JP2000038630A - Hydrogen storage alloy and its production - Google Patents
Hydrogen storage alloy and its productionInfo
- Publication number
- JP2000038630A JP2000038630A JP10206887A JP20688798A JP2000038630A JP 2000038630 A JP2000038630 A JP 2000038630A JP 10206887 A JP10206887 A JP 10206887A JP 20688798 A JP20688798 A JP 20688798A JP 2000038630 A JP2000038630 A JP 2000038630A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- alloy
- storage alloy
- crystal structure
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素吸蔵合金及び
その製造方法に関し、詳しくは寿命特性(サイクル特
性)を劣化させることなく、初期特性が極めて良好で、
かつ電池の放電率特性(レート特性)、特に−40〜0
℃の低温ハイレート特性(1−10C)を向上させた水
素吸蔵合金及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a method for producing the same, and more particularly, to a hydrogen storage alloy having very good initial characteristics without deteriorating life characteristics (cycle characteristics).
And the discharge rate characteristics (rate characteristics) of the battery, particularly -40 to 0
The present invention relates to a hydrogen storage alloy with improved low-temperature high-rate characteristics at 1 ° C. (1-10C) and a method for producing the same.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
ニッケル−カドミウム蓄電池に代わる高容量アルカリ蓄
電池として、水素吸蔵合金を負極に用いたニッケル−水
素蓄電池が注目されている。この水素吸蔵合金は、現在
では希土類系の混合物であるMm(ミッシュメタル)と
Ni、Al、Mn、Coとの5元素の水素吸蔵合金が汎
用されている。2. Description of the Related Art In recent years,
As a high-capacity alkaline storage battery that replaces a nickel-cadmium storage battery, a nickel-hydrogen storage battery using a hydrogen storage alloy for a negative electrode has attracted attention. At present, as the hydrogen storage alloy, a five-element hydrogen storage alloy of Mm (mish metal), which is a rare earth-based mixture, and Ni, Al, Mn, and Co is widely used.
【0003】このMm−Ni−Mn−Al−Co合金
は、La系のそれに比べて比較的安価な材料で負極を構
成でき、サイクル寿命が長く、過充電時の発生ガスによ
る内圧上昇が少ない密閉形ニッケル水素蓄電池を得るこ
とができることから、電極材料として広く用いられてい
る。[0003] This Mm-Ni-Mn-Al-Co alloy can form a negative electrode with a relatively inexpensive material as compared with a La-based alloy, has a long cycle life, and has a small internal pressure rise due to gas generated during overcharge. Since a nickel-metal hydride storage battery can be obtained, it is widely used as an electrode material.
【0004】現在用いられているMm−Ni−Mn−A
l−Co合金は、合金の微粉化を抑制してサイクル寿命
を長くしているが、一般的にこの微粉化抑制のためには
10重量%程度のCo(ミッシュメタル1モルに対する
比で0.6〜1.0)を必要とすることが知られてい
る。また、優れた水素吸蔵特性及び耐食性を得るために
も一定量のCoの含有は必要とされている。[0004] Currently used Mm-Ni-Mn-A
The l-Co alloy suppresses the pulverization of the alloy and prolongs the cycle life. In general, however, in order to suppress the pulverization, about 10% by weight of Co (0.1% relative to 1 mol of misch metal) is used. 6 to 1.0). Further, in order to obtain excellent hydrogen storage characteristics and corrosion resistance, a certain amount of Co is required.
【0005】しかしながら、Coの含有率が高いとそれ
だけ原料コストが高くなり、原料コストの面から問題視
されている。特に、電気自動車用電源(EV:Electric
vihicle)等の大型電池への適用やニッケル−水素蓄電
池のさらなる市場の増大に対しては、原料コストは、電
極負極材料の選定において大きな割合を占め、このこと
が問題となっていた。However, the higher the Co content, the higher the raw material cost, and this is regarded as a problem from the viewpoint of raw material cost. In particular, power supplies for electric vehicles (EV: Electric
For the application to large batteries such as vihicles) and the further increase in the market for nickel-hydrogen storage batteries, the raw material cost accounts for a large proportion in the selection of the electrode negative electrode material, which has been a problem.
【0006】このような問題を解決するために、特開平
9−213319号公報には、Mm−Ni−Mn−Al
−Co系合金の組成を変化させ、これにさらに少量の1
元素を加えることが提案されている。同公報に記載の水
素吸蔵合金粉末を負極に用いることによって、Coが少
量にもかかわらず、合金の微粉化による負極の劣化を一
定限度抑制し、電池のサイクル寿命が長くすることがで
きる。[0006] To solve such a problem, Japanese Patent Application Laid-Open No. 9-213319 discloses Mm-Ni-Mn-Al.
-The composition of the Co-based alloy was changed, and
It has been proposed to add elements. By using the hydrogen storage alloy powder described in the publication for the negative electrode, it is possible to suppress the deterioration of the negative electrode due to the pulverization of the alloy to a certain extent and to prolong the cycle life of the battery even though the amount of Co is small.
【0007】しかるに、同公報に開示の水素吸蔵合金を
用いた場合には、安定した良好な初期特性が得られない
という問題がある。また、微粉化特性及び水素吸蔵特性
も必ずしも満足し得るものではない。However, when the hydrogen storage alloy disclosed in the above publication is used, there is a problem that stable and good initial characteristics cannot be obtained. Further, the pulverization characteristics and the hydrogen storage characteristics are not always satisfactory.
【0008】また、AB5 型水素吸蔵合金は、上記のよ
うにEV等の大型電源において用いられるが、0℃以下
での特性(初期特性、放電率特性)が充分ではなく、E
V等の大型電源への適用において一部問題となってい
る。Further, as described above, the AB 5 type hydrogen storage alloy is used in a large power source such as an EV, but its characteristics (initial characteristics, discharge rate characteristics) at 0 ° C. or less are not sufficient,
There is a problem in application to a large power supply such as V.
【0009】従って、本発明の目的は、コバルト含有量
が少量で、かつ寿命特性(サイクル特性)を劣化させる
ことなく、初期特性が極めて良好で、かつ電池の放電率
特性(レート特性)、特に−40〜0℃の低温ハイレー
ト特性(1−10C)を向上させた水素吸蔵合金及びそ
の製造方法を提供することにある。Accordingly, it is an object of the present invention to provide a battery having a small amount of cobalt, excellent initial characteristics without deteriorating life characteristics (cycle characteristics), and excellent discharge rate characteristics (rate characteristics) of a battery. An object of the present invention is to provide a hydrogen storage alloy having improved low-temperature high-rate characteristics (1-10C) of -40 to 0 ° C and a method for producing the same.
【0010】[0010]
【課題を解決するための手段】本発明者等は種々の研究
を重ねた結果、AB5 型合金組成を特定の非化学量論組
成(Bサイトリッチ)とし、かつチタンを一定量含有す
る水素吸蔵合金によって、上記目的を達成し得ることを
知見した。また、このような水素吸蔵合金は、上記特定
の組成において、熱処理条件が一定にある場合に好適に
得られることを見い出した。As a result of various studies, the present inventors have found that the composition of the AB 5 type alloy is a specific non-stoichiometric composition (B-site rich) and hydrogen containing a certain amount of titanium is contained. It has been found that the above object can be achieved by the occlusion alloy. In addition, it has been found that such a hydrogen storage alloy can be suitably obtained when the heat treatment conditions are constant in the above specific composition.
【0011】本発明は、上記知見に基づきなされたもの
で、一般式 MmNia Mnb Alc Cod Cue Tif (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
5、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)で表され
るCaCu5 型の結晶構造を有することを特徴とするA
B5 型水素吸蔵合金を提供するものである。[0011] The present invention has been made based on the above findings, the general formula MmNi a Mn b Al c Co d Cu e Ti f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
5, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f each have a CaCu 5 type crystal structure represented by the following formula:
There is provided a B 5 type hydrogen storage alloy.
【0012】また、本発明は、本発明の水素吸蔵合金の
好ましい製造方法として、水素吸蔵合金原料を加熱溶解
し、これを鋳造した後、不活性ガス雰囲気中で熱処理
し、下記一般式で表されるCaCu5 型の結晶構造を有
するAB5 型水素吸蔵合金を製造する方法であって、該
熱処理条件が1000〜1100℃、1〜6時間である
ことを特徴とする水素吸蔵合金の製造方法を提供するも
のである。 一般式 MmNia Mnb Alc Cod Cue Tif (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
5、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)The present invention also provides, as a preferred method for producing the hydrogen storage alloy of the present invention, a method of heating and melting a hydrogen storage alloy material, casting it, and then heat treating it in an inert gas atmosphere. A method for producing an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, wherein the heat treatment conditions are 1000 to 1100 ° C. for 1 to 6 hours. Is provided. Formula MmNi a Mn b Al c Co d Cu e Ti f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
5, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f are moles per mole of Mm)
【0013】[0013]
【発明の実施の形態】本発明の水素吸蔵合金は、一般式 MmNia Mnb Alc Cod Cue Tif (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
5、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)で表され
るCaCu5 型の結晶構造を有するAB5 型水素吸蔵合
金である。Hydrogen storage alloy of the embodiment of the present invention have the general formula MmNi a Mn b Al c Co d Cu e Ti f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
5, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f are AB 5 type hydrogen storage alloys having a CaCu 5 type crystal structure represented by the following formula:
【0014】ここで、MmはLa、Ce、Pr、Nd、
Sm等の希土類系の混合物であるミッシュメタルであ
る。このミッシュメタル中に含まれるランタンの含有率
は、水素吸蔵合金中に14〜27重量%である。また、
この水素吸蔵合金は、CaCu 5 型の結晶構造を有する
AB5 型水素吸蔵合金で、AB4.9 〜5.4 のBサイトリ
ッチの非化学量論組成である。Here, Mm is La, Ce, Pr, Nd,
Misch metal which is a mixture of rare earths such as Sm
You. Lanthanum content in this misch metal
Is 14 to 27% by weight in the hydrogen storage alloy. Also,
This hydrogen storage alloy is CaCu FiveHas a type crystal structure
ABFiveType hydrogen storage alloy, AB4.9~5.4B site
The non-stoichiometric composition of the switch.
【0015】この水素吸蔵合金において、Nia Mnb
Alc Cod Cue Tif の組成割合(Mm1モルに対
するモル数)は、下記の関係を有するものである。すな
わち、Niの割合は3.9≦a≦4.3であり、Mnの
割合は0.3≦b≦0.6であり、Alの割合は0.1
5≦c≦0.5であり、Coの割合は0≦d≦0.8で
あり、Cuの割合は0≦e≦0.3であり、Vは0.0
05≦f≦0.05であり、かつa+b+c+d+e+
fが4.9〜5.4の範囲にある。In this hydrogen storage alloy, Ni a Mn b
Al c Co d Cu e Ti (number of moles Mm1 mol) composition ratio of f are those having the following relationship. That is, the ratio of Ni is 3.9 ≦ a ≦ 4.3, the ratio of Mn is 0.3 ≦ b ≦ 0.6, and the ratio of Al is 0.1
5 ≦ c ≦ 0.5, the proportion of Co is 0 ≦ d ≦ 0.8, the proportion of Cu is 0 ≦ e ≦ 0.3, and V is 0.0
05 ≦ f ≦ 0.05, and a + b + c + d + e +
f is in the range of 4.9 to 5.4.
【0016】上記のように、Niの割合aは3.9〜
4.3、好ましくは4.0〜4.2であり、aが3.9
未満では水素吸蔵量が損なわれ、4.3を超えると微粉
化や寿命特性劣化が認められ、またプラトー圧が上昇す
る。As described above, the proportion a of Ni is 3.9 to 3.9.
4.3, preferably 4.0 to 4.2, and a is 3.9
If it is less than 4.3, the hydrogen storage capacity is impaired, and if it exceeds 4.3, pulverization and deterioration of life characteristics are recognized, and the plateau pressure increases.
【0017】Mnの割合bは0.3〜0.6、好ましく
は0.35〜0.4であり、bが0.3未満ではプラト
ー圧力が高くなり、かつ水素吸蔵量が損なわれ、0.6
を超えると合金の腐食が激しくなり、合金の早期劣化が
認められる。The ratio b of Mn is from 0.3 to 0.6, preferably from 0.35 to 0.4. If b is less than 0.3, the plateau pressure increases and the hydrogen storage capacity is impaired. .6
If it exceeds 300, corrosion of the alloy becomes severe and early deterioration of the alloy is recognized.
【0018】Alの割合cは0.15〜0.5であり、
cが0.15未満では水素吸蔵合金放出圧力であるプラ
トー圧力が高くなり、充放電のエネルギー効率が悪くな
り、0.5を超えると水素吸蔵量が少なくなる。The proportion c of Al is 0.15 to 0.5,
If c is less than 0.15, the plateau pressure, which is the pressure at which the hydrogen storage alloy is released, increases, and the energy efficiency of charging and discharging deteriorates. If c exceeds 0.5, the hydrogen storage amount decreases.
【0019】Coの割合dは0〜0.8、好ましくは
0.4〜0.75であり、dが0.8を超えるとCoの
割合が多くなり、コストの低減が図れない。The proportion d of Co is 0 to 0.8, preferably 0.4 to 0.75. If d exceeds 0.8, the proportion of Co increases and cost reduction cannot be achieved.
【0020】Cuの割合eは0〜0.3、好ましくは0
〜0.2であり、eが0.3を超えると水素吸蔵特性が
損なわれ、またCuが析出する場合が生じる。The proportion e of Cu is 0 to 0.3, preferably 0.
When e exceeds 0.3, the hydrogen storage properties are impaired and Cu may precipitate.
【0021】Tiの割合fは0.005〜0.05であ
り、チタンを加えることによって、プーラトー圧を低
め、電池の放電率(レート特性)特性、特に低温での放
電率特性を向上させることができる。fが0.005未
満では低温での放電特性の向上が認められず、0.05
を超えると微粉化特性が損なわれる。The proportion f of Ti is 0.005 to 0.05, and the addition of titanium lowers the Pura-Tau pressure and improves the discharge rate (rate characteristic) characteristics of the battery, particularly the low-temperature discharge rate characteristics. Can be. If f is less than 0.005, no improvement in discharge characteristics at low temperatures is observed, and 0.05
If it exceeds 300, the pulverization characteristics are impaired.
【0022】a+b+c+d+e+f(以下、場合によ
ってxと総称する)は4.9〜5.4であり、xが4.
9未満では電池寿命や微粉化特性が損なわれ、5.4を
超えた場合には、水素吸蔵特性が損なわれる。A + b + c + d + e + f (hereinafter sometimes collectively referred to as x) is 4.9 to 5.4, and x is 4.
If it is less than 9, the battery life and pulverization characteristics are impaired, and if it exceeds 5.4, the hydrogen storage characteristics are impaired.
【0023】次に、本発明の水素吸蔵合金の製造方法に
ついて説明する。先ず、上記で示したような合金組成と
なるように、水素吸蔵合金原料を秤量、混合し、例えば
誘導加熱による高周波加熱溶解炉を用いて、上記水素吸
蔵合金原料を溶解して金属溶湯となす。これを鋳型、例
えば水冷型の鋳型に流し込んで水素吸蔵合金を1350
〜1550℃で鋳造して水素吸蔵合金を製造する。Next, a method for producing the hydrogen storage alloy of the present invention will be described. First, the hydrogen storage alloy material is weighed and mixed so as to have the alloy composition as described above, and the hydrogen storage alloy material is melted to form a molten metal by using, for example, a high-frequency heating melting furnace by induction heating. . This is poured into a mold, for example, a water-cooled mold, and the hydrogen-absorbing alloy is poured into 1350.
Cast at 151550 ° C. to produce a hydrogen storage alloy.
【0024】次に、得られた水素吸蔵合金を不活性ガス
雰囲気中、例えばアルゴンガス中で熱処理する。熱処理
条件は1000〜1100℃、1〜6時間である。この
ような熱処理を行うのは、鋳造された合金の組織には通
常Mn主体の微細な粒界偏析が認められるが、これを加
熱することによって均質化するためである。Next, the obtained hydrogen storage alloy is heat-treated in an inert gas atmosphere, for example, an argon gas. The heat treatment conditions are 1000 to 1100 ° C. for 1 to 6 hours. Such heat treatment is performed because the structure of the cast alloy usually has fine grain boundary segregation mainly composed of Mn, but is homogenized by heating.
【0025】このようにして、良好な初期特性を有し、
また電池の放電率特性、特に低温での放電率特性に優れ
た水素吸蔵合金が得られる。In this way, it has good initial characteristics,
In addition, a hydrogen storage alloy having excellent discharge rate characteristics of a battery, particularly, low-temperature discharge rate characteristics can be obtained.
【0026】この水素吸蔵合金は、粗粉砕、微粉砕後、
アルカリ蓄電池の負極として好適に用いられる。かかる
アルカリ蓄電池は、初期特性が良好で、合金の微粉化に
よる負極の劣化が抑制され、サイクル寿命が長いものと
なる。The hydrogen storage alloy is subjected to coarse pulverization and fine pulverization.
It is suitably used as a negative electrode of an alkaline storage battery. Such an alkaline storage battery has good initial characteristics, suppresses deterioration of the negative electrode due to pulverization of the alloy, and has a long cycle life.
【0027】[0027]
【実施例】以下、本発明を実施例等に基づき具体的に説
明する。なお、表1中の%は重量基準である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like. The percentages in Table 1 are based on weight.
【0028】[実施例1]Mm、Ni、Mn、Al、C
o、Cu及びTiを合金組成でMm(La19重量%)
Ni3.95Mn0.45Al0.3 Co0.4 Cu0.1 Ti0.005
(x=5.205)になるように、各水素吸蔵合金原料
を秤量、混合し、その混合物をルツボに入れて高周波溶
解炉に固定し、10-4〜10-5Torrまで真空状態に
した後、アルゴンガス雰囲気中で加熱溶解した後、水冷
式銅鋳型に流し込み、1430℃で鋳造を行い、合金を
得た。更に、この合金をアルゴンガス雰囲気中で、10
60℃、3時間熱処理を行い、水素吸蔵合金を得た。[Example 1] Mm, Ni, Mn, Al, C
o, Cu and Ti in alloy composition Mm (La 19% by weight)
Ni 3.95 Mn 0.45 Al 0.3 Co 0.4 Cu 0.1 Ti 0.005
Each hydrogen storage alloy material was weighed and mixed so that (x = 5.205), and the mixture was placed in a crucible, fixed in a high-frequency melting furnace, and evacuated to 10 -4 to 10 -5 Torr. Then, after heating and melting in an argon gas atmosphere, the mixture was poured into a water-cooled copper mold and cast at 1430 ° C. to obtain an alloy. Further, this alloy was placed in an argon gas atmosphere for 10 minutes.
Heat treatment was performed at 60 ° C. for 3 hours to obtain a hydrogen storage alloy.
【0029】[比較例1]合金組成がMm(La19重
量%)Ni3.95Mn0.45Al0.3 Co0.4 Cu0. 1 (x
=5.20)となるように各水素吸蔵合金原料を用いた
以外は、実施例1と同様にして水素吸蔵合金を得た。[0029] [Comparative Example 1] Alloy composition Mm (La19 wt%) Ni 3.95 Mn 0.45 Al 0.3 Co 0.4 Cu 0. 1 (x
= 5.20), except that each hydrogen storage alloy raw material was used to obtain a hydrogen storage alloy in the same manner as in Example 1.
【0030】[実施例2〜6]合金組成が表1となるよ
うに各水素吸蔵合金原料を用いた以外は、実施例1と同
様にして水素吸蔵合金を得た。[Examples 2 to 6] Hydrogen storage alloys were obtained in the same manner as in Example 1 except that each hydrogen storage alloy raw material was used so that the alloy composition was as shown in Table 1.
【0031】[特性評価]実施例1〜6及び比較例1で
得られた水素吸蔵合金について、下記に示す方法によっ
て微粉化残存率及びアルミニウム溶出量を測定した。そ
の結果を表2に示す。[Characteristics Evaluation] The hydrogen storage alloys obtained in Examples 1 to 6 and Comparative Example 1 were measured for the pulverization residual ratio and the aluminum elution amount by the following methods. Table 2 shows the results.
【0032】<微粉化残存率>PCT装置で、30ba
rの水素ガスを粒度22〜53ミクロンに調整した水素
吸蔵合金に導入し、吸蔵させ、その後脱蔵排気する処理
を10回繰り返した後、サイクル試験前の平均粒度に対
するサイクル試験後の平均粒度の比で計算した。<Remaining ratio of pulverization> 30 ba
The hydrogen gas of r is introduced into a hydrogen storage alloy adjusted to a particle size of 22 to 53 microns, the occlusion is performed, and then the process of evacuating and evacuating is repeated 10 times. Calculated by ratio.
【0033】<アルミニウム溶出量>アルミニウム溶出
試験を行い、試験片を30重量%KOH水溶液(75
℃)中に48時間放置し、ICP分析を行った。<Aluminum Dissolution Amount> An aluminum dissolution test was performed.
C.) for 48 hours to perform ICP analysis.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 [Table 2]
【0036】表2に示されるように、実施例1〜6は、
比較例1と微粉化残存率はほぼ同等であるにも拘わら
ず、アルミニウム溶出量が抑制されていることが判る。As shown in Table 2, Examples 1 to 6
It can be seen that although the pulverization residual ratio is almost the same as that of Comparative Example 1, the elution amount of aluminum is suppressed.
【0037】[実験例1]実施例1〜6及び比較例1で
得られた水素吸蔵合金を粉砕して水素吸蔵合金粉末と
し、この水素吸蔵合金粉末を用いて公知の方法で負極を
作製し、さらにニッケル水素蓄電池を作製した。このよ
うにして得られた蓄電池の0℃、0.2C、120%充
電させた後、30分間の休息を挟み、0℃、2C、1分
間強放電させた。この際の放電特性を図1〜2に示す。
なお、図1〜2において、横軸は時間(分)、縦軸
(V)は電圧を示す。EXPERIMENTAL EXAMPLE 1 The hydrogen storage alloys obtained in Examples 1 to 6 and Comparative Example 1 were pulverized into a hydrogen storage alloy powder, and a negative electrode was produced by a known method using the hydrogen storage alloy powder. Then, a nickel-metal hydride storage battery was produced. The storage battery thus obtained was charged at 0 ° C., 0.2 C, and 120%, and after a rest for 30 minutes, was strongly discharged at 0 ° C., 2 C, and 1 minute. The discharge characteristics at this time are shown in FIGS.
1 and 2, the horizontal axis represents time (minutes) and the vertical axis (V) represents voltage.
【0038】図1〜2に示されるように、実施例1〜6
は比較例1に比べて、経時的な電圧降下が少なく、低温
特性が良好なことが判る。As shown in FIGS.
It can be seen that, compared to Comparative Example 1, the voltage drop with time was small and the low-temperature characteristics were good.
【0039】[0039]
【発明の効果】以上説明したように、本発明の水素吸蔵
合金は、コバルト含有量が少量で、かつ寿命特性(サイ
クル特性)を劣化させることなく、初期特性が極めて良
好で、かつ電池の放電率特性(レート特性)、特に−4
0〜0℃の低温ハイレート特性(1−10C)を向上さ
せることができる。また、本発明の製造方法によって、
上記水素吸蔵合金が安定して、かつ効率よく得られる。As described above, the hydrogen storage alloy of the present invention has a low cobalt content, has very good initial characteristics without deteriorating the life characteristics (cycle characteristics), and has excellent discharge characteristics. Rate characteristics (rate characteristics), especially -4
The low-temperature high-rate characteristics (1-10C) of 0 to 0 ° C. can be improved. Further, according to the production method of the present invention,
The hydrogen storage alloy can be obtained stably and efficiently.
【図1】実施例1〜4及び比較例1で得られた蓄電池の
の0℃、放電レート2C放電特性を示すグラフ。FIG. 1 is a graph showing the discharge characteristics of a storage battery obtained in Examples 1 to 4 and Comparative Example 1 at 0 ° C. and a discharge rate of 2C.
【図2】実施例5〜6及び比較例1で得られた蓄電池の
0℃、放電レート2Cの放電特性を示すグラフ。FIG. 2 is a graph showing the discharge characteristics of the storage batteries obtained in Examples 5 to 6 and Comparative Example 1 at 0 ° C. and a discharge rate of 2C.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 661 C22F 1/00 661C 691 691B 691C (72)発明者 安田 清隆 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 Fターム(参考) 5H003 AA02 AA04 BA01 BB02 BC06 BD00 BD01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 661 C22F 1/00 661C 691 691B 691C (72) Inventor Kiyotaka Yasuda 1-chome Shiomachi, Takehara City, Hiroshima Prefecture No.5-1 F-term in the Materials Research Laboratories of Mitsui Kinzoku Mining Co., Ltd. 5H003 AA02 AA04 BA01 BB02 BC06 BD00 BD01
Claims (2)
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
5、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)で表され
るCaCu5 型の結晶構造を有することを特徴とするA
B5 型水素吸蔵合金。1. A general formula MmNi a Mn b Al c Co d Cu e Ti f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
5, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f each have a CaCu 5 type crystal structure represented by the following formula:
B 5 type hydrogen storage alloy.
鋳造した後、不活性ガス雰囲気中で熱処理し、下記一般
式で表されるCaCu5 型の結晶構造を有するAB5 型
水素吸蔵合金を製造する方法であって、該熱処理条件が
1000〜1100℃、1〜6時間であることを特徴と
する水素吸蔵合金の製造方法。 一般式 MmNia Mnb Alc Cod Cue Tif (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
5、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)2. An AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following general formula, wherein a hydrogen storage alloy material is heated and melted, cast, and heat-treated in an inert gas atmosphere. , Wherein the heat treatment conditions are 1000 to 1100 ° C for 1 to 6 hours. Formula MmNi a Mn b Al c Co d Cu e Ti f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
5, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f are moles per mole of Mm)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10206887A JP2000038630A (en) | 1998-07-22 | 1998-07-22 | Hydrogen storage alloy and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10206887A JP2000038630A (en) | 1998-07-22 | 1998-07-22 | Hydrogen storage alloy and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000038630A true JP2000038630A (en) | 2000-02-08 |
Family
ID=16530703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10206887A Pending JP2000038630A (en) | 1998-07-22 | 1998-07-22 | Hydrogen storage alloy and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000038630A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2003056047A1 (en) * | 2001-12-27 | 2005-05-12 | 株式会社三徳 | Hydrogen storage alloy, hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery |
-
1998
- 1998-07-22 JP JP10206887A patent/JP2000038630A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2003056047A1 (en) * | 2001-12-27 | 2005-05-12 | 株式会社三徳 | Hydrogen storage alloy, hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery |
JP4685353B2 (en) * | 2001-12-27 | 2011-05-18 | 株式会社三徳 | Hydrogen storage alloy, hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06231763A (en) | Hydrogen storage alloy for alkaline storage battery | |
JP3828922B2 (en) | Low Co hydrogen storage alloy | |
US6773667B2 (en) | Hydrogen-occluding alloy and process for producing the same | |
JP2001040442A (en) | Hydrogen storage alloy | |
EP0806803B1 (en) | Hydrogen occluding alloy, process for its preparation and electrode | |
JP3493516B2 (en) | Hydrogen storage alloy and method for producing the same | |
US6083327A (en) | Hydrogen occluding alloy | |
JP3114677B2 (en) | Hydrogen storage alloy and method for producing the same | |
JP2005133193A (en) | LOW Co HYDROGEN STORAGE ALLOY | |
JP2000144278A (en) | Hydrogen occlusion alloy and its production | |
JP2000038630A (en) | Hydrogen storage alloy and its production | |
JP3930638B2 (en) | Hydrogen storage alloy and method for producing the same | |
JP2001294958A (en) | Hydrogen storage alloy for nickel-hydrogen secondary battery and its producing method | |
JP4091704B2 (en) | Hydrogen storage alloy and method for producing the same | |
WO2001069700A1 (en) | Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell | |
JPH11269501A (en) | Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode | |
JPH11323468A (en) | Hydrogen storage alloy and its production | |
JP2001181763A (en) | Hydrogen storage alloy | |
JP2004218017A (en) | Hydrogen storage alloy | |
JPH11323467A (en) | Hydrogen storage alloy and its production | |
JP2002115038A (en) | Hydrogen storage alloy | |
JP4573421B2 (en) | Hydrogen storage alloy | |
JP2000160265A (en) | Hydrogen storage alloy and its manufacture | |
JP2000144277A (en) | Hydrogen occlusion alloy and its production | |
JP4462909B2 (en) | Hydrogen storage alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
LAPS | Cancellation because of no payment of annual fees |