JP3272464B2 - Exhaust gas purification catalyst structure - Google Patents
Exhaust gas purification catalyst structureInfo
- Publication number
- JP3272464B2 JP3272464B2 JP09568693A JP9568693A JP3272464B2 JP 3272464 B2 JP3272464 B2 JP 3272464B2 JP 09568693 A JP09568693 A JP 09568693A JP 9568693 A JP9568693 A JP 9568693A JP 3272464 B2 JP3272464 B2 JP 3272464B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- upstream
- downstream
- active species
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 240
- 238000000746 purification Methods 0.000 title claims description 60
- 239000007789 gas Substances 0.000 claims description 102
- 238000011144 upstream manufacturing Methods 0.000 claims description 64
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 19
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 18
- 230000003197 catalytic effect Effects 0.000 claims description 15
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 231100000572 poisoning Toxicity 0.000 claims description 6
- 230000000607 poisoning effect Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 30
- 239000010948 rhodium Substances 0.000 description 23
- 239000010949 copper Substances 0.000 description 19
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 14
- 229910021536 Zeolite Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 229910052697 platinum Inorganic materials 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000010457 zeolite Substances 0.000 description 13
- 229910052703 rhodium Inorganic materials 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 229910052741 iridium Inorganic materials 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052878 cordierite Inorganic materials 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical group [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 150000003624 transition metals Chemical class 0.000 description 6
- 239000000571 coke Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 239000002585 base Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910021638 Iridium(III) chloride Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、排気ガス浄化用触媒構
造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst structure for purifying exhaust gas.
【0002】[0002]
【従来の技術】エンジンの排気ガス浄化用触媒として、
CO(一酸化炭素)及びHC(炭化水素)の酸化と、N
Ox(窒素酸化物)の還元とを同時に行う三元触媒が知
られている。三元触媒は、γ−アルミナにPt(白
金)、Pd(パラジウム)及びRh(ロジウム)を担持
させてなるものが知られており、エンジンの空燃比(A
/F)が理論空燃比である14.7付近である場合に高
い浄化効率が得られる。2. Description of the Related Art As a catalyst for purifying exhaust gas of an engine,
Oxidation of CO (carbon monoxide) and HC (hydrocarbon) and N
Three-way catalysts that simultaneously reduce Ox (nitrogen oxide) are known. A three-way catalyst is known in which Pt (platinum), Pd (palladium) and Rh (rhodium) are supported on γ-alumina, and the air-fuel ratio (A
/ F) is around 14.7, which is the stoichiometric air-fuel ratio, whereby high purification efficiency is obtained.
【0003】一方、自動車の分野では上記空燃比を高く
してエンジンの低燃費化が図られているが、このような
エンジンの希薄燃焼状態における排気ガスは酸素が高濃
度な所謂リーン雰囲気であるため上記したような三元触
媒ではCO及びHCは酸化浄化することができても、N
Oxの還元浄化ができない。On the other hand, in the field of automobiles, the fuel efficiency of the engine is reduced by increasing the air-fuel ratio. However, the exhaust gas in such a lean combustion state of the engine has a so-called lean atmosphere in which oxygen is highly concentrated. Therefore, in the above three-way catalyst, even if CO and HC can be oxidized and purified, N
Ox reduction purification is not possible.
【0004】これに対して、上記リーン雰囲気において
も、NOxを分解させることができる触媒として、遷移
金属をイオン交換によって担持させたゼオライト触媒が
知られている。このゼオライト触媒は、HCの燃焼下、
NOxをN2とO2とに分解させるが、さらに、このゼオ
ライト触媒については、低温での活性に富みしかもNO
x処理能力の優れた排気ガス浄化用触媒とするため三元
触媒と共に用いる等の種々の対策が検討されている。On the other hand, as a catalyst capable of decomposing NOx even in the above-mentioned lean atmosphere, a zeolite catalyst in which a transition metal is supported by ion exchange is known. This zeolite catalyst, under the combustion of HC,
NOx is decomposed into N 2 and O 2, and this zeolite catalyst has high activity at low temperature and NO
Various countermeasures, such as using together with a three-way catalyst, in order to obtain an exhaust gas purifying catalyst having excellent x-processing ability, are being studied.
【0005】例えば、ゼオライト触媒の特性の補完を意
図するものとして特開平1−139145号公報に記載
されている触媒がある。この触媒は触媒容器内におい
て、排気ガス流入側(上流側)にはゼオライトにCu,
Co,Ni等の遷移金属をイオン交換担持せしめた触媒
を設け、同じく排気ガス流出側(下流側)にはアルミナ
にPt,Pd,Rh等の貴金属等を担持せしめた酸化触
媒又は三元触媒が設けられている。すなわち、上流側の
触媒によってNOxを、下流側の触媒によってCO,H
Cを、あるいはNOx,CO,HCを除去しようとする
ものである。[0005] For example, there is a catalyst described in Japanese Patent Application Laid-Open No. 1-139145 intended to complement the characteristics of a zeolite catalyst. In the catalyst container, the catalyst contains Cu and zeolite on the exhaust gas inflow side (upstream side).
A catalyst in which a transition metal such as Co or Ni is ion-exchanged is provided, and an oxidation catalyst or a three-way catalyst in which a noble metal such as Pt, Pd, Rh or the like is supported on alumina is provided on the exhaust gas outlet side (downstream side). Is provided. That is, NOx is supplied by the upstream catalyst, and CO, H is supplied by the downstream catalyst.
C or NOx, CO and HC.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記公
報に開示されている触媒を始め、遷移金属をイオン交換
担持せしめたゼオライト触媒は、実験室レベルでは90
%を越えるNOx浄化率を示すにも拘らず、実車のエン
ジンにおいてはNOx浄化率が低くなるという問題があ
る。However, a zeolite catalyst having a transition metal ion-exchange supported thereon, such as the catalyst disclosed in the above-mentioned publication, has a capacity of 90 at the laboratory level.
%, The NOx purification rate is low in an actual vehicle engine.
【0007】この点につき、本発明者は、H型ZSM−
5(ケイバン比70)にPt、Rh及びIrを30:
3:1の比率で担持させ、これをハニカム担体に容量1
リットル当たりPt、Rh及びIrが総量で6gとなる
ように担持させた触媒を用いて検討した。図6はA/F
=22のモデルガス(SV=55000hr-1)を供給し
てNOの浄化率、NOx(NO及びNO2のトータル)
の浄化率を測定した結果を示す。同図の結果によれば、
NOについては300℃以上になっても30%程度の浄
化率を示すのに対し、NOxの浄化率は高温側で著しく
低下している。これは、高温時にはNO→NO2の反応
を生じているものと認められる。In this regard, the present inventor has proposed the H-type ZSM-
5 (70 ratio of Cayban) with Pt, Rh and Ir 30:
The honeycomb carrier is supported at a ratio of 3: 1.
A study was conducted using a catalyst supported such that the total amount of Pt, Rh and Ir per liter was 6 g. FIG. 6 shows the A / F
= 22 model gas (SV = 55000 hr -1 ) to supply NO purification rate and NOx (total of NO and NO 2 )
2 shows the results of measuring the purification rate of methane. According to the results in the figure,
Although NO exhibits a purification rate of about 30% even at 300 ° C. or higher, the purification rate of NOx is significantly reduced on the high temperature side. This is considered to be due to the reaction of NO → NO 2 at high temperatures.
【0008】ところで、ゼオライト触媒におけるNOx
浄化にはHCの燃焼が関与し、その浄化機構としては、
HCが不完全酸化してなるHC中間物とNOとの反
応によりNOが浄化される、 NOがNO2を経由し
て上記HC中間物と反応しNOが浄化される、という2
つの考え方がある。いずれにしても、HCが適当に燃焼
してHC中間物が生成されることが必要である。[0008] Incidentally, NOx in the zeolite catalyst
HC purification is involved in purification, and its purification mechanism is as follows:
NO is purified by the reaction between NO and an HC intermediate formed by incomplete oxidation of HC. NO is reacted with the HC intermediate via NO 2 to purify NO.
There are two ways of thinking. In any case, it is necessary that HC is appropriately combusted to generate HC intermediates.
【0009】これに対して、上述の如く高温時にNOx
浄化率が低下しているのは、酸素過剰雰囲気下では、高
温時に触媒活性点において、 NO+1/2 O2→NO2 CnHm+(n+1/4 m)O2→mCO2+1/2 mH2O(完全酸化) の2つの反応が独立して起こり、HCによるNOの選択
還元が生じ難くなっているものと考えられる。On the other hand, as described above, NOx
The reason why the purification rate has decreased is that, in an oxygen-excess atmosphere, at a catalyst active point at a high temperature, NO + 1/2 O 2 → NO 2 CnHm + (n + 1/4 m) O 2 → mCO 2 +1/2 mH 2 O ( It is considered that the two reactions of (complete oxidation) occur independently, and the selective reduction of NO by HC is unlikely to occur.
【0010】すなわち、排気ガス温度が高い温度域で
は、NOxの分解に必要なHCが当該触媒における排気
ガス流の上流部位で完全燃焼して消失し、その下流部位
がNOxの浄化に有効に寄与しなくなっているものであ
る。That is, in the temperature range where the exhaust gas temperature is high, the HC required for the decomposition of NOx is completely burnt and disappears in the upstream portion of the exhaust gas flow in the catalyst, and the downstream portion effectively contributes to the purification of NOx. It is something that is no longer.
【0011】一方、排気ガス温度が低い温度域では、排
気ガス中にHCが存在しても上記下流部位ではHCの適
切な燃焼(酸化反応)が起こらず、NOxの浄化に有効
に寄与しない。On the other hand, in a temperature range where the exhaust gas temperature is low, even if HC is present in the exhaust gas, appropriate combustion (oxidation reaction) of HC does not occur in the downstream portion, and does not effectively contribute to NOx purification.
【0012】以上のため、 (a)排気ガス温度が変動し、 (b)排気ガス組成が上記装備テストでのガス組成とは
若干異なり、 (c)排気ガス流速が変動する(流速が高くなる)、実
車のエンジンにおいては、トータルのNOx浄化率が特
に低くなっている、ものと認められる。Due to the above, (a) the exhaust gas temperature fluctuates, (b) the exhaust gas composition is slightly different from the gas composition in the above equipment test, and (c) the exhaust gas flow rate fluctuates (the flow rate increases). It is recognized that the total NOx purification rate is particularly low in the engine of the actual vehicle.
【0013】また、遷移金属を担持させてなるゼオライ
ト触媒では、HCの燃焼によってNOxを除去すること
ができる反面、HCの燃焼に伴ってコークスが発生しこ
のコークスが触媒の下流部位においてゼオライトの細孔
を閉塞することによって当該ゼオライト触媒を失活せし
めることも知られている。In a zeolite catalyst supporting a transition metal, NOx can be removed by combustion of HC. On the other hand, coke is generated by combustion of HC, and this coke is finely divided into zeolite downstream of the catalyst. It is also known to deactivate the zeolite catalyst by closing the pores.
【0014】すなわち、本発明は、上記触媒の下流部位
がNOxの浄化に有効に寄与しないという問題、及び上
記コークスの問題に対策し、実車でも高いNOx浄化率
が得られる触媒構造を提供せんとするものである。That is, the present invention addresses the problem that the downstream portion of the catalyst does not effectively contribute to NOx purification and the problem of coke, and provides a catalyst structure capable of obtaining a high NOx purification rate even in an actual vehicle. Is what you do.
【0015】[0015]
【課題を解決するための手段及びその作用】本発明は、
このような課題に対して、触媒における排気ガス流の上
流部位でのHCの燃焼を抑制し、あるいは下流部位での
HC燃焼性を高めるものである。SUMMARY OF THE INVENTION The present invention provides
In order to solve such a problem, it is an object of the present invention to suppress HC combustion at an upstream portion of an exhaust gas flow in a catalyst or to enhance HC combustion at a downstream portion.
【0016】すなわち、上記課題を解決する第1の手段
(請求項1に記載の発明)は、金属含有シリケートにH
Cの存在下においてNOxを分解する触媒活性種が担持
されてなる触媒材料が用いられた排気ガス浄化用触媒構
造であって、HCの燃焼性が低い触媒部が排気ガス流の
上流側に、HCの燃焼性が高い触媒部が排気ガス流の下
流側にそれぞれ配置されていて、上記下流側触媒部は、
上記上流側触媒部よりも排気ガスとの接触面積が大きく
形成されて、上記上流側触媒部よりもHC燃焼性が相対
的に高くなっていることを特徴とする。That is, a first means for solving the above-mentioned problem (the invention described in claim 1) is that the metal-containing silicate is
An exhaust gas purifying catalyst structure using a catalyst material carrying a catalytically active species that decomposes NOx in the presence of C, wherein a catalyst portion having low HC combustibility is located upstream of the exhaust gas flow. The catalyst parts having high HC combustibility are respectively arranged on the downstream side of the exhaust gas flow, and the downstream catalyst part is
Larger contact area with exhaust gas than the upstream catalyst part
Is formed, and the HC flammability is relatively higher than that of the upstream catalyst portion.
And it features that you have become to high.
【0017】すなわち、逆に言えば、上流側触媒部は排
気ガスとの接触面積が少なく、それだけ排気ガス中のH
Cの燃焼が少ないということである。そうして、当手段
では、上流側触媒部の方が下流側触媒部よりもHC燃焼
性が低いから、排気ガスが高温であっても、HCが上流
側触媒部において焼失されることなく下流側触媒部にも
供給され、上流側触媒部だけでなく下流側触媒部もNO
xの分解に有効に寄与することになる。In other words, conversely, the upstream catalyst section is exhausted.
The contact area with the gas is small, and the H
This means that the combustion of C is small. Thus, in this means, the HC in the upstream catalyst section is lower than that in the downstream catalyst section. Therefore, even if the exhaust gas is at a high temperature, the HC is not burned down in the upstream catalyst section without being burned in the upstream catalyst section. Is also supplied to the downstream catalyst section, and the NOx is detected not only in the upstream catalyst section but also in the downstream catalyst section.
This effectively contributes to the decomposition of x.
【0018】また、排気ガス温度が低い場合、上流側触
媒部と下流側触媒部とのHC燃焼性が同じであれば、下
流側触媒部でのNOx浄化がほとんど期待できなくなる
が、当手段の場合は、下流側触媒部のHC燃焼性が高い
から、該下流側触媒部もNOxの浄化に有効に寄与する
ことになる。そして、該下流側触媒部でもHCの燃焼が
生ずるということは、そのことによって触媒温度が上昇
する、ということであり、よって、排気ガス温度が低い
場合の触媒の活性、所謂低温活性が向上するとともに、
下流側触媒部でコークスが燃焼除去され易くなるため、
金属含有シリケートの細孔の閉塞も防止される。In addition, when the exhaust gas temperature is low, if the upstream catalyst section and the downstream catalyst section have the same HC flammability, it is almost impossible to expect NOx purification in the downstream catalyst section. In this case, since the HC flammability of the downstream catalyst portion is high, the downstream catalyst portion also effectively contributes to the purification of NOx. Then, the fact that HC combustion occurs also in the downstream-side catalyst section means that the catalyst temperature rises by that, so that the activity of the catalyst when the exhaust gas temperature is low, so-called low-temperature activity, is improved. With
Since coke is easily burned and removed in the downstream catalyst section,
Blockage of the pores of the metal-containing silicate is also prevented.
【0019】金属含有シリケート本体としては、結晶の
骨格を形成する金属としてAlを用いたアルミノシリケ
ート(ゼオライト)が好適であり、その他に上記Alに
代えて或いはAlと共にGa,Ce,Mn,Tb等の他
の金属を骨格形成材料として用いた金属含有シリケート
も適用することができる。ゼオライトとしてはA型,X
型,Y型,モルデナイト,ZSM−5等が好適である。As the metal-containing silicate main body, aluminosilicate (zeolite) using Al as a metal forming a crystal skeleton is preferable. In addition, Ga, Ce, Mn, Tb, etc. may be used instead of Al or together with Al. A metal-containing silicate using another metal as a skeleton forming material can also be applied. A type, X as zeolite
Type, Y type, mordenite, ZSM-5 and the like are preferred.
【0020】触媒活性種となる遷移金属としてはCuが
好適であり、Cuの他にCo,Cr,Ni,Fe,Mn
等を使用することができ、さらにPt等の貴金属も好ま
しく使用することができる。As a transition metal serving as a catalytically active species, Cu is preferable. In addition to Cu, Co, Cr, Ni, Fe, Mn
And the like, and a noble metal such as Pt can also be preferably used.
【0021】上記金属含有シリケートに上記遷移金属
が、例えばイオン交換によって担持されることによりゼ
オライト触媒が得られ、またこのものにバインダとして
約20重量%の水和アルミナ又はシリカゾル等の無機バ
インダを添加し、担体にウオッシュコートすることによ
りモノリスタイプのNOx浄化用触媒を調製することも
できる。The transition metal is supported on the metal-containing silicate by, for example, ion exchange to obtain a zeolite catalyst, and about 20% by weight of an inorganic binder such as hydrated alumina or silica sol is added thereto. Then, a monolithic NOx purification catalyst can be prepared by wash-coating the carrier.
【0022】上記触媒材料がウオッシュコートされる場
合には、その担体はコージエライト製ハニカムが好適で
あるが、他の無機多孔質体を用いることもできる。When the catalyst material is wash-coated, the carrier is preferably a cordierite honeycomb, but other inorganic porous materials can also be used.
【0023】触媒活性種を触媒の下流部位に上流部位よ
りも多量に担持せしめるには、金属含有シリケートに対
する触媒活性種の担持量が異なる複数の触媒材料を調製
した後、これらを担持量が多い触媒材料が下流側に位置
するように触媒容器中に充填するとか、全体にわたって
触媒活性種が均一に担持されたハニカム担体の一部を所
定濃度に調製した当該活性種の溶液に浸漬する等の方法
を採用することができる。In order to allow the catalytically active species to be supported in a larger amount at the downstream portion of the catalyst than at the upstream portion, a plurality of catalyst materials having different amounts of the catalytically active species supported on the metal-containing silicate are prepared, and then these are increased in amount. For example, the catalyst material is filled in the catalyst container so as to be located on the downstream side, or a part of the honeycomb carrier on which the catalytically active species is uniformly supported is immersed in a solution of the active species prepared at a predetermined concentration. A method can be adopted.
【0024】上記課題を解決する第2の手段(請求項2
に記載の発明)は、上記第1の手段を発展させてなるも
のであって、上記排気ガス流の上流側及び下流側の各触
媒部はハニカム構造であって、上記下流側触媒部は、上
流側触媒部よりも単位面積当たりのセル数が多くなるよ
うに形成されて、上流側触媒部よりも排気ガスとの接触
面積が相対的に大きくなっている点に特徴がある。A second means for solving the above problem ( claim 2)
The invention described in ( 1 ) is obtained by developing the first means, wherein each of the upstream and downstream catalyst portions of the exhaust gas flow has a honeycomb structure, and the downstream catalyst portion comprises: It is characterized in that it is formed so that the number of cells per unit area is larger than that of the upstream catalyst section, and the contact area with the exhaust gas is relatively larger than that of the upstream catalyst section.
【0025】すなわち、ハニカム構造において、セル数
が多いということは、その排気ガスとの接触面積が小さ
いということである。That is, in the honeycomb structure, the fact that the number of cells is large means that the contact area with the exhaust gas is small.
【0026】上記課題を解決する第3の手段(請求項3
に記載の発明)は、金属含有シリケートにHCの存在下
においてNOxを分解する触媒活性種が担持されてなる
触媒材料が用いられた排気ガス浄化用触媒構造であっ
て、HCの燃焼性が低い触媒部が排気ガス流の上流側
に、HCの燃焼性が高い触媒部が排気ガス流の下流側に
それぞれ配置されていて、上記下流側触媒部は、上記上
流側触媒部よりも通路断面積が小さく、且つ通路長さが
長く形成されている点に特徴がある。A third means for solving the above-mentioned problem ( claim 3)
The invention described in (1) is characterized in that a metal-containing silicate is added in the presence of HC.
Supported catalytically active species that decompose NOx
Exhaust gas purification catalyst structure using catalyst material
Therefore, the catalyst portion having low HC combustibility is located upstream of the exhaust gas flow.
In addition, a catalyst part with high HC combustibility is located downstream of the exhaust gas flow.
Be arranged respectively, the downstream catalyst unit has a smaller cross-sectional area than the upper <br/> downstream catalyst unit, is characterized and in that the passage length is made longer.
【0027】すなわち、当該手段の場合、排気ガス中の
HCは上流側触媒部において活性化(部分酸化ないしは
不完全燃焼)されて下流側触媒部に送られるが、この下
流側触媒部は通路断面積が小さいから排気ガスの流速が
高くなる。よって、上流側で活性化されたHCは焼失
(完全燃焼)することなく当該下流側触媒部においてN
Oxの分解に有効に寄与することになる。そして、当該
下流側触媒部は通路長さが長いから、排気ガス流れ方向
において比較的広い温度分布を有することになり、NO
xの浄化に有利になる。That is, in the case of this means, HC in the exhaust gas is activated (partial oxidation or incomplete combustion) in the upstream catalyst section and sent to the downstream catalyst section. Since the area is small, the flow velocity of the exhaust gas is high. Therefore, the HC activated on the upstream side is not burned out (completely burned), and the HC is activated in the downstream side catalyst section.
This will effectively contribute to the decomposition of Ox. Since the downstream catalyst section has a long passage length, the downstream catalyst section has a relatively wide temperature distribution in the exhaust gas flow direction.
x is advantageous for purification.
【0028】因みに、上流側触媒部を下流側触媒部と同
様に細く且つ長くすると、それだけ排気ガスの流速が速
くなり過ぎてHCの活性化が十分に図れなくなる。By the way, if the upstream catalyst portion is made thinner and longer like the downstream catalyst portion, the flow rate of the exhaust gas becomes too high, and it becomes impossible to activate HC sufficiently.
【0029】上記課題を解決する第4の手段(請求項4
に記載の発明)は、金属含有シリケートにHCの存在下
においてNOxを分解する触媒活性種が担持されてなる
触媒材料が用いられた排気ガス浄化用触媒構造であっ
て、HCの燃焼性が低い触媒部が排気ガス流の上流側
に、HCの燃焼性が高い触媒部が排気ガス流の下流側に
それぞれ配置されていて、上記上流側触媒部に触媒活性
種の被毒剤が担持されて、該上流側触媒部よりも上記下
流側触媒部のHC燃焼性が相対的に高くなっている点に
特徴がある。A fourth means for solving the above problem ( claim 4)
The invention described in (1) is characterized in that a metal-containing silicate is added in the presence of HC.
Supported catalytically active species that decompose NOx
Exhaust gas purification catalyst structure using catalyst material
Therefore, the catalyst portion having low HC combustibility is located upstream of the exhaust gas flow.
In addition, a catalyst part with high HC combustibility is located downstream of the exhaust gas flow.
Be disposed respectively on the upstream catalyst unit catalytically active species poisoning agent is carried, HC flammability of the lower <br/> downstream catalyst unit is relatively higher than the upstream-side catalytic portion The feature is that it has become.
【0030】すなわち、当手段の場合、上流側触媒部
は、その触媒活性種が被毒されているから、HCの燃焼
性が低くなっているものである。よって、当手段は、第
1の手段と同様の作用を呈する。 That is, in the case of this means, the catalytic activity of the upstream catalytic portion is poisoned, so that the HC combustibility is low. Therefore, this means
It has the same effect as the first means.
【0031】上記課題を解決する第5の手段(請求項5
に記載の発明)は、上記被毒剤がPbである点に特徴が
ある。A fifth means for solving the above-mentioned problem ( claim 5)
The invention described in (1) is characterized in that the poisoning agent is Pb.
【0032】すなわち、Pbが触媒活性種を被毒する結
果、該触媒活性種の活性が低下し、上流側の触媒部の方
が下流側触媒部よりも相対的にHC燃焼性が低くなるも
のである。That is, Pb poisons the catalytically active species, resulting in a decrease in the activity of the catalytically active species, so that the upstream catalyst section has a relatively lower HC flammability than the downstream catalyst section. It is.
【0033】上記課題を解決する第6の手段(請求項6
に記載の発明)は、金属含有シリケートにHCの存在下
においてNOxを分解する触媒活性種が担持されてなる
複数の触媒が排気ガスの流れ方向に間隔をおいて配置さ
れ、相隣る上記触媒間に放熱材が配置されている排気ガ
ス浄化用触媒構造である。[0033] Sixth means for solving the above-mentioned problems ( Claim 6)
The invention described in (1) is characterized in that a plurality of catalysts comprising a metal-containing silicate carrying a catalytically active species for decomposing NOx in the presence of HC are arranged at intervals in the flow direction of exhaust gas, This is an exhaust gas purifying catalyst structure in which a heat radiating material is disposed.
【0034】触媒によるHCの燃焼は排気ガス温度が高
いほど活発になるが、当手段の場合、排気ガスは上流側
触媒部でのHCの燃焼によって温度が上昇するものの、
下流側触媒部に達する前に放熱材によって熱を奪われて
その温度が低下する。よって、排気ガス中のHCを下流
側触媒の下流端まで焼失させることなく供給する上で有
利になる。The combustion of HC by the catalyst becomes more active as the temperature of the exhaust gas becomes higher. In the case of this means, the temperature of the exhaust gas rises due to the combustion of HC in the upstream catalyst portion.
Before reaching the downstream-side catalyst portion, heat is taken away by the heat dissipating material, and the temperature is reduced. Therefore, it is advantageous in supplying HC in the exhaust gas without burning down to the downstream end of the downstream side catalyst.
【0035】上記課題を解決する第7の手段(請求項7
に記載の発明)は、上記第1及び第6の各手段を発展さ
せてなるものであって、上記触媒活性種がPtである点
に特徴がある。A seventh means for solving the above-mentioned problem ( claim 7)
The invention described in (1) is a development of the first and sixth means, and is characterized in that the catalytically active species is Pt.
【0036】すなわち、上述の如く、Ptは低温でもH
Cの燃焼能が高く、NOxの分解に最適であり、よっ
て、排気ガス温度が低い低温時からのNOxの浄化が可
能になり、また、上流側触媒部のHC燃焼性の抑制によ
り、排気ガス高温時におけるNOx浄化率の低下を防止
することができる。That is, as described above, Pt is H
C has a high combustion capacity and is optimal for decomposing NOx. Therefore, it is possible to purify NOx even when the exhaust gas temperature is low and low. A decrease in the NOx purification rate at high temperatures can be prevented.
【0037】[0037]
【発明の効果】従って、第1の手段(請求項1に記載の
発明)によれば、HCの燃焼性が低い触媒部が排気ガス
流の上流側に、HCの燃焼性が高い触媒部が排気ガス流
の下流側にそれぞれ配置されている、すなわち、下流側
触媒部は、上流側触媒部よりも排気ガスとの接触面積が
大きく形成されて、上記上流側触媒部よりもHC燃焼性
が相対的に高くなっているから、排気ガス温度が高い時
に排気ガス中のHCを上流側触媒部で焼失させることな
く下流側触媒部に供給して、該下流側触媒部をNOxの
分解に有効に寄与させること、あるいは排気ガス温度が
低い時に下流側触媒部でHCを燃焼させて、該下流側触
媒部をNOxの浄化に寄与させることができ、NOx浄
化率の向上が図れる。さらに、コークスによる金属含有
シリケートの細孔の目詰りも防止することができる。Therefore, according to the first means (the invention according to claim 1), a catalyst portion having a low HC flammability is provided upstream of the exhaust gas flow, and a catalyst portion having a high HC flammability is provided at the upstream side of the exhaust gas flow. Located downstream of the exhaust gas flow, i.e. downstream
The catalyst area has a larger contact area with the exhaust gas than the upstream catalyst area.
It is formed to be larger and has HC flammability higher than that of the upstream catalyst section.
Is relatively high , when the exhaust gas temperature is high, HC in the exhaust gas is supplied to the downstream catalyst portion without being burned by the upstream catalyst portion, and the downstream catalyst portion is used for decomposition of NOx. When the exhaust gas temperature is low, HC can be combusted in the downstream catalyst section to contribute to the purification of NOx, and the NOx purification rate can be improved. Further, clogging of pores of the metal-containing silicate by coke can be prevented.
【0038】第2の手段(請求項2に記載の発明)によ
れば、下流側触媒部は上流側触媒部よりも単位面積当た
りのセル数が多いから、それだけその排気ガスとの接触
面積 が大きくなり、上記第1の手段の効果を発揮させる
ことができる。 According to the second means (invention of the second aspect), the downstream catalyst section has a unit area more than the upstream catalyst section.
Contact with the exhaust gas
The area is increased, and the effect of the first means is exhibited.
be able to.
【0039】第3の手段(請求項3に記載の発明)によ
れば、下流側触媒部が上流側触媒部よりも通路断面積を
小さく且つ通路長さを長く形成されているから、上流側
で活性化されたHCを焼失させることなく下流側でのN
Oxの分解に利用してNOx浄化率の向上を図ることが
できる。[0039] According to the third means (claim 3), since the downstream catalyst part is formed longer smaller and path length the passage cross-sectional area than the upstream catalyst unit, upstream N at the downstream side without burning out the HC activated in
It can be used for the decomposition of Ox to improve the NOx purification rate.
【0040】第4の手段(請求項4に記載の発明)によ
れば、上流側触媒部に触媒活性種の被毒剤が担持されて
いるから、該上流側触媒部のHC燃焼性を低下させて排
気ガス高温時のNOx浄化率の向上を図ることができ
る。According to the fourth means (invention of the fourth aspect ), since the poisoning agent of the catalytically active species is carried on the upstream catalyst section, the HC flammability of the upstream catalyst section is reduced. As a result, the NOx purification rate at high exhaust gas temperatures can be improved.
【0041】第5の手段(請求項5に記載の発明)によ
れば、被毒剤がPbであるから、上記第9の手段の効果
を発揮させることができる。According to the fifth means (the invention as set forth in claim 5 ), the effect of the ninth means can be exerted because the poisoning agent is Pb.
【0042】第6の手段(請求項6に記載の発明)によ
れば、金属含有シリケートに触媒活性種が担持されてな
る複数の触媒間に放熱材が配置されているから、排気ガ
ス中のHCを下流側触媒の下流端まで焼失させることな
く供給することができ、上記第1の手段と同様の効果を
得ることができる。According to the sixth means (invention of the sixth aspect ), since the heat radiating material is arranged between the plurality of catalysts in which the catalytically active species is carried on the metal-containing silicate, the exhaust gas contains HC can be supplied to the downstream end of the downstream catalyst without being burned down, and the same effect as the first means can be obtained.
【0043】第7の手段(請求項7に記載の発明)によ
れば、触媒活性種がPtであるから、触媒全体をNOx
浄化に有効に利用し触媒の活性温度域の拡大を図ること
ができる。According to the seventh means (invention of the seventh aspect ), since the catalytically active species is Pt, the entire catalyst is NOx
The catalyst can be effectively used for purification and the activation temperature range of the catalyst can be expanded.
【0044】[0044]
【実施例】以下、本発明の参考例を説明し続いて実施例
を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference examples of the present invention will be described below.
It will be described.
【0045】<参考例1〜18> −触媒構造− 図1に示すように、触媒容器1に、金属含有シリケート
に触媒活性種が担持されてなる触媒材料をバインダと共
にコージェライト製ハニカム担体へウォッシュコートし
てなる排気ガス浄化用触媒2が収容されている。排気ガ
スは触媒容器1の流入口3から流入し、排気ガス浄化用
触媒2の上流側4から下流側5へ流通し流出口6から流
出する。< Reference Examples 1 to 18> -Catalyst Structure- As shown in FIG. 1, a catalyst material in which a catalytically active species is supported on a metal-containing silicate is washed together with a binder into a cordierite honeycomb carrier in a catalyst container 1. A coated exhaust gas purifying catalyst 2 is accommodated. The exhaust gas flows in from the inlet 3 of the catalyst container 1, flows from the upstream side 4 to the downstream side 5 of the exhaust gas purifying catalyst 2, and flows out from the outlet 6.
【0046】上記排気ガス浄化用触媒2は、排気ガス流
の上流側4に配置された上流側触媒部9と下流側5に配
置された下流側触媒部7よりなる。下流側触媒部7には
HCを燃焼せしめる機能の大きい触媒活性種が上流側触
媒部9よりも高濃度に担持されている。The exhaust gas purifying catalyst 2 comprises an upstream catalyst section 9 disposed on the upstream side 4 of the exhaust gas flow and a downstream catalyst section 7 disposed on the downstream side 5. The downstream catalytic section 7 carries a higher concentration of catalytically active species having a large function of burning HC than the upstream catalytic section 9.
【0047】−ベース触媒の調製−参考例 1〜18に共通のベース触媒を以下のようにして
調製した。Preparation of Base Catalyst A base catalyst common to Reference Examples 1 to 18 was prepared as follows.
【0048】金属含有シリケートとしてNa型ZSM−
5を用いた。SiO2/Al2O3の比は20〜200の
範囲が好ましく、その範囲内の30〜50のものを用い
た。また、カチオン種としてはNa以外に他のアルカリ
金属、アルカリ土類金属、H+又はNH4 +であってもよ
い。As a metal-containing silicate, Na-type ZSM-
5 was used. The ratio of SiO 2 / Al 2 O 3 is preferably in the range of 20 to 200, and a ratio of 30 to 50 in that range was used. The cationic species may be other alkali metals, alkaline earth metals, H + or NH 4 + in addition to Na.
【0049】この金属含有シリケート粉末をCuの硝酸
塩又は酢酸塩の水溶液に含浸後、室温から約80℃、好
ましくは40〜60℃で24時間撹拌し、水洗し、15
0℃で10時間乾燥した後、500℃で2時間大気中で
焼成することにより、ZSM−5にCuがイオン交換担
持されてなるCu/ZSM−5(以下、必要に応じてC
u/Zと記す)を得た。Cuの担持法としてはイオン交
換法、含浸法、共沈法等の一般的な担持法によることが
できる。この場合、当該触媒材料中のCuの担持量は材
料全重量の1〜10重量%が好ましいが、より好ましい
3〜5重量%となるように調製した。Cuの担持量が1
重量%未満であると活性が低く、10重量%を超すと耐
熱性が低下する。After impregnating this metal-containing silicate powder with an aqueous solution of Cu nitrate or acetate, the mixture is stirred at room temperature to about 80 ° C., preferably 40 to 60 ° C. for 24 hours, washed with water, and washed with water.
After drying at 0 ° C. for 10 hours and baking in the air at 500 ° C. for 2 hours, Cu / ZSM-5 (hereinafter referred to as C
u / Z). As a supporting method of Cu, a general supporting method such as an ion exchange method, an impregnation method, and a coprecipitation method can be used. In this case, the supported amount of Cu in the catalyst material is preferably 1 to 10% by weight of the total weight of the material, but was adjusted to be more preferably 3 to 5% by weight. Cu loading is 1
If it is less than 10% by weight, the activity is low, and if it exceeds 10% by weight, the heat resistance is reduced.
【0050】上記Cu/ZSM−5にバインダとして水
和アルミナ、シリカゾル等を重量で20%となるように
加えた後、適量の水を加えてコーティング用スラリーを
調製した。このスラリーに市販のコージェライト製ハニ
カム(1平方インチ当り400セル)を浸漬し余分のス
ラリーをエアブローで吹き飛ばし、乾燥後、対気柱で焼
成した。焼成温度は500℃、焼成時間は2時間であ
る。ハニカム担体への触媒材料担持量はハニカム担体重
量の20重量%となるように調製した。After adding hydrated alumina, silica sol and the like as a binder to the above-mentioned Cu / ZSM-5 so as to be 20% by weight, an appropriate amount of water was added to prepare a slurry for coating. A commercially available cordierite honeycomb (400 cells per square inch) was immersed in the slurry, excess slurry was blown off by air blow, dried, and then fired with air columns. The firing temperature is 500 ° C. and the firing time is 2 hours. The amount of the catalyst material carried on the honeycomb carrier was adjusted to 20% by weight of the honeycomb carrier.
【0051】 −下流側触媒部(触媒活性種の高濃度担持部)の調製− (参考例1〜5) Ptとアンモニアとの化合物であるPt−アンミン結晶
を適量の水に加えて溶かし、上記Cu/Zを担持させた
ハニカム担体の下流側となる端面に含浸させた。その
際、Pt溶液濃度と水の量とによって高濃度担持部(下
流側触媒部7)の長さ及びPt担持量を調節した。しか
る後、500℃×2時間の大気中焼成を行ない、表1に
示されるような参考例1〜5を調製した。表1におい
て、高濃度担持部の長さは、ハニカム担体の全長に対す
る比で示され、Pt担持量は上記Cu/Z 1g当りの
Ptのg数で示されている(この点は以下説明する他の
参考例及び実施例でも同様である)。Preparation of Downstream Catalytic Unit (High Concentration Supporting Unit of Catalytically Active Species) ( Reference Examples 1 to 5) Pt-ammine crystal, which is a compound of Pt and ammonia, is added to an appropriate amount of water and dissolved. The downstream end face of the honeycomb carrier supporting Cu / Z was impregnated. At this time, the length and the amount of Pt carried were adjusted according to the Pt solution concentration and the amount of water. Thereafter, baking was performed at 500 ° C. for 2 hours in the air to prepare Reference Examples 1 to 5 as shown in Table 1. In Table 1, the length of the high-concentration carrier is indicated by a ratio to the entire length of the honeycomb carrier, and the amount of Pt supported is indicated by the number of grams of Pt per gram of the Cu / Z (this point will be described below). other
The same applies to Reference Examples and Examples).
【0052】[0052]
【表1】 [Table 1]
【0053】(参考例6〜10) 硝酸ロジウム溶液に適量の水を加えた溶液を上記Cu/
Zを担持させたハニカム担体の下流側となる端面に含浸
させた。その際、Rh溶液濃度と水の量とによってハニ
カム担体下流側のRh高濃度担持部の長さ及びRh担持
量を調節した。しかる後、500℃×2時間の大気中焼
成を行なって表2に示されるような参考例6〜10を調
製した。 Reference Examples 6 to 10 A solution obtained by adding an appropriate amount of water to a rhodium nitrate solution was mixed with the Cu /
The end face on the downstream side of the honeycomb carrier supporting Z was impregnated. At that time, the length and the Rh carrying amount of the Rh high concentration carrying portion on the downstream side of the honeycomb carrier were adjusted depending on the Rh solution concentration and the amount of water. Thereafter, baking was performed in the air at 500 ° C. for 2 hours to prepare Reference Examples 6 to 10 as shown in Table 2.
【0054】[0054]
【表2】 [Table 2]
【0055】(参考例11〜15) 硝酸パラジウム溶液に適量の水を加えた溶液を上記Cu
/ZSM−5触媒(Cu/Z)を担持させたハニカム担
体の下流側となる端面に含浸させた。その際、Pd溶液
濃度と水の量とによってハニカム担体下流側のPd高濃
度担持部の長さ及びPd担持量を調節した。しかる後、
500℃×2時間の大気中焼成を行なって表3に示され
るような参考例11〜15を調製した。 Reference Examples 11 to 15 A solution obtained by adding an appropriate amount of water to a palladium nitrate solution was mixed with the above Cu
/ ZSM-5 catalyst (Cu / Z) was impregnated on the downstream end face of the honeycomb carrier. At that time, the length and the amount of Pd supported on the downstream side of the honeycomb carrier were controlled by the Pd solution concentration and the amount of water. After a while
By baking in air at 500 ° C. for 2 hours, Reference Examples 11 to 15 as shown in Table 3 were prepared.
【0056】[0056]
【表3】 [Table 3]
【0057】(参考例16〜18) 硝酸銅又は酢酸銅を適量の水に加えて溶かし、上記Cu
/Zを担持させたハニカム担体の下流側となる端面に含
浸させた。その際、Cu溶液濃度と水の量とによってハ
ニカム担体下流側のCu高濃度担持部の長さ及びCu担
持量を調節した。しかる後、500℃×2時間の大気中
焼成を行なって表4に示されるような参考例16〜18
を調製した。( Reference Examples 16 to 18) Copper nitrate or copper acetate was added to an appropriate amount of water and dissolved,
The end face on the downstream side of the honeycomb carrier carrying / Z was impregnated. At that time, the length and the amount of Cu supported on the high-concentration Cu support portion on the downstream side of the honeycomb carrier were adjusted by the Cu solution concentration and the amount of water. Thereafter, firing was performed in the air at 500 ° C. for 2 hours to obtain Reference Examples 16 to 18 as shown in Table 4.
Was prepared.
【0058】[0058]
【表4】 [Table 4]
【0059】(従来例) 上記ベース触媒のみのものを従来例とした。(Conventional Example) The above-described example using only the base catalyst was used as the conventional example.
【0060】−浄化テスト− 上記参考例1〜18及び従来例の各排気ガス浄化用触媒
を常圧固定床流通式反応装置に装着してNOx浄化率を
測定し、NOx浄化活性を評価した。即ち、NO:20
00ppm,HC:5500ppm(カーボン量),O
2:8%,H2:650ppm,CO:0.2%,C
O2:10%,N2:残量の組成となされたモデルガスを
用い、このガスをSV25000hr-1となるように上
記各触媒の上流側から下流側へ流して各温度域における
NOx浄化率(%)を測定し、その結果を表5に示し
た。-Purification Test- The exhaust gas purifying catalysts of Reference Examples 1 to 18 and the conventional example were mounted on a normal-pressure fixed-bed flow reactor, and the NOx purification rate was measured to evaluate the NOx purification activity. That is, NO: 20
00 ppm, HC: 5500 ppm (carbon content), O
2: 8%, H 2: 650ppm, CO: 0.2%, C
Using a model gas having a composition of O 2 : 10% and N 2 : residual amount, this gas is flowed from the upstream side to the downstream side of each of the above catalysts so as to have an SV of 25000 hr −1, and the NOx purification rate in each temperature range (%) Was measured, and the results are shown in Table 5.
【0061】[0061]
【表5】 [Table 5]
【0062】表5に示される結果によれば、従来例のC
u/ZSM−5触媒に比べ、参考例の各排気ガス浄化用
触媒は特に300〜350℃の低温域でのNOx浄化率
に優れている。また、Cu/ZSM−5触媒の下流部位
にRh又はPdを高濃度に担持せしめた触媒は、上記P
t又はCuを同下流部位に高濃度に担持せしめた触媒に
比べ300〜350℃の低温域でのNOx浄化率は劣っ
ている。According to the results shown in Table 5, the conventional C
Compared with the u / ZSM-5 catalyst, each of the exhaust gas purifying catalysts of the reference example is superior in NOx purification rate particularly in a low temperature range of 300 to 350 ° C. In addition, a catalyst in which Rh or Pd is supported at a high concentration at a downstream portion of the Cu / ZSM-5 catalyst is the above P
The NOx purification rate in a low temperature range of 300 to 350 ° C. is inferior to that of a catalyst in which t or Cu is supported at a high concentration in the downstream portion.
【0063】<実施例1,2>実施例1,2 の構造は図2に示されており、上流側触媒
部11と下流側触媒部12とよりなる。各触媒部11,
12にはいずれもコージェライト製ハニカム担体が用い
られており、容量はいずれも12.5ccである。[0063] The structure of <Examples 1 and 2> Examples 1 and 2 is shown in Figure 2, the more the upstream catalyst 11 and the downstream catalyst unit 12. Each catalyst unit 11,
In each case, a honeycomb carrier made of cordierite is used, and the capacity is 12.5 cc in each case.
【0064】−触媒材料の調製− Pt、Ir及びRhがモル比で30:10:1となるよ
う、2価白金アンミン結晶と三塩化イリジウムと硝酸ロ
ジウムとを秤量した。2価白金アンミン結晶と硝酸ロジ
ウムとについては水(イオン交換水)に溶解し、三塩化
イリジウムについてはエタノールに分散させ、しかる後
に両者を混合し、さらにその中にケイバン比144のH
型ZSM−5粉末を加えた。そして、室温で2時間撹拌
した後、80℃で3時間程加熱して液体分を蒸発させ、
さらに、150℃の恒温器で約6時間乾燥してPt、I
r及びRhがZSM−5に担持されてなる触媒材料Pt
−Ir−Rh/Zを得た。-Preparation of Catalyst Material- Divalent platinum ammine crystals, iridium trichloride and rhodium nitrate were weighed so that the molar ratio of Pt, Ir and Rh was 30: 10: 1. The divalent platinum ammine crystals and rhodium nitrate are dissolved in water (ion-exchanged water), and iridium trichloride is dispersed in ethanol. Thereafter, the two are mixed and further mixed with H at a carbane ratio of 144.
Type ZSM-5 powder was added. After stirring at room temperature for 2 hours, the mixture is heated at 80 ° C. for about 3 hours to evaporate the liquid component,
Further, after drying in a thermostat at 150 ° C. for about 6 hours, Pt, I
catalyst material Pt in which r and Rh are supported on ZSM-5
-Ir-Rh / Z was obtained.
【0065】(実施例1) 本例では、上流側触媒部11に200セル/6.45cm
2のハニカム担体を用い、下流側触媒部12に400セ
ル/6.45cm2のハニカム担体を用いた。各々には、
上記Pt−Ir−Rh/Zがバインダ(水和アルミナ)
と共に、Pt、Ir及びRhの総量が1リットル当たり
6gとなるようにウォッシュコートされている。( Example 1 ) In this example, 200 cells / 6.45 cm were placed in the upstream catalyst portion 11.
2 honeycomb carriers, and 400 cells / 6.45 cm 2 honeycomb carriers were used in the downstream catalyst section 12. In each,
The above Pt-Ir-Rh / Z is a binder (hydrated alumina)
At the same time, wash coating is performed so that the total amount of Pt, Ir, and Rh is 6 g per liter.
【0066】(実施例2) 本例では、上流側触媒部11及び下流側触媒部12に同
じく400セル/6.45cm2のハニカムを用い、各々
に上記Pt−Ir−Rh/Zをバインダと共に、Pt、
Ir及びRhの総量が1リットル当たり6gとなるよう
にウォッシュコートするとともに、上流側触媒部11に
はPbを担持させた。Pbの担持に際しては、上記ウォ
ッシュコートがなされたハニカムに酢酸鉛水溶液を含浸
させることによって行なった。Pbの担持量は1リット
ル当たり2gとなるようにした。 Example 2 In this example, a 400-cell / 6.45 cm 2 honeycomb was also used for the upstream catalyst section 11 and the downstream catalyst section 12, and the above-mentioned Pt-Ir-Rh / Z was used together with a binder. , Pt,
Wash coating was performed so that the total amount of Ir and Rh was 6 g per liter, and Pb was carried on the upstream catalyst portion 11. The loading of Pb was carried out by impregnating the wash-coated honeycomb with an aqueous solution of lead acetate. The carried amount of Pb was set to 2 g per liter.
【0067】(比較例1) 容量25ccのコージェライト製ハニカム担体(400セ
ル/6.45cm2)にPt−Ir−Rh/Zをバインダ
と共に、Pt、Ir及びRhの総量が1リットル当たり
6gとなるようにウォッシュコートした。(Comparative Example 1) Pt-Ir-Rh / Z was added to a cordierite honeycomb carrier (400 cells / 6.45 cm 2 ) having a capacity of 25 cc together with a binder, and the total amount of Pt, Ir and Rh was 6 g per liter. Wash coat so that it becomes.
【0068】(比較例2) 触媒容器1の上流側部位に、触媒活性種を担持させてい
ない容量12.5ccのコージェライト製ハニカム担体
(400セル/6.45cm2)をダミーとして装填する
一方、下流側部位に上記実施例19の下流側触媒部12
と同じ構成の触媒を装填した。Comparative Example 2 A 12.5 cc capacity cordierite honeycomb carrier (400 cells / 6.45 cm 2 ) that does not carry catalytically active species is loaded as a dummy in the upstream portion of the catalyst container 1. In the downstream portion, the downstream catalyst portion 12 of Example 19 is provided.
A catalyst having the same configuration as that of the above was loaded.
【0069】−浄化テスト− 上記実施例1,2及び比較例1,2の各排気ガス浄化用
触媒を常圧固定床流通式反応装置に装着してNOx浄化
率を測定し、NOx浄化活性を評価した。すなわち、A
/F=22相当のモデルガスを用い、このガスをSV5
5000hr-1となるように上記各触媒の上流側から下
流側へ流し、触媒入り口温度250℃の時及び同温度が
350℃の時のNOx浄化率(%)を測定し、その結果
を表6に示した。-Purification Test- The exhaust gas purifying catalysts of Examples 1 and 2 and Comparative Examples 1 and 2 were mounted on a normal-pressure fixed-bed flow reactor to measure the NOx purification rate, and the NOx purification activity was measured. evaluated. That is, A
/ F = 22 using a model gas,
The catalyst was flowed from the upstream side to the downstream side of each of the above catalysts so as to have a flow rate of 5000 hr -1, and the NOx purification rate (%) was measured when the catalyst inlet temperature was 250 ° C. and the catalyst inlet temperature was 350 ° C. It was shown to.
【0070】[0070]
【表6】 [Table 6]
【0071】表6に示される結果によれば、排気ガス温
度が低いときのNOx浄化率については、実施例1,2
と比較例1とで大きな差はないが、排気ガス温度が高い
ときのNOx浄化率については実施例の方が格段に高く
なっていることから、当該高温時に下流側触媒部12が
NOx浄化に有効に寄与していることがわかる。According to the results shown in Table 6, the NOx purification rates when the exhaust gas temperature is low are shown in Examples 1 and 2.
Although there is no significant difference between this embodiment and Comparative Example 1, the NOx purification rate when the exhaust gas temperature is high is much higher in the embodiment, so that the downstream side catalyst unit 12 performs NOx purification at the high temperature. It can be seen that it is effectively contributing.
【0072】なお、比較例2の場合、触媒入り口ガス温
度(ダミー入り口ガス温度)が350℃のときのNOx
浄化率が高くなっているが、これはダミーによって排気
ガスが冷却されて触媒に供給された結果と認められる。In the case of Comparative Example 2, NOx when the catalyst inlet gas temperature (dummy inlet gas temperature) was 350 ° C.
Although the purification rate is high, it is recognized that the exhaust gas is cooled by the dummy and supplied to the catalyst.
【0073】<実施例3> 本例は図3に示し、上流側触媒部13と中流触媒部14
との間、及び中流触媒部14と下流側触媒部15との間
の各々に放熱部16,16を配置した触媒構造に関す
る。< Embodiment 3 > This embodiment is shown in FIG.
And a catalyst structure in which heat radiating portions 16 and 16 are disposed between the middle catalyst portion 14 and the downstream catalyst portion 15, respectively.
【0074】上記上流側、中流及び下流側の各触媒部1
3,14,15は、400セル/6.45cm2のハニカ
ム担体に、上記Pt−Ir−Rh/Zがバインダ(水和
アルミナ)と共に、Pt、Ir及びRhの総量が1リッ
トル当たり6gとなるようにウォッシュコートされてな
る。放熱部16には上記比較例2でいうダミーを用い
た。触媒13〜15及び放熱部16のいずれも触媒容量
は5ccである。The upstream, middle and downstream catalyst units 1
Nos. 3, 14, and 15 show that the total amount of Pt, Ir and Rh together with a binder (hydrated alumina) is 6 g per liter in a honeycomb carrier of 400 cells / 6.45 cm 2 , together with the binder (hydrated alumina). It will be wash-coated. The dummy referred to in Comparative Example 2 was used for the heat radiating portion 16. The catalyst capacity of each of the catalysts 13 to 15 and the radiator 16 is 5 cc.
【0075】本例の排気ガス浄化用触媒を常圧固定床流
通式反応装置に装着してNOx浄化率を測定し、NOx
浄化活性を評価した。すなわち、A/F=22相当のモ
デルガスを用い、このガスをSV55000hr-1とな
るように上記各触媒の上流側から下流側へ流し、触媒入
り口温度250℃の時及び同温度が350℃の時のNO
x浄化率を測定した。The exhaust gas purifying catalyst of this embodiment was mounted on a normal-pressure fixed-bed flow reactor, and the NOx purification rate was measured.
Purification activity was evaluated. That is, a model gas corresponding to A / F = 22 is used, and this gas is flowed from the upstream side to the downstream side of each of the above-mentioned catalysts so as to have an SV of 55000 hr -1 . NO at the time
x The purification rate was measured.
【0076】その結果、NOx浄化率は、触媒入り口温
度が250℃の時は47.5%であり、同温度が350
℃の時のは18.2%であった。これは、排気ガスは上
流側触媒部13でのHCの燃焼によって温度が上昇する
ものの、中流触媒部14に達する前に放熱部16によっ
て熱を奪われてその温度が低下する。このことは中流触
媒部14と下流側触媒部15との関係においても同じで
ある。よって、排気ガス中のHCを中流触媒部14及び
下流側触媒部15に焼失させることなく供給することが
でき、該中流触媒部14及び下流側触媒部15がNOx
浄化に有効に寄与することになる。As a result, the NOx purification rate was 47.5% when the catalyst inlet temperature was 250 ° C., and the NOx purification rate was 350 ° C.
At 18.degree. C., it was 18.2%. This is because, although the temperature of the exhaust gas rises due to the combustion of HC in the upstream catalyst section 13, the heat is taken away by the heat radiating section 16 before reaching the middle catalyst section 14, and the temperature of the exhaust gas falls. The same applies to the relationship between the middle-stream catalyst section 14 and the downstream-side catalyst section 15. Therefore, HC in the exhaust gas can be supplied to the middle-stream catalyst section 14 and the downstream-side catalyst section 15 without being burned out, and the middle-stream catalyst section 14 and the downstream-side catalyst section 15
This will effectively contribute to purification.
【0077】<実施例4> 本例は図4に示し、大径の上流側触媒部17と小径の下
流側触媒部18とを連接してなる。通路長さは下流側触
媒部18の方が上流側触媒部17よりも長くなってい
る。すなわち、上流側触媒部17には直径2.54cm、
長さ2.5cmのハニカム担体を用い、下流側触媒部18
には直径2.03cm、長さ4cmのハニカム担体を用い
た。上流側及び下流側の両触媒部17,18の各々の容
量は12.5ccであり、また、いずれの担体にも上記P
t−Ir−Rh/Zがバインダ(水和アルミナ)と共
に、Pt、Ir及びRhの総量が1リットル当たり6g
となるようにウォッシュコートされている。< Embodiment 4 > This embodiment is shown in FIG. 4, in which a large-diameter upstream catalyst section 17 and a small-diameter downstream catalyst section 18 are connected. The passage length of the downstream catalyst section 18 is longer than that of the upstream catalyst section 17. That is, the upstream catalyst section 17 has a diameter of 2.54 cm,
Using a 2.5 cm long honeycomb carrier, the downstream catalyst section 18
A honeycomb carrier having a diameter of 2.03 cm and a length of 4 cm was used. Each of the upstream and downstream catalyst portions 17, 18 has a capacity of 12.5 cc.
t-Ir-Rh / Z together with the binder (hydrated alumina), the total amount of Pt, Ir and Rh is 6 g per liter.
Wash-coated so that
【0078】本例の排気ガス浄化用触媒を常圧固定床流
通式反応装置に装着してNOx浄化率を測定し、NOx
浄化活性を評価した。すなわち、A/F=22相当のモ
デルガスを用い、このガスをSV55000hr-1とな
るように上記各触媒の上流側から下流側へ流し、触媒入
り口温度250℃の時及び同温度が350℃の時のNO
x浄化率を測定した。The exhaust gas purifying catalyst of this embodiment was mounted on a normal pressure fixed bed flow type reactor, and the NOx purification rate was measured.
Purification activity was evaluated. That is, a model gas corresponding to A / F = 22 is used, and this gas is flowed from the upstream side to the downstream side of each of the above-mentioned catalysts so as to have an SV of 55000 hr -1 . NO at the time
x The purification rate was measured.
【0079】その結果、NOx浄化率は、触媒入り口温
度が250℃の時は52.5%であり、同温度が350
℃の時のは25.5%であった。このように高い浄化率
が得られたのは、排気ガス中のHCが上流側触媒部17
において活性化されて下流側触媒部18に送られ、この
下流側触媒部18において焼失することなくNOxの分
解に有効に寄与したためと認められる。この場合、当該
下流側触媒部18においては、通路断面積が小さく排気
ガス流れが速くなるから、HCの焼失が防がれていると
認められ、また、通路長さが長く排気ガス流れ方向にお
いて比較的広い温度分布を有するから、NOxの浄化に
有利になっているものと認められる。As a result, the NOx purification rate was 52.5% when the catalyst inlet temperature was 250 ° C.
At the time of ° C. was 25.5%. The reason why such a high purification rate was obtained is that HC in the exhaust gas was
And is sent to the downstream catalyst section 18, and is considered to have contributed to the decomposition of NOx effectively without being burned down in the downstream catalyst section 18. In this case, in the downstream catalyst section 18, since the passage cross-sectional area is small and the exhaust gas flow is fast, it is recognized that the burnout of HC is prevented, and the passage length is long and the exhaust gas flow direction is long. It is recognized that it has a relatively wide temperature distribution, which is advantageous for NOx purification.
【0080】因みに、直径2.03cm、長さ8cmのハニ
カム担体(触媒容量25cc)に、上記Pt−Ir−Rh
/Zをバインダ(水和アルミナ)と共に、Pt、Ir及
びRhの総量が1リットル当たり6gとなるようにウォ
ッシュコートしてなる触媒の場合、上記実施例と同じ条
件でNOx浄化率を測定したところ、触媒入り口温度が
250℃の時は52.5%、同温度が350℃の時のは
13%であった。Incidentally, the above Pt-Ir-Rh was placed on a honeycomb carrier (catalyst capacity 25 cc) having a diameter of 2.03 cm and a length of 8 cm.
In the case of a catalyst which was wash-coated with / Z together with a binder (hydrated alumina) so that the total amount of Pt, Ir and Rh was 6 g per liter, the NOx purification rate was measured under the same conditions as in the above example. The catalyst inlet temperature was 52.5% when the temperature was 250 ° C, and 13% when the catalyst inlet temperature was 350 ° C.
【0081】<実施例5> 図5は排気ガス浄化用触媒2を互いの触媒活性種の担持
態様が異なる上流側触媒部9、中流触媒部8及び下流側
触媒部7の3つの触媒部によって構成した例を示す。す
なわち、上流側触媒部9は参考例1〜18の項で説明し
たベース触媒のみよりなり、中流触媒部8は上記ベース
触媒に少量のPtを含浸担持させたものであり、下流側
触媒部7は上記ベース触媒に多量のPtを含浸担持させ
たものである。当該触媒2は、上記各触媒部7〜9を別
個に作成し、触媒容器1に装填してなる。< Embodiment 5 > FIG. 5 shows that the exhaust gas purifying catalyst 2 is divided into three catalytic units, an upstream catalytic unit 9, a midstream catalytic unit 8, and a downstream catalytic unit 7, which have different catalytic active species support modes. An example of the configuration is shown. That is, the upstream-side catalyst unit 9 is composed of only the base catalyst described in the paragraphs of Reference Examples 1 to 18, the middle-stream catalyst unit 8 is obtained by impregnating and supporting a small amount of Pt on the base catalyst, and the downstream-side catalyst unit 7 Is obtained by impregnating and supporting a large amount of Pt on the base catalyst. The catalyst 2 is prepared by separately preparing the above-described catalyst units 7 to 9 and loading the catalyst unit 1.
【図1】参考例1〜18に係る触媒構造を示す一部切欠
いた正面図FIG. 1 is a partially cutaway front view showing a catalyst structure according to Reference Examples 1 to 18.
【図2】実施例1,2に係る触媒構造を示す正面図FIG. 2 is a front view showing a catalyst structure according to Examples 1 and 2 .
【図3】実施例3に係る触媒構造を示す正面図FIG. 3 is a front view showing a catalyst structure according to a third embodiment .
【図4】実施例4に係る触媒構造を示す正面図FIG. 4 is a front view showing a catalyst structure according to Example 4 .
【図5】実施例5に係る触媒構造を示す正面図FIG. 5 is a front view showing a catalyst structure according to Example 5 .
【図6】NO浄化率及びNOx浄化率と排気ガス温度と
の関係を示すグラフ図FIG. 6 is a graph showing the relationship between the NO purification rate, the NOx purification rate, and the exhaust gas temperature.
2 排気ガス浄化用触媒 4 上流側 5 下流側 7,12,15,18 下流側触媒部 9,11,13,17 上流側触媒部 16 放熱部 2 Exhaust gas purification catalyst 4 Upstream side 5 Downstream side 7, 12, 15, 18 Downstream catalyst section 9, 11, 13, 17 Upstream catalyst section 16 Heat radiating section
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上岡 敏嗣 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (72)発明者 重津 雅彦 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (72)発明者 高見 明秀 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 平5−269350(JP,A) 特開 平5−38452(JP,A) 特開 平4−256445(JP,A) 特開 昭63−100919(JP,A) 特開 平1−139145(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 B01D 53/86 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshishi Kamioka 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd. (72) Masahiko Shigetsu 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Matsu (72) Inventor Akihide Takami 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Corporation (56) References JP-A-5-269350 (JP, A) JP-A-5-38452 ( JP, A) JP-A-4-256445 (JP, A) JP-A-63-100919 (JP, A) JP-A-1-139145 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) B01J 21/00-37/36 B01D 53/86
Claims (7)
いてNOxを分解する触媒活性種が担持されてなる触媒
材料が用いられた排気ガス浄化用触媒構造であって、 HCの燃焼性が低い触媒部が排気ガス流の上流側に、H
Cの燃焼性が高い触媒部が排気ガス流の下流側にそれぞ
れ配置されていて、 上記下流側触媒部は、上記上流側触媒部よりも排気ガス
との接触面積が大きく形成されて、上記上流側触媒部よ
りもHC燃焼性が相対的に高くなってい ることを特徴と
する排気ガス浄化用触媒構造。An exhaust gas purifying catalyst structure using a catalyst material in which a catalytically active species that decomposes NOx in the presence of HC is supported on a metal-containing silicate, wherein the catalytic portion has low HC flammability. Is located upstream of the exhaust gas flow.
C higher catalyst portion flammability has been arranged respectively on the downstream side of the exhaust gas flow, the downstream catalyst unit, exhaust gases than the upstream catalyst unit
The contact area with the upstream catalyst section is increased.
Remote HC flammability catalyst structure for purifying exhaust gases, characterized that you have relatively high.
カム構造であって、上記下流側触媒部は、上記上流側触
媒部よりも単位面積当たりのセル数が多くなるように形
成されて、上記上流側触媒部よりも排気ガスとの接触面
積が相対的に大きくなっている請求項1に記載の排気ガ
ス浄化用触媒構造。Wherein each catalyst section of the upstream and downstream is a honeycomb structure, the downstream catalyst unit is formed so that the number of cells per unit area than the upstream-side catalyst unit increases the exhaust gas purifying catalyst structure of claim 1, the contact area is relatively large and the exhaust gas than the upstream-side catalyst unit.
いてNOxを分解する触媒活性種が担持されてなる触媒
材料が用いられた排気ガス浄化用触媒構造であって、 HCの燃焼性が低い触媒部が排気ガス流の上流側に、H
Cの燃焼性が高い触媒部が排気ガス流の下流側にそれぞ
れ配置されていて、 上記下流側触媒部は、上記上流側触媒部よりも通路断面
積が小さく、且つ通路長さが長く形成されていることを
特徴とする排気ガス浄化用触媒構造。3. A method for producing a metal-containing silicate in the presence of HC.
Catalyst carrying a catalytically active species that decomposes NOx
An exhaust gas purifying catalyst structure using a material, wherein a catalyst portion having low HC combustibility is provided on the upstream side of the exhaust gas flow.
The highly flammable C catalyst section is located downstream of the exhaust gas flow.
Are be arranged, the downstream catalyst unit has a smaller cross-sectional area than the upstream-side catalytic portion, and that the passage length is made longer
Characteristic catalyst structure for exhaust gas purification.
いてNOxを分解する触媒活性種が担持されてなる触媒
材料が用いられた排気ガス浄化用触媒構造であって、 HCの燃焼性が低い触媒部が排気ガス流の上流側に、H
Cの燃焼性が高い触媒部が排気ガス流の下流側にそれぞ
れ配置されていて、 上記上流側触媒部に触媒活性種の被毒剤が担持されて、
該上流側触媒部よりも上記下流側触媒部のHC燃焼性が
相対的に高くなっていることを特徴とする排気ガス浄化
用触媒構造。4. A method for producing a metal-containing silicate in the presence of HC.
Catalyst carrying a catalytically active species that decomposes NOx
An exhaust gas purifying catalyst structure using a material, wherein a catalyst portion having low HC combustibility is provided with an H
The highly flammable C catalyst section is located downstream of the exhaust gas flow.
The poisoning agent of the catalytically active species is carried on the upstream catalyst portion,
Exhaust gas purifying catalyst structure, wherein the HC combustion of the downstream catalyst unit than the upstream-side catalytic portion is relatively high.
の排気ガス浄化用触媒構造。5. The exhaust gas purifying catalyst structure according to claim 4 , wherein the poisoning agent is Pb.
いてNOxを分解する触媒活性種が担持されてなる複数
の触媒が排気ガスの流れ方向に間隔をおいて配置され、
相隣る上記触媒間に放熱材が配置されていることを特徴
とする排気ガス浄化用触媒構造。6. A plurality of catalysts comprising a metal-containing silicate carrying a catalytically active species that decomposes NOx in the presence of HC are arranged at intervals in the direction of exhaust gas flow,
An exhaust gas purifying catalyst structure, wherein a heat radiating material is arranged between the adjacent catalysts.
は請求項6に記載の排気ガス浄化用触媒構造。7. The catalytic active species according to claim 1 or a Pt
Is a catalyst structure for purifying exhaust gas according to claim 6 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09568693A JP3272464B2 (en) | 1992-04-23 | 1993-04-22 | Exhaust gas purification catalyst structure |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10473992 | 1992-04-23 | ||
JP4-104739 | 1992-04-23 | ||
JP09568693A JP3272464B2 (en) | 1992-04-23 | 1993-04-22 | Exhaust gas purification catalyst structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0623274A JPH0623274A (en) | 1994-02-01 |
JP3272464B2 true JP3272464B2 (en) | 2002-04-08 |
Family
ID=26436894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09568693A Expired - Fee Related JP3272464B2 (en) | 1992-04-23 | 1993-04-22 | Exhaust gas purification catalyst structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3272464B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08126818A (en) * | 1994-10-28 | 1996-05-21 | Sekiyu Sangyo Kasseika Center | Catalytical reduction of nox |
JP4543473B2 (en) * | 2000-01-20 | 2010-09-15 | マツダ株式会社 | Engine exhaust purification system |
EP1264628A1 (en) * | 2001-06-09 | 2002-12-11 | OMG AG & Co. KG | Redox catalyst fot the selective catalytic reduction of nitrogen oxides in the exhaust gases of diesel engines with ammoniac and preparation process thereof |
US7363758B2 (en) * | 2004-11-09 | 2008-04-29 | Ford Global Technologies, Llc | Lean burn engine control NOx purging based on positional loading of oxidants in emission control device |
JP5183162B2 (en) * | 2007-11-15 | 2013-04-17 | 川崎重工業株式会社 | Exhaust purification device |
JP5815220B2 (en) * | 2009-11-19 | 2015-11-17 | イビデン株式会社 | Honeycomb structure and exhaust gas purification device |
WO2011061841A1 (en) * | 2009-11-19 | 2011-05-26 | イビデン株式会社 | Honeycomb structure and exhaust gas purification apparatus |
JP2014147878A (en) * | 2013-01-31 | 2014-08-21 | Daihatsu Motor Co Ltd | Exhaust emission control catalyst |
JP2015106567A (en) * | 2013-11-28 | 2015-06-08 | 京セラ株式会社 | Optical semiconductor element housing package, and optical semiconductor device |
KR101675463B1 (en) * | 2015-04-30 | 2016-11-11 | 대지금속 주식회사 | Marine engine exhaust gas purification apparatus |
JP7171164B2 (en) * | 2017-04-14 | 2022-11-15 | 三菱重工業株式会社 | Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof |
-
1993
- 1993-04-22 JP JP09568693A patent/JP3272464B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0623274A (en) | 1994-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0631173A (en) | Catalyst for purification of exhaust gas and method for purifying exhaust gas | |
JPH0910594A (en) | Catalyst for purifying exhaust gas | |
JP3272464B2 (en) | Exhaust gas purification catalyst structure | |
JP3327054B2 (en) | Exhaust gas purification catalyst | |
JPH05277376A (en) | Nox removing catalyst and nox removing method utilizing the catalyst | |
JP3626999B2 (en) | Exhaust gas purification material and exhaust gas purification method | |
JP3300027B2 (en) | Exhaust gas purification catalyst | |
JP2700386B2 (en) | Exhaust gas purifying material and exhaust gas purifying method | |
JPH0871424A (en) | Catalyst for purification of exhaust gas | |
JP3447513B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP3347481B2 (en) | Exhaust gas purification catalyst | |
JP3342043B2 (en) | Exhaust gas purification device | |
JPH07155555A (en) | Purifying method of internal combustion engine exhaust gas | |
JPH06142523A (en) | Waste gas purifying material and waste gas purifying method | |
JPH08141405A (en) | Catalyst for purification of exhaust gas from internal-combustion engine | |
JPH0985053A (en) | Exhaust gas purifying material and exhaust gas purifying method | |
JP3291316B2 (en) | Exhaust gas purification catalyst | |
JP3854325B2 (en) | Exhaust gas purification material and exhaust gas purification method | |
JP2932106B2 (en) | Exhaust gas purification catalyst | |
JPH0966223A (en) | Catalyst mechanism for purifying exhaust gas and purification of exhaust gas | |
JPH08168650A (en) | Material and method for purifying exhaust gas | |
JPH08309189A (en) | Combustion gas purifying material and purification of combustion gas | |
JPH04367724A (en) | Catalyst and method for removing nitrogen oxide | |
JPH0576776A (en) | Catalyst for purification of exhaust gas | |
JPH0857263A (en) | Exhaust gas purifying material and method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100125 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |