanger
2 Burner
3 Pump
5 Karan
6 Outward piping
7 Return piping
10 Thermistor
12 Switching valve
13 Bypass pipe
15 Short-circuit tube
A Check valve
B Check valve
C Check valve

Claims (4)

給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、
これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、
該逆止弁Aよりも循環流れ方向上流側と、往き配管の途中とを開閉可能な切替弁を介して連通し、戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通したことを特徴とする循環式給湯装置。
A hot water supply piping from the hot water supply source to the hot water supply location, and a hot water supply return piping from the hot water supply location to the hot water supply source,
A circulation pump is arranged in the middle of the circulation circuit consisting of these forward piping and return piping, and it should not flow in the direction opposite to the circulation flow direction upstream of the connection between the return piping and water supply piping in the direction of circulation flow. A check valve A is provided,
A circulating flow direction upstream side of the check valve A, communicates via an openable and closable switching valve and the middle of the forward pipe between the return pipe and the hot water supply point of Curran, Curran direction the check valve C A circulation type hot water supply apparatus that is arranged in a direction that allows water to pass through only the pipe and that communicates between the forward pipe and the check valve C / curan with a short-circuit pipe .
給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、
これら往き配管と戻り配管とからなる循環回路の途中に循環用ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に、循環流れ方向と逆方向には流れないように逆止弁Aを設け、
該逆止弁Aよりも循環流れ方向上流側で、且つ、循環用ポンプよりも下流側と、往き配管の途中とを該往き配管の上流側から戻り配管の逆止弁A方向に流れるように逆止弁Bを介して連通したことを特徴とする循環式給湯装置。
A hot water supply piping from the hot water supply source to the hot water supply location, and a hot water supply return piping from the hot water supply location to the hot water supply source,
A circulation pump is arranged in the middle of the circulation circuit composed of these forward piping and return piping, and does not flow in the direction opposite to the circulation flow direction upstream of the connection portion between the return piping and the water supply piping in the circulation flow direction. As shown in FIG.
Flow upstream of the check valve A in the circulation flow direction, downstream of the circulation pump, and in the middle of the forward piping from the upstream side of the forward piping in the direction of the check valve A of the return piping. A circulation type hot water supply apparatus which is communicated via a check valve B.
給湯熱源機から給湯個所に至る給湯往き配管と、給湯個所から給湯熱源機に戻る給湯戻り配管とを設け、
これら往き配管と戻り配管とからなる循環回路の途中に循環ポンプを配すると共に、戻り配管と給水配管との接続部よりも循環流れ方向上流側に循環流れ方向と逆方向には流れないように逆止弁Aを設け、
戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通したことを特徴とする循環式給湯装置。
A hot water supply piping from the hot water supply source to the hot water supply location, and a hot water supply return piping from the hot water supply location to the hot water supply source,
A circulation pump is arranged in the middle of the circulation circuit consisting of these forward piping and return piping, and it should not flow in the direction opposite to the circulation flow direction upstream of the connection between the return piping and water supply piping in the direction of circulation flow. A check valve A is provided,
The check valve C is arranged between the return pipe and the hot water supply station in a direction that allows water to flow only in the direction of the currant, and the forward pipe and the check valve C / currant are connected by a short-circuit pipe. A circulating hot water supply system characterized by
戻り配管と給湯個所のカランとの間に、逆止弁Cをカラン方向にのみ通水可能な方向に配し、且つ、往き配管と当該逆止弁C・カラン間を短絡管で連通したことを特徴とする請求項2に記載の循環式給湯装置。The check valve C is arranged between the return pipe and the hot water supply station in a direction that allows water to flow only in the direction of the currant, and the forward pipe and the check valve C / currant are connected by a short-circuit pipe. The circulating hot water supply apparatus according to claim 2 , wherein
JP30615398A 1998-10-27 1998-10-27 Circulating water heater Expired - Fee Related JP3613033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30615398A JP3613033B2 (en) 1998-10-27 1998-10-27 Circulating water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30615398A JP3613033B2 (en) 1998-10-27 1998-10-27 Circulating water heater

Publications (2)

Publication Number Publication Date
JP2000130789A JP2000130789A (en) 2000-05-12
JP3613033B2 true JP3613033B2 (en) 2005-01-26

Family

ID=17953697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30615398A Expired - Fee Related JP3613033B2 (en) 1998-10-27 1998-10-27 Circulating water heater

Country Status (1)

Country Link
JP (1) JP3613033B2 (en)

Also Published As

Publication number Publication date
JP2000130789A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP5403490B2 (en) Instant water heater
JP3613033B2 (en) Circulating water heater
JP5505129B2 (en) Hot water system
KR20190002926A (en) Hot water supply apparatus having pre-heating function and the control method thereof
EP0916901A1 (en) Scale reducing device for gas-fired boilers
JP3712179B2 (en) 1 can 2 circuit hot water supply system
JP3848865B2 (en) Bath water heater
JP3554878B2 (en) Hot water supply device
JP2000161782A (en) Bath water heater
JP3836526B2 (en) Hot water system
JP3738236B2 (en) Heat source machine
JP3578283B2 (en) Circulating water heater
JP3710033B2 (en) Bath apparatus and bath water injection method
JPH0136019Y2 (en)
JP2570482B2 (en) Fully automatic bath kettle with heating function
JP4107771B2 (en) One can multi-channel water heater
JP2003065600A (en) Electric water heater water heater
JP2861521B2 (en) Operation control method of bath kettle with water heater
JP4784266B2 (en) Water heater
JP3810387B2 (en) Washing and pouring unit having a backflow prevention mechanism and bath water heater
JP3880140B2 (en) 1 can 2 water channel hot water bath
JPH04106367A (en) Full-automatic bath boiler provided with room heating function
JP2003336899A (en) Hot water supply/instantaneous water heating system
JPH057612B2 (en)
JPS6135855Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees