Nothing Special   »   [go: up one dir, main page]

JP2007324272A - Capacitor and its manufacturing method - Google Patents

Capacitor and its manufacturing method Download PDF

Info

Publication number
JP2007324272A
JP2007324272A JP2006151234A JP2006151234A JP2007324272A JP 2007324272 A JP2007324272 A JP 2007324272A JP 2006151234 A JP2006151234 A JP 2006151234A JP 2006151234 A JP2006151234 A JP 2006151234A JP 2007324272 A JP2007324272 A JP 2007324272A
Authority
JP
Japan
Prior art keywords
capacitor
resin
corona discharge
capacitor element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006151234A
Other languages
Japanese (ja)
Other versions
JP2007324272A5 (en
JP4802869B2 (en
Inventor
Kiyoshi Unami
潔 宇波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006151234A priority Critical patent/JP4802869B2/en
Publication of JP2007324272A publication Critical patent/JP2007324272A/en
Publication of JP2007324272A5 publication Critical patent/JP2007324272A5/ja
Application granted granted Critical
Publication of JP4802869B2 publication Critical patent/JP4802869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in the prior art capacitor that a corona discharge start voltage is low and an amount of corona discharge is great, that is, when the capacitor is used under a condition of a high potential gradient, generated corona discharge causes discharge degradation in a dielectric film, and this causes the life characteristic of the capacitor to be remarkably adversely influenced. <P>SOLUTION: In a capacitor; a capacitor element obtained by winding a plurality of metallized films having metal deposited thereon is thermally sprayed for electrode lead out to provide external leading connection lines to the capacitor element, the capacitor element is placed in a capacitor case, the case is filled with a resin, and then the resin is set. The plurality of metallized films are not thermally bonded. Upon molding the capacitor element, a cold-curing polyurethane resin is used as the filling resin. A maximum of temperatures used in all steps of manufacturing the capacitor is not higher than 60°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、力率改善用に使用される電力用コンデンサや、各種電気回路に用いる電気機器用金属化フィルムコンデンサ(以下、単にコンデンサと称する)および、その製造方法に関するものである。   The present invention relates to a power capacitor used for power factor improvement, a metallized film capacitor (hereinafter simply referred to as a capacitor) for use in various electric circuits, and a method for manufacturing the same.

従来から、電力用コンデンサや、各種電気回路に用いる電気機器用コンデンサの諸特性の改善に関する提案は多くなされており、例えば、特許文献1に記載されている乾式コンデンサの製造方法では、コロナ放電開始電圧(特許文献1では部分放電開始電圧と表現)を高くするための提案が、また特許文献2に記載されている乾式金属化フィルムコンデンサでは、自己保安機構を設け安全性を高め、更に誘電正接の劣化を防止するための提案がなされている。   Conventionally, many proposals have been made on improvement of various characteristics of power capacitors and capacitors for electric devices used in various electric circuits. For example, in the dry capacitor manufacturing method described in Patent Document 1, corona discharge is started. The proposal for increasing the voltage (referred to as partial discharge start voltage in Patent Document 1), and the dry metallized film capacitor described in Patent Document 2 is provided with a self-protection mechanism to enhance safety and further to dielectric loss tangent Proposals have been made to prevent the deterioration of the material.

以下従来の技術について、それらの提案の構成を説明する。   The configuration of those proposals will be described below for conventional techniques.

特許文献1における従来の一般的な乾式コンデンサとしてはポリプロピレンからなる誘電体フィルムの表面にAl、Znなどの金属を蒸着した金属化フィルムを巻回したコンデンサ素子をケースに収め、更に絶縁ガスを充填したもの、或いはエポキシ樹脂などでモールドしたものが知られている。   As a conventional general dry capacitor in Patent Document 1, a capacitor element in which a metallized film on which a metal such as Al or Zn is vapor-deposited is placed on the surface of a dielectric film made of polypropylene is filled with an insulating gas. Or those molded with an epoxy resin or the like are known.

特許文献1の乾式コンデンサの製造方法は、乾式コンデンサのコロナ放電特性を改善する目的で提案され、その構成は、従来に比べ表面が平滑なポリプロピレンフィルムの表面に金属蒸着を施した金属化フィルムを巻回してコンデンサ素子を製作し、これを80℃以上の温度で加熱して熱ブロッキング処理を施し、その後コンデンサ素子の両面にメタリコン処理およびリード引き出し処理を行うものであり、効果として、金属を蒸着した金属化フィルム層間の剥離強度が増加し、金属化フィルム層間の空隙部への電解の集中によって発生し、金属化フィルムの劣化の要因となるコロナ放電の開始電圧が、従来の45〜50V/μmから約100V/μmまで改善されるものである。   The method for manufacturing a dry capacitor of Patent Document 1 has been proposed for the purpose of improving the corona discharge characteristics of a dry capacitor, and the structure thereof is a metallized film obtained by performing metal vapor deposition on the surface of a polypropylene film having a smoother surface compared to the conventional one. A capacitor element is produced by winding, heated at a temperature of 80 ° C. or higher, subjected to heat blocking treatment, and then subjected to metallicon treatment and lead drawing treatment on both sides of the capacitor element. The peel strength between the metallized film layers increased, and the start voltage of corona discharge, which is generated due to the concentration of electrolysis in the gaps between the metallized film layers and causes deterioration of the metallized film, is 45 to 50 V / It is improved from μm to about 100 V / μm.

また、特許文献2のような乾式金属化フィルムコンデンサもある。図18および図19をもとに説明すると、誘電率の低い誘電体フィルム16の幅方向端部に絶縁マージン部17を設け、更に幅方向に絶縁溝18を設けた蒸着電極19を有する金属化フィルムと、誘電率の高い誘電体フィルム20からなる金属化フィルムとを重ねて巻回し、80〜120℃の温度範囲内で加熱処理したもので、誘電体フィルムの部分破壊時にその絶縁マージン部17付近において、絶縁溝18を有する蒸着電極19を長さ方向に飛散させるようにしたもので、構造が簡単で自己保安機構を有し、かつ熱処理の温度を80〜120℃の温度範囲内にすることで誘電正接の劣化を防ぐようにしたものである。   There is also a dry metallized film capacitor as in Patent Document 2. 18 and 19, the metallization having the vapor deposition electrode 19 provided with the insulating margin portion 17 at the width direction end portion of the dielectric film 16 having a low dielectric constant and further provided with the insulating groove 18 in the width direction. A film and a metallized film made of a dielectric film 20 having a high dielectric constant are wound and heat-treated within a temperature range of 80 to 120 ° C., and when the dielectric film is partially broken, its insulation margin portion 17 In the vicinity, the vapor deposition electrode 19 having the insulating groove 18 is scattered in the length direction, has a simple structure, has a self-safety mechanism, and the temperature of the heat treatment is in a temperature range of 80 to 120 ° C. This prevents the loss tangent from deteriorating.

さらに一般的なコンデンサおよびその製造方法を、図20および図21(a)〜(d)を参照しながら説明する。   Further, a general capacitor and a manufacturing method thereof will be described with reference to FIGS. 20 and 21A to 21D.

図20および図21(a)〜(d)は、コンデンサの内部構造模式図とコンデンサの組立工程図で、誘電体フィルム108に金属109を蒸着してなる金属化フィルム107を複数、巻回してなるコンデンサ素子101に電極取り出し用メタリコン102を施し、コンデンサ素子101に外部引き出し用接続線104をハンダ103等にて接続し、樹脂ケース105に入れ、充填樹脂106を充填硬化してなるコンデンサを形成している。   20 and 21 (a) to 21 (d) are schematic diagrams of the internal structure of a capacitor and assembly process diagrams of the capacitor. A plurality of metallized films 107 formed by vapor-depositing metal 109 on a dielectric film 108 are wound. The capacitor element 101 is provided with an electrode extraction metallicon 102, the external lead-out connection line 104 is connected to the capacitor element 101 with solder 103 or the like, placed in a resin case 105, and a capacitor is formed by filling and curing the filling resin 106. is doing.

図21(a)はコンデンサ素子を巻き取る工程図であり、誘電体フィルム108に金属109を蒸着してなる金属化フィルム107を複数、巻回してコンデンサ素子101を形成するものである。図2(b)はコンデンサ素子101に電極取り出し用メタリコンを形成する工程図であり、コンデンサ素子101の端面に亜鉛線115を溶融吹きつけすることにより、電極取り出し用メタリコン102を形成するものである。図21(c)はコンデンサ素子に外部引き出し用接続線を取り付ける工程図であり、コンデンサ素子101に外部引き出し用接続線104をハンダ103により接続するものである。図21(d)はコンデンサ素子101を樹脂ケース105に収容する工程図であり、外部引き出し用接続線104を施したコンデンサ素子101を樹脂ケース105に挿入し、充填樹脂106を注型するものである。更に一般的にはこの注型した充填樹脂106を硬化させる工程があり、一般的には80℃〜100℃の温度を加え充填樹脂を硬化させるものである。   FIG. 21A is a process diagram for winding up the capacitor element, in which a plurality of metallized films 107 formed by depositing a metal 109 on a dielectric film 108 are wound to form the capacitor element 101. FIG. 2B is a process diagram for forming an electrode takeout metallicon on the capacitor element 101. The electrode takeout metallicon 102 is formed by melting and spraying a zinc wire 115 on the end face of the capacitor element 101. . FIG. 21C is a process diagram for attaching the external lead-out connection line to the capacitor element. The external lead-out connection line 104 is connected to the capacitor element 101 by the solder 103. FIG. 21D is a process diagram for accommodating the capacitor element 101 in the resin case 105. The capacitor element 101 provided with the external lead-out connection line 104 is inserted into the resin case 105, and the filling resin 106 is cast. is there. More generally, there is a step of curing the cast filling resin 106. Generally, the filling resin is cured by applying a temperature of 80 ° C to 100 ° C.

また一般的にはコンデンサ素子1に電極取り出し用メタリコン102を形成した後に熱処理(80℃〜120℃の温度範囲内)を行う工程もある。従来例の、特許文献1の乾式コンデンサの製造方法ではこの工程が電極取り出し用メタリコン102を施す前に実施されている。
特開平4−249309号公報 実開昭59−91719号公報
Further, generally, there is a step of performing heat treatment (within a temperature range of 80 ° C. to 120 ° C.) after forming the electrode extraction metallicon 102 on the capacitor element 1. In the conventional method of manufacturing a dry capacitor disclosed in Patent Document 1, this step is performed before the metallicon 102 for electrode extraction is applied.
JP-A-4-249309 Japanese Utility Model Publication No.59-91719

上記のように特許文献1、特許文献2、および従来の一般的なコンデンサの製造方法によって得られるコンデンサの課題について図3〜図7および図12を参照しながら説明する。   The problem of the capacitor obtained by Patent Document 1, Patent Document 2, and a conventional general capacitor manufacturing method as described above will be described with reference to FIGS. 3 to 7 and FIG.

図3は、前述のコンデンサの製造工程における熱処理(80℃〜120℃の温度範囲内)を行う前の金属化フィルム7の状態図で、この状態によると金属化フィルム7を複数枚重ね合わせて巻き取りを実施しているので、金属化フィルム7と金属化フィルム7は均一に配置されている状態であり、その金属化フィルム7と金属化フィルム7の間には若干のスペースが存在する。   FIG. 3 is a state diagram of the metallized film 7 before performing the heat treatment (within a temperature range of 80 ° C. to 120 ° C.) in the capacitor manufacturing process described above. According to this state, a plurality of metallized films 7 are overlapped. Since the winding is performed, the metallized film 7 and the metallized film 7 are in a uniformly arranged state, and there is a slight space between the metallized film 7 and the metallized film 7.

この状態の素子を熱処理することにより図4のような状態となる。すなわち図4は従来のコンデンサの製造方法における熱処理後の金属化フィルムを示す図であり、熱処理を行うことにより、前述の金属化フィルム7と金属化フィルム7の間の若干のスペースは無くなり、金属化フィルム7と金属化フィルム7の間は接着し、接着部10となる。一般的にこの状態をブロッキング状態と呼んでいる。この図4の状態は熱処理を施した場合の理想的な状態であると言える。   When the element in this state is heat-treated, the state shown in FIG. 4 is obtained. That is, FIG. 4 is a view showing the metallized film after the heat treatment in the conventional method for producing a capacitor. By performing the heat treatment, there is no space between the metallized film 7 and the metallized film 7 described above. The adhesive film 7 and the metallized film 7 are bonded together to form an adhesive portion 10. This state is generally called a blocking state. 4 can be said to be an ideal state when heat treatment is performed.

しかしながら、一般的な工程では以下のような状態となる場合がある。   However, in the general process, the following state may occur.

図5はコンデンサの熱処理前の金属化フィルムの図であり、熱処理前に金属化フィルム7と金属化フィルム7の間に大きな空気溜り11が存在する場合を示している。この状態のまま熱処理を行った場合、図6に示すように、金属化フィルム7と金属化フィルム7の間に空気溜り11が残った状態になっている。一般的にはこの空気溜り11を排除するために、真空で加熱処理が施されているが、完全には排除できない。そしてこの空気溜り11が残った状態では、空気溜り11がある部分は金属化フィルム7と金属化フィルム7の間は接着状態とならず、空気溜り11の無い部分の金属化フィルム7と金属化フィルム7の間は接着状態10となる。熱処理後は、この空気溜り11内の圧力はコンデンサ素子1の外側の圧力より負圧状態となる。このような状態のコンデンサに電圧が印加されると下記のような状態になる。   FIG. 5 is a diagram of the metallized film before heat treatment of the capacitor, and shows a case where a large air pocket 11 exists between the metallized film 7 and the metallized film 7 before the heat treatment. When heat treatment is performed in this state, an air pocket 11 remains between the metallized film 7 and the metallized film 7, as shown in FIG. In general, in order to eliminate the air reservoir 11, heat treatment is performed in a vacuum, but it cannot be completely eliminated. In the state where the air reservoir 11 remains, the portion where the air reservoir 11 is present is not in an adhesive state between the metallized film 7 and the metallized film 7, and the metallized film 7 and the metallized portion where no air reservoir 11 is present. Between the films 7, an adhesive state 10 is obtained. After the heat treatment, the pressure in the air reservoir 11 is in a negative pressure state than the pressure outside the capacitor element 1. When a voltage is applied to the capacitor in such a state, the following state is obtained.

図7にその説明図を示す。図7は従来例におけるコンデンサの熱処理後の金属化フィルムの電界説明図であり、対向する金属化フィルム7間に電圧が印加されるため、図4のような空気溜り11が無い状態では電極間に均一な電界が分布して部分的な電界の集中は発生しないが、図7のような状態では空気溜り11の部分に電界が集中しやすくなる。この空気溜り11の周辺に高い電荷が集中するとコロナ放電が発生し、この周辺の誘電体フィルムだけがダメージを受け、最終的には破壊に至る可能性が出てくる。すなわち誘電体フィルムの単位厚みあたりに印加される電圧が高い状態である高電位傾度下で使用されると、発生したコロナ放電により誘電体フィルムに放電劣化が発生し、コンデンサの寿命特性に著しい悪影響をおよぼす。   FIG. 7 shows an explanatory diagram thereof. FIG. 7 is an electric field explanatory diagram of the metallized film after heat treatment of the capacitor in the conventional example. Since a voltage is applied between the metallized films 7 facing each other, there is no air reservoir 11 as shown in FIG. However, the electric field tends to concentrate on the air reservoir 11 in the state shown in FIG. When a high charge concentrates around the air reservoir 11, corona discharge occurs, and only the surrounding dielectric film is damaged, and there is a possibility that it will eventually be destroyed. In other words, when it is used under a high potential gradient where the voltage applied per unit thickness of the dielectric film is high, the corona discharge will cause discharge deterioration in the dielectric film, which will have a significant adverse effect on the life characteristics of the capacitor. Is affected.

このような空気溜りの存在の有無は、コロナ放電特性のコロナ放電開始電圧、並びにコロナ放電量を見ることにより判別することができる。この図7のような状態ではコロナ放電開始電圧は低く、コロナ放電量は多くなる。   The presence or absence of such air pockets can be determined by looking at the corona discharge start voltage of corona discharge characteristics and the amount of corona discharge. In the state as shown in FIG. 7, the corona discharge start voltage is low and the corona discharge amount is large.

また図20および図21(a)〜(d)で説明したように、一般的には充填樹脂を注型した後この注型した充填樹脂106を硬化させる工程があり、充填後80℃〜100℃に加熱し充填樹脂を硬化させる。このときにも金属化フィルム7同士の部分的な接着が起こり、図7に示すような空気溜り層12が発生することがある。   20 and 21 (a) to 21 (d), generally, there is a step of casting the filled resin and then curing the cast filled resin 106, and after filling, 80 ° C to 100 ° C. Heat to ℃ to cure the filled resin. Also at this time, partial adhesion between the metallized films 7 occurs, and an air reservoir layer 12 as shown in FIG. 7 may be generated.

また図12は従来における熱処理後のコンデンサを解体し、金属化フィルムをゆっくりとはがした状態を示す図で、誘電体フィルム8に金属9を蒸着してなる金属化フィルム7を複数枚巻回してなるコンデンサ素子の、各々の金属化フィルムは図6で示すような金属化フィルム同士の接着部10が存在している為、対向する誘電体フィルム8に金属9が接着した状態で、本来蒸着されている誘電体フィルム8面よりはがれてしまう。このように接着している部分と、接着していない部分が存在する状態になると、空気溜り層12が発生する。   FIG. 12 is a view showing a state in which a conventional heat-treated capacitor is disassembled and the metallized film is slowly peeled off, and a plurality of metallized films 7 formed by depositing metal 9 on dielectric film 8 are wound. Since each of the metallized films of the capacitor element has a bonding portion 10 between the metallized films as shown in FIG. 6, it is originally deposited with the metal 9 bonded to the opposing dielectric film 8. It will peel off from the dielectric film 8 surface. When a part that is bonded and a part that is not bonded exist, the air reservoir layer 12 is generated.

本発明は、このような従来の課題を解決し、空気溜り層の発生しない、コロナ放電特性に優れた乾式コンデンサを提供するものである。   The present invention solves such a conventional problem and provides a dry-type capacitor excellent in corona discharge characteristics that does not generate an air reservoir layer.

本発明のコンデンサは、上記課題を解決するために、誘電体フィルムに金属を蒸着してなる金属化フィルムを複数、巻回してなるコンデンサ素子に電極取り出し用メタリコンを施し、外部引き出し用接続線を設け、コンデンサケースに入れ、充填樹脂を充填硬化してなるコンデンサにおいて、熱によって複数の金属化フィルムが接着していないことを特徴とするコンデンサであり、またコンデンサ素子をモールドする充填樹脂に常温硬化型のポリウレタン樹脂を使用し、更にコンデンサの全ての製造工程内で印加される温度を60℃以下とするコンデンサおよびコンデンサの製造方法である。   In order to solve the above problems, the capacitor of the present invention is provided with a metallicon for extracting an electrode on a capacitor element formed by winding a plurality of metallized films obtained by vapor-depositing a metal on a dielectric film, and providing an external lead connection line. In a capacitor that is provided and placed in a capacitor case and filled and cured with a filling resin, the capacitor is characterized in that a plurality of metallized films are not adhered by heat, and the filling resin that molds the capacitor element is cured at room temperature. This is a capacitor and a method for manufacturing a capacitor, in which a polyurethane resin of a mold is used, and the temperature applied in all capacitor manufacturing processes is 60 ° C. or lower.

以上のような、本発明の構成によれば誘電体フィルムに金属を蒸着してなる金属化フィルムを、複数巻回してなるコンデンサ素子に電極取り出し用メタリコンを施し、コンデンサ素子に外部引き出し用接続線を設け、コンデンサケースに入れ、充填樹脂を充填硬化してなるコンデンサにおいて、熱によって複数の金属化フィルムが接着していない為、金属化フィルム間に残留する空気溜りの発生を防ぎ、この空気溜りを起点として発生するコロナ放電を未然に防ぎ、高いコロナ開始電圧を得ることができる。またコロナ放電が発生した後においてでもその放電量を従来より大幅に低く抑えることが可能であり、結果として高電位傾度下におけるコンデンサの寿命特性の安定化に効果絶大なものがある。これらの手法により、コンデンサの性能・安全性をより高め、コンデンサの小型軽量化を可能とするものである。   According to the configuration of the present invention as described above, a metallized film obtained by vapor-depositing a metal on a dielectric film, an electrode extraction metallicon is applied to a capacitor element obtained by winding a plurality of windings, and an external lead connection line is provided on the capacitor element. In a capacitor that is placed in a capacitor case and filled and cured with a filled resin, since multiple metallized films are not bonded by heat, the occurrence of air pockets remaining between the metallized films is prevented. It is possible to prevent corona discharge that occurs from the starting point and to obtain a high corona starting voltage. In addition, even after corona discharge has occurred, the amount of discharge can be kept significantly lower than before, and as a result, there is a great effect in stabilizing the life characteristics of the capacitor under a high potential gradient. By these methods, the performance and safety of the capacitor are further improved, and the capacitor can be reduced in size and weight.

以下、本発明の実施の形態について、図を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるコンデンサの内部構造模式図、図2(a)〜(d)は、本発明の実施の形態1におけるコンデンサの組立工程図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of the internal structure of a capacitor according to Embodiment 1 of the present invention, and FIGS. 2A to 2D are assembly process diagrams of the capacitor according to Embodiment 1 of the present invention.

図1において、誘電体フィルムに金属を蒸着してなる金属化フィルムを複数、巻回してなるコンデンサ素子1に電極取り出し用メタリコン2を施し、コンデンサ素子1に外部引き出し用接続線4をハンダ3にて接続し、樹脂ケース5に入れ、充填樹脂6を充填硬化してコンデンサとしている。   In FIG. 1, a capacitor element 1 formed by winding a plurality of metallized films obtained by vapor-depositing metal on a dielectric film is provided with an electrode extraction metallicon 2, and an external lead-out connection line 4 is connected to the solder element 3. Are connected to each other, placed in the resin case 5, and the filled resin 6 is filled and cured to form a capacitor.

その製造工程を更に詳しく説明する。   The manufacturing process will be described in more detail.

図2(a)に示すように厚さ6μmのポリプロピレンフィルムに、アルミニウムを蒸着してなる金属化フィルム7を2枚を重ねて巻回しコンデンサ素子1を形成し、このコンデンサ素子1の両端面に図2(b)に示すように、亜鉛線15を溶融吹きつけ電極取り出し用メタリコン2を形成した後、熱処理をした。更に図2(c)に示すように、コンデンサ素子1に外部引き出し用接続線4をハンダ3により接続し、図2(d)に示すように、コンデンサ素子1を樹脂ケース5に収納し、充填樹脂6を注入硬化させて乾式コンデンサを作製した。上記熱処理の温度および充填樹脂の硬化時の雰囲気温度を含め、この実施の形態1におけるコンデンサの全ての製造工程中で、コンデンサ素子に加えられる温度は60℃以下とした。また、このときのコンデンサ素子1は熱によって複数の金属化フィルム7が接着していない状態であることを確認した。   As shown in FIG. 2A, a capacitor element 1 is formed by winding and winding two metallized films 7 formed by vapor-depositing aluminum on a 6 μm thick polypropylene film. As shown in FIG. 2 (b), the zinc wire 15 was melted and sprayed to form the metallicon 2 for taking out the electrode, followed by heat treatment. Further, as shown in FIG. 2 (c), the external lead-out connection line 4 is connected to the capacitor element 1 by solder 3, and as shown in FIG. 2 (d), the capacitor element 1 is stored in the resin case 5 and filled. Resin 6 was injected and cured to produce a dry capacitor. The temperature applied to the capacitor element was set to 60 ° C. or lower during all the manufacturing steps of the capacitor in the first embodiment, including the temperature of the heat treatment and the ambient temperature at the time of curing the filled resin. Moreover, it confirmed that the capacitor | condenser element 1 at this time was the state which the several metallized film 7 has not adhere | attached with the heat | fever.

(実施の形態2)
実施の形態2として外部引き出し用接続線4を施したコンデンサ素子1を樹脂ケース5に挿入し、充填樹脂として常温硬化型のポリウレタン樹脂を使用した以外は、実施の形態1と同じ材料および条件で乾式コンデンサを作製した。
(Embodiment 2)
The same material and conditions as in the first embodiment except that the capacitor element 1 provided with the external lead-out connection line 4 is inserted into the resin case 5 and a room temperature curing type polyurethane resin is used as the filling resin in the second embodiment. A dry capacitor was produced.

これらの実施の形態1および2にて得られるコンデンサの説明を図8〜図11にて説明する。   The description of the capacitors obtained in the first and second embodiments will be described with reference to FIGS.

図8は実施の形態1および2におけるコンデンサの金属化フィルムの図で、金属層9を誘電体フィルム8の上に蒸着して成る金属化フィルム7を複数枚重ね合わせた状態で、工程図の図2(a)で説明した巻き取りおよび、図2(b)の電極取り出し用メタリコンを施した状態の図である。この状態では金属化フィルム7と金属化フィルム7の間には若干のスペースが存在する。この状態の素子を熱によって複数の金属化フィルムが接着しないように熱処理することにより図9のような状態となる。すなわち図9は実施の形態1におけるコンデンサの熱処理後の金属化フィルムを示しており、金属化フィルム7と金属化フィルム7の間の若干のスペースは無くなり、金属化フィルム7と金属化フィルム7の間は極めて近接しているが接着状態とはなっていない。   FIG. 8 is a diagram of the metallized film of the capacitor in the first and second embodiments. In the state of the process diagram, a plurality of metallized films 7 formed by depositing the metal layer 9 on the dielectric film 8 are superposed. FIG. 3 is a diagram illustrating a state where the winding described in FIG. 2A and the electrode extraction metallicon illustrated in FIG. In this state, there is some space between the metallized film 7 and the metallized film 7. The element in this state is heat-treated so that a plurality of metallized films are not bonded by heat, and the state shown in FIG. 9 is obtained. That is, FIG. 9 shows the metallized film after heat treatment of the capacitor in the first embodiment, and there is no space between the metallized film 7 and the metallized film 7. They are very close to each other but are not in an adhesive state.

また、図10に示すように、熱処理前に金属化フィルム7と金属化フィルム7の間に大きな空気溜り11が存在する場合においても、熱によって複数の金属化フィルムが接着していない状態に熱処理をしているので、図11に示すように、空気溜り11は金属化フィルム7と金属化フィルム7の間に残ることはなく、コンデンサ素子1の外と同じ圧力が保たれる。すなわち金属化フィルム7と金属化フィルム7の間は負圧状態にはならない。   Further, as shown in FIG. 10, even when a large air reservoir 11 exists between the metallized film 7 and the metallized film 7 before the heat treatment, the heat treatment is performed in a state in which the plurality of metallized films are not bonded by heat. Therefore, as shown in FIG. 11, the air reservoir 11 does not remain between the metallized film 7 and the metallized film 7, and the same pressure as the outside of the capacitor element 1 is maintained. That is, a negative pressure state does not occur between the metallized film 7 and the metallized film 7.

この状態でコンデンサが形成され製品となり、電圧を印加された場合、コンデンサ素子の金属化フィルム7と金属化フィルム7間に空気溜りが無く、負圧状態になっていないので、対向する金属化フィルム7間に電圧が印加されても、電極間に均一に電界が分布して電界の集中が発生することはなく、フィルム本来の絶縁性能が引き出せる為、寿命信頼性に高性能を発揮する。   When a capacitor is formed in this state to become a product and a voltage is applied, there is no air accumulation between the metallized film 7 and the metallized film 7 of the capacitor element, and no negative pressure is applied. Even when a voltage is applied between the electrodes 7, the electric field is not uniformly distributed between the electrodes and the electric field is not concentrated, and the original insulation performance of the film can be brought out.

すなわち、コロナ放電特性のコロナ放電開始電圧、並びにコロナ放電量による特性を見ても、図11のような状態においてコロナ放電開始電圧は高く、またコロナ放電量も少ない。すなわち高電位傾度下で使用されても発生するコロナ放電が少ない為、誘電体フィルム8に放電劣化等が発生しにくく、結果としてコンデンサの寿命特性を良好に改善することが可能となる。   That is, even when looking at the corona discharge start voltage of the corona discharge characteristics and the characteristics of the corona discharge amount, the corona discharge start voltage is high and the corona discharge amount is small in the state shown in FIG. That is, since there is little corona discharge generated even when used under a high potential gradient, it is difficult for the dielectric film 8 to undergo discharge deterioration and the like, and as a result, the life characteristics of the capacitor can be improved satisfactorily.

その具体的特性の有意性を検証するために以下の条件で検証サンプルを作製し、検証した結果を図13、並びに図14に示す。   In order to verify the significance of the specific characteristics, a verification sample was prepared under the following conditions, and the verification results are shown in FIGS.

図13は実施の形態1における各温度別熱処理によるコロナ放電量の推移図である。図14は、熱処理温度別の荷電試験の容量変化図である。   FIG. 13 is a transition diagram of the corona discharge amount by the heat treatment at each temperature in the first embodiment. FIG. 14 is a capacity change diagram of the charge test for each heat treatment temperature.

コンデンサのサンプルは実施の形態1のコンデンサと同じ手順で作製し、また比較のために従来例1として従来のコンデンサも数種類合わせて作製し比較した。   Capacitor samples were produced in the same procedure as the capacitor of the first embodiment, and for comparison, several conventional capacitors were produced and compared as Conventional Example 1.

実施の形態1のコンデンサとしては、熱処理温度20℃、30℃、40℃、50℃、60℃の各サンプルが相当する。また従来例1におけるコンデンサとしては70℃、80℃、90℃、100℃、110℃、120℃の各サンプルが相当する。図13のグラフは縦軸にコンデンサの定格電圧の2倍に相当する高い電圧を印加したときのコロナ放電量を表した。   As the capacitor of the first embodiment, samples having heat treatment temperatures of 20 ° C., 30 ° C., 40 ° C., 50 ° C., and 60 ° C. correspond. Further, the capacitors in Conventional Example 1 correspond to samples of 70 ° C., 80 ° C., 90 ° C., 100 ° C., 110 ° C., and 120 ° C. In the graph of FIG. 13, the vertical axis represents the corona discharge amount when a high voltage corresponding to twice the rated voltage of the capacitor is applied.

図13を見ると明らかに理解できるように定格電圧2倍に相当する高い電圧を印加したにもかかわらず、実施の形態1の20℃、30℃、40℃、50℃のコンデンサの放電量は2000PC以下のコロナ放電量であり、60℃のコンデンサでも4000PC以下のコロナ放電量である。これと比較して従来例におけるコンデンサは70℃では8500PC、80℃、90℃、100℃、110℃、120℃のコンデンサでは10000PC以上のコロナ放電が発生している。   As can be clearly seen from FIG. 13, the discharge amount of the capacitors at 20 ° C., 30 ° C., 40 ° C., and 50 ° C. of the first embodiment is as follows, although a high voltage corresponding to twice the rated voltage is applied. The corona discharge amount is 2000 PC or less, and even a 60 ° C. capacitor has a corona discharge amount of 4000 PC or less. Compared with this, in the capacitor in the conventional example, the corona discharge of 10000 PC or more is generated in the capacitor of 8500 PC at 80 ° C., 80 ° C., 90 ° C., 100 ° C., 110 ° C., and 120 ° C.

これらの比較サンプルを更に検証しその有意性を確認するために、過電圧におけるコンデンサの寿命試験を実施した。そのコンデンササンプルの容量変化のグラフを図14に示す。すなわち図14は熱処理温度別の荷電試験の容量変化図である。グラフが判りにくくなるので、熱処理温度の代表サンプルの結果のみを記載した。実施の形態1の熱処理温度が40℃、60℃のコンデンサでは通電時間2000時間においてその容量変化率は−1%以下であり、極めて安定した容量変化特性を示している。これは前述の図13に示すようにコロナ放電量も少ない為、高電位傾度下で使用されても誘電体フィルムに放電劣化等が発生しにくく、結果としてコンデンサの寿命特性が良好に推移しているものと考えられる。一方従来例1における熱処理温度が70℃、90℃、110℃のコンデンサでは、寿命試験開始直後より顕著な容量減少を示し、通電時間1000時間を経過した後においてその容量変化率は悪化傾向にある。通電時間2000時間においてその容量変化率は−3%以上であり、更に悪化傾向にある。これは前述の図13に示すようにコロナ放電量が10000PC以上と多い為、コロナ放電により誘電体フィルムに放電劣化が発生しコンデンサの容量寿命特性に著しく悪影響をおよぼしている。この状態にて試験を更に継続したところ破壊に至る場合もあった。   In order to further verify these comparative samples and confirm their significance, a capacitor life test at overvoltage was performed. A graph of the capacitance change of the capacitor sample is shown in FIG. That is, FIG. 14 is a capacity change diagram of the charge test for each heat treatment temperature. Since the graph becomes difficult to understand, only the result of the representative sample of the heat treatment temperature is described. The capacitor with the heat treatment temperature of 40 ° C. and 60 ° C. in the first embodiment has a capacitance change rate of −1% or less at an energization time of 2000 hours, indicating extremely stable capacitance change characteristics. This is because the amount of corona discharge is small as shown in FIG. 13 described above, so that even when used under a high potential gradient, it is difficult for the dielectric film to undergo discharge deterioration, etc. It is thought that there is. On the other hand, in the capacitors with the heat treatment temperatures of 70 ° C., 90 ° C., and 110 ° C. in Conventional Example 1, the capacity decreases significantly immediately after the start of the life test, and the capacity change rate tends to deteriorate after 1000 hours of energization time. . In the energization time of 2000 hours, the capacity change rate is -3% or more, and it is further deteriorated. This is because the corona discharge amount is as large as 10,000 PC or more as shown in FIG. 13 described above, so that the dielectric film is deteriorated by corona discharge, which has a significant adverse effect on the capacity life characteristics of the capacitor. When the test was further continued in this state, destruction sometimes occurred.

以上のように、実施の形態1と従来例1を比較すると明らかに実施の形態1のコンデンサに良好な有意性があり、コンデンサの全ての製造工程中で、コンデンサ素子に印加される温度は60℃以下とし、熱によって複数の金属化フィルム7が接着していない状態にすることによって、高電位傾度下で使用されても発生したコロナ放電が少なく、誘電体フィルムに放電劣化等が発生しにくく、結果としてコンデンサの寿命特性を良好に改善することが可能となることが確認できた。   As described above, when comparing the first embodiment with the first conventional example, the capacitor of the first embodiment clearly has good significance, and the temperature applied to the capacitor element is 60 in all the manufacturing processes of the capacitor. When the temperature is set to ℃ or less and the plurality of metallized films 7 are not adhered by heat, the corona discharge generated even when used under a high potential gradient is small, and the dielectric film is less likely to be deteriorated in discharge. As a result, it was confirmed that the life characteristics of the capacitor can be improved satisfactorily.

実施の形態2の確認試験サンプルとして以下の内容で作製した。   A confirmation test sample of Embodiment 2 was produced with the following contents.

実施の形態1に示したコンデンサの熱処理温度60℃のコンデンサ素子に外部引き出し用接続線4を施し、樹脂ケース5に挿入し充填樹脂として、ウレタン樹脂を注型し、ウレタン樹脂の硬化時の雰囲気温度を約60℃以下としたものである。   The capacitor element having the heat treatment temperature of 60 ° C. shown in the first embodiment is provided with an external lead-out connection line 4 and inserted into the resin case 5 to cast urethane resin as a filling resin, and the atmosphere when the urethane resin is cured The temperature is about 60 ° C. or lower.

また比較のために従来例2として作製したのは、実施の形態1に示したコンデンサの熱処理温度60℃のコンデンサ素子に外部引き出し用接続線4を施し、樹脂ケース5に挿入し充填樹脂として、エポキシ樹脂を注型し、エポキシ樹脂の硬化時の雰囲気温度を80℃〜100℃としたものである。   Further, for comparison, the conventional example 2 was prepared by applying the external lead connection line 4 to the capacitor element having the heat treatment temperature of 60 ° C. shown in the first embodiment and inserting it into the resin case 5 as a filling resin. An epoxy resin is cast, and the atmosphere temperature at the time of curing of the epoxy resin is 80 ° C. to 100 ° C.

図15は実施の形態2における充填樹脂を注型した硬化前の状態で、図17はエポキシ樹脂を充填し、雰囲気温度を80℃〜100℃で硬化させた状態を示し、図16は常温硬化型のウレタン樹脂を注型し、硬化時の雰囲気温度を約60℃以下としたものの状態を示している。   FIG. 15 shows the state before curing after casting the filling resin in the second embodiment, FIG. 17 shows the state in which the epoxy resin is filled and cured at an ambient temperature of 80 ° C. to 100 ° C., and FIG. A state is shown in which a mold urethane resin is cast and the ambient temperature during curing is about 60 ° C. or lower.

すなわち充填樹脂を注型した状態では、常温硬化型ウレタン樹脂、エポキシ樹脂共に、図15に示すようにコンデンサ素子と樹脂間、並びに樹脂の表面にも均一に樹脂は分布しているが、硬化後の状態では、充填樹脂にエポキシ樹脂を用いた場合図17に示すような樹脂硬化時に空気ギャップ層13が発生する。この樹脂硬化時の空気ギャップ層13は充填樹脂を高温で硬化するために、硬化反応が、温度の伝搬しやすいコンデンサの表面側から進行することにより発生する。すなわち、表面側から硬化し内部側は最後に硬化するため、硬化によって起こる樹脂の硬化収縮がすべてコンデンサ素子1側に偏るためによるものである。   In other words, in the state in which the filling resin is cast, both the room temperature curable urethane resin and the epoxy resin are uniformly distributed between the capacitor element and the resin and on the surface of the resin as shown in FIG. In this state, when an epoxy resin is used as the filling resin, the air gap layer 13 is generated when the resin is cured as shown in FIG. The air gap layer 13 at the time of curing of the resin is generated when the curing reaction proceeds from the surface side of the capacitor where the temperature easily propagates in order to cure the filled resin at a high temperature. That is, since the resin is cured from the surface side and the inner side is finally cured, the curing shrinkage of the resin caused by the curing is all biased toward the capacitor element 1 side.

この樹脂硬化時のコンデンサ素子周辺の空気ギャップ層13は一般的に負圧状態になり、素子の金属化フィルム間も同様に負圧状態となるため、電界により放電しやすくなる。そのため前述したコロナ放電特性のコロナ放電開始電圧、並びにコロナ放電量による特性は更に低下する傾向になる。   The air gap layer 13 around the capacitor element when the resin is cured is generally in a negative pressure state, and similarly between the metallized films of the element is in a negative pressure state. For this reason, the above-described corona discharge start voltage of the corona discharge characteristics and the characteristics depending on the corona discharge amount tend to be further deteriorated.

一方図16に示すように常温硬化型ウレタン樹脂を充填し、硬化時の雰囲気温度を約60℃以下としたものは、硬化反応が素子近くの部位よりゆっくりと進行し最後に樹脂ケース周辺の部位が硬化する傾向があるため、充填樹脂硬化時の樹脂ひけ層14は充填樹脂の上部表面に現れている。また樹脂ケースの底の部分にもその傾向は現れている(図示せず)。そのためコンデンサ素子1周辺への充填樹脂硬化時の収縮の影響は、従来例のエポキシ樹脂を使用する場合に比較して圧倒的に少なく空気ギャップ層が発生しない。また従来例ではコンデンサ素子1周辺では負圧状態になると述べたが、実施の形態2のコンデンサ素子1周辺の圧力は空気ギャップ層が発生しないため、ほぼ常圧のままである。そのため、コロナ放電開始電圧が高くなり、コロナ放電量が少なく、誘電体フィルムに放電劣化等が発生しにくく、結果としてコンデンサの寿命特性を良好に改善することが可能となることが確認できるものである。   On the other hand, as shown in FIG. 16, when the room temperature curing type urethane resin is filled and the ambient temperature at the time of curing is about 60 ° C. or less, the curing reaction proceeds more slowly than the region near the element, and finally the region around the resin case Therefore, the resin sink layer 14 when the filling resin is cured appears on the upper surface of the filling resin. The tendency also appears in the bottom part of the resin case (not shown). For this reason, the influence of shrinkage at the time of curing the filling resin around the capacitor element 1 is overwhelmingly less than when the epoxy resin of the conventional example is used, and no air gap layer is generated. In the conventional example, the negative pressure state is described around the capacitor element 1, but the pressure around the capacitor element 1 according to the second embodiment remains almost normal pressure because no air gap layer is generated. Therefore, it can be confirmed that the corona discharge starting voltage is increased, the amount of corona discharge is small, the dielectric film is less likely to be deteriorated by discharge, and the life characteristics of the capacitor can be improved as a result. is there.

以上のように、充填樹脂の硬化時の雰囲気温度を、60℃以下とすることで、コロナ放電特性が改善されるが、従来のエポキシ樹脂で硬化時の雰囲気温度を60℃以下にすると、完全に硬化させるためには数十時間以上の時間が必要で、更に硬化した樹脂の絶縁性や、耐湿性は実用に耐えるものではなく、本発明に示すように常温硬化型のウレタン樹脂を用いることで充填樹脂の硬化時の雰囲気温度を、60℃以下にすることができる。   As described above, the corona discharge characteristics are improved by setting the ambient temperature during curing of the filled resin to 60 ° C. or lower. However, when the ambient temperature during curing with conventional epoxy resin is set to 60 ° C. or lower, It takes several tens of hours or more to cure, and the insulation and moisture resistance of the cured resin are not practical enough. Use a room temperature curable urethane resin as shown in the present invention. Thus, the ambient temperature during curing of the filled resin can be set to 60 ° C. or lower.

なお、実施の形態1および2において、コンデンサ素子は単素子の例を示したが、コンデンサ素子が複数であっても本発明の実施の形態は適用でき、同様の効果をもたらすことができる。また実施の形態1および2において、誘電体フィルムにポリプロピレンを使用したが、これに限られるものではなく、他の誘電体フィルムも使用できる。   In Embodiments 1 and 2, the capacitor element is an example of a single element. However, the embodiment of the present invention can be applied even if there are a plurality of capacitor elements, and the same effect can be obtained. In Embodiments 1 and 2, polypropylene is used for the dielectric film, but the present invention is not limited to this, and other dielectric films can also be used.

本発明は、コンデンサなどの電気機器、特に力率改善用に使用される電力用コンデンサや、各種電子回路に用いる電気機器用コンデンサのコロナ放電特性、寿命特性改善に有用である。これらの手法により、コンデンサの性能・安全性をより高め、コンデンサの小型軽量化を可能とするものである。   INDUSTRIAL APPLICABILITY The present invention is useful for improving the corona discharge characteristics and life characteristics of electric devices such as capacitors, particularly power capacitors used for power factor improvement and capacitors for electric devices used in various electronic circuits. By these methods, the performance and safety of the capacitor are further improved, and the capacitor can be reduced in size and weight.

本実施の形態によるコンデンサの内部構造模式図Schematic diagram of internal structure of capacitor according to this embodiment (a)〜(d)本実施の形態によるコンデンサの組立工程図(A)-(d) Capacitor assembly process diagram according to this embodiment 従来例1におけるコンデンサの熱処理前の金属化フィルム図Metalized film before capacitor heat treatment in Conventional Example 1 従来例1におけるコンデンサの熱処理後の金属化フィルム図Metalized film after heat treatment of capacitor in Conventional Example 1 従来例1におけるコンデンサの熱処理前の金属化フィルム図Metalized film before capacitor heat treatment in Conventional Example 1 従来例1におけるコンデンサの熱処理後の金属化フィルム図Metalized film after heat treatment of capacitor in Conventional Example 1 従来例1におけるコンデンサの熱処理前の金属化フィルムの電界状態図Electric field state diagram of metallized film before heat treatment of capacitor in Conventional Example 1 本実施の形態1におけるコンデンサの熱処理前の金属化フィルム図Metalized film diagram before heat treatment of capacitor in the first embodiment 本実施の形態1におけるコンデンサの熱処理後の金属化フィルム図Metalized film diagram after heat treatment of capacitor in the first embodiment 本実施の形態2におけるコンデンサの熱処理前の金属化フィルム図Metalized film diagram before heat treatment of capacitor in the second embodiment 本実施の形態2におけるコンデンサの熱処理後の金属化フィルム図Metalized film diagram after heat treatment of capacitor in the second embodiment 従来例1におけるコンデンサの熱処理後の金属化フィルムをめくった状態図State diagram of turning the metalized film after heat treatment of the capacitor in Conventional Example 1 本実施の形態1における各温度別熱処理によるコロナ放電量のグラフGraph of corona discharge amount by heat treatment at each temperature in the first embodiment 熱処理温度別の荷電試験の容量変化のグラフGraph of change in capacity of charge test according to heat treatment temperature 本実施の形態2および従来例2における硬化前の充填樹脂の状態図State diagram of filled resin before curing in Embodiment 2 and Conventional Example 2 本実施の形態2におけるウレタン硬化後の図The figure after urethane hardening in this Embodiment 2. 従来例2におけるエポキシ硬化後の図Figure after epoxy curing in Conventional Example 2 従来のコンデンサの構造図Structure of conventional capacitor 従来のコンデンサの断面図Cross-sectional view of a conventional capacitor 従来のコンデンサの内部構造模式図Schematic diagram of the internal structure of a conventional capacitor 従来のコンデンサの組立工程図Conventional capacitor assembly process diagram

符号の説明Explanation of symbols

1 コンデンサ素子
2 電極取り出し用メタリコン
3 ハンダ
4 外部引き出し用接続線
5 樹脂ケース
6 充填樹脂
7 金属化フィルム
8 誘電体フィルム
9 金属
10 フィルム接着部
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Metallicon for electrode extraction 3 Solder 4 External lead connection line 5 Resin case 6 Filling resin 7 Metallized film 8 Dielectric film 9 Metal 10 Film adhesion part

Claims (3)

フィルムに金属を蒸着してなる金属化フィルムを複数巻回してなるコンデンサ素子に、電極取り出し用メタリコンを設け、前記電極取り出し用メタリコンに外部引き出し用接続線を設け、コンデンサケースに入れ、充填樹脂を充填硬化してなるコンデンサにおいて、熱によって前記金属化フィルム同士が接着していないことを特徴とするコンデンサ。 A capacitor element formed by winding a plurality of metallized films obtained by vapor-depositing a metal on a film is provided with a metallicon for electrode extraction, and an external lead-out connection line is provided on the metallicon for electrode extraction, put in a capacitor case, and filled resin A capacitor formed by filling and curing, wherein the metallized films are not bonded to each other by heat. 前記充填樹脂が常温硬化型のポリウレタン樹脂であることを特徴とする請求項1記載のコンデンサ。 2. The capacitor according to claim 1, wherein the filling resin is a room temperature curing type polyurethane resin. フィルムに金属を蒸着してなる金属化フィルムを複数巻回してなるコンデンサ素子に、電極取り出し用メタリコンを設け、前記電極取り出し用メタリコンに外部引き出し用接続線を設け、コンデンサケースに入れ、充填樹脂を充填硬化してなるコンデンサにおいて、前記コンデンサを製造するための全ての工程で、前記コンデンサに加えられる温度が60℃以下であることを特徴とするコンデンサの製造方法。 A capacitor element formed by winding a plurality of metallized films obtained by vapor-depositing a metal on a film is provided with a metallicon for electrode extraction, and an external lead-out connection line is provided on the metallicon for electrode extraction, put in a capacitor case, and filled resin In the capacitor formed by filling and curing, the temperature applied to the capacitor is 60 ° C. or lower in all steps for manufacturing the capacitor.
JP2006151234A 2006-05-31 2006-05-31 Capacitor manufacturing method Expired - Fee Related JP4802869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006151234A JP4802869B2 (en) 2006-05-31 2006-05-31 Capacitor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151234A JP4802869B2 (en) 2006-05-31 2006-05-31 Capacitor manufacturing method

Publications (3)

Publication Number Publication Date
JP2007324272A true JP2007324272A (en) 2007-12-13
JP2007324272A5 JP2007324272A5 (en) 2009-07-09
JP4802869B2 JP4802869B2 (en) 2011-10-26

Family

ID=38856815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151234A Expired - Fee Related JP4802869B2 (en) 2006-05-31 2006-05-31 Capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JP4802869B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067630A (en) * 2008-09-08 2010-03-25 Nippon Soken Inc Metallized film capacitor
JP2013247207A (en) * 2012-05-25 2013-12-09 Kojima Press Industry Co Ltd Method of manufacturing film capacitor element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189618A (en) * 1984-10-08 1986-05-07 松下電器産業株式会社 Resin-filled dry type metalized film capacitor
JPH04324611A (en) * 1991-04-24 1992-11-13 Marcon Electron Co Ltd Manufacture of film capacitor
JPH0513265A (en) * 1991-07-08 1993-01-22 Nissin Electric Co Ltd Manufacture of dry capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189618A (en) * 1984-10-08 1986-05-07 松下電器産業株式会社 Resin-filled dry type metalized film capacitor
JPH04324611A (en) * 1991-04-24 1992-11-13 Marcon Electron Co Ltd Manufacture of film capacitor
JPH0513265A (en) * 1991-07-08 1993-01-22 Nissin Electric Co Ltd Manufacture of dry capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067630A (en) * 2008-09-08 2010-03-25 Nippon Soken Inc Metallized film capacitor
JP2013247207A (en) * 2012-05-25 2013-12-09 Kojima Press Industry Co Ltd Method of manufacturing film capacitor element

Also Published As

Publication number Publication date
JP4802869B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP7300616B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2007287829A (en) Metallized film capacitor
WO2020044778A1 (en) Capacitor and production method thereof
JP4802869B2 (en) Capacitor manufacturing method
JP4765343B2 (en) Case mold type capacitor
JP2010016161A (en) Metalized film capacitor
JPH06168854A (en) Multilayer solid electrolytic capacitor and manufacture thereof
JP3791457B2 (en) Capacitor and its manufacturing method
JPH0122975B2 (en)
JP5012468B2 (en) Metallized film capacitors
JP6885275B2 (en) Film capacitor
CN114171321A (en) Surface-mounted thin-film capacitor and manufacturing method thereof
JPS6189618A (en) Resin-filled dry type metalized film capacitor
JP2009010265A (en) Metalized film capacitor
JP3515329B2 (en) Chip-shaped electronic component and manufacturing method thereof
JP3253216B2 (en) Solid electrolytic capacitors
CN111048316B (en) Solid electrolytic capacitor and method for manufacturing the same
JP2007250923A (en) Metallized film capacitor and its manufacturing method
JP2010016160A (en) Metalized film capacitor
JPH0729779A (en) Solid electrolytic capacitor and manufacture thereof
JP5516331B2 (en) Metallized film capacitors
JPH06164292A (en) Piezoelectric component and its manufacture
JPS6247108A (en) Metalized plastic film capacitor
JP2003338421A (en) Molded case dry capacitor
JP2014216584A (en) Component built-in wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R151 Written notification of patent or utility model registration

Ref document number: 4802869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees