JP3191008B2 - Hot tool steel - Google Patents
Hot tool steelInfo
- Publication number
- JP3191008B2 JP3191008B2 JP09942991A JP9942991A JP3191008B2 JP 3191008 B2 JP3191008 B2 JP 3191008B2 JP 09942991 A JP09942991 A JP 09942991A JP 9942991 A JP9942991 A JP 9942991A JP 3191008 B2 JP3191008 B2 JP 3191008B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- hardness
- less
- quenching
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001315 Tool steel Inorganic materials 0.000 title claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 60
- 239000010959 steel Substances 0.000 claims description 60
- 238000010791 quenching Methods 0.000 claims description 25
- 230000000171 quenching effect Effects 0.000 claims description 23
- 229910052804 chromium Inorganic materials 0.000 claims description 22
- 238000005496 tempering Methods 0.000 claims description 17
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 235000019589 hardness Nutrition 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 25
- 230000000694 effects Effects 0.000 description 17
- 150000001247 metal acetylides Chemical class 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000004512 die casting Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000005242 forging Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000009497 press forging Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 102220479482 Puromycin-sensitive aminopeptidase-like protein_C21D_mutation Human genes 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ダイカストや熱間プレ
ス鍛造等に用いられる熱間金型用の熱間工具鋼に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot tool steel for a hot die used for die casting, hot press forging, and the like.
【0002】[0002]
【従来の技術】ダイカストや熱間プレス鍛造用の金型材
としては、一部の温間鍛造や精密鋳造用の金型、比較的
小寸法の金型、特殊な金型部品等を除いては、従来、S
KD6やSKD61などを熱処理硬さ HRC50未満で用い
るのが通常のやり方であった。2. Description of the Related Art As a die material for die casting and hot press forging, except for some warm forging and precision casting dies, relatively small dimensional dies, special die parts and the like. , Conventionally, S
The usual practice was to use KD6, SKD61 or the like with a heat treatment hardness of less than HRC50.
【0003】[0003]
【発明が解決しようとする課題】近年の熱間加工技術の
進歩、例えばダイカストの分野では、高圧ダイカスト
法、鍛造技術の分野では、密閉鍛造や高速鍛造の適用が
進み、金型表面に作用する熱的または機械的な負荷が増
し、金型表面にヒートクラックが生成したり、あるいは
摩耗したりして早期に使用不可能となる場合が多くなっ
た。このうち、損耗現象を改善するために最も効果的で
あるのは、熱処理硬さを高めることであるが、従来の金
型材では、硬さを高めると靭性値が低下するため、割れ
やチッピングが生じやすく、熱処理硬さ HRC50程度以上
で使用できる金型の用途は限定されていた。本発明は、
高硬度範囲で高靭性を有し、耐ヒートクラック性に優れ
た熱間工具鋼を提供することを目的とする。In recent years, the development of hot working technology, for example, in the field of die casting, the application of high-pressure die casting and in the field of forging technology, the application of closed forging and high-speed forging has been advanced, and has been applied to the die surface. In many cases, thermal or mechanical loads are increased, and heat cracks are formed on the mold surface or are worn out, so that the mold cannot be used early. Among them, the most effective way to improve the wear phenomenon is to increase the heat treatment hardness.However, in the conventional mold material, when the hardness is increased, the toughness value is reduced, so that cracking and chipping are caused. The applications of molds that easily occur and can be used with a heat treatment hardness of about HRC50 or more were limited. The present invention
An object of the present invention is to provide a hot work tool steel having high toughness in a high hardness range and excellent heat crack resistance.
【0004】[0004]
【課題を解決するための手段】SKD6、SKD61を
始めとする従来の熱間工具鋼では、焼入れ焼もどし硬さ
をHRC50以上とするとき、焼もどし温度が600℃以下とな
る。このとき焼もどしで微細に析出する炭化物の分布密
度が極めて大となり靭性が低下するが、この炭化物の析
出挙動に、Si,Crの含有量の関与が極めて大きいこと
を発見した。ところで、Si含有量を限定して合金鋼の
靭性を高める効果については、特開昭60-56055号、同60
-59053号、同61-213348号、同61-213349号でも開示され
ている。しかし、これらには、本発明で特定した塑性範
囲でHRC50以上としたときの特性値等についての記述は
なく、またCr量との関係でSi量を限定する記述もな
い。本発明は、前記提案に開示されていない熱間工具鋼
の靭性値に関するSi,Cr量の関与を詳しく調査し、
Si量の低減による靭性値向上効果は、従来の使用硬さ
であったHRC 42〜48前後のHRC50未満よりむしろ、焼も
どし温度が低めとなるHRC50以上の硬さのとき大きいこ
と、Si量の低減による靭性値向上効果は、含有Cr量
との関係で決定され、Cr量の低い合金鋼では、過度の
低減は必要でなく、一方金型の焼入性などを考慮してC
r量を高めに設定する場合は、Si量を低めに抑える必要
があること、さらに、本願の第1,3発明の鋼におい
て、単にSiを低減した場合、金型表面の肌あれをまね
き、金型寿命が低下することがしばしば認められている
が、適量のCoを添加することによって、Siを低減した
金型材についても、酸化スケールの成長を抑え、肌あれ
を防止する効果があること、を発見したことに基づくも
のである。以上のことから、熱処理硬さを高目にするこ
とにより、苛酷な熱間加工条件の金型に使用しても、ヒ
ートクラックや摩耗等の金型表面の損耗が生じにくく、
かつ割れやチッピングが起こりにくいため、従来より大
寸法や複雑形状など広い用途に適用できる熱間工具鋼の
提供が可能となった。Means for Solving the Problems In conventional hot tool steels such as SKD6 and SKD61, when the quenching and tempering hardness is HRC50 or more, the tempering temperature is 600 ° C or less. At this time, the distribution density of carbides finely precipitated by tempering becomes extremely large and the toughness is reduced. However, it has been found that the Si and Cr contents greatly contribute to the precipitation behavior of the carbides. Incidentally, the effect of increasing the toughness of alloy steel by limiting the Si content is described in JP-A-60-56055 and JP-A-60-56055.
-59053, 61-213348 and 61-213349. However, there is no description about the characteristic value or the like when the HRC is 50 or more in the plastic range specified in the present invention, and there is no description that limits the Si amount in relation to the Cr amount. The present invention investigates in detail the involvement of Si, Cr content with respect to the toughness value of hot work tool steel not disclosed in the above proposal,
The effect of improving the toughness value by reducing the amount of Si is larger when the hardness is equal to or higher than the HRC50 at which the tempering temperature is lower, rather than lower than the HRC50 around the HRC 42 to 48, which was the conventional hardness used. The effect of improving the toughness value by the reduction is determined by the relationship with the Cr content. For alloy steels with a low Cr content, excessive reduction is not necessary, while C alloy is considered in consideration of the hardenability of the mold.
When the amount of r is set to be high, it is necessary to keep the amount of Si low. Further, in the steels of the first and third inventions of the present application, when simply reducing the amount of Si, the surface of the mold surface is roughened. Although it is often recognized that the life of the mold is reduced, the addition of an appropriate amount of Co also has the effect of suppressing the growth of the oxide scale and preventing the skin from roughening, even with respect to the mold material in which Si is reduced. Is based on the discovery of From the above, by increasing the heat treatment hardness, even when used in a mold under severe hot working conditions, the surface of the mold such as heat cracks and abrasion is less likely to be worn,
In addition, since cracking and chipping are unlikely to occur, it has become possible to provide a hot work tool steel applicable to a wide range of applications such as large dimensions and complicated shapes.
【0005】すなわち、本発明は具体的には、重量%
で、C 0.35%を越え0.45%未満、Si 1.00%以下、Mn 0.
1〜1.5%、Ni 0.1〜1.5%、Cr 4.35〜5.65%、WとMoを
1種または2種で1/2W+Mo 1.5〜3.5%、V 0.5〜1.5%
で、かつSi,Cr量がSi<(18.7/Cr)-3.3の関係式を満
たし、残部Feおよび不可避的不純物からなり、焼入れ
焼もどし硬さ HRC50以上で使用することを特徴とする熱
間工具鋼、上記添加元素にさらに重量%で、Co 0.3〜
5.0%を添加したもの、および上記それぞれにおいて、S
iを0.1%越えるごとく制限した熱間工具鋼である。That is, the present invention specifically relates to
With C exceeding 0.35% and less than 0.45%, Si 1.00% or less, Mn 0.
1 to 1.5%, Ni 0.1 to 1.5%, Cr 4.35 to 5.65%, W and Mo are used alone or in combination with 1/2 W + Mo 1.5 to 3.5%, V 0.5 to 1.5%
A hot tool characterized in that the Si and Cr contents satisfy the relational expression of Si <(18.7 / Cr) -3.3, the balance is made of Fe and inevitable impurities, and the quench and temper hardness is HRC50 or more. Steel, Co 0.3%
5.0% added, and in each of the above, S
It is a hot tool steel that is restricted to exceed i by 0.1%.
【0006】[0006]
【作用】次に本発明の成分範囲の限定理由について述べ
る。Cは、本発明鋼のすぐれた焼入性、焼もどし硬さ、
および高温硬さを維持し、またW、Mo、V、Crなどの
炭化物形成元素と結合して炭化物を形成し、結晶粒の微
細化効果、耐摩耗性、焼もどし軟化抵抗、高温硬さを与
えるために添加するものである。多すぎると過度の炭化
物の析出をまねき靭性を低下させるので0.45%未満と
し、本発明鋼の特徴の一つであるHRC50以上の焼入れ焼
もどし硬さを保持するため等上記目的の達成のために含
有量を0.35%を越えるものとする。Siは、本発明鋼の特
徴であるHRC50以上の高い硬さで高い靭性値を得るため
に1.0%以下添加する。詳細にはCrの項でまとめて述べ
る。Mnは、焼入性を向上させるが、多すぎるとA1変態
点を過度に低下させ、焼なまし硬さを過度に高くし、被
切削性を低下させるので0.1〜1.50%以下とする。Niは
C, Cr, Mn, Mo, Wなどとともに本発明鋼に優れた
焼入性を付与し、緩やかな焼入冷却速度の場合にも、マ
ルテンサイト主体の組織を形成させ、靭性の低下を防ぐ
ために重要な添加元素であり、また基地の本質的な靭性
改善効果を与えるため、0.1%以上添加する。Niは上記
効果を得るために添加されるが、多すぎるとA1変態点
を過度に低下させ、へたり寿命の低下をまねき、焼なま
し硬さを過度に高くして機械加工性を低下させたので、
1.50%以下とする。Next, the reasons for limiting the range of the components of the present invention will be described. C is excellent hardenability, temper hardness of the steel of the present invention,
And maintain high-temperature hardness, and combine with carbide-forming elements such as W, Mo, V, and Cr to form carbides, and improve the crystal grain refinement effect, wear resistance, tempering softening resistance, and high-temperature hardness. It is added to give. In order to achieve the above purpose, such as to maintain the quenching and tempering hardness of HRC 50 or more, which is one of the features of the steel of the present invention, as excessive carbides lead to excessive carbide precipitation and lower toughness because it lowers toughness. The content should exceed 0.35%. Si is added in an amount of 1.0% or less in order to obtain a high toughness value with a high hardness of HRC 50 or more, which is a feature of the steel of the present invention. The details will be described collectively in the section of Cr. Mn is to improve the hardenability, too large, excessively lowering the A 1 transformation point, excessively high annealing hardness, and less from 0.1 to 1.50% as it reduces the machinability. Ni, together with C, Cr, Mn, Mo, W, etc., imparts excellent hardenability to the steel of the present invention, and even at a slow quenching cooling rate, forms a structure mainly composed of martensite, thereby reducing the toughness. Addition of 0.1% or more is an important element for preventing the addition and also has an essential effect of improving the toughness of the matrix. Ni is added in order to obtain the above effects, but if it is too much, it excessively lowers the A 1 transformation point, leads to a reduction in set life, excessively increases annealing hardness, and deteriorates machinability. I let you
1.50% or less.
【0007】Crは、適正な添加量の設定により、焼も
どし軟化抵抗および高温強度の向上、Cと結合して炭化
物を形成することによる耐摩耗性の向上、焼入性の向上
および迅速窒化性付与の効果を有するものであり、4.35
%以上添加する。ただし、Crは本発明鋼のようにHRC50
以上の高い焼入れ焼もどし硬さの金型として使用される
場合、本発明鋼の高い靭性値を確保するためにはその含
有量を制限する必要がある。これは以下に述べる作用に
基づくものである。本発明鋼のようにHRC50以上の高い
焼入焼もどし硬さの金型として使用される場合、焼もど
し温度は600℃前後またはさらに低くなるが、この温度
域では焼もどしによって基地中に極く微細に析出する特
殊炭化物の分布密度が極めて大きく、基地の靭性が著し
く低下する。一方、Cr,Siはその前段階で析出するセ
メンタイト炭化物の析出を抑える作用があるので、逆に
Cr,Siの含有量を抑えることによってセメンタイト炭
化物を適量析出させることにより基地の靭性を低下させ
る特殊炭化物の分布密度を抑えることができる。このた
め、Si量は1.0%以下、Crは5.65%以下とするが、Crと
Siは上記の作用に複合的に作用するため、金型用とし
て必要な靭性値を得るべく、Si<(18.7/Cr)-3.3%の関
係式を満たすように添加する。この関係式からも判るよ
うにCr含有量を多くしたい場合(例えばCr>5.5%)に
は、Si量を0.1%以下が必要である。ただし、SiはCo
の項で述べるように、これが低すぎると酸化皮膜が厚く
なり過ぎ易いので0.1%を越えることが望ましい。Coを
添加で補う場合も同様である。[0007] By setting an appropriate amount of Cr, temper softening resistance and high-temperature strength are improved, wear resistance is improved by forming carbides by combining with C, hardenability is improved, and rapid nitriding property is improved. 4.35
% Or more. However, Cr is HRC50 like steel of the present invention.
When used as a mold having the above high quenching and tempering hardness, it is necessary to limit the content of the steel of the present invention in order to ensure a high toughness value. This is based on the operation described below. When used as a mold having a high quenching and tempering hardness of HRC 50 or more like the steel of the present invention, the tempering temperature is around 600 ° C or lower, but in this temperature range, the tempering is extremely difficult in the matrix. The distribution density of the special carbides that precipitate finely is extremely large, and the toughness of the matrix is significantly reduced. On the other hand, Cr and Si have the effect of suppressing the precipitation of cementite carbide which precipitates in the previous stage, and conversely, by suppressing the content of Cr and Si, a proper amount of cementite carbide is precipitated to reduce the toughness of the matrix. The distribution density of carbide can be suppressed. For this reason, the Si content is set to 1.0% or less and the Cr is set to 5.65% or less. However, since Cr and Si act in combination with the above-mentioned actions, Si <(18.7 / Cr) is added so as to satisfy the relational expression of -3.3%. As can be seen from this relational expression, when it is desired to increase the Cr content (for example, Cr> 5.5%), the Si content must be 0.1% or less. However, Si is Co
If this is too low, the oxide film tends to be too thick, so that it is desirable to exceed 0.1%. The same applies to the case where Co is supplemented by addition.
【0008】W,Mo量の設定は本発明鋼の用途に必要
とされる高温強度、軟化抵抗を保つ上で重要である。
W,Moは、焼もどし処理時に微細な特殊炭化物を析出
して、軟化抵抗、高温強度を高める。ただし過度の添加
は過度の炭化物の析出をまねき靭性を低下させるので、
金型、工具の使用条件に応じた強度、高温強度に基づい
て、1種または2種を1/2W+Moで1.5〜3.5%添加す
る。Vは、固溶しにくい炭化物を形成して耐摩耗性およ
び耐焼付性の向上に効果を有するものであり、焼入加熱
時基地に固溶し焼もどし時微細な凝集しにくい炭化物を
析出し、高い温度域における軟化抵抗を大とし、大きな
高温耐力を与えるための重要な元素である。また、結晶
粒を微細化して靭性を向上させるとともに、A1変態点
を上げ、優れた高温耐力とあいまって、耐ヒートクラッ
ク性を向上させる効果をもたらすものである。本発明鋼
の特徴である優れた靭性と高温強度の兼備のためにV量
の設定は非常に重要である。多すぎると巨大な炭化物を
生成し、熱間加工方向に沿う紐状炭化物の分布傾向を増
大させ、その方向に沿うクラックの進展を助長するた
め、1.50%以下とし、低すぎると型表面部の早期軟化を
まねくなど、上記添加の効果が得られないので0.50%以
上とする。The setting of the amounts of W and Mo is important for maintaining the high temperature strength and the softening resistance required for the use of the steel of the present invention.
W and Mo precipitate fine special carbides at the time of tempering to increase softening resistance and high-temperature strength. However, excessive addition leads to excessive carbide precipitation and lowers toughness,
One or two types are added at 1/2 W + Mo at 1.5 to 3.5% based on the strength according to the use conditions of the mold and the tool and the high temperature strength. V forms carbides which are hard to form a solid solution and has an effect on improvement of wear resistance and seizure resistance. It forms solid carbides in a matrix at the time of quenching heating and precipitates fine carbides which are hard to agglomerate at the time of tempering. It is an important element for increasing the softening resistance in a high temperature range and providing a large high-temperature proof stress. Also, it improves the toughness and refining crystal grains, increasing the A 1 transformation point, coupled with excellent high temperature yield strength, those that result the effect of improving the heat crack resistance. The setting of the amount of V is very important for the combination of excellent toughness and high-temperature strength, which are features of the steel of the present invention. If it is too large, a huge carbide is generated, the distribution tendency of the string-like carbide along the hot working direction is increased, and the growth of cracks along that direction is promoted. Since the effect of the above addition, such as early softening, cannot be obtained, the content is set to 0.50% or more.
【0009】Coは、使用中の昇温時、きわめて緻密で
密着性の良い保護酸化皮膜を形成し、これにより相手材
との間の金属接触を防ぎ、金型表面の温度上昇を防ぐと
ともに優れた耐摩耗性をもたらすものである。ただし、
この酸化皮膜は厚くなりすぎると金型表面の肌あれをま
ねき逆効果となるが、Coは酸化皮膜の形成速度や厚み
を抑える効果を持つ。本発明鋼のようにSi量の少ない
鋼の場合酸化皮膜が厚くなり過ぎ易いため、Coの添加
は、保護酸化皮膜特性の向上に特に有効である。Coは
上記効果を付与するために添加するが、多すぎると靭性
を低下させるので5.00%以下とし、低すぎると上記添加
の効果が得られないので0.30%以上とする。Co forms an extremely dense protective oxide film with good adhesion at the time of temperature rise during use, thereby preventing metal contact with a counterpart material, preventing a rise in the temperature of the mold surface and providing excellent properties. This results in high abrasion resistance. However,
If this oxide film is too thick, it may cause the rough surface of the mold surface to have the opposite effect, but Co has the effect of suppressing the formation speed and thickness of the oxide film. In the case of steel having a small amount of Si, such as the steel of the present invention, the oxide film tends to be too thick. Therefore, the addition of Co is particularly effective for improving the properties of the protective oxide film. Co is added to impart the above-mentioned effects, but if it is too large, the toughness is reduced, so the content is made 5.00% or less. If it is too low, the effect of the above-mentioned addition is not obtained, so it is made 0.30% or more.
【0010】[0010]
【実施例】以下、本発明を実施例に基づき詳細に説明す
る。表1にテストに供した本発明鋼および比較鋼の化学
組成を示す。表1において、比較鋼1はJISSKD6
1であり、比較鋼3は成分的には特開昭60−5605
5号に開示されたその実施例の一つを狙って吹製したも
のであり、同公報の特許請求の範囲に含まれるととも
に、同60−59053号、同61−213348号、
同61−213349号の請求範囲にも含まれる熱間工
具鋼である。また、比較鋼5〜8は、Si含有量を各レ
ベルとするが、Si<(17.8/Cr)-3.3を満足しないもの
である。図1は、表1の各試料を1020℃加熱後、油焼入
れまたは半冷15min焼入後、焼もどし温度を変えて、HRC
46からHRC54の各硬さとなるごとく焼もどしを行なった
場合の硬さとシャルピー衝撃値の関係を示す。なお、半
冷 15min焼入とは、焼入温度(1020℃)と室温(20℃)との
中間温度520℃までを15minで降温する処理を意味する。
なお、試験片は2mm深さのUノッチ試験片である。半冷1
5min焼入で、衝撃試験を行なう理由は、実際の金型を冷
却する場合、寸法が比較的大きい場合、実際の焼入冷却
速度は、同じように処理した試験片より小さくなり、ま
た、熱間工具鋼の靭性値は、焼入冷却速度に影響を受け
やすいためである。SKD61の油焼入れの衝撃値は、
HRC50を越える硬さで、急激な低下をまねき、また半冷1
5min、焼入れの衝撃値は、完全焼入状態である油焼入れ
に比べて大幅に低い。比較鋼2は、油焼入れの衝撃値が
SKD61に比べ高く、かつ焼入冷却速度が小さくなっ
たときも(半冷15min)靭性値の低下が大幅に少ない。こ
れは主にNiの添加の焼入性向上効果によるものであ
る。しかし、該比較鋼1の場合も、HRC50以上の硬さで
急激な衝撃値の低下が見られる。比較鋼3の油焼入れの
衝撃値は、比較鋼1(SKD61)のそれと比較して高
い。比較鋼3は比較鋼1(SKD61)の含有Si量を
低減させたものであり、SKD61に比べ靭性値が高
い。またHRC50を越えた硬さでの衝撃値の低下が緩やか
である。なお、該鋼は前述のように、特開昭60−56
055号の実施例の一つを狙成分として吹製したもので
あるが、該公報には、HRC46での衝撃値の記載はある
が、HRC50以上の衝撃値の記載はない。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. Table 1 shows the chemical compositions of the steels of the present invention and the comparative steels subjected to the test. In Table 1, comparative steel 1 is JIS SKD6
Comparative steel 3 is disclosed in JP-A-60-5605.
No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5, No. 5 and No. 5, No. 5, No. 5, No.
It is a hot tool steel included in the claims of JP-A-61-213349. The comparative steels 5 to 8 have the Si content at each level, but do not satisfy Si <(17.8 / Cr) -3.3. Figure 1 shows that each sample in Table 1 was heated at 1020 ° C, oil quenched or semi-cooled for 15 minutes, then tempered, and HRC was changed.
The relationship between the hardness and the Charpy impact value when tempering is performed to the respective hardnesses of 46 to HRC 54 is shown. Here, the semi-cooling quenching for 15 minutes means a treatment in which the temperature is lowered to an intermediate temperature of 520 ° C. between the quenching temperature (1020 ° C.) and room temperature (20 ° C.) in 15 minutes.
The test piece is a U-notch test piece having a depth of 2 mm. Half cold 1
The reason for performing the impact test with 5 min quenching is that when the actual mold is cooled, when the dimensions are relatively large, the actual quenching cooling rate is lower than the specimen treated in the same way, and This is because the toughness value of the inter-tool steel is easily affected by the quenching cooling rate. The impact value of oil quenching of SKD61 is
Hardness exceeding HRC50, causing a sharp drop, and semi-cool 1
The impact value of quenching for 5 min is significantly lower than that of oil quenching which is in a completely quenched state. In Comparative Steel 2, the impact value of oil quenching is higher than that of SKD61, and when the quenching cooling rate is reduced (semi-cooled 15 min), the decrease in toughness is significantly small. This is mainly due to the hardenability improving effect of the addition of Ni. However, also in the case of the comparative steel 1, a sharp drop in impact value is observed at a hardness of HRC 50 or more. The impact value of oil quenching of Comparative Steel 3 is higher than that of Comparative Steel 1 (SKD61). Comparative steel 3 has a reduced Si content in comparative steel 1 (SKD61), and has a higher toughness value than SKD61. In addition, the drop in impact value at a hardness exceeding HRC50 is moderate. Incidentally, as described above, the steel is disclosed in
In this publication, one of the examples of No. 055 was blown as a target component. In this publication, the impact value of HRC46 is described, but the impact value of HRC50 or more is not described.
【0011】図2に、本発明鋼1,2,3,4の半冷15
min焼入れの衝撃値を、比較例2,4のそれと比較して
示す。比較鋼2は同4に比し、前述のようにNi添加に
よる焼入性向上により半冷15minの衝撃値向上が図られ
ているが、Si<(18.7/Cr)-3.3を満足していないた
め、HRC50またはそれ以上の高硬度での衝撃値低下が急
峻である。これに対し、本発明鋼1,2,3,4および
比較鋼4は、上記SiとCrとの関係式を満足するからこ
の低下が緩やかである。なお、本発明鋼3は高温強度付
与のため、MoやVの添加量を多めとしたため衝撃値が
比較鋼4と同程度であるが、後に述べるヒートクラック
発生寿命が大きいことに特徴を持つ。特に、被加工材の
溶湯温度の高いダイカスト金型や、被加工材との接触時
間の長い鍛造金型など、型面の昇温温度が高い用途の場
合、高温強度を付与するW,Mo, V量を多めとする。
これに応じて、衝撃値の絶対値は低下する傾向を示す
が、硬さの上昇にともなう急激な衝撃値の低下は認めら
れない。FIG. 2 shows a semi-cooled steel 15 of the invention steels 1, 2, 3, and 4.
The impact values of min quenching are shown in comparison with those of Comparative Examples 2 and 4. Compared with Comparative Steel 2, the impact value of semi-cooled 15 min was improved by the hardenability by adding Ni as described above, but did not satisfy Si <(18.7 / Cr) -3.3. Therefore, the drop in impact value at a high hardness of HRC50 or more is sharp. On the other hand, the steels 1, 2, 3, and 4 of the present invention and the comparative steel 4 satisfy the above-mentioned relational expression between Si and Cr, and therefore this decrease is gradual. The steel 3 of the present invention has the same impact value as that of the comparative steel 4 because Mo and V are added in a large amount to impart high-temperature strength, but is characterized by a long heat crack generation life described later. Particularly, in applications where the temperature of the mold surface is high, such as a die casting mold having a high molten metal temperature of a work material or a forging mold having a long contact time with the work material, W, Mo, which impart high-temperature strength are used. Increase the V amount.
Accordingly, the absolute value of the impact value tends to decrease, but no sharp decrease in the impact value with an increase in hardness is observed.
【0012】次にCrとSi量の設定のために行なった実
験結果を図3に示す。該図は表1の比較鋼、本発明鋼数
例ずつについて、Si,Cr含有量をプロットするととも
に、その半冷15min焼入れ後焼もどしにより硬さHRC52と
したときのシャルピー衝撃値を添字で表したものであ
る。なお、図中で本7は本発明鋼7を、同様に比1は比
較鋼1を示す。前述のようにCrは焼入性を向上させる
元素であるので、焼入性が問題となる大寸法の金型材に
ついては、多めに添加する。しかし、この場合、「作用」
の項に述べたような焼もどし炭化物の析出分布、挙動に
影響するため、これに応じてSi量を設定する必要が生
じる。図3に示す通り、半冷15min焼入れで、焼もどし
硬さHRC52とした場合、Cr,Si量がともに高い場合の衝
撃値は低い(例;比較鋼8)。またCr量が高い場合、S
i量が低めであっても衝撃値の低下をまねく(例;比較鋼
5)のに対し、Cr量が比較的低い場合は、ある程度のS
iを含有しても衝撃値は比較的高い(例;本発明鋼7)。
過度のSi量の低減は、耐酸化性不足にともなう金型表
面の肌あれや金型の切削工具などによる被加工性の低下
をまねくため、上記靭性の影響を配慮して必要とされる
Cr量に応じて、重量%でSi<(18.7/Cr)-3.3を満たす
程度に設定する。FIG. 3 shows the results of an experiment performed for setting the amounts of Cr and Si. The figure plots the Si and Cr contents of the comparative steel of Table 1 and several examples of the steel of the present invention, and shows the Charpy impact value when the hardness is HRC52 by quenching after semi-cooling for 15 min and tempering. It was done. In the figure, the reference numeral 7 indicates the inventive steel 7 and the ratio 1 indicates the comparative steel 1 in the same manner. As described above, Cr is an element that improves the hardenability, so that a large amount of a mold material having a problem of hardenability is added in a large amount. But in this case, the "action"
As described above, the precipitation distribution and behavior of the tempered carbide are affected, so that it is necessary to set the Si amount accordingly. As shown in FIG. 3, when the temper hardness is HRC52 after quenching in a semi-cooled state for 15 minutes, the impact value is low when both Cr and Si are high (Example: Comparative steel 8). When the Cr content is high, S
Even if the amount of i is low, the impact value is reduced (eg, comparative steel 5), whereas if the amount of Cr is relatively low, a certain amount of S
Even when i is contained, the impact value is relatively high (eg, Steel 7 of the present invention).
Excessive reduction of the amount of Si may lead to roughening of the mold surface due to insufficient oxidation resistance or a decrease in workability due to the cutting tool of the mold. Therefore, the Cr required in consideration of the influence of the above toughness is required. Depending on the amount, it is set so as to satisfy Si <(18.7 / Cr) -3.3 by weight%.
【0013】次に、熱間工具鋼において、実用性能上、
最も重要な耐ヒートクラック性のテストについて確認を
行なった結果を述べる。耐ヒートクラック性のテストに
ついては、ヒートクラック発生までの熱サイクル数N
と、このテストを前記熱サイクルの数Nの2倍まで継続
した時のクラックの最大深さDについて評価した。テス
ト仕様は、60mmφ×40mmの試験片の表面を600℃に急熱
した後、表面を20℃の水で急冷する操作を繰り返すもの
である。ヒートクラック発生までの熱サイクル数Nに
は、主に高温強度が、ヒートクラックの内部への進展
性、つまりクラック最大深さDに対しては、おもに靭性
値がそれぞれ関与するが、このほか工具表面の特性、と
くに耐酸化性が、酸化被膜の生成や成長のし易さの点
で、それぞれ耐ヒートクラック性に影響する。図4に、
本発明鋼、比較鋼の耐ヒートクラック性試験の結果を示
す。各データから、硬さを高めることにより、ヒートク
ラック発生までのサイクル数Nが明らかに増大すること
がわかる。また、比較鋼7は比較鋼1に比しMoを増量
して高温強度を高めたものであるが、これによってサイ
クル数Nが増大し、金型のヒートクラック寿命向上につ
ながることが伺われる。しかし、これは一面で硬さをHR
C52と高くした場合、ヒートクラックの進展深さが大き
くなることがわかる。アルミダイカスト型のような実用
金型で、SKD61をHRC52程度に調質し、鋳造を行な
った場合、熱サイクルによる熱応力の他に、型締め力等
の機械的応力が金型に作用するため、深く進展したヒー
トクラックを起点とした割損が起きやすい。このため、
小寸法の金型の例を除き、SKD61ではHRC50以下の
硬さで使用されているのが現状である。これに対し、図
4に示すように、本発明鋼では、HRC52まで硬さを高め
た場合でも、ヒートクラックの進展深さが小さい。本発
明鋼は、前記のようにHRC52の高い硬さでも、高い靭性
値を保持するため、実用金型に適用した例で、割損をま
ねいていない。Next, in hot tool steel, in terms of practical performance,
The results of confirmation of the most important heat crack resistance test will be described. Regarding the test for heat crack resistance, the number of heat cycles N until the heat crack occurs
And the maximum depth D of cracks when this test was continued up to twice the number N of the thermal cycles. The test specifications are such that the operation of rapidly heating the surface of a 60 mmφ × 40 mm test piece to 600 ° C. and then rapidly cooling the surface with water at 20 ° C. is repeated. The number N of heat cycles to the occurrence of a heat crack is mainly related to the high-temperature strength, and the elongation to the inside of the heat crack, that is, the maximum depth D of the crack is mainly related to the toughness value. The properties of the surface, particularly the oxidation resistance, each affect the heat crack resistance in terms of the ease of forming and growing an oxide film. In FIG.
The results of the heat crack resistance test of the steel of the present invention and the comparative steel are shown. From each data, it can be seen that increasing the hardness clearly increases the number of cycles N until a heat crack occurs. The comparative steel 7 has a higher Mo strength than the comparative steel 1 and has an increased high-temperature strength. However, this indicates that the number of cycles N increases and this leads to an improvement in the heat crack life of the mold. But this is HR hardness on one side
It can be seen that when the temperature is increased to C52, the depth of development of the heat crack increases. When SKD61 is tempered to about HRC52 and cast using a practical die such as an aluminum die-casting die, mechanical stress such as mold clamping force acts on the die in addition to thermal stress due to heat cycle. In addition, breakage from a deeply developed heat crack is likely to occur. For this reason,
Except for small-sized molds, SKD61 is currently used with a hardness of HRC50 or less. On the other hand, as shown in FIG. 4, in the steel of the present invention, even when the hardness is increased to HRC52, the depth of heat crack propagation is small. The steel of the present invention retains a high toughness value even with the high hardness of HRC52 as described above. Therefore, the steel of the present invention is applied to a practical die and does not cause breakage.
【0014】上記のヒートクラック試験片に発生したヒ
ートクラックの断面形態を観察したところ、試験片の表
面およびクラックの開口部にも表面酸化が進行してお
り、本発明鋼5は、酸化被膜が特に厚く0.1mmであっ
た。これに対してCoを添加し、耐酸化性が改善された
本発明鋼11,12は、酸化被膜の厚みが0.04mmであ
り、クラック進展深さも小さく、耐ヒートクラック進展
性の改善効果が大きかった。Observation of the cross-sectional morphology of the heat crack generated on the above-mentioned heat crack test piece revealed that the surface of the test piece and the opening of the crack were also oxidized, and the steel 5 of the present invention had an oxide film. In particular, the thickness was 0.1 mm. On the other hand, the steels 11 and 12 of the present invention in which Co was added to improve the oxidation resistance had an oxide film thickness of 0.04 mm, a small crack propagation depth, and a large effect of improving the heat crack propagation resistance. Was.
【0015】[0015]
【発明の効果】以上に記述したように、本発明鋼は、熱
間用の金型として従来材料より高い硬さ、具体的にはHR
C50以上の硬さで割損をまねくことなく使用でき、ヒー
トクラック発生や摩耗の点で優れた使用寿命を与える金
型を製造することができる。しかも金型の使用中の金型
表面の酸化被膜の成長速度を抑え、肌あれやヒートクラ
ックの金型内部への進展が抑制され、この面からも優れ
た使用寿命を与えることができる。As described above, the steel of the present invention is higher in hardness than conventional materials as a hot die, specifically, HR.
With a hardness of C50 or more, it can be used without causing breakage, and it is possible to manufacture a mold that gives an excellent service life in terms of heat crack generation and wear. Moreover, the growth rate of the oxide film on the surface of the mold during use of the mold is suppressed, and the development of rough skin and heat cracks into the inside of the mold is suppressed.
【図1】比較鋼1〜3の油焼入れと半冷 15min焼入れ
後、各硬さに焼もどしした場合の、シャルピー衝撃値の
焼もどし硬さに対する変化の挙動を示した図である。FIG. 1 is a view showing the behavior of a change in Charpy impact value with respect to tempering hardness when oil hardness and half-cooling of Comparative Steels 1 to 3 are quenched for 15 minutes, and then tempered to each hardness.
【図2】本発明鋼1,2,3,4および比較鋼2,4の
半冷15min焼入れ後、各硬さに焼もどしした場合の、シ
ャルピー衝撃値を示す図である。FIG. 2 is a view showing Charpy impact values when the steels of the present invention 1, 2, 3, 4 and comparative steels 2, 4 are quenched for 15 minutes and then tempered to respective hardnesses.
【図3】本発明鋼1,4,5,6,8,9,10と比較
鋼1,2,5,6,7,8のそれぞれの半冷15min焼入
れ後、焼もどし硬さHRC52としたときのシャルピー衝撃
値を、各鋼の含有Si,Cr量で整理した図である。[FIG. 3] After quenching each of the inventive steels 1, 4, 5, 6, 8, 9, 10 and comparative steels 1, 2, 5, 6, 7, 8 for half a minute for 15 minutes, the tempered hardness was HRC52. FIG. 4 is a diagram in which the Charpy impact values at the time are arranged by the amounts of Si and Cr contained in each steel.
【図4】本発明鋼1,2,5,6,11,12および比
較鋼1,7についての耐ヒートクラック性試験結果を示
す図である。FIG. 4 is a view showing the results of a heat crack resistance test on the steels of the present invention 1, 2, 5, 6, 11, 12 and comparative steels 1, 7.
【表1】 [Table 1]
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 9/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 9/00
Claims (4)
Si 1.00%以下、Mn0.1〜1.5%、Ni 0.1〜1.5%、Cr 4.
35〜5.65%、WとMoを1種または2種で1/2W+Mo 1.5
〜3.5%、V 0.5〜1.5%で、かつSi,Cr量がSi<(18.7/
Cr)-3.3の関係式を満たし、残部Feおよび不可避的不
純物からなり、焼入れ焼もどし硬さHRC50以上で使用す
ることを特徴とする熱間工具鋼。(1) more than 0.35% C and less than 0.45% by weight,
Si 1.00% or less, Mn 0.1-1.5%, Ni 0.1-1.5%, Cr 4.
35 to 5.65%, 1/2 W + Mo 1.5 with one or two types of W and Mo
~ 3.5%, V 0.5 ~ 1.5%, and the amount of Si and Cr is Si <(18.7 /
A hot work tool steel which satisfies the relational expression of (Cr) -3.3, is composed of a balance of Fe and inevitable impurities, and is used for quenching and tempering hardness of HRC50 or more.
Si 1.00%以下、Mn0.1〜1.5%、Ni 0.1〜1.5%、Cr 4.
35〜5.65%、WとMoを1種または2種で1/2W+Mo 1.5
〜3.5%、V 0.5〜1.5%、Co 0.3〜5.0%で、かつSi,Cr
量がSi<(18.7/Cr)-3.3の関係式を満たし、残部Feお
よび不可避的不純物からなり、焼入れ焼もどし硬さ HRC
50以上で使用することを特徴とする熱間工具鋼。2. In% by weight, more than 0.35% of C and less than 0.45%,
Si 1.00% or less, Mn 0.1-1.5%, Ni 0.1-1.5%, Cr 4.
35 to 5.65%, 1/2 W + Mo 1.5 with one or two types of W and Mo
~ 3.5%, V 0.5 ~ 1.5%, Co 0.3 ~ 5.0%, and Si, Cr
The amount satisfies the relational expression of Si <(18.7 / Cr) -3.3, and the balance is composed of Fe and unavoidable impurities.
Hot work tool steel characterized by being used in 50 or more.
Si 0.1%を越え1.00%以下、Mn 0.1〜1.5%、Ni 0.1〜
1.5%、Cr 4.35〜5.5%、WとMoを1種または2種で1/2
W+Mo 1.5〜3.5%、V 0.5〜1.5%で、かつSi,Cr量が
Si<(18.7/Cr)-3.3の関係式を満たし、残部Feおよび
不可避的不純物からなり、焼入れ焼もどし硬さ HRC50以
上で使用することを特徴とする熱間工具鋼。3. In% by weight, more than 0.35% of C and less than 0.45%,
Si over 0.1% and below 1.00%, Mn 0.1-1.5%, Ni 0.1-
1.5%, Cr 4.35-5.5%, W and Mo are 1/2 by 1 or 2 types
W + Mo 1.5 to 3.5%, V 0.5 to 1.5%, Si and Cr contents satisfy the relational expression of Si <(18.7 / Cr) -3.3, and the balance consists of Fe and unavoidable impurities, and has a quenching and tempering hardness of HRC50 or more Hot tool steel characterized by being used in:
Si 0.1%を越え1.00%以下、Mn 0.1〜1.5%、Ni 0.1〜
1.5%、Cr 4.35〜5.5%、WとMoを1種または2種で1/2
W+Mo 1.5〜3.5%、V 0.5〜1.5%、Co 0.3〜5.0%で、
かつSi,Cr量がSi<(18.7/Cr)-3.3の関係式を満た
し、残部Feおよび不可避的不純物からなり、焼入れ焼
もどし硬さ HRC50以上で使用することを特徴とする熱間
工具鋼。4. The composition according to claim 1, wherein the weight percentage is more than 0.35% and less than 0.45%.
Si over 0.1% and below 1.00%, Mn 0.1-1.5%, Ni 0.1-
1.5%, Cr 4.35-5.5%, W and Mo are 1/2 by 1 or 2 types
W + Mo 1.5-3.5%, V 0.5-1.5%, Co 0.3-5.0%,
A hot work tool steel characterized by the fact that the amounts of Si and Cr satisfy the relational expression of Si <(18.7 / Cr) -3.3, the balance being Fe and unavoidable impurities, and the use of the steel with a quench and temper hardness of HRC50 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09942991A JP3191008B2 (en) | 1991-04-04 | 1991-04-04 | Hot tool steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09942991A JP3191008B2 (en) | 1991-04-04 | 1991-04-04 | Hot tool steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04308059A JPH04308059A (en) | 1992-10-30 |
JP3191008B2 true JP3191008B2 (en) | 2001-07-23 |
Family
ID=14247208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09942991A Expired - Lifetime JP3191008B2 (en) | 1991-04-04 | 1991-04-04 | Hot tool steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3191008B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007032804B3 (en) * | 2007-07-10 | 2008-09-04 | V&M Deutschland Gmbh | Forging mandrel for hot-forging of tubular work-pieces made of metal has a mandrel body made from heat-resistant material and a mandrel rod |
WO2010074017A1 (en) * | 2008-12-25 | 2010-07-01 | 日立金属株式会社 | Steel tempering method |
JP2023122766A (en) | 2022-02-24 | 2023-09-05 | 大同特殊鋼株式会社 | Mold steel and metal mold |
-
1991
- 1991-04-04 JP JP09942991A patent/JP3191008B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04308059A (en) | 1992-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5929963B2 (en) | Hardening method of steel | |
JP5843173B2 (en) | Manufacturing method of cold working mold | |
KR20190115423A (en) | Steel for mold, and mold | |
US20080264526A1 (en) | Hot working die steel for die-casting | |
JP4269293B2 (en) | Steel for mold | |
JP7172275B2 (en) | Hot stamping die steel, hot stamping die and manufacturing method thereof | |
WO2021187484A1 (en) | Steel for hot working die, die for hot working, and manufacturing method for same | |
JP2000226635A (en) | Hot tool steel excellent in high temperature strength and toughness | |
JP3191008B2 (en) | Hot tool steel | |
JP2001089826A (en) | Hot working tool steel excellent in wear resistance | |
JP5212772B2 (en) | Hot work tool steel with excellent toughness and high temperature strength | |
JP2001158937A (en) | Tool steel for hot working, method for producing same and method for producing tool for hot working | |
JPH0688166A (en) | Die for hot working excellent in heat cracking resistance | |
JP2959319B2 (en) | Hot forging die steel | |
KR102550394B1 (en) | Hot work tool steels and hot work tools | |
JP3780690B2 (en) | Hot work tool steel with excellent machinability and tool life | |
JP2755301B2 (en) | Tool steel for hot working | |
JPS62149852A (en) | Tool steel for hot working | |
JP5061455B2 (en) | Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes | |
JP2009221594A (en) | Hot-working tool steel having excellent toughness | |
JP2001073087A (en) | Nitrided die for warm and hot working, excellent in wear resistance | |
JPH06145884A (en) | Die for hot working excellent in plastic flow resistance | |
US4116685A (en) | Tool steel for warm and hot working | |
JP3196901B2 (en) | Steel for aluminum extrusion dies | |
JP2001214238A (en) | Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090525 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100525 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |