Nothing Special   »   [go: up one dir, main page]

JP3515329B2 - Chip-shaped electronic component and manufacturing method thereof - Google Patents

Chip-shaped electronic component and manufacturing method thereof

Info

Publication number
JP3515329B2
JP3515329B2 JP16378597A JP16378597A JP3515329B2 JP 3515329 B2 JP3515329 B2 JP 3515329B2 JP 16378597 A JP16378597 A JP 16378597A JP 16378597 A JP16378597 A JP 16378597A JP 3515329 B2 JP3515329 B2 JP 3515329B2
Authority
JP
Japan
Prior art keywords
resin
electronic component
outer shell
lead wire
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16378597A
Other languages
Japanese (ja)
Other versions
JPH1116791A (en
Inventor
秀徳 上川
泰広 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16378597A priority Critical patent/JP3515329B2/en
Publication of JPH1116791A publication Critical patent/JPH1116791A/en
Application granted granted Critical
Publication of JP3515329B2 publication Critical patent/JP3515329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チップ状コンデン
サ、チップ状抵抗器、チップ状コイル等のチップ状電子
部品及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip-shaped electronic component such as a chip-shaped capacitor, a chip-shaped resistor and a chip-shaped coil, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】前記チップ状電子部品は、図8に示すよ
うに、電子部品素子(4)を成形金型(100)内に収容し、
電子部品素子(4)と成形金型(100)との間に形成される
キャビティ(102)内に、該キャビティ(102)に通じるゲー
ト(101)(溶融樹脂の流入口)から高圧で溶融樹脂を充
満させ、電子部品素子(4)を樹脂にて被覆し、外殻を形
成している。なお、この種の外殻樹脂成形において、熱
硬化性樹脂を用いる場合は、トランスファ成形が実施さ
れ、熱可塑性樹脂を用いる場合は、インジェクション成
形が実施される。射出成形は、一般的には、インジェク
ション成形を指すが、トランスファ成形も射出成形の一
種と考えられる。従って、本願では、射出成形は、トラ
ンスファ成形とインジェクション成形の両方を含むもの
とする。
2. Description of the Related Art In the chip-shaped electronic component, an electronic component element (4) is housed in a molding die (100) as shown in FIG.
In the cavity (102) formed between the electronic component element (4) and the molding die (100), the molten resin is applied at high pressure from the gate (101) (inlet of the molten resin) leading to the cavity (102). And the electronic component element (4) is covered with resin to form an outer shell. In this type of outer shell resin molding, transfer molding is carried out when a thermosetting resin is used, and injection molding is carried out when a thermoplastic resin is used. Injection molding generally refers to injection molding, but transfer molding is also considered to be a type of injection molding. Therefore, in the present application, injection molding includes both transfer molding and injection molding.

【0003】上記射出成形における溶融樹脂の射出圧は
大きく、この時の機械的ショックによって、電子部品の
機能を損なうことがある。この問題を、電子部品が固体
電解コンデンサである場合について説明する。固体電解
コンデンサにおいて電子部品素子(4)に相当するコンデ
ンサ素子(40)は、図3のように、Ta(タンタ
ル)、Al(アルミニウム)、Nb(ニオブ)等の弁金属
(valve metal)によって形成される素子部材(1)を陽
極として、素子部材(1)の表面に誘電体酸化皮膜(12)を
形成し、この誘電体酸化皮膜(12)上に、MnO2、導電性
有機材料等の固体導電性材料(2)を用いて陰極を形成せ
しめ、該陰極上にカーボン及び銀ペースト層(3)を形成
したものである。チップ状固体電解コンデンサは、図8
のように、該コンデンサ素子(40)の陽極のリード線(11)
とカーボン及び銀ペースト層(3)とに金属端子板(6)(6
1)を取り付け、射出成形により、コンデンサ素子(40)
と、金属端子板(6)(61)の一部とを樹脂にて被覆して、
外殻(9)を形成し、図7のように、外殻(9)から露出し
た金属端子板(6)(61)を外殻(9)に沿って折り曲げ、そ
れから、エージング処理を行なうことにより完成する。
上記固体電解コンデンサの製造において、コンデンサ素
子に外殻形成用の樹脂を被覆する際の樹脂の射出圧によ
る機械的ショックにより、弁金属表面の誘電体酸化皮膜
が損傷し、これが原因と思われる漏れ電流の増大が起こ
る。
The injection pressure of the molten resin in the above injection molding is large, and the mechanical shock at this time may impair the function of the electronic component. This problem will be described when the electronic component is a solid electrolytic capacitor. The capacitor element (40) corresponding to the electronic component element (4) in the solid electrolytic capacitor is formed by a valve metal such as Ta (tantalum), Al (aluminum), Nb (niobium) as shown in FIG. A dielectric oxide film (12) is formed on the surface of the element member (1) by using the element member (1) to be formed as an anode, and MnO 2 , a conductive organic material or the like is formed on the dielectric oxide film (12). A solid conductive material (2) is used to form a cathode, and a carbon and silver paste layer (3) is formed on the cathode. The chip solid electrolytic capacitor is shown in FIG.
Like the anode lead wire (11) of the capacitor element (40)
And carbon and silver paste layer (3) on metal terminal board (6) (6
1) is attached and by injection molding, the capacitor element (40)
And a part of the metal terminal boards (6) (61) are covered with resin,
Form the outer shell (9), bend the metal terminal plates (6) (61) exposed from the outer shell (9) along the outer shell (9), and then perform aging treatment. Is completed by.
In the manufacture of the above solid electrolytic capacitor, the dielectric oxide film on the valve metal surface is damaged by the mechanical shock caused by the injection pressure of the resin when the capacitor element is coated with the resin for forming the outer shell, which may be the cause of leakage. An increase in current occurs.

【0004】前記機械的ショックを緩和するために、幾
つかの方法が提案されている。該方法の1つとして、射
出成形において溶融樹脂の射出圧を低圧にする方法が提
案されている。しかしながら、この方法では、機械的シ
ョックを緩和する効果が小さく、電子部品素子の損傷を
防止することは出来ない。また、前記溶融樹脂が成形金
型内を十分に回り込めず、樹脂被覆の不完全な信頼性に
問題のある電子部品が多数形成される結果となる。ま
た、図6および図7に示すように、外殻(9)の形成前
に、エポキシ樹脂液、シリコーン樹脂液等の樹脂液を電
子部品素子(4)の表面全体に塗布して固化させ、弾性樹
脂のコーティング層(8)を形成する方法が提案されてい
る。この方法によれば、前記機械的ショックを弾性樹脂
コーティング層(8)が効果的に緩和するため、電子部品
素子(4)の損傷を効果的に防止できる。しかしながら、
この方法では、コーティング層(8)の厚みが大きくなる
ため、外殻(9)の厚さを含むチップ状電子部品は大きく
なる。さらに、射出成形において、コーティング層(8)
の厚みにより溶融樹脂が成形金型内に十分に回り込むこ
とができず、外殻(9)からコーティング層(8)がはみ出
て、信頼性に問題のある電子部品が多数形成される結果
となる。
Several methods have been proposed to reduce the mechanical shock. As one of the methods, there has been proposed a method of reducing the injection pressure of the molten resin in injection molding. However, with this method, the effect of alleviating the mechanical shock is small, and it is not possible to prevent damage to the electronic component element. Further, the molten resin cannot sufficiently flow into the molding die, resulting in the formation of a large number of electronic components having incomplete reliability of the resin coating. Further, as shown in FIGS. 6 and 7, before forming the outer shell (9), a resin liquid such as an epoxy resin liquid or a silicone resin liquid is applied to the entire surface of the electronic component element (4) to be solidified, A method of forming a coating layer (8) of elastic resin has been proposed. According to this method, since the elastic resin coating layer (8) effectively absorbs the mechanical shock, damage to the electronic component element (4) can be effectively prevented. However,
In this method, since the thickness of the coating layer (8) is increased, the chip-shaped electronic component including the thickness of the outer shell (9) is increased. Furthermore, in injection molding, coating layer (8)
Due to the thickness of the resin, the molten resin cannot fully flow into the molding die, and the coating layer (8) protrudes from the outer shell (9), resulting in the formation of a large number of electronic components having reliability problems. .

【0005】[0005]

【発明が解決しようとする課題】また、前述のように電
子部品素子(4)の表面全体に樹脂を塗布する代わりに、
電子部品素子(4)の表面の一部に樹脂を塗布する方法が
提案されている。この場合、主に、電子部品素子(4)に
おけるゲート(101)に近い面、例えば、図8の場合であ
れば、陽極リード線(11)の引出し面(41)に樹脂を塗布す
ることになる。これは、該面が、溶融樹脂の射出圧を受
けて、機械的ショックの最も大きい面となるからであ
る。この方法によれば、電子部品素子(4)の表面全体に
樹脂を塗布する前記方法と同様に、電子部品素子(4)の
損傷を効果的に防止できるだけでなく、前記方法と異な
り、電子部品素子(4)の表面の一部に樹脂を塗布するか
ら、チップ状電子部品を大型化することは無く、また、
電子部品素子(4)におけるゲート(101)に近い面にのみ
樹脂を塗布するから、射出成形において溶融樹脂が成形
金型内に十分に回り込み、電子部品素子(4)を外殻(9)
にて完全に被覆した信頼性の高い電子部品を形成でき
る。この方法では、電子部品素子(4)におけるゲート(1
01)に近い面に、前記機械的ショックを緩和する量の樹
脂を塗布するだけでなく、該面からはみ出さないように
樹脂を正確に塗布する必要がある。なぜなら、樹脂が該
面からはみ出して塗布されると、射出成形において溶融
樹脂が成形金型内に十分に回り込めなくなり、電子部品
素子(4)の樹脂被覆が不完全となったり、塗布した樹脂
が外殻(9)からはみ出して、信頼性に問題のある電子部
品が形成される結果となるからである。しかしながら、
この樹脂塗布の作業は、電子部品素子(4)が小さいた
め、正確な塗布が困難である。従って、この作業は、熟
練者の手作業によらねばならず、極めて能率が悪い。
Further, instead of applying the resin on the entire surface of the electronic component element (4) as described above,
A method of applying a resin to a part of the surface of the electronic component element (4) has been proposed. In this case, the resin is mainly applied to the surface of the electronic component element (4) close to the gate (101), for example, in the case of FIG. 8, the extraction surface (41) of the anode lead wire (11). Become. This is because the surface receives the injection pressure of the molten resin and becomes the surface having the largest mechanical shock. According to this method, similar to the method of applying resin on the entire surface of the electronic component element (4), not only the damage of the electronic component element (4) can be effectively prevented but also the electronic component unlike the above method. Since the resin is applied to a part of the surface of the element (4), there is no need to upsize the chip-shaped electronic component.
Since the resin is applied only to the surface of the electronic component element (4) close to the gate (101), the molten resin sufficiently flows into the molding die during injection molding, and the electronic component element (4) is surrounded by the outer shell (9).
It is possible to form a highly reliable electronic component completely covered with. According to this method, the gate (1
It is necessary not only to apply an amount of resin that alleviates the mechanical shock to the surface close to 01), but also to apply the resin accurately so as not to stick out from the surface. This is because when the resin is applied outside the surface, the molten resin cannot sufficiently flow into the molding die during injection molding, the resin coating of the electronic component element (4) becomes incomplete, or the applied resin The reason for this is that it will protrude from the outer shell (9), resulting in the formation of an electronic component having a problem with reliability. However,
Since the electronic component element (4) is small, it is difficult to perform the resin coating operation accurately. Therefore, this work must be performed manually by a skilled person, and is extremely inefficient.

【0006】また、本願出願人は、図5に示すように、
電子部品素子(4)の表面のうち、成形金型(100)のゲー
ト(101)との対向面のみに合成樹脂、ゴム、紙、布等で
形成した緩衝材(52)を当てておき、溶融樹脂の射出圧に
よる機械的ショックを和らげる方法を提案している(特
開平8−148392)。この方法は、前記機械的ショックの
緩和には効果的であるが、その後の検討により、緩衝材
(52)を、電子部品素子(4)の該対向面からはみ出さない
ように、該対向面に正確に装着すべきであることが分か
り、上記の樹脂塗布作業と同様、作業性に問題があるこ
とが分かった。
The applicant of the present invention, as shown in FIG.
Of the surface of the electronic component element (4), a cushioning material (52) made of synthetic resin, rubber, paper, cloth or the like is applied only to the surface of the molding die (100) facing the gate (101). A method for reducing mechanical shock due to the injection pressure of molten resin has been proposed (Japanese Patent Laid-Open No. 8-148392). This method is effective in alleviating the mechanical shock, but after further study,
It was found that (52) should be accurately mounted on the facing surface of the electronic component element (4) so as not to protrude from the facing surface, and there is a problem in workability as in the above resin coating work. I knew it was.

【0007】[0007]

【発明の目的】本発明は、作業性を損なうことなく、外
殻形成用の溶融樹脂の射出圧による機械的ショックを緩
和できるチップ状電子部品及びその製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a chip-shaped electronic component capable of reducing mechanical shock caused by injection pressure of a molten resin for forming an outer shell without impairing workability, and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明のチップ状電子部
品の製造方法は、電子部品素子の表面のうち、成形金型
のゲートとの対向面に、熱硬化性樹脂からなる樹脂体を
配備し、該樹脂体を加熱して溶融硬化することにより、
該対向面に緩衝体を形成し、電子部品素子及び緩衝体に
対し、射出成形によって外殻を形成する、ことを特徴と
する。
According to the method of manufacturing a chip-shaped electronic component of the present invention, a resin body made of a thermosetting resin is provided on the surface of the electronic component element facing the gate of the molding die. Then, by heating and melting and curing the resin body,
A buffer body is formed on the facing surface, and an outer shell is formed on the electronic component element and the buffer body by injection molding.

【0009】[0009]

【作用及び効果】本発明によれば、熱硬化性樹脂からな
る樹脂体を加熱すると、該樹脂体が溶融し、前記対向面
に広がって対向面を覆い、それから硬化して緩衝体とな
る。このとき、溶融および硬化における夫々の時間、温
度等のパラメータを適当に調節することにより、前記対
向面からはみ出すことなく緩衝体を形成できる。また、
樹脂体は、加熱による溶融時に、前記対向面に広がって
対向面を覆うから、樹脂体を対向面に正確に取り付ける
必要はない。従って、この作業は、手作業によらず、自
動化することが可能であり、その結果、本発明によっ
て、信頼性の高いチップ状電子部品を効率よく製造でき
る。
According to the present invention, when a resin body made of a thermosetting resin is heated, the resin body melts and spreads over the facing surface to cover the facing surface, and then hardens to form a buffer. At this time, the buffer body can be formed without protruding from the facing surface by appropriately adjusting parameters such as time and temperature for melting and curing. Also,
When the resin body is melted by heating, the resin body spreads over the facing surface and covers the facing surface. Therefore, it is not necessary to accurately attach the resin body to the facing surface. Therefore, this work can be automated without manual work, and as a result, a highly reliable chip-shaped electronic component can be efficiently manufactured by the present invention.

【0010】以下に、本発明の実施形態について説明す
る。本実施形態は、チップ状固体電解コンデンサの製造
方法であるが、本発明は、チップ状固体電解コンデンサ
の製造方法に限定されているものではなく、他のチップ
状電子部品の製造方法にも適用できる。固体電解コンデ
ンサにおいてコンデンサ素子は(40)は、図3のように、
Ta、Al、Nb等の弁金属によって形成される素子部
材(1)を陽極として、電解酸化処理にて弁作用金属(10)
の表面に誘電体酸化皮膜(12)を形成し、該誘電体酸化皮
膜(12)上に、MnO2、導電性有機材料等の固体導電性
材料(2)を用いて陰極を形成せしめ、該陰極上にカーボ
ン及び銀ペースト層(3)を形成したものである。本実施
形態のチップ状固体電解コンデンサは、図4のように、
コンデンサ素子(40)のリード線(11)とカーボン及び銀ペ
ースト層(3)とにそれぞれ金属端子板(6)(61)を取り付
け、射出成形により、コンデンサ素子(40)及び緩衝体(5
1)と、金属端子板(6)(61)の一部とを樹脂にて被覆し
て、外殻(9)を形成し、外殻(9)から露出した金属端子
板(6)(61)を外殻(9)に沿って折り曲げ、それから、エ
ージング処理を行うことにより完成する。以下の実施例
では、陽極には、Ta焼結体(10)が使用され、陰極には
導電性高分子であるポリピロール(20)が使用され
る、また、緩衝体(51)の材料には、任意の熱硬化性樹脂
が使用できるが、以下の実施例では、代表的な熱硬化性
樹脂として、エポキシ樹脂が使用される。また、熱硬化
により緩衝体(51)となる樹脂体(5)には、板形状等任意
の形状のものが使用できるが以下の実施例では、陽極リ
ード線に挿入しやすいリング状のものが使用される。
Embodiments of the present invention will be described below. Although the present embodiment is a method for manufacturing a chip-shaped solid electrolytic capacitor, the present invention is not limited to the method for manufacturing a chip-shaped solid electrolytic capacitor and is also applicable to a method for manufacturing other chip-shaped electronic components. it can. In the solid electrolytic capacitor, the capacitor element (40) is
A valve metal (10) is formed by electrolytic oxidation using the element member (1) made of a valve metal such as Ta, Al, Nb as an anode.
A dielectric oxide film (12) is formed on the surface of, and a cathode is formed on the dielectric oxide film (12) by using a solid conductive material (2) such as MnO 2 or a conductive organic material. A carbon and silver paste layer (3) is formed on the cathode. As shown in FIG. 4, the chip solid electrolytic capacitor of the present embodiment has
Metal terminal plates (6) and (61) are attached to the lead wire (11) of the capacitor element (40) and the carbon and silver paste layer (3), respectively, and the capacitor element (40) and the buffer body (5) are formed by injection molding.
1) and a part of the metal terminal board (6) (61) are covered with resin to form an outer shell (9), and the metal terminal board (6) (61) exposed from the outer shell (9). ) Is bent along the outer shell (9), and then an aging treatment is performed to complete. In the following examples, the Ta sintered body (10) is used for the anode, the polypyrrole (20) which is a conductive polymer is used for the cathode, and the buffer body (51) is made of the material. Although any thermosetting resin can be used, an epoxy resin is used as a typical thermosetting resin in the following examples. Further, as the resin body (5) which becomes the buffer body (51) by thermosetting, any shape such as a plate shape can be used, but in the following examples, a ring shape which is easily inserted into the anode lead wire is used. used.

【0011】[0011]

【実施例】以下、本発明の実施例と比較例を説明する。EXAMPLES Examples of the present invention and comparative examples will be described below.

【0012】(実施例1)まず、図1に示すように、T
a焼結体(10)とその内部から引き出されたリード線(11)
とによって構成された素子部材(1)において、該リード
線(11)にリング状の樹脂体(5)を挿入した。該樹脂体
(5)は、エポキシ樹脂であり、重量は約1mgである。樹
脂体(5)を配備した素子部材(1)は、リード線(11)の先
端がキャリアバー(7)に接着され、キャリアバー(7)に
よって固体電解コンデンサの製造工程に搬送される。
(Embodiment 1) First, as shown in FIG.
a Sintered body (10) and lead wire (11) pulled out from the inside
A ring-shaped resin body (5) was inserted into the lead wire (11) of the element member (1) constituted by. The resin body
(5) is an epoxy resin and has a weight of about 1 mg. In the element member (1) provided with the resin body (5), the ends of the lead wires (11) are adhered to the carrier bar (7), and the carrier member (7) conveys the element member (1) to the manufacturing process of the solid electrolytic capacitor.

【0013】前記素子部材(1)をH3PO4(リン酸)水
溶液に浸漬し、電解酸化を行なって、素子部材(1)の周
囲に誘電体酸化皮膜(12)を形成した。次に、素子部材
(1)を150℃の恒温槽に30分間保持することにより、樹
脂体(5)は、素子部材(1)における陽極リード線(11)の
引出し面(41)上で溶融して広がり、それから硬化して、
該引出し面(41)上に緩衝体(51)を形成した。そして、周
知の化学重合法、電解重合法等を用いて、前記素子部材
(1)の誘電体酸化皮膜(12)上にポリピロール膜(20)を形
成し、該ポリピロール膜(20)上に、カーボン及び銀ペー
スト層(3)を形成して、コンデンサ素子(40)を完成させ
た。完成したコンデンサ素子(40)は、電子部品の製造工
程に搬送される。
The element member (1) was immersed in an aqueous solution of H 3 PO 4 (phosphoric acid) and electrolytically oxidized to form a dielectric oxide film (12) around the element member (1). Next, element member
By holding (1) in a constant temperature bath at 150 ° C for 30 minutes, the resin body (5) melts and spreads on the lead-out surface (41) of the anode lead wire (11) in the element member (1), and then Cure
A buffer body (51) was formed on the extraction surface (41). Then, the element member is formed by using a well-known chemical polymerization method, electrolytic polymerization method, or the like.
A polypyrrole film (20) is formed on the dielectric oxide film (12) of (1), and a carbon and silver paste layer (3) is formed on the polypyrrole film (20) to form a capacitor element (40). Completed The completed capacitor element (40) is transported to the electronic component manufacturing process.

【0014】前記コンデンサ素子(40)のリード線(11)及
びコンデンサ素子(40)の下面に、金属端子板(6)(61)を
溶着或いは接着して接続した。次に、金属端子板(6)(6
1)を接続したコンデンサ素子(40)を成形金型(100)内に
セットする。このとき、コンデンサ素子(40)は、緩衝体
(51)が成形金型(100)のゲート(101)と対向するようにセ
ットされる。そして、温度175℃、射出圧35kg/cm2の条
件下で、成形金型(100)内にエポキシ樹脂を射出成形
し、外殻(9)を形成した。そして、図4に示すように、
外殻(9)から突出した金属端子板(6)(61)を、外殻(9)
に沿わせて屈曲し、温度125℃で2時間エージング処理
を行なって、チップ状固体電解コンデンサを完成させ
た。
Metal terminal plates (6) and (61) were connected to the lead wire (11) of the capacitor element (40) and the lower surface of the capacitor element (40) by welding or bonding. Next, the metal terminal board (6) (6
The capacitor element (40) to which 1) is connected is set in the molding die (100). At this time, the capacitor element (40) is a buffer
The (51) is set so as to face the gate (101) of the molding die (100). Then, under conditions of a temperature of 175 ° C. and an injection pressure of 35 kg / cm 2 , an epoxy resin was injection-molded in the molding die (100) to form an outer shell (9). Then, as shown in FIG.
Attach the metal terminal plates (6) (61) protruding from the outer shell (9) to the outer shell (9).
The chip-shaped solid electrolytic capacitor was completed by bending it along the line and aging it at a temperature of 125 ° C. for 2 hours.

【0015】(実施例2)実施例2は、実施例1と比べ
て、緩衝体(51)を形成する順序が異なる。まず、実施例
1と同様にして、Ta焼結体(10)とその内部から引き出
されたリード線(11)によって構成された素子部材(1)
を、H3PO4水溶液中で電解酸化し、素子部材(1)の周
囲に誘電体酸化皮膜(12)を形成した。次に、周知の化学
重合法、電解重合法等を用いて、前記素子部材(1)の誘
電体酸化皮膜(12)上にポリピロール膜(20)を形成し、該
ポリピロール膜(20)上に、カーボン及び銀ペースト層
(3)を形成して、コンデンサ素子(40)を完成させた。上
記工程でコンデンサ素子(40)を形成した後、図2のよう
に、リング状樹脂体(5)をリード線(11)に挿入した。次
に、前記コンデンサ素子(40)のリード線(11)及びコンデ
ンサ素子(40)の下面に、金属端子板(6)(61)を溶着或い
は接着して接続した。それから、コンデンサ素子(40)を
150℃の恒温槽に30分間保持することにより、樹脂体
(5)は、コンデンサ素子(40)における陽極リード線(11)
の引出し面(41)上で溶融して広がり、それから硬化し
て、該引出し面(41)上に緩衝体(51)を形成した。
(Embodiment 2) Embodiment 2 is different from Embodiment 1 in the order of forming the buffer body (51). First, in the same manner as in Example 1, an element member (1) composed of a Ta sintered body (10) and a lead wire (11) drawn from the inside thereof.
Was electrolytically oxidized in a H 3 PO 4 aqueous solution to form a dielectric oxide film (12) around the element member (1). Next, a polypyrrole film (20) is formed on the dielectric oxide film (12) of the element member (1) by using a well-known chemical polymerization method, electrolytic polymerization method, or the like, and the polypyrrole film (20) is formed. , Carbon and silver paste layers
(3) was formed to complete the capacitor element (40). After forming the capacitor element (40) in the above process, the ring-shaped resin body (5) was inserted into the lead wire (11) as shown in FIG. Next, metal terminal plates (6) and (61) were connected to the lead wire (11) of the capacitor element (40) and the lower surface of the capacitor element (40) by welding or bonding. Then, the capacitor element (40)
By keeping it in a constant temperature bath at 150 ° C for 30 minutes,
(5) is the anode lead wire (11) in the capacitor element (40)
It was melted and spread on the pull-out surface (41) and then hardened to form a buffer (51) on the pull-out surface (41).

【0016】以下の工程は、実施例1と同様にして、緩
衝体(51)が成形金型(100)のゲート(101)と対向するよう
に、コンデンサ素子(40)を成形金型(100)内にセット
し、温度175℃、射出圧35kg/cm2の条件下で、成形金型
(100)内にエポキシ樹脂を射出成形し、外殻(9)を形成
した。そして、図4に示すように、外殻(9)から突出し
た金属端子板(6)(61)を、外殻(9)に沿わせて屈曲し、
温度125℃で電圧を2時間印加することによりエージン
グを行なって、固体電解コンデンサを完成させた。
In the following steps, the capacitor element (40) is formed in the molding die (100) so that the buffer body (51) faces the gate (101) of the molding die (100) in the same manner as in the first embodiment. ), And mold under the conditions of temperature 175 ℃ and injection pressure 35kg / cm 2.
An epoxy resin was injection-molded in (100) to form an outer shell (9). Then, as shown in FIG. 4, the metal terminal plates (6) and (61) protruding from the outer shell (9) are bent along the outer shell (9),
Aging was performed by applying a voltage at a temperature of 125 ° C. for 2 hours to complete a solid electrolytic capacitor.

【0017】(比較例1)比較例1は、上記実施例1お
よび実施例2と比べて、リング状樹脂体(5)をリード線
(11)に挿入せず、緩衝体(51)を形成しない点のみが異な
る(図8)。完成したコンデンサ素子(40)を成形金型(1
00)内にセットし、温度175℃、射出圧35kg/cm2の条件下
で、成形金型(100)内にエポキシ樹脂を射出成形し、外
殻(9)を形成した。
(Comparative Example 1) In Comparative Example 1, the ring-shaped resin body (5) is used as a lead wire as compared with the above-mentioned Examples 1 and 2.
The only difference is that it is not inserted into (11) and the buffer body (51) is not formed (FIG. 8). Mold the completed capacitor element (40)
00), and under conditions of a temperature of 175 ° C. and an injection pressure of 35 kg / cm 2 , an epoxy resin was injection-molded in a molding die (100) to form an outer shell (9).

【0018】(比較例2)比較例2は、前記比較例1と
比べて、射出成形による外殻形成が異なり、温度175
℃、射出圧15kg/cm2の低圧力の条件下で射出成形を行な
って、外殻(9)を形成した。
(Comparative Example 2) Comparative Example 2 differs from Comparative Example 1 in the outer shell formation by injection molding, and the temperature is 175
The outer shell (9) was formed by injection-molding under conditions of low pressure of 15 ° C. and injection pressure of 15 kg / cm 2 .

【0019】(比較例3)比較例3は、図6および図7
のように、前記比較例1と比べて、コンデンサ素子(40)
全体を弾性シリコーン樹脂層(8)が被覆する点が異な
る。比較例3では、完成したコンデンサ素子(40)の全体
にシリコーン樹脂液を塗布し、コンデンサ素子(40)を温
度150℃の恒温槽に3時間保持してシリコーン樹脂液を
固化することにより、コンデンサ素子(40)の表面を弾性
シリコーン樹脂層(8)にて被覆した。そして、温度175
℃、射出圧35kg/cm2の条件下で、射出成形を行なって外
殻(9)を形成した。上記実施例と比較例による漏れ電流
および外殻成形不良の検査結果を表1に示す。
(Comparative Example 3) Comparative Example 3 is shown in FIGS.
In comparison with Comparative Example 1, the capacitor element (40)
The difference is that the whole is covered with an elastic silicone resin layer (8). In Comparative Example 3, a silicone resin solution was applied to the entire completed capacitor element (40), and the capacitor element (40) was held in a constant temperature bath at a temperature of 150 ° C. for 3 hours to solidify the silicone resin solution to obtain a capacitor. The surface of the device (40) was covered with the elastic silicone resin layer (8). And the temperature 175
An outer shell (9) was formed by injection molding under conditions of ℃ and injection pressure of 35 kg / cm 2 . Table 1 shows the inspection results of the leakage current and the outer shell molding failure in the above-mentioned Examples and Comparative Examples.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から、以下のことが理解できる。比較
例1の結果を見ると、射出成形における溶融樹脂の射出
圧による機械的ショックを緩和するために、何らの処置
も講じないときには、成形不良品は無いが、漏れ電流の
小さい良品は極めて少ない。すなわち、前記機械的ショ
ックによる電子部品への影響が無視できないことが分か
る。また、比較例2の結果を見ると、漏れ電流の小さい
良品は比較例1よりは多いが、全体数(50個)から見
れば依然として少なく、また、成形不良品が極めて多
い。すなわち、前記溶融樹脂の射出圧を低圧にする方法
では、機械的ショックを緩和する効果が小さく、また、
前記溶融樹脂が成形金型内を十分に回り込めないことが
分かる。また、比較例3の結果を見ると、漏れ電流の小
さい良品は極めて多いが、同時に成形不良品も極めて多
い。すなわち、コンデンサ素子(40)の表面全体を弾性シ
リコーン樹脂にて被覆する方法では、機械的ショックを
緩和する効果は大きいが、射出成形時において溶融樹脂
が成形金型内を十分に回り込めないことが分かる。
From Table 1, the following can be understood. Looking at the results of Comparative Example 1, in order to alleviate the mechanical shock due to the injection pressure of the molten resin in the injection molding, there is no defective product without any measures, but there are very few non-defective products with small leakage current. . That is, it can be seen that the influence of the mechanical shock on electronic components cannot be ignored. Also, looking at the results of Comparative Example 2, the number of non-defective products having a small leakage current is larger than that of Comparative Example 1, but the total number (50) is still small, and the number of defective products is extremely large. That is, in the method of lowering the injection pressure of the molten resin, the effect of alleviating mechanical shock is small, and
It can be seen that the molten resin cannot fully flow into the molding die. Further, looking at the results of Comparative Example 3, although there are an extremely large number of non-defective products having a small leakage current, at the same time, there are also an extremely large number of defective products. That is, the method of covering the entire surface of the capacitor element (40) with the elastic silicone resin has a great effect of alleviating mechanical shock, but the molten resin cannot sufficiently flow into the molding die during injection molding. I understand.

【0022】前記比較例1、比較例2および比較例3に
比べて、実施例1および実施例2の結果を見ると、漏れ
電流の小さい良品は極めて多く、成形不良品は無い。す
なわち、本実施形態の方法では、機械的ショックを緩和
する効果は大きく、さらに、射出成形時において溶融樹
脂が成形金型内を十分に回り込むことが分かる。また、
本実施形態において緩衝体(51)は、リード線(11)に穴が
穿たれた樹脂体(5)を挿入して、該樹脂体(5)を溶融し
これを陽極リード線(11)の引出し面(41)上で広がせて硬
化させることにより形成しているので、樹脂体(5)を斯
かる引出し面(41)に正確に取り付ける必要はない。従っ
て、樹脂体(5)の穴を図1に示されるようにリード線の
径より十分に大きくすることができるので、その挿入作
業が容易になると共に、さらに手作業によらず、自動化
することも可能であり、その結果、本実施形態によっ
て、信頼性の高いチップ状固体電解コンデンサを効率よ
く製造できる。また、実施例1および実施例2は、両方
とも、信頼性の高いチップ状固体電解コンデンサを形成
できる。従って、樹脂体(5)の配備および緩衝体(51)の
形成は、射出成形による外殻(9)形成前であれば、いつ
行なってもよく、また、前記引出し面(41)全体を覆う必
要はないと考えられる。このことから、前記引出し面(4
1)のうち、成形金型(100)のゲート(101)と対向する領域
(本実施形態では、陽極リード線(11)と交わる部分)
が、樹脂射出圧の最も大きい領域であるから、該領域に
のみ緩衝体(51)を形成すれば、機械的ショックを十分緩
和して、電子部品の損傷を防止できると考えられる。
Compared to Comparative Examples 1, 2, and 3, the results of Examples 1 and 2 show that there are many non-defective products with small leakage current and no defective products. That is, it can be seen that the method of the present embodiment has a large effect of alleviating mechanical shock, and that the molten resin sufficiently wraps around the inside of the molding die during injection molding. Also,
In the buffer (51) of the present embodiment, the resin body (5) having holes formed in the lead wire (11) is inserted, the resin body (5) is melted, and the resin body (5) is connected to the anode lead wire (11). Since the resin body (5) is formed by spreading it on the drawing surface (41) and curing it, it is not necessary to attach the resin body (5) to the drawing surface (41) accurately. Therefore, since the hole of the resin body (5) can be made sufficiently larger than the diameter of the lead wire as shown in FIG. 1, the insertion work becomes easy, and further, it can be automated without manual work. As a result, according to the present embodiment, a highly reliable chip solid electrolytic capacitor can be efficiently manufactured. In addition, both Example 1 and Example 2 can form a highly reliable chip solid electrolytic capacitor. Therefore, the disposition of the resin body (5) and the formation of the cushioning body (51) may be performed at any time before the outer shell (9) is formed by injection molding, and the entire extraction surface (41) is covered. Not considered necessary. From this, the drawer surface (4
A region of 1) that faces the gate (101) of the molding die (100) (a portion that intersects with the anode lead wire (11) in this embodiment).
However, since it is the region where the resin injection pressure is the largest, it is considered that the mechanical shock can be sufficiently mitigated and damage to the electronic component can be prevented by forming the buffer body (51) only in this region.

【0023】上記実施形態の説明は、本発明を説明する
ためのものであって、特許請求の範囲に記載の発明を限
定し、或いは範囲を減縮する様に解すべきではない。
又、本発明の各部構成は上記実施形態に限らず、特許請
求の範囲に記載の技術的範囲内で種々の変形が可能であ
ることは勿論である。例えば、本実施形態では、図8の
ように、コンデンサ素子(40)における陽極リード線(11)
の引出し面(41)が成形金型(100)のゲート(101)と対向し
ており、従って、該引出し面(41)に緩衝体(51)を形成し
たが、コンデンサ素子(40)の他の面がゲート(101)と対
向しておれば、該他の面に緩衝体(51)を形成することは
言うまでもない。
The above description of the embodiments is for explaining the present invention, and should not be construed to limit the invention described in the claims or to reduce the scope.
The configuration of each part of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims. For example, in this embodiment, as shown in FIG. 8, the anode lead wire (11) in the capacitor element (40) is
The pull-out surface (41) of the molding die (100) faces the gate (101) of the molding die (100). Therefore, although the buffer body (51) is formed on the pull-out surface (41), other than the capacitor element (40). It goes without saying that the buffer body (51) is formed on the other surface if this surface faces the gate (101).

【図面の簡単な説明】[Brief description of drawings]

【図1】素子部材にリング状樹脂体を配備した実施例1
の状態を示す斜視図である。
FIG. 1 is an example 1 in which a ring-shaped resin body is arranged on an element member.
It is a perspective view showing the state.

【図2】コンデンサ素子にリング状樹脂体を配備した実
施例2の状態を示す斜視図である。
FIG. 2 is a perspective view showing a state of a second embodiment in which a ring-shaped resin body is arranged on a capacitor element.

【図3】図2のA−A線に沿って断面した図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】本発明のチップ状電子部品を示す断面図であ
る。
FIG. 4 is a sectional view showing a chip-shaped electronic component of the present invention.

【図5】緩衝材を用いた従来のチップ状電子部品を示す
断面図である。
FIG. 5 is a cross-sectional view showing a conventional chip-shaped electronic component using a cushioning material.

【図6】電子部品素子の表面全体に樹脂コーティング層
を形成した比較例3の斜視図である。
FIG. 6 is a perspective view of Comparative Example 3 in which a resin coating layer is formed on the entire surface of the electronic component element.

【図7】図6の工程を経た従来のチップ状電子部品を示
す断面図である。
FIG. 7 is a cross-sectional view showing a conventional chip-shaped electronic component that has undergone the process of FIG.

【図8】電子部品素子を外殻にて被覆するために、電子
部品素子を成形金型に配備した状態を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing a state in which an electronic component element is provided in a molding die in order to cover the electronic component element with an outer shell.

【符号の説明】[Explanation of symbols]

(1) 素子部材 (2) 固体導電性材料層 (4) 電子部品素子 (5) 樹脂体 (9) 外殻 (12) 誘電体酸化皮膜 (40) コンデンサ素子 (51) 緩衝体 (100) 成形金型 (101) ゲート (1) Element member (2) Solid conductive material layer (4) Electronic component element (5) Resin body (9) Outer shell (12) Dielectric oxide film (40) Capacitor element (51) Buffer (100) Mold (101) Gate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−148392(JP,A) 特開 昭55−83224(JP,A) 特開 平3−292715(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/08 H01G 9/012 H01G 13/00 321 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-8-148392 (JP, A) JP-A-55-83224 (JP, A) JP-A-3-292715 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01G 9/08 H01G 9/012 H01G 13/00 321

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ta、Al、Nb等の弁金属からなる焼結
体とその内部から引出されたリード線(11)とによって形
成される素子部材(1)を陽極とし、該素子部材の表面に
誘電体酸化皮膜(12)を形成し、該誘電体酸化皮膜(12)に
MnO2、導電性有機半導体等の固体導電性材料(2)を
用いて陰極を形成したコンデンサ素子(40)に対し、トラ
ンスファ成形、インジェクション成形等の射出成形によ
って樹脂製の外殻を形成する固体電解コンデンサの製造
方法に於て、 前記リード線(11)に該リード線(11)の径よりも大きい穴
を形成した熱硬化性樹脂からなる樹脂体を挿入し、これ
を加熱して溶融させることにより、前記リード線(11)の
引出し面(41)上で広がらせ、その後硬化させ緩衝体(51)
を形成すると共に、当該緩衝体(51)が形成された引出し
面(41)を射出成形金型(100)のゲート(101)と対向配置し
てコンデンサ素子(40)及び緩衝体(51)に対し、射出成形
によって外殻(9)を形成する、ことを特徴とする固体電
解コンデンサの製造方法。
1. An element member (1) formed by a sintered body made of a valve metal such as Ta, Al, Nb and a lead wire (11) drawn out from the inside thereof is used as an anode, and the surface of the element member is formed. A dielectric oxide film (12) is formed on the dielectric oxide film (12), and a cathode is formed on the dielectric oxide film (12) using a solid conductive material (2) such as MnO 2 or a conductive organic semiconductor. On the other hand, in the method for producing a solid electrolytic capacitor in which a resin outer shell is formed by injection molding such as transfer molding or injection molding, a hole larger than the diameter of the lead wire (11) is formed in the lead wire (11). A resin body made of the thermosetting resin thus formed is inserted, and by heating and melting the resin body, it is spread on the lead-out surface (41) of the lead wire (11) and then cured to be buffered (51).
In addition, the extraction surface (41) on which the buffer body (51) is formed is disposed so as to face the gate (101) of the injection molding die (100) to form the capacitor element (40) and the buffer body (51). On the other hand, a method for manufacturing a solid electrolytic capacitor, characterized in that the outer shell (9) is formed by injection molding.
【請求項2】誘電体酸化皮膜(12)を形成してから、緩衝
体(51)を形成し、それから、固体導電性材料(2)を用い
て陰極を形成することを特徴とする、請求項1に記載の
固体電解コンデンサの製造方法。
2. A dielectric oxide film (12) is formed, then a buffer (51) is formed, and then a cathode is formed using a solid conductive material (2). Item 2. A method for manufacturing a solid electrolytic capacitor as described in Item 1.
【請求項3】固体導電性材料(2)を用いて陰極を形成し
てから、緩衝体(51)を形成することを特徴とする、請求
項1に記載の固体電解コンデンサの製造方法。
3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the cathode is formed by using the solid conductive material (2), and then the buffer body (51) is formed.
JP16378597A 1997-06-20 1997-06-20 Chip-shaped electronic component and manufacturing method thereof Expired - Fee Related JP3515329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16378597A JP3515329B2 (en) 1997-06-20 1997-06-20 Chip-shaped electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16378597A JP3515329B2 (en) 1997-06-20 1997-06-20 Chip-shaped electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1116791A JPH1116791A (en) 1999-01-22
JP3515329B2 true JP3515329B2 (en) 2004-04-05

Family

ID=15780670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16378597A Expired - Fee Related JP3515329B2 (en) 1997-06-20 1997-06-20 Chip-shaped electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3515329B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1839410B (en) * 2003-07-18 2015-05-20 佳能株式会社 Image processor, imaging apparatus and image processing method

Also Published As

Publication number Publication date
JPH1116791A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
US7010838B2 (en) Thin surface mounted type solid electrolytic capacitor
US6614338B2 (en) Inductor and method for manufacturing same
US8107224B2 (en) Thin solid electrolytic capacitor having high resistance to thermal stress
DE102014213564A1 (en) Semiconductor device and method for its production
JP3071115B2 (en) Manufacturing method of chip-shaped electronic components
JP2001267181A (en) Chip type solid electrolytic capacitor
TWI425542B (en) Solid electrolytic capacitor and manufacturing method thereof
JP3515329B2 (en) Chip-shaped electronic component and manufacturing method thereof
US9711294B2 (en) Tantalum capacitor and method of manufacturing the same
US9336956B2 (en) Tantalum capacitor and method of manufacturing the same
JP3433478B2 (en) Solid electrolytic capacitors
JP2010225696A (en) Solid-state electrolytic capacitor
JP4767479B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
US20160133389A1 (en) Tantalum capacitor and method of manufacturing the same
JP7354732B2 (en) Capacitor and its manufacturing method
JP3175379B2 (en) Manufacturing method of chip-shaped tantalum solid electrolytic capacitor
JP3363533B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3175380B2 (en) Manufacturing method of chip-shaped tantalum solid electrolytic capacitor
JP2007324272A (en) Capacitor and its manufacturing method
JPH04360508A (en) Manufacture of solid-state electrolytic capacitor
JP2001118750A (en) Solid electrolytic capacitor
JP2002175939A (en) Method of manufacturing chip-type solid electrolytic capacitor
JPH03215924A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees