Nothing Special   »   [go: up one dir, main page]

JP3656944B2 - Control method of synchronous motor - Google Patents

Control method of synchronous motor Download PDF

Info

Publication number
JP3656944B2
JP3656944B2 JP26772299A JP26772299A JP3656944B2 JP 3656944 B2 JP3656944 B2 JP 3656944B2 JP 26772299 A JP26772299 A JP 26772299A JP 26772299 A JP26772299 A JP 26772299A JP 3656944 B2 JP3656944 B2 JP 3656944B2
Authority
JP
Japan
Prior art keywords
value
motor
synchronous motor
magnetic pole
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26772299A
Other languages
Japanese (ja)
Other versions
JP2001095281A (en
Inventor
潔 大石
建 中野
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP26772299A priority Critical patent/JP3656944B2/en
Publication of JP2001095281A publication Critical patent/JP2001095281A/en
Application granted granted Critical
Publication of JP3656944B2 publication Critical patent/JP3656944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は電圧形インバータにより給電される同期電動機を、磁極位置センサおよび回転速度センサを使用しない、所謂、磁極,速度センサレスベクトル制御に基づいて可変速制御する同期電動機の制御方法に関する。
【0002】
【従来の技術】
電圧形インバータにより給電される同期電動機の可変速制御方法の第1の従来例としては、該電動機に磁極位置センサおよび回転速度センサを装着し、これらのセンサからの検出信号などに基づくベクトル制御により、該電動機を可変速制御することが行われている。
【0003】
また上述の制御方法とは異なった第2の従来例としては、前記磁極,速度センサレスベクトル制御を行う際に、前記電動機の回転子位置の推定演算を行い、この推定演算値を単に微分演算し、この演算値を回転速度推定値にしていた。
【0004】
【発明が解決しようとする課題】
前述の第1の従来例の如く、同期電動機に磁極位置センサおよび回転速度センサを装着すると該電動機の双方の出力軸を負荷に連結する用途に不向きであり、また、磁極位置センサおよび回転速度センサは高価であり、さらに、該電動機の設置場所と前記電圧形インバータなどの駆動装置の設置場所との距離が離れている場合には、それぞれのセンサからの検出信号にノイズが混入するなど、該駆動装置の動作信頼性を阻害する要因となっていた。
【0005】
また前述の第2の従来例では、先ず最初に同期電動機の回転子位置を推定するが、この推定値は検出信号に混入するノイズによって適正でないことがよくあるので、そのとき、該電動機は脱調現象を起こしてしまう。さらに、この推定値の微分値である回転速度推定値は、検出信号に混入するノイズに対してとても感度が高くなるので、回転速度推定値の誤差は大きくなり、速度制御系はその誤差により、振動的・不安定な応答結果になる。
【0006】
この発明の目的は上記問題点を解決し、電圧形インバータにより給電される同期電動機を磁極,速度センサレスで好適に可変速制御できる該電動機の制御方法を提供することにある。
【0007】
【課題を解決するための手段】
この第1の発明は、電圧インバータにより給電される同期電動機であって、該電動機の磁極位置推定値と回転速度推定値とに基づくベクトル制御によって該電動機を可変速制御する同期電動機の制御方法において、
前記ベクトル制御による前記電動機のd軸電流指令値およびq軸電流指令値に微小振幅の高周波信号を加算した値を該電動機の新たなd軸電流指令値およびq軸電流指令値とし、この新たなd軸電流指令値と前記電動機の電流を座標変換して得られるd軸電流検出値との偏差を零にする調節演算を行い、この演算結果を該電動機のd軸電圧指令値とし、前記新たなq軸電流指令値と前記電動機の電流を座標変換して得られるq軸電流検出値との偏差を零にする調節演算を行い、この演算結果を該電動機のq軸電圧指令値とし、前記d,q軸それぞれの電流検出値と電圧指令値とに基づく前記高周波信号成分の瞬時無効電力から前記電動機の磁極位置補正値を導出し、前記回転速度推定値を積分演算した値に前記磁極位置補正値を加算した値を前記磁極位置推定値としたことを特徴とする。
【0008】
第2の発明は前記第1の発明において、前記高周波信号のd軸成分とq軸成分とは、その振幅が等しく、且つ、互いに90°の位相差を有する正弦波にしたことを特徴とする。
【0009】
第3の発明は前記第1又は第2の発明において、前記同期電動機の始動時に、前記磁極位置補正値の導出演算を行わせることを特徴とする。
【0010】
第4の発明は前記第1又は第2の発明において、前記同期電動機は突極性を有する永久磁石同期電動機とし、該電動機の運転中は、前記磁極位置補正値の導出演算を常時行わせることを特徴とする。
【0011】
この発明によれば、磁極,速度センサレスのベクトル制御系に注入した微小振幅の高周波信号により、同期電動機の磁極位置推定値を該電動機の始動時を含めて、後述の如く、より真値に近づけることができるので、磁極,速度センサレスで該電動機を好適に可変速制御することができる。
【0012】
【発明の実施の形態】
図1は、この発明の実施の形態を示す同期電動機の制御装置のブロック構成図である。
【0013】
図1において、1は三相の電圧指令値(vu * ,vv * ,vw * )に基づいた所望の周波数,振幅の三相交流電圧(vu ,vv ,vw )を出力する電圧形インバータ、2は電圧形インバータ2により給電される同期電動機、2aは同期電動機2の出力軸に連結された負荷、3は電圧形インバータ2を介して同期電動機2を可変速制御する制御装置である。
【0014】
この制御装置3において、速度調節器31とq軸電流調節器32とd軸電流調節器33と座標変換器34と電圧指令発生器35と電流検出器36と座標変換器37と速度オブザーバ38と積分器39とは磁極,速度センサレスのベクトル制御に基づく同期電動機2の可変速制御を電圧形インバータ1を介して行う基本的な制御要素であり、さらに、信号発生器41と磁極位置補正器42と加算器43とはこの発明に基づいて付加された制御要素である。
【0015】
図3に示した制御装置3の動作を以下に説明する。
【0016】
先ず、速度オブザーバ38では、同期電動機2の三相電流を電流検出器36で検出した電流(iu ,iv ,iw )に座標変換器37を介してd軸電流検出値(id )とq軸電流値(iq )とをそれぞれ3相−2相座標変換した値と、q軸電流調節器33の出力であるq軸電圧指令値(vq * )とを入力して、下記式(1)に示す演算を行い、同期電動機2の回転速度推定値(ωmE)を得ている。
【0017】
【数1】

Figure 0003656944
【0018】
ここで、Δvq :電圧形インバータ2を構成する半導体素子間のデッドタイムおよび電圧降下に基づく出力電圧誤差のq軸変換成分(計算値)
q :同期電動機2の抵抗のq軸成分
q :同期電動機2のリアクタンスのq軸成分
d :同期電動機2のリアクタンスのd軸成分
Φ :同期電動機2の鎖交磁束数
P :同期電動機2の磁極対数
α :速度オブザーバ38の時定数の逆数値
s :ラプラス演算子
である。
【0019】
速度調節器31では指令される回転速度指令値(ωm * )と、上記式(1)で得られた回転速度推定値(ωmE)との偏差を零にする調節演算を行い、この演算値をq軸電流指令値(iq * )として出力する。
【0020】
q軸電流調節器32では前記q軸電流指令値(iq * )と後述の信号発生器41からのq軸高周波信号(iqh)とを加算した値と、前記q軸電流値(iq )との偏差を零にする調節演算を行い、この演算値をq軸電圧指令値(vq * )として出力する。
【0021】
同様に、d軸電流調節器33では指令されるd軸電流指令値(id * )と後述の信号発生器41からのd軸高周波信号(idh)とを加算した値と、前記d軸電流値(id )との偏差を零にする調節演算を行い、この演算値をd軸電圧指令値(vd * )として出力する。
【0022】
また、座標変換器34では前記q軸電圧指令値(vq * )とd軸電圧指令値(vd * )とを2相−3相座標変換した三相の電圧設定値(vu ref ,vv ref ,vw ref )とを出力している。
【0023】
さらに、電圧指令発生器35では前記三相の電圧設定値(vu ref ,vv ref ,vw ref )からPWM制御された三相の電圧指令値(vu * ,vv * ,vw * を生成し、電圧形インバータ1へ出力している。
【0024】
次に、積分器39では下記式(2)の積分演算を行い磁極位置推定値(θE1)を出力している。
【0025】
【数2】
θE1=(1/s)ωmE …(2)
なお、マクイロコンピュータによるデジタル制御の場合には、速度オブザーバ38と積分器39とにおける演算周期は、q軸電流調節器32,d軸電流調節器33の演算周期に等しくすることが好適である。
【0026】
しかしながら従来の制御方法の如く、上記式(2)で得られた磁極位置推定値(θE1)により座標変換器34および座標変換器37の演算を行わせると、同期電動機2の始動時には磁極位置推定値の初期値を必要とし、この初期値が適正でないときにはベクトル制御における座標変換値に誤差を生ずる。
【0027】
そこで、信号発生器41から出力するd軸高周波信号(idh)とq軸高周波信号(iqh)とに下記式(3),式(4)の関係を持たせる。
【0028】
【数3】
dh=Ih cos(ωh t) …(3)
【0029】
【数4】
qh=Ih sin(ωh t) …(4)
磁極位置補正器42では、上記式(3),式(4)の関係にあるそれぞれの高周波信号をq軸電流調節器32とd軸電流調節器33とに注入し、その結果、この電流制御系に現れるq軸電圧指令値(vqh * )とd軸電圧指令値(vdh * )とq軸電流検出値(iqh)とd軸電流検出値(vdh * )とから、下記式(5)に示す高周波信号成分の瞬時無効電力(Qh )を求めている。
【0030】
【数5】
Figure 0003656944
【0031】
ここで、ωmE :回転速度の推定値
ωm * :回転速度指令値
θ0 :磁極位置の真値
θE :磁極位置の推定値
である。
【0032】
上記式(5)から明らかなように、式(5)の右辺第2項の位相成分(θ0 −θE )は磁極位置の真値(θ0 )と推定値(θE )との誤差(θerr )に関係した値である。そこで、磁極位置補正器42に内蔵するバンドパスフィルタなどにより、右辺第2項のみを抽出し、この抽出値と基準になるIh 2 cos(ωh t)とを比較することにより2(θ0 −θE )を求めることができ、従って、磁極位置補正値θerr (=θ0 −θE )が演算できる。
【0033】
すなわち、加算器43の加算値(θE2)は、上記式(5)の推定値(θE )を積分器39の演算値(θE1)とすることにより、磁極位置の真値(θ0 )により近い値となる。
【0034】
なお、信号発生器41からの高周波信号の周波数は、電圧指令発生器35におけるPWM演算のキャリア周波数の1/5〜1/10程度が望ましい。
【0035】
さらに、マクイロコンピュータによるデジタル制御の場合には、磁極位置補正器42と加算器43とで得られる今回の磁極位置推定値(θE2)を、座標変換器34および座標変換器37での次回の座標変換演算の際に使用するとよい。
【0036】
【発明の効果】
この発明によれば、磁極,速度センサレスのベクトル制御系に注入した微小振幅の高周波信号により、同期電動機の磁極位置推定値を該電動機の始動時を含めて、より真値に近づけることができるので、磁極,速度センサレスで該電動機を零速から定格速度域まで好適に可変速制御することができる。
【0037】
特に、突極性を有する永久磁石同期電動機の如く、その電気的パラメータが変動する同期電動機に対して、この発明の制御方法による磁極位置推定値は前記電気的パラメータの変動に不感であるので、ロバストに該電動機を可変速制御することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す同期電動機の制御装置のブロック構成図
【符号の説明】
1…電圧形インバータ、2…同期電動機、2a…負荷、3…制御装置、31…速度調節器、32…q軸電流調節器、33…d軸電流調節器、34…座標変換器、35…電圧指令発生器、36…電流検出器、37…座標変換器、38…速度オブザーバ、39…積分器、41…信号発生器、42…磁極位置補正器、43…加算器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method for a synchronous motor in which a synchronous motor fed by a voltage source inverter is controlled at a variable speed based on so-called magnetic pole and speed sensorless vector control without using a magnetic pole position sensor and a rotational speed sensor.
[0002]
[Prior art]
As a first conventional example of a variable speed control method for a synchronous motor fed by a voltage source inverter, a magnetic pole position sensor and a rotational speed sensor are mounted on the motor, and vector control based on detection signals from these sensors is used. The electric motor is subjected to variable speed control.
[0003]
Further, as a second conventional example different from the above-described control method, when performing the magnetic pole and speed sensorless vector control, an estimation calculation of the rotor position of the electric motor is performed, and this estimated calculation value is simply differentiated. The calculated value was used as the estimated rotational speed.
[0004]
[Problems to be solved by the invention]
If the magnetic pole position sensor and the rotational speed sensor are mounted on the synchronous motor as in the first conventional example described above, it is not suitable for use in connecting both output shafts of the motor to a load, and the magnetic pole position sensor and the rotational speed sensor. Is expensive, and further, when the installation location of the electric motor and the installation location of the drive device such as the voltage source inverter are separated, noise is mixed in the detection signal from each sensor, etc. This is a factor that hinders the operational reliability of the driving device.
[0005]
In the second conventional example, the rotor position of the synchronous motor is first estimated, but this estimated value is often not appropriate due to noise mixed in the detection signal. Cause a tonal phenomenon. Furthermore, since the rotational speed estimated value, which is a differential value of this estimated value, is very sensitive to noise mixed in the detection signal, the error of the rotational speed estimated value becomes large, and the speed control system has the error, Response results are oscillating and unstable.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for controlling a motor that can suitably control a synchronous motor fed by a voltage source inverter without a magnetic pole and a speed sensor.
[0007]
[Means for Solving the Problems]
The first aspect of the present invention is a synchronous motor fed by a voltage inverter, wherein the motor is variable-speed controlled by vector control based on the magnetic pole position estimated value and the rotational speed estimated value of the motor. ,
A value obtained by adding a high-frequency signal having a small amplitude to the d-axis current command value and q-axis current command value of the motor by the vector control is set as a new d-axis current command value and q-axis current command value of the motor. An adjustment calculation is performed so that the deviation between the d-axis current command value and the d-axis current detection value obtained by coordinate conversion of the current of the motor is zero, and the calculation result is used as the d-axis voltage command value of the motor. Adjustment calculation is performed so that the deviation between the q-axis current command value and the q-axis current detection value obtained by coordinate conversion of the current of the motor is zero, and the calculation result is used as the q-axis voltage command value of the motor. The magnetic pole position correction value of the motor is derived from the instantaneous reactive power of the high-frequency signal component based on the current detection value and the voltage command value for each of the d and q axes, and the magnetic pole position is obtained by integrating the rotational speed estimated value. Add the correction value to And characterized in that a serial magnetic pole position estimation value.
[0008]
According to a second invention, in the first invention, the d-axis component and the q-axis component of the high-frequency signal are sine waves having the same amplitude and a phase difference of 90 ° from each other. .
[0009]
According to a third aspect, in the first or second aspect, the magnetic pole position correction value is derived when the synchronous motor is started.
[0010]
According to a fourth aspect of the present invention, in the first or second aspect of the invention, the synchronous motor is a permanent magnet synchronous motor having a saliency, and the derivation calculation of the magnetic pole position correction value is always performed during operation of the motor. Features.
[0011]
According to the present invention, the estimated magnetic pole position of the synchronous motor is brought closer to the true value as will be described later, including when the motor is started, by the high-frequency signal having a small amplitude injected into the magnetic pole and speed sensorless vector control system. Therefore, the motor can be suitably controlled at a variable speed without a magnetic pole and a speed sensor.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram of a control apparatus for a synchronous motor showing an embodiment of the present invention.
[0013]
In FIG. 1, 1 outputs a three-phase AC voltage (v u , v v , v w ) having a desired frequency and amplitude based on a three-phase voltage command value (v u * , v v * , v w * ). 2 is a synchronous motor fed by the voltage source inverter 2, 2 a is a load connected to the output shaft of the synchronous motor 2, and 3 is a control for variable speed control of the synchronous motor 2 via the voltage source inverter 2. Device.
[0014]
In this control device 3, a speed adjuster 31, a q-axis current adjuster 32, a d-axis current adjuster 33, a coordinate converter 34, a voltage command generator 35, a current detector 36, a coordinate converter 37, and a speed observer 38 The integrator 39 is a basic control element that performs variable speed control of the synchronous motor 2 based on magnetic pole and speed sensorless vector control via the voltage source inverter 1, and further includes a signal generator 41 and a magnetic pole position corrector 42. The adder 43 is a control element added based on the present invention.
[0015]
The operation of the control device 3 shown in FIG. 3 will be described below.
[0016]
First, the speed observer 38 detects a three-phase current of the synchronous motor 2 by the current detector 36 current (i u, i v, i w) d -axis current detection value through the coordinate converter 37 (i d) And the q-axis current value (i q ), which are obtained by converting the three-phase to two-phase coordinates, and the q-axis voltage command value (v q * ) output from the q-axis current regulator 33, The calculation shown in Expression (1) is performed to obtain the estimated rotational speed value (ω mE ) of the synchronous motor 2.
[0017]
[Expression 1]
Figure 0003656944
[0018]
Here, Δv q : q-axis conversion component (calculated value) of output voltage error based on dead time and voltage drop between semiconductor elements constituting voltage source inverter 2
R q : q-axis component L q of the resistance of the synchronous motor 2 q q q-axis component L d of the reactance of the synchronous motor 2 d : d-axis component of the reactance of the synchronous motor Φ: number of flux linkages P of the synchronous motor 2: synchronous motor Number of pairs of magnetic poles α 2: Inverse value of time constant of speed observer 38 s: Laplace operator.
[0019]
The speed adjuster 31 performs an adjustment operation to make the deviation between the commanded rotational speed command value (ω m * ) and the estimated rotational speed value (ω mE ) obtained by the above equation (1) zero. The value is output as the q-axis current command value (i q * ).
[0020]
The q-axis current regulator 32 adds a value obtained by adding the q-axis current command value (i q * ) and a q-axis high-frequency signal (i qh ) from the signal generator 41 described later, and the q-axis current value (i q ) Is adjusted to zero, and the calculated value is output as a q-axis voltage command value (v q * ).
[0021]
Similarly, the d-axis current regulator 33 adds a commanded d-axis current command value (i d * ) and a d-axis high-frequency signal (i dh ) from the signal generator 41 described later, and the d-axis. performs an adjustment operation for the deviation between the current value (i d) to zero, and outputs the calculated value d-axis voltage command value as (v d *).
[0022]
In the coordinate converter 34, a three-phase voltage setting value (v u ref ,) obtained by two-phase to three-phase coordinate conversion of the q-axis voltage command value (v q * ) and the d-axis voltage command value (v d * ). v v ref , v w ref ) are output.
[0023]
Further, in the voltage command generator 35, three-phase voltage command values (v u * , v v * , v w ) PWM-controlled from the three-phase voltage setting values (v u ref , v v ref , v w ref ). * Is generated and output to the voltage source inverter 1.
[0024]
Next, the integrator 39 performs integration calculation of the following formula (2) and outputs a magnetic pole position estimated value (θ E1 ).
[0025]
[Expression 2]
θ E1 = (1 / s) ω mE (2)
In the case of digital control by a Maciro computer, it is preferable that the calculation cycle of the speed observer 38 and the integrator 39 is equal to the calculation cycle of the q-axis current regulator 32 and the d-axis current regulator 33. .
[0026]
However, if the calculation of the coordinate converter 34 and the coordinate converter 37 is performed by the magnetic pole position estimated value (θ E1 ) obtained by the above equation (2) as in the conventional control method, the magnetic pole position is An initial value of the estimated value is required, and if this initial value is not appropriate, an error occurs in the coordinate conversion value in the vector control.
[0027]
In view of this, the d-axis high-frequency signal (i dh ) and the q-axis high-frequency signal (i qh ) output from the signal generator 41 have a relationship of the following expressions (3) and (4).
[0028]
[Equation 3]
i dh = I h cos (ω h t) (3)
[0029]
[Expression 4]
i qh = I h sin (ω h t) (4)
In the magnetic pole position corrector 42, the respective high frequency signals having the relations of the above formulas (3) and (4) are injected into the q-axis current regulator 32 and the d-axis current regulator 33. As a result, this current control is performed. From the q-axis voltage command value (v qh * ), d-axis voltage command value (v dh * ), q-axis current detection value (i qh ), and d-axis current detection value (v dh * ) appearing in the system, The instantaneous reactive power (Q h ) of the high frequency signal component shown in (5) is obtained.
[0030]
[Equation 5]
Figure 0003656944
[0031]
Here, ω mE : Estimated value of rotational speed ω m * : Rotational speed command value θ 0 : True value of magnetic pole position θ E : Estimated value of magnetic pole position.
[0032]
As is clear from the above equation (5), the phase component (θ 0 −θ E ) of the second term on the right side of equation (5) is the error between the true value (θ 0 ) and the estimated value (θ E ) of the magnetic pole position. It is a value related to (θ err ). Therefore, only the second term on the right side is extracted by a bandpass filter or the like built in the magnetic pole position corrector 42, and this extracted value is compared with the reference I h 2 cos (ω h t) to obtain 2 (θ 0− θ E ) can be obtained, and therefore the magnetic pole position correction value θ err (= θ 0 −θ E ) can be calculated.
[0033]
That is, the added value (θ E2 ) of the adder 43 is obtained by setting the estimated value (θ E ) of the above equation (5) as the calculated value (θ E1 ) of the integrator 39, thereby obtaining the true value (θ 0 ) of the magnetic pole position. ).
[0034]
The frequency of the high frequency signal from the signal generator 41 is preferably about 1/5 to 1/10 of the carrier frequency of the PWM calculation in the voltage command generator 35.
[0035]
Furthermore, in the case of digital control by a Maciro computer, the current magnetic pole position estimated value (θ E2 ) obtained by the magnetic pole position corrector 42 and the adder 43 is used for the next time in the coordinate converter 34 and the coordinate converter 37. It is better to use this for the coordinate transformation calculation.
[0036]
【The invention's effect】
According to the present invention, the estimated magnetic pole position value of the synchronous motor can be made closer to the true value including when the motor is started, by using a high-frequency signal with a small amplitude injected into the magnetic pole and speed sensorless vector control system. The motor can be suitably controlled at a variable speed from zero speed to a rated speed range without a magnetic pole and a speed sensor.
[0037]
In particular, for a synchronous motor whose electrical parameters fluctuate, such as a permanent magnet synchronous motor having a saliency, the magnetic pole position estimation value according to the control method of the present invention is insensitive to the fluctuations of the electric parameters. In addition, the electric motor can be controlled at a variable speed.
[Brief description of the drawings]
FIG. 1 is a block diagram of a synchronous motor control apparatus showing an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Voltage type inverter, 2 ... Synchronous motor, 2a ... Load, 3 ... Control device, 31 ... Speed regulator, 32 ... q-axis current regulator, 33 ... d-axis current regulator, 34 ... Coordinate converter, 35 ... Voltage command generator, 36 ... current detector, 37 ... coordinate converter, 38 ... speed observer, 39 ... integrator, 41 ... signal generator, 42 ... magnetic pole position corrector, 43 ... adder.

Claims (4)

電圧インバータにより給電される同期電動機であって、該電動機の磁極位置推定値と回転速度推定値とに基づくベクトル制御によって該電動機を可変速制御する同期電動機の制御方法において、
前記ベクトル制御による前記電動機のd軸電流指令値およびq軸電流指令値に微小振幅の高周波信号を加算した値を該電動機の新たなd軸電流指令値およびq軸電流指令値とし、
この新たなd軸電流指令値と前記電動機の電流を座標変換して得られるd軸電流検出値との偏差を零にする調節演算を行い、この演算結果を該電動機のd軸電圧指令値とし、
前記新たなq軸電流指令値と前記電動機の電流を座標変換して得られるq軸電流検出値との偏差を零にする調節演算を行い、この演算結果を該電動機のq軸電圧指令値とし、
前記d,q軸それぞれの電流検出値と電圧指令値とに基づく前記高周波信号成分の瞬時無効電力から前記電動機の磁極位置補正値を導出し、
前記回転速度推定値を積分演算した値に前記磁極位置補正値を加算した値を前記磁極位置推定値としたことを特徴とする同期電動機の制御方法。
A synchronous motor fed by a voltage inverter, wherein the motor is variable-speed controlled by vector control based on a magnetic pole position estimated value and a rotational speed estimated value of the motor.
A value obtained by adding a high-frequency signal having a minute amplitude to the d-axis current command value and q-axis current command value of the motor by the vector control is set as a new d-axis current command value and q-axis current command value of the motor,
An adjustment calculation is performed so that the deviation between the new d-axis current command value and the d-axis current detection value obtained by coordinate conversion of the current of the motor is zero, and this calculation result is used as the d-axis voltage command value of the motor. ,
An adjustment calculation is performed so that the deviation between the new q-axis current command value and the q-axis current detection value obtained by coordinate conversion of the current of the motor is zero, and this calculation result is used as the q-axis voltage command value of the motor. ,
Deriving the magnetic pole position correction value of the motor from the instantaneous reactive power of the high-frequency signal component based on the current detection value and the voltage command value for each of the d and q axes,
A method for controlling a synchronous motor, wherein a value obtained by adding the magnetic pole position correction value to a value obtained by integrating the rotational speed estimated value is used as the magnetic pole position estimated value.
請求項1に記載の同期電動機の制御方法において、
前記高周波信号のd軸成分とq軸成分とは、その振幅が等しく、且つ、互いに90°の位相差を有する正弦波にしたことを特徴とする同期電動機の制御方法。
In the control method of the synchronous motor according to claim 1,
A control method for a synchronous motor, wherein the d-axis component and the q-axis component of the high-frequency signal are sine waves having the same amplitude and a phase difference of 90 ° from each other.
請求項1又は2に記載の同期電動機の制御方法において、
前記同期電動機の始動時に、前記磁極位置補正値の導出演算を行わせることを特徴とする同期電動機の制御方法。
In the synchronous motor control method according to claim 1 or 2,
A control method for a synchronous motor, wherein a calculation for deriving the magnetic pole position correction value is performed when the synchronous motor is started.
請求項1又は2に記載の同期電動機の制御方法において、
前記同期電動機は突極性を有する永久磁石同期電動機とし、
該電動機の運転中は、前記磁極位置補正値の導出演算を常時行わせることを特徴とする同期電動機の制御方法。
In the synchronous motor control method according to claim 1 or 2,
The synchronous motor is a permanent magnet synchronous motor having saliency,
A method of controlling a synchronous motor, wherein the derivation calculation of the magnetic pole position correction value is always performed during operation of the motor.
JP26772299A 1999-09-21 1999-09-21 Control method of synchronous motor Expired - Fee Related JP3656944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26772299A JP3656944B2 (en) 1999-09-21 1999-09-21 Control method of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26772299A JP3656944B2 (en) 1999-09-21 1999-09-21 Control method of synchronous motor

Publications (2)

Publication Number Publication Date
JP2001095281A JP2001095281A (en) 2001-04-06
JP3656944B2 true JP3656944B2 (en) 2005-06-08

Family

ID=17448667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26772299A Expired - Fee Related JP3656944B2 (en) 1999-09-21 1999-09-21 Control method of synchronous motor

Country Status (1)

Country Link
JP (1) JP3656944B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148789B2 (en) * 2001-07-25 2013-02-20 オリエンタルモーター株式会社 Identification method of flux linkage and electrical time constant of permanent magnet synchronous motor
US7161324B1 (en) 2003-07-16 2007-01-09 Mitsubishi Denki Kabushiki Kaisha Device for estimating pole position of synchronous motor
JP4592385B2 (en) * 2004-10-27 2010-12-01 株式会社東芝 Control device for synchronous machine
KR100645807B1 (en) * 2004-12-06 2007-02-28 엘지전자 주식회사 Apparatus and method for startup synchronous reluctance motor
JP5176420B2 (en) 2007-08-02 2013-04-03 株式会社ジェイテクト Sensorless control device for brushless motor
JP5194886B2 (en) * 2008-03-03 2013-05-08 株式会社明電舎 Variable speed drive for synchronous motor
KR20140116728A (en) * 2013-03-25 2014-10-06 엘지전자 주식회사 Apparatus and method for initially driving a sensorless bldc motor
WO2016038992A1 (en) * 2014-09-12 2016-03-17 三菱電機株式会社 Ac rotating machine control device and method for calculating magnetic pole position correction amount
JP6390649B2 (en) * 2016-03-18 2018-09-19 株式会社安川電機 Power converter, motor power estimation method and motor control method

Also Published As

Publication number Publication date
JP2001095281A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
US6448735B1 (en) Controller for a wound rotor slip ring induction machine
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
JP3813637B2 (en) AC motor control device
US5334923A (en) Motor torque control method and apparatus
JP4988329B2 (en) Beatless control device for permanent magnet motor
JP3668870B2 (en) Synchronous motor drive system
JP3944955B2 (en) Induction electromotive force estimation method, speed estimation method, axis deviation correction method, and induction motor control apparatus for induction motor
JPH07245981A (en) Detector for position of magnetic pole in motor
JP2002529044A (en) Speed sensorless induction machine control system
JPH031917B2 (en)
US7187155B2 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
US7072790B2 (en) Shaft sensorless angular position and velocity estimation for a dynamoelectric machine based on extended rotor flux
US6528966B2 (en) Sensorless vector control apparatus and method thereof
US20070194742A1 (en) Angular position and velocity estimation for synchronous machines based on extended rotor flux
JP3656944B2 (en) Control method of synchronous motor
JP3586078B2 (en) Power converter
JP3064671B2 (en) Control circuit of power converter
CN113056867A (en) Inverter control device
JPH10229687A (en) Variable speed controller of induction motor
JPH08266099A (en) Controller for permanent-magnet synchronous motor
JP3484058B2 (en) Position and speed sensorless controller
CN116208053A (en) Control system and method for permanent magnet synchronous motor
JP3864309B2 (en) Wind power generation system and method
JP3173022B2 (en) Control device for brushless DC motor
JP3958920B2 (en) Spindle controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees