Nothing Special   »   [go: up one dir, main page]

JP3004053B2 - Method for producing N-substituted aziridine compound and catalyst - Google Patents

Method for producing N-substituted aziridine compound and catalyst

Info

Publication number
JP3004053B2
JP3004053B2 JP3510767A JP51076791A JP3004053B2 JP 3004053 B2 JP3004053 B2 JP 3004053B2 JP 3510767 A JP3510767 A JP 3510767A JP 51076791 A JP51076791 A JP 51076791A JP 3004053 B2 JP3004053 B2 JP 3004053B2
Authority
JP
Japan
Prior art keywords
group
catalyst
reaction
general formula
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3510767A
Other languages
Japanese (ja)
Inventor
斉 矢野
公男 有吉
由治 嶋崎
陸男 植嶋
英昭 常木
秀樹 正田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP3510767A priority Critical patent/JP3004053B2/en
Priority claimed from PCT/JP1991/000835 external-priority patent/WO1991019696A1/en
Application granted granted Critical
Publication of JP3004053B2 publication Critical patent/JP3004053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【技術分野】【Technical field】

本発明はN置換アルカノールアミンを触媒の存在下、
気相分子内脱水反応してN置換アジリジン化合物を製造
する新規な方法および触媒に関する。 N置換アジリジン化合物は歪の大きい複素三員環を有
する環式アミンであり、開環反応性とアミンとしての反
応性とを併せ持つことから、各種中間原料、アミン系ポ
リマーあるいは架橋剤の原料として非常に利用価値の高
い化合物である。
The present invention provides an N-substituted alkanolamine in the presence of a catalyst.
The present invention relates to a novel method and a catalyst for producing an N-substituted aziridine compound by a gas phase intramolecular dehydration reaction. N-substituted aziridine compounds are cyclic amines having a highly strained hetero three-membered ring, and have both ring-opening reactivity and reactivity as amines. It is a highly useful compound.

【背景技術】[Background Art]

N置換アジリジン化合物を製造する方法として下記の
方法が知られているが、これらの従来技術には各々下記
の問題が存在する。 イ) N置換エタノールアミンを硫酸エステルとした
後、濃アルカリで処理して閉環させ、N置換アジリジン
を製造する方法(ソ連特許第1,177,297号公報)。この
方法は、硫酸やアルカリなどのような副原料を多量に用
いるため生産性が低い上に、副原料に由来する利用価値
の低い無機塩が多量に副生する。 ロ) N置換エタノールアミンをジエトキシトリフェニ
ルホスホランを用いて分子内脱水反応し、N−置換アジ
リジン化合物に転化する方法(ジャーナルオブオーガニ
ックケミストリー51、(1986)、95−97)。この方法
は、ジエトキシトリフェニルホスホランが非常に高価で
ある上に、回収再利用が不可能であり、実用的な製造法
とはなり得ない。 ハ) アジリジンにエチレンオキサイドなどのようなエ
ポキシ基を有する化合物を付加反応させてN置換アジリ
ジンを製造する方法(米国特許3,166,590号公報)。こ
の方法では生成したN置換アジリジンにさらにエポキシ
化合物が逐次付加反応を起こす。従って、アジリジンを
かなり過剰に用いる必要があり、それでもエポキシ化合
物が2〜3モル付加した副生物の生成が避けられず、目
的物の収率が悪い。また、通常はアジリジンの重合を防
止するためアルカリを加える必要があるが、アルカリに
よってエポキシ化合物の重合が起こるという矛盾があ
る。即ち、製造に当たっては安全面と重合抑制面との妥
協点で操業することになる。 ニ) エチレンイミンをアルカリ金属触媒を用いて2量
化し、1−(2−アミノエチル)アジリジンを製造する
方法(米国特許3,502,654号公報)。この方法では触媒
が非常に危険なアルカリ金属であり、しかもアジリジン
の2量体以上の副生物も生成して目的物の収率が比較的
低い。 また、特に置換基の中にヒドロキシ基、アミノ基、ア
シル基などのような官能基を有するN置換アジリジン化
合物を目的物とする場合には、いずれの方法においても
反応が複雑になり、種々の副生物が副生する。 以上の様に、いずれの方法も工業的な生産という観点
からは全く満足できる製造法ではない。 本発明の目的は、前述した問題点を解決し、副原料を
使用することなく、N置換アルカノールアミンから高選
択的でかつ効率良くN置換アジリジン化合物を製造する
新規な方法を提供することにある。
The following methods are known as methods for producing an N-substituted aziridine compound, but each of these conventional techniques has the following problems. B) A method for producing an N-substituted aziridine by converting the N-substituted ethanolamine into a sulfate ester and then treating with a concentrated alkali to close the ring (US Pat. No. 1,177,297). In this method, since a large amount of auxiliary materials such as sulfuric acid and alkali are used, productivity is low, and in addition, inorganic salts derived from the auxiliary materials and having low utility value are produced in large amounts. B) A method of converting an N-substituted ethanolamine into an N-substituted aziridine compound by intramolecular dehydration reaction using diethoxytriphenylphosphorane (Journal of Organic Chemistry 51, (1986), 95-97). In this method, diethoxytriphenylphosphorane is very expensive, cannot be recovered and reused, and cannot be a practical production method. C) A method for producing an N-substituted aziridine by subjecting an aziridine to an addition reaction with a compound having an epoxy group such as ethylene oxide (US Pat. No. 3,166,590). In this method, an epoxy compound further causes a sequential addition reaction to the generated N-substituted aziridine. Therefore, it is necessary to use a large amount of aziridine, and it is still unavoidable to generate a by-product to which 2 to 3 moles of the epoxy compound has been added, and the yield of the desired product is poor. Usually, it is necessary to add an alkali to prevent the polymerization of aziridine, but there is a contradiction that the alkali causes polymerization of the epoxy compound. That is, in the production, the operation is performed at a compromise between safety and polymerization inhibition. D) A method for producing 1- (2-aminoethyl) aziridine by dimerizing ethyleneimine using an alkali metal catalyst (US Pat. No. 3,502,654). In this method, the catalyst is a very dangerous alkali metal, and a by-product of dimer or more of aziridine is also formed, so that the yield of the target product is relatively low. In particular, when an N-substituted aziridine compound having a functional group such as a hydroxy group, an amino group, or an acyl group in the substituent is intended, the reaction becomes complicated in any of the methods, and various methods are required. By-products are by-produced. As described above, none of the methods are completely satisfactory from the viewpoint of industrial production. An object of the present invention is to solve the above-mentioned problems and to provide a novel method for efficiently and efficiently producing an N-substituted aziridine compound from an N-substituted alkanolamine without using an auxiliary material. .

【発明の開示】DISCLOSURE OF THE INVENTION

本発明者らは、新規なN置換アジリジン化合物の製造
方法について鋭意検討した結果、N置換エタノールアミ
ンを、触媒の存在下、気相で分子内脱水反応させること
により、高選択的にN置換アジリジン化合物を製造し得
ることを見い出し、本発明に至った。即ち本発明は、一
般式(I) (式中、R1、R2、R3およびR4は各々独立して水素原子お
よび炭素数1〜4のアルキル基の中から選ばれる1種で
あり、Xは炭素数1〜4のアルキル基、シクロヘキシル
基、フエニル基、ベンジル基、炭素数1〜4のヒドロキ
シアルキル基および炭素数1〜4のアミノアルキル基の
中から選ばれる1種である) で表されるN置換アルカノールアミンを、触媒の存在
下、反応圧力5〜250mmHg(絶対圧)、反応温度300〜50
0℃の条件で、気相分子内脱水反応せしめることを要旨
とする一般式(II) (式中のR1、R2、R3、R4およびXは式(I)と同じ) で表されるN置換アジリジン化合物の製造方法である。
本発明によれば置換基Xが反応性官能基であるアミノ基
や水酸基を有する場合であっても、副反応を抑え、置換
基を変化させることなく、高選択的にN置換アジリジン
化合物を製造することができる。しかも、副原料を全く
用いる必要がないことから経済的にも非常に有利な方法
である。以下に本発明を詳しく説明する。 本発明者らはN置換アジリジン化合物の製造法につい
て鋭意検討した結果、N置換アルカノールアミンを触媒
の存在下、気相分子内脱水反応させることによりN置換
アジリジン化合物を製造し得ることを見いだし、本発明
を完成するに至った。 本発明において原料として用いられる前記一般式
(I)で表されるN置換アルカノールアミンは具体的に
例示すると、N−メチルエタノールアミン、N−エチル
エタノールアミン、N−ブチルエタノールアミンなどの
ようなアミノ基がアルキル基で置換されたN置換アルカ
ノールアミン;ジエタノールアミン、N−(2−アミノ
エチル)エタノールアミン、N−アセチルエタノールア
ミンなどのようなアミノ基が官能基を有する基で置換さ
れたN置換アルカノールアミン;などが挙げられる。本
発明の方法によって、これらのN置換アルカノールアミ
ンから対応する前記一般式(II)で表されるN置換アジ
リジン化合物が得られる。 本発明に使用される触媒としては、リン系触媒やケイ
素系触媒が好適である。 リン系触媒としては一般式XaPbMcOd(ここで、Xは周
期律表のIII A族元素、IV A族元素、V A族元素、I族な
いしVIII族の遷移金属元素、ランタニド元素およびアク
チニド元素の中から選ばれる少なくとも1種の元素、P
はリン、Mはアルカリ金属元素およびアルカリ土類金属
元素の中から選ばれる少なくとも1種の元素、Oは酸素
を表す。また、添字a、b、cおよびdは各元素の原子
数の比を表し、a=1のとき、b=0.01〜6(好ましく
は0.1〜3)、c=0.01〜3(好ましくは0.05〜2)で
あり、dはa、bおよびcの値および各構成元素の結合
状態によって定まる数値である)で表される組成物が推
奨される。 ケイ素系の触媒としては一般式SiaMbYcOd(ここで、S
iはケイ素、Mはアルカリ金属元素およびアルカリ土類
金属元素の中から選ばれる少なくとも1種の元素、Yは
ホウ素、アルミニウム、チタン、ジルコニウム、スズ、
亜鉛およびセリウムの中から選ばれる少なくとも1種の
元素、Oは酸素を表す。また、添字a、b、cおよびd
は各元素の原子数の比を表しa=1のときb=0.005〜
1(好ましくは0.01〜6)、c=0.005〜1(好ましく
は0.005〜0.2)であり、dはa、bおよびcの値および
構成元素の結合状態によって定まる数値である)で表さ
れる組成物が推奨される。 本発明の実施にあたり、反応器は固定床型および流動
床型のいずれも使用できるが固定床型が好ましい。反応
圧は常圧、加圧または減圧のいずれでも行うことができ
る。原料N置換エタノールアミンは必要に応じて窒素、
アルゴン等のような不活性ガスで希釈する事も可能で、
また、場合によっては副反応を抑える目的でアンモニア
あるいは水等をN置換エタノールアミンと共に供給する
こともできる。 不活性ガスで希釈して反応させる場合の反応条件とし
ては、一般的には、N置換エタノールアミンの濃度が1
〜30容量%、反応温度が300〜500℃、より好ましくは35
0〜450℃の範囲内、原料ガスの空間速度が10〜10000hr
−1(STP)、より好ましくは50〜5000hr−1(STP)の
範囲内であることが好ましい。N置換エタノールアミン
の濃度が高すぎると収率の低下を招き、低すぎると生産
性が悪くなる。反応温度が高すぎると触媒上に炭素状析
出物が急速に蓄積して触媒の寿命が短くなるうえ、副反
応が多くなって収率が低下するうえ、装置、用役の面で
も不利である。一方、反応温度が低すぎても活性が不十
分となって収率の低下を招く。空間速度が小さすぎると
反応器が大きくなるうえに生産性が低く、また大きすぎ
るとガスの流量が大きすぎて触媒層の圧力損失が大きく
なり、反応が円滑に進行せずに転化率が低下して収率低
下につながる。触媒の層長は空間速度が大きい場合は圧
力損失が大きくなって入口圧が高くなってしまうので、
余り長くしない方が好ましい。 しかし、不活性ガスなどを用いると生成したN置換ア
ジリジン化合物が不活性ガスに同伴して捕集できずに失
われる可能性がある。また、大量の不活性ガスを消費す
るためその費用も大きなものになり、不活性ガスを回収
して循環使用する場合には工程が複雑になり設備費が高
くなる。その点、実質的に不活性ガスなどを用いずにN
置換エタノールアミン濃度100%で反応させる方法が好
ましい。この場合の反応条件としては、一般的には、反
応圧力が5〜250mmHg(絶対圧)、反応温度が300〜450
℃、空間速度が50〜500hr−1(STP)の範囲内であるこ
とが好ましい。反応圧力が低すぎると反応生成物を充分
に捕集するのが困難になり、また減圧装置の負荷が大き
くなって設備的にも不利である。反応温度や空間速度に
ついては前述したと同様である。 より最適な反応条件は原料N置換アルカノールアミン
の種類により異なる。また、N置換アルカノールアミン
の転化率を多少落としても選択率を上げて未反応原料を
回収し再利用するのか、未反応原料の回収をせずに1パ
スの収率を上げるのかなどの製造方針によっても異なっ
てくる。一般には、本発明が対象とするN置換アルカノ
ールアミンの製造は小規模生産になるので、後者の方針
がとられる。次に、前記一般式(I)で表されるN置換
アルカノールアミンのタイプ毎に、より収率よく製造す
るために好適な反応条件について述べる。 式(I)中のXが炭素数1〜4のアルキル基、シクロ
ヘキシル基,フェニル基またはベンジル基の場合、反応
圧力が10〜250mmHg(絶対圧)、反応温度が300〜450
℃、空間速度が50〜500hr−1(STP)の範囲内で気相分
子内脱水反応させるのが好ましい。 式(I)中のXが炭素数1〜4のヒドロキシアルキル
基,炭素数1〜4のアミノアルキル基または炭素数1〜
4のアシル基の場合、この種のN置換アルカノールアミ
ンは反応性の高い官能基を併せて少なくとも3個有する
ので反応が複雑になる。例えば、N−(2−アミノエチ
ル)エタノールアミンでは、目的物の1−(2−アミノ
シエチル)アジリジンの他にピペラジンが副生し、触媒
の組成と反応条件を適切に選ばないと副生成物のピペラ
ジンが大量に生成してしまう。また、例えばジエタノー
ルアミンではOH基同士の分子内脱水反応によるモルホリ
ンは生成しにくいが、反応性が高いので分子間反応も含
めた種々の副反応が起こり易くなり、1−(2−ヒドロ
キシエチル)アジリジンの選択率が低下する。更に、原
料の沸点が高いうえに、反応生成物中に未反応原料と沸
点が近い多種類の副生成物が含まれることから、未反応
原料を回収することが非常に困難である。従って、これ
らのN置換アジリジン化合物を製造する場合は、特に、
N置換アルカノールアミンの転化率を高くして1パスの
収率を上げる方が有利である。そのため、反応圧力が5
〜50mmHg(絶対圧)、反応温度が300〜450℃、空間速度
が50〜500hr−1(STP)の範囲内の条件で気相分子内脱
水反応させるのが好ましい。
The present inventors have conducted intensive studies on a method for producing a novel N-substituted aziridine compound. As a result, the N-substituted aziridine compound is highly selectively N-substituted aziridine by subjecting an N-substituted ethanolamine to an intramolecular dehydration reaction in the gas phase in the presence of a catalyst. It has been found that a compound can be produced, which has led to the present invention. That is, the present invention provides a compound represented by the general formula (I): (Wherein R 1 , R 2 , R 3 and R 4 are each independently one selected from a hydrogen atom and an alkyl group having 1 to 4 carbon atoms, and X is an alkyl group having 1 to 4 carbon atoms. A cyclohexyl group, a phenyl group, a benzyl group, a hydroxyalkyl group having 1 to 4 carbon atoms and an aminoalkyl group having 1 to 4 carbon atoms). In the presence of a catalyst, reaction pressure 5-250 mmHg (absolute pressure), reaction temperature 300-50
General formula (II) which is intended to have a gas phase intramolecular dehydration reaction at 0 ° C (Wherein R 1 , R 2 , R 3 , R 4 and X are the same as in the formula (I)).
According to the present invention, even when the substituent X has an amino group or a hydroxyl group that is a reactive functional group, a side reaction is suppressed, and the N-substituted aziridine compound is highly selectively produced without changing the substituent. can do. In addition, since there is no need to use any auxiliary materials, this method is very economically advantageous. Hereinafter, the present invention will be described in detail. The present inventors have conducted intensive studies on a method for producing an N-substituted aziridine compound and found that an N-substituted aziridine compound can be produced by subjecting an N-substituted alkanolamine to a gas phase intramolecular dehydration reaction in the presence of a catalyst. The invention has been completed. Specific examples of the N-substituted alkanolamine represented by the general formula (I) used as a raw material in the present invention include amino acids such as N-methylethanolamine, N-ethylethanolamine, and N-butylethanolamine. N-substituted alkanolamine in which the group is substituted with an alkyl group; N-substituted alkanol in which the amino group is substituted with a group having a functional group such as diethanolamine, N- (2-aminoethyl) ethanolamine, N-acetylethanolamine and the like Amines; and the like. According to the method of the present invention, a corresponding N-substituted aziridine compound represented by the general formula (II) is obtained from these N-substituted alkanolamines. As the catalyst used in the present invention, a phosphorus-based catalyst or a silicon-based catalyst is suitable. As the phosphorus-based catalyst, a general formula XaPbMcOd (where X is a group selected from the group IIIA, group IVA, group VA, group I or group VIII transition metal, lanthanide and actinide elements of the periodic table) At least one selected element, P
Represents phosphorus, M represents at least one element selected from an alkali metal element and an alkaline earth metal element, and O represents oxygen. The subscripts a, b, c and d represent the ratio of the number of atoms of each element. When a = 1, b = 0.01 to 6 (preferably 0.1 to 3) and c = 0.01 to 3 (preferably 0.05 to 3). 2), and d is a numerical value determined by the values of a, b, and c and the bonding state of each constituent element). As a silicon-based catalyst, the general formula SiaMbYcOd (where S
i is silicon, M is at least one element selected from alkali metal elements and alkaline earth metal elements, Y is boron, aluminum, titanium, zirconium, tin,
O represents at least one element selected from zinc and cerium, and represents oxygen. Also, subscripts a, b, c and d
Represents the ratio of the number of atoms of each element, and when a = 1, b = 0.005-
1 (preferably 0.01 to 6), c = 0.005 to 1 (preferably 0.005 to 0.2), and d is a value determined by the values of a, b, and c and the bonding state of the constituent elements. Things are recommended. In carrying out the present invention, the reactor may be any of a fixed bed type and a fluidized bed type, but a fixed bed type is preferred. The reaction pressure can be normal, increased or reduced pressure. The raw material N-substituted ethanolamine is optionally nitrogen,
It is also possible to dilute with an inert gas such as argon,
In some cases, ammonia or water may be supplied together with the N-substituted ethanolamine for the purpose of suppressing side reactions. As a reaction condition when the reaction is carried out by diluting with an inert gas, generally, the concentration of the N-substituted ethanolamine is 1
~ 30% by volume, the reaction temperature is 300 ~ 500 ℃, more preferably 35 ~
In the range of 0 to 450 ° C, the space velocity of the source gas is 10 to 10,000 hours
-1 (STP), more preferably in the range of 50 to 5000 hr-1 (STP). If the concentration of the N-substituted ethanolamine is too high, the yield will decrease, and if it is too low, the productivity will deteriorate. If the reaction temperature is too high, carbonaceous deposits will rapidly accumulate on the catalyst, shortening the life of the catalyst, increasing the number of side reactions and reducing the yield, and is disadvantageous in terms of equipment and utility. . On the other hand, if the reaction temperature is too low, the activity becomes insufficient and the yield is reduced. If the space velocity is too low, the reactor will be large and the productivity will be low.If it is too high, the gas flow rate will be too high and the pressure loss in the catalyst layer will increase, and the conversion will not proceed smoothly because the reaction will not proceed smoothly. This leads to a decrease in yield. When the space velocity is large, the pressure loss increases and the inlet pressure increases when the space velocity is large.
It is preferable not to make it too long. However, when an inert gas or the like is used, the generated N-substituted aziridine compound may be lost due to entrainment with the inert gas. In addition, a large amount of inert gas is consumed, so that the cost becomes large. When the inert gas is recovered and recycled, the process becomes complicated and equipment cost increases. In that regard, N is substantially reduced without using an inert gas or the like.
A method in which the reaction is performed at a substituted ethanolamine concentration of 100% is preferred. The reaction conditions in this case are generally a reaction pressure of 5 to 250 mmHg (absolute pressure) and a reaction temperature of 300 to 450 mmHg.
C. and the space velocity are preferably in the range of 50 to 500 hr-1 (STP). If the reaction pressure is too low, it becomes difficult to sufficiently collect the reaction products, and the load on the pressure reducing device increases, which is disadvantageous in terms of equipment. The reaction temperature and space velocity are the same as described above. More optimal reaction conditions vary depending on the type of the starting N-substituted alkanolamine. In addition, even if the conversion of the N-substituted alkanolamine is slightly lowered, the selectivity is increased to recover and reuse the unreacted raw material, or to increase the yield of one pass without recovering the unreacted raw material. It depends on your policy. In general, the production of N-substituted alkanolamines to which the present invention is directed is a small-scale production, so the latter is adopted. Next, suitable reaction conditions for producing the N-substituted alkanolamine represented by the general formula (I) in higher yield will be described. When X in the formula (I) is an alkyl group having 1 to 4 carbon atoms, a cyclohexyl group, a phenyl group or a benzyl group, the reaction pressure is 10 to 250 mmHg (absolute pressure) and the reaction temperature is 300 to 450.
It is preferable to carry out a gas phase intramolecular dehydration reaction at a temperature of 50 ° C. and a space velocity of 50 to 500 hr −1 (STP). X in the formula (I) is a hydroxyalkyl group having 1 to 4 carbon atoms, an aminoalkyl group having 1 to 4 carbon atoms, or 1 to 4 carbon atoms.
In the case of the acyl group of 4, the reaction becomes complicated because this kind of N-substituted alkanolamine has at least three functional groups having high reactivity. For example, in the case of N- (2-aminoethyl) ethanolamine, piperazine is by-produced in addition to 1- (2-aminosilethyl) aziridine, which is a target product, and if the composition of the catalyst and the reaction conditions are not appropriately selected, the by-products Piperazine is produced in large quantities. Further, for example, in diethanolamine, morpholine is hardly produced by an intramolecular dehydration reaction between OH groups, but since reactivity is high, various side reactions including an intermolecular reaction are likely to occur, and 1- (2-hydroxyethyl) aziridine is obtained. Selectivity decreases. Furthermore, it is very difficult to recover the unreacted raw material because the raw material has a high boiling point and the reaction product contains various types of by-products having a boiling point close to that of the unreacted raw material. Therefore, when producing these N-substituted aziridine compounds,
It is advantageous to increase the conversion of the N-substituted alkanolamine to increase the yield in one pass. Therefore, the reaction pressure is 5
It is preferable to carry out a gas phase intramolecular dehydration reaction under the conditions of 5050 mmHg (absolute pressure), a reaction temperature of 300 to 450 ° C., and a space velocity of 50 to 500 hr-1 (STP).

【産業上の利用可能性】[Industrial applicability]

本発明の製造方法により、N置換アルカノールアミン
から高選択的にN置換アジリジン化合物を製造すること
ができる。 本発明は、新規な製造法により利用価値の高いN置換
アジリジン化合物を非常に効率良く製造することがで
き、工業化する上で非常に優れた製造法である。
According to the production method of the present invention, an N-substituted aziridine compound can be produced from an N-substituted alkanolamine with high selectivity. INDUSTRIAL APPLICABILITY The present invention is capable of producing a highly useful N-substituted aziridine compound with high efficiency by a novel production method, and is a very excellent production method for industrialization.

【発明を実施するための最良の形態】BEST MODE FOR CARRYING OUT THE INVENTION

以下実施例によって本発明を詳しく説明する。なおN
置換アルカノールアミンの転化率、N置換アジリジン化
合物の選択率および収率は次の定義によった。 N置換アルカノールアミン転化率=反応に消費された
N置換アルカノールアミン(モル)/反応器に供給した
N置換アルカノールアミン(モル)×100 N置換アジリジン化合物選択率=生成したN置換アジ
リジン化合物(モル)/反応器に消費されたN置換アル
カノールアミン(モル)×100 N置換アジリジン化合物収率=生成したN置換アジリ
ジン化合物(モル)/反応器に供給したN置換アルカノ
ールアミン(モル)×100 <触媒調製> (1)A10.9Cd0.1P0.9なる組成の触媒の調製 硝酸アルミニウム9水塩168.8gおよび硝酸カドミウム
11.8gを水500mlに溶解し、85重量%リン酸51.9gを撹拌
しながら加えて加熱濃縮後120℃で12時間乾燥した。得
られた固形物を5〜9メッシュに破砕し、1000℃で焼成
して、酸素を除く原子比でA10.9Cd0.1P0.9なる組成の触
媒を得た。 (2)Si1Cs0.1Ca0.05B0.1なる組成の触媒の調製 炭酸セシウム16.3gおよび水酸化カルシウム3.7gを水5
00mlに加熱溶解し、次いでホウ酸6.2gおよびシリカゲル
60gを加えて撹拌しながら加熱濃縮後、120℃で15時間乾
燥した。得られた固形物を5〜9メッシュに破砕し、70
0℃で焼成して、酸素を除く原子比で、Si1Cs0.1Ca0.05B
0.1なる組成の触媒を得た。 (3)Cs0.9K0.1P0.8A10.01なる組成の触媒の調製 硝酸セシウム17.5g、水酸化カリウム0.56gおよび85重
量%リン酸9.2gを水300gに溶解し、担体としてシリカゲ
ル60gを加え、更に硝酸アルミニウム0.38gを加えて加熱
濃縮し、120℃で12時間乾燥した。得られた固形物を5
〜9メッシュに破砕し、700℃で4時間焼成して、担体
シリカゲルのケイ素および酸素を除く原子比で、Cs0.9K
0.1P0.8A10.01なる組成の触媒を得た。 (4)Si1Ba0.1A0.1なる組成の触媒の調製 水酸化バリウム8水塩31.5gおよび硝酸アルミニウム
9水塩37.5gを水500mlに加熱溶解し、次いでシリカゲル
60gを加えて撹拌しながら加熱濃縮後、120℃で12時間乾
燥した。得られた固形物を5〜9メッシュに破砕し600
℃で焼成して、酸素を除く原子比で、Si1Ba0.1A0.1なる
組成の触媒を得た。 (5)Mg1P0.5Na0.1なる組成の触媒の調製 水酸化マグネシウム58.1gと水酸化ナトリウム4.0gを
水200mlに懸濁させ、85重量%リン酸57.6gを加え、充分
に撹拌しながら加熱濃縮し、湯浴上で蒸発乾固した。こ
れを空気中120℃で12時間乾燥後、5〜9メッシュに破
砕し、700℃で5時間焼成して、酸素を除く原子比で、M
g1P0.5Na0.1なる組成の触媒を得た。 (6)Si1Ba0.1A0.1なる組成の触媒の調製 水酸化バリウム8水塩31.5gおよび硝酸アルミニウム
9水塩37.5gを水500mlに加熱溶解し、次いでシリカゲル
60gを加えて撹拌しながら加熱濃縮後120℃で12時間乾燥
した。得られた固形物を5〜9メッシュに破砕し600℃
で焼成して、酸素を除く原子比で、Si1Ba0.1A0.1なる組
成の触媒を得た。 (7)Cs0.9Ba0.1P0.8なる組成の触媒の調製 硝酸セシウム17.5g、水酸化バリウム3.2gおよび85重
量%リン酸9.2gを水300gに溶解し、担体としてシリカゲ
ル粉末60gを加え、加熱濃縮後、空気中200℃で12時間乾
燥した。得られた固形物を5〜9メッシュに破砕し、70
0℃で4時間焼成して、担体シリカゲルのケイ素および
酸素を除く原子比で、Cs0.9Ba0.1P0.8なる組成の触媒を
得た。 <反応> 実施例1 上記触媒調製(1)に従って調製したA10.9Cd0.1P0.9
なる組成の触媒20mlを内径16mmのステンレス製反応管に
充填した後、400℃の溶融塩浴に浸漬し、該反応管内に
容量比で、N−メチルエタノールアミン:窒素=5:95の
原料ガスを空間速度4000hr−1(STP)で通して反応し
た。反応開始から2時間後の反応生成物をガスクロマト
グラフィーで分析し、表−1に示す結果を得た。 実施例2〜21 触媒の組成、原料N置換アルカノールアミンの種類、
原料ガスの濃度、空間速度および反応温度を表−1に示
した条件とした以外は実施例1と同様に反応させて分析
を行い、表−1に示す結果を得た。 実施例22〜37 触媒の組成、原料N置換アルカノールアミンの種類、
原料ガスの濃度、空間速度および反応温度を表−2に示
した条件とした以外は実施例1と同様に反応させて分析
を行い、表−2に示す結果を得た。 表−1および表−2において、実施例4、8、10、1
7、29および32〜37は本発明を例示するものであり、そ
の他の実施例は比較のためのものである。
Hereinafter, the present invention will be described in detail with reference to examples. Note that N
The conversion of the substituted alkanolamine, the selectivity of the N-substituted aziridine compound and the yield were as defined below. N-substituted alkanolamine conversion = N-substituted alkanolamine consumed in reaction (mol) / N-substituted alkanolamine supplied to reactor (mol) × 100 N-substituted aziridine compound selectivity = N-substituted aziridine compound formed (mol) / N-substituted alkanolamine consumed in the reactor (mol) × 100 N-substituted aziridine compound yield = N-substituted aziridine compound produced (mol) / N-substituted alkanolamine supplied to the reactor (mol) × 100 <Preparation of catalyst > (1) Preparation of catalyst having composition of A10.9Cd0.1P0.9 168.8 g of aluminum nitrate nonahydrate and cadmium nitrate
11.8 g was dissolved in 500 ml of water, 51.9 g of 85% by weight phosphoric acid was added thereto with stirring, concentrated by heating, and dried at 120 ° C. for 12 hours. The obtained solid was crushed to 5 to 9 mesh and calcined at 1000 ° C. to obtain a catalyst having a composition of A10.9Cd0.1P0.9 in an atomic ratio excluding oxygen. (2) Preparation of a catalyst having a composition of Si1Cs0.1Ca0.05B0.1 16.3 g of cesium carbonate and 3.7 g of calcium hydroxide were added to water 5
Heat and dissolve in 00 ml, then 6.2 g boric acid and silica gel
After adding 60 g and concentrating by heating while stirring, the mixture was dried at 120 ° C. for 15 hours. The obtained solid was crushed to 5 to 9 mesh,
Sintered at 0 ° C, atomic ratio excluding oxygen, Si1Cs0.1Ca0.05B
A catalyst having a composition of 0.1 was obtained. (3) Preparation of a catalyst having a composition of Cs0.9K0.1P0.8A10.01 17.5 g of cesium nitrate, 0.56 g of potassium hydroxide and 9.2 g of 85% by weight phosphoric acid were dissolved in 300 g of water, and 60 g of silica gel was added as a carrier. Further, 0.38 g of aluminum nitrate was added, the mixture was concentrated by heating, and dried at 120 ° C. for 12 hours. 5
99 mesh and calcined at 700 ° C for 4 hours to obtain Cs0.9K in atomic ratio excluding silicon and oxygen of the carrier silica gel.
A catalyst having a composition of 0.1P0.8A10.01 was obtained. (4) Preparation of a catalyst having a composition of Si1Ba0.1A0.1 31.5 g of barium hydroxide octahydrate and 37.5 g of aluminum nitrate nonahydrate were dissolved by heating in 500 ml of water and then silica gel
After adding 60 g and heating and concentrating while stirring, the mixture was dried at 120 ° C. for 12 hours. The obtained solid was crushed to 5 to 9 mesh and 600
The catalyst was calcined at ° C to obtain a catalyst having a composition of Si1Ba0.1A0.1 in an atomic ratio excluding oxygen. (5) Preparation of a catalyst having a composition of Mg1P0.5Na0.1 58.1 g of magnesium hydroxide and 4.0 g of sodium hydroxide are suspended in 200 ml of water, and 57.6 g of 85% by weight phosphoric acid is added. And evaporated to dryness in a water bath. This was dried in air at 120 ° C. for 12 hours, crushed to 5 to 9 mesh, and calcined at 700 ° C. for 5 hours.
A catalyst having a composition of g1P0.5Na0.1 was obtained. (6) Preparation of a catalyst having a composition of Si1Ba0.1A0.1 31.5 g of barium hydroxide octahydrate and 37.5 g of aluminum nitrate nonahydrate were dissolved by heating in 500 ml of water and then silica gel
After adding 60 g and heating and concentrating while stirring, the mixture was dried at 120 ° C. for 12 hours. The obtained solid is crushed to 5 to 9 mesh and 600 ° C.
To obtain a catalyst having a composition of Si1Ba0.1A0.1 in an atomic ratio excluding oxygen. (7) Preparation of a catalyst having a composition of Cs0.9Ba0.1P0.8 17.5 g of cesium nitrate, 3.2 g of barium hydroxide and 9.2 g of 85% by weight phosphoric acid were dissolved in 300 g of water, and 60 g of silica gel powder was added as a carrier, followed by heating. After concentration, it was dried in air at 200 ° C. for 12 hours. The obtained solid was crushed to 5 to 9 mesh,
By calcining at 0 ° C. for 4 hours, a catalyst having a composition of Cs0.9Ba0.1P0.8 was obtained at an atomic ratio excluding silicon and oxygen of the silica gel carrier. <Reaction> Example 1 A10.9Cd0.1P0.9 prepared according to the above catalyst preparation (1)
After filling 20 ml of a catalyst having the following composition into a stainless steel reaction tube having an inner diameter of 16 mm, it was immersed in a molten salt bath at 400 ° C., and a raw material gas of N-methylethanolamine: nitrogen = 5: 95 in the reaction tube by volume ratio. Was reacted at a space velocity of 4000 hr-1 (STP). The reaction product 2 hours after the start of the reaction was analyzed by gas chromatography, and the results shown in Table 1 were obtained. Examples 2 to 21 Composition of catalyst, type of raw material N-substituted alkanolamine,
The reaction was carried out and analyzed in the same manner as in Example 1 except that the raw material gas concentration, space velocity, and reaction temperature were changed to the conditions shown in Table 1, and the results shown in Table 1 were obtained. Examples 22 to 37 Composition of catalyst, type of raw material N-substituted alkanolamine,
The reaction was carried out and analyzed in the same manner as in Example 1 except that the raw material gas concentration, the space velocity, and the reaction temperature were changed to the conditions shown in Table 2, and the results shown in Table 2 were obtained. In Tables 1 and 2, Examples 4, 8, 10, 1
7, 29 and 32-37 illustrate the invention, and the other examples are for comparison.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 27/18 B01J 27/18 Z C07D 203/02 C07D 203/02 203/12 203/12 203/22 203/22 (72)発明者 常木 英昭 東京都品川区中延5丁目5番4号 (72)発明者 正田 秀樹 神奈川県横浜市金沢区六浦町942―26番 308号 (56)参考文献 特開 平1−157952(JP,A) 特開 昭63−126558(JP,A) 特開 昭63−126556(JP,A) 特開 昭63−126557(JP,A) 特開 昭63−123441(JP,A) 特開 昭63−123442(JP,A) 特開 昭63−123443(JP,A) J.Org.Chem.,(1986), 51(1),p.95−7 (58)調査した分野(Int.Cl.7,DB名) C07D 203/02 C07D 203/08 C07D 203/12 C07D 203/22 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI B01J 27/18 B01J 27/18 Z C07D 203/02 C07D 203/02 203/12 203/12 203/22 203/22 (72) Inventor Hideaki Tsugi 5-5-2-4 Nakanobu, Shinagawa-ku, Tokyo (72) Inventor Hideki Shoda 942-26-308, Rokuura-cho, Kanazawa-ku, Yokohama-shi, Kanagawa-ken (56) References JP-A-1-157952 (JP) JP-A-63-126558 (JP, A) JP-A-63-126556 (JP, A) JP-A-63-126557 (JP, A) JP-A-63-123441 (JP, A) JP-A-63-123442 (JP, A) JP-A-63-123443 (JP, A) Org. Chem. , (1986), 51 (1), p. 95-7 (58) Field surveyed (Int. Cl. 7 , DB name) C07D 203/02 C07D 203/08 C07D 203/12 C07D 203/22 CA (STN) REGISTRY (STN)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I) (式中、R1、R2、R3およびR4は各々独立して水素原子お
よび炭素数1〜4のアルキル基の中から選ばれる1種で
あり、Xは炭素数1〜4のアルキル基、シクロヘキシル
基、フエニル基、ベンジル基、炭素数1〜4のヒドロキ
シアルキル基および炭素数1.〜4のアミノアルキル基の
中から選ばれる1種である) で表されるN置換アルカノールアミンを、触媒の存在
下、反応圧力5〜250mmHg(絶対圧)、反応温度300〜50
0℃の条件で、気相分子内脱水反応せしめることを特徴
とする一般式(II) (式中のR1、R2、R3、R4およびXは式(I)と同じ) で表されるN置換アジリジン化合物の製造方法。
1. The compound of the general formula (I) (Wherein R 1 , R 2 , R 3 and R 4 are each independently one selected from a hydrogen atom and an alkyl group having 1 to 4 carbon atoms, and X is an alkyl group having 1 to 4 carbon atoms. A cycloalkyl group, a cyclohexyl group, a phenyl group, a benzyl group, a hydroxyalkyl group having 1 to 4 carbon atoms and an aminoalkyl group having 1 to 4 carbon atoms). , In the presence of a catalyst, reaction pressure 5 to 250 mmHg (absolute pressure), reaction temperature 300 to 50
General formula (II) characterized in that a gas phase intramolecular dehydration reaction is carried out at 0 ° C. (Wherein R 1 , R 2 , R 3 , R 4 and X are the same as in formula (I)).
【請求項2】反応圧力が5〜250mmHg(絶対圧)、反応
温度が300〜500℃、空間速度が50〜500hr−1(STP)の
条件で気相分子内脱水反応させる請求の範囲1に記載の
方法。
2. A gas phase intramolecular dehydration reaction under the conditions of a reaction pressure of 5 to 250 mmHg (absolute pressure), a reaction temperature of 300 to 500 ° C., and a space velocity of 50 to 500 hr-1 (STP). The described method.
【請求項3】触媒が一般式XaPbMcOd(ここで、Xは周期
律表のIII A族元素、IV A族元素、V A族元素、I族ない
しVIII族の遷移金属元素、ランタニド元素およびアクチ
ニド元素の中から選ばれる少なくとも1種の元素、Pは
リン、Mはアルカリ金属元素およびアルカリ土類金属元
素の中から選ばれる少なくとも1種の元素、Oは酸素を
表す。また、添字a、b、cおよびdは各元素の原子数
の比を表し、a=1のとき、b=0.01〜6、c=0.01〜
3の範囲内であり、dはa、bおよびcの値および各構
成元素の結合状態によって定まる数値である)で表され
る組成物である請求の範囲1または2に記載の方法。
3. A catalyst of the general formula XaPbMcOd (where X is a group IIIA, IVA, VA, group I-VIII transition metal, lanthanide or actinide element of the periodic table). P represents phosphorus, M represents at least one element selected from an alkali metal element and an alkaline earth metal element, O represents oxygen, and subscripts a, b, and c. And d represent the ratio of the number of atoms of each element. When a = 1, b = 0.01 to 6, and c = 0.01 to
3. The method according to claim 1 or 2, wherein d is within the range of 3, and d is a numerical value determined by the values of a, b, and c and the bonding state of each constituent element).
【請求項4】触媒が一般式SiaMbYcOd(ここで、Siはケ
イ素、Mはアルカリ金属元素およびアルカリ土類金属元
素の中から選ばれる少なくとも1種の元素、Yはホウ
素、アルミニウム、チタン、ジルコニウム、スズ、亜鉛
およびセリウムの中から選ばれる少なくとも1種の元
素、Oは酸素を表す。また、添字a、b、cおよびdは
各元素の原子数の比を表しa=1のときb=0.005〜
1、c=0.005〜1の範囲内であり、dはa、bおよび
cの値および構成元素の結合状態によって定まる数値で
ある)で表される組成物である請求の範囲1または2に
記載の方法。
4. A catalyst according to the general formula SiaMbYcOd (where Si is silicon, M is at least one element selected from alkali metal elements and alkaline earth metal elements, Y is boron, aluminum, titanium, zirconium, At least one element selected from tin, zinc, and cerium, O represents oxygen, and the subscripts a, b, c, and d represent the ratio of the number of atoms of each element and b = 0.005 when a = 1. ~
1, c = 0.005 to 1, and d is a value determined by the values of a, b and c and the bonding state of the constituent elements). the method of.
【請求項5】請求の範囲1または2に記載の方法に用い
るための触媒であって、該触媒が一般式XaPbMcOd(ここ
で、Xは周期律表のIII A族元素、IV A族元素、V A族元
素、I族ないしVIII族の遷移金属元素、ランタニド元素
およびアクチニド元素の中から選ばれる少なくとも1種
の元素、Pはリン、Mはアルカリ金属元素およびアルカ
リ土類金属元素の中から選ばれる少なくとも1種の元
素、Oは酸素を表す。また、添字a、b、cおよびdは
各元素の原子数の比を表し、a=1のとき、b=0.01〜
6、c=0.01〜3の範囲内であり、dはa、bおよびc
の値および各構成元素の結合状態によって定まる数値で
ある)で表される組成物であるN置換アジリジン化合物
製造用触媒。
5. A catalyst for use in the method according to claim 1 or 2, wherein the catalyst is of the general formula XaPbMcOd, wherein X is a group IIIA element, a group IVA element of the periodic table, At least one element selected from the group VA element, transition metal element of group I to VIII, lanthanide element and actinide element, P is phosphorus, M is selected from alkali metal element and alkaline earth metal element At least one element, O represents oxygen, and the subscripts a, b, c, and d represent the ratio of the number of atoms of each element, and when a = 1, b = 0.01 to
6, c = 0.01-3, d is a, b and c
And a value determined by the bonding state of each constituent element).
【請求項6】請求の範囲1または2に記載の方法に用い
るための触媒であって、該触媒が一般式SiaMbYcOd(こ
こで、Siはケイ素、Mはアルカリ金属元素およびアルカ
リ土類金属元素の中から選ばれる少なくとも1種の元
素、Yはホウ素、アルミニウム、チタン、ジルコニウ
ム、スズ、亜鉛およびセリウムの中から選ばれる少なく
とも1種の元素、Oは酸素を表す。また、添字a、b、
cおよびdは各元素の原子数の比を表しa=1のときb
=0.005〜1、c=0.005〜1の範囲内であり、dはa、
bおよびcの値および構成元素の結合状態によって定ま
る数値である)で表される組成物であるN置換アジリジ
ン化合物製造用触媒。
6. A catalyst for use in the method according to claim 1 or 2, wherein the catalyst is of the general formula SiaMbYcOd (where Si is silicon, M is an alkali metal element and an alkaline earth metal element). And at least one element selected from the group consisting of boron, aluminum, titanium, zirconium, tin, zinc and cerium, and O represents oxygen.
c and d represent the ratio of the number of atoms of each element, and when a = 1, b
= 0.005 to 1, c = 0.005 to 1, and d is a,
a value determined by the values of b and c and the bonding state of the constituent elements).
JP3510767A 1990-06-21 1991-06-21 Method for producing N-substituted aziridine compound and catalyst Expired - Fee Related JP3004053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3510767A JP3004053B2 (en) 1990-06-21 1991-06-21 Method for producing N-substituted aziridine compound and catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2-161236 1990-06-21
JP16123690 1990-06-21
PCT/JP1991/000835 WO1991019696A1 (en) 1990-06-21 1991-06-21 Process for producing n-substituted aziridine compound
JP3510767A JP3004053B2 (en) 1990-06-21 1991-06-21 Method for producing N-substituted aziridine compound and catalyst

Publications (1)

Publication Number Publication Date
JP3004053B2 true JP3004053B2 (en) 2000-01-31

Family

ID=26487442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3510767A Expired - Fee Related JP3004053B2 (en) 1990-06-21 1991-06-21 Method for producing N-substituted aziridine compound and catalyst

Country Status (1)

Country Link
JP (1) JP3004053B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Org.Chem.,(1986),51(1),p.95−7

Similar Documents

Publication Publication Date Title
EP0227461B1 (en) Process for preparing cyclic amines
JP4503709B2 (en) Preparation of mono- and 1,7-bis-N-hydroxyalkyl-cyclene and its lithium salt complex
JP3085722B2 (en) Method for producing alkylene carbonate
US5625076A (en) Catalyst for production of tertiary N-alkenyl carboxylic acid amide, and process for production of tertiary N-alkenyl carboxylic acid amide using said catalyst
ITMI991658A1 (en) PROCEDURE FOR THE PREPARATION OF EPOXY
EP0581131B1 (en) A process for producing alkylene carbonates
US5231189A (en) Process for producing n-substituted aziridine compound
JP3568225B2 (en) Method for producing alkylene carbonate
JP3571795B2 (en) Catalyst for gas-phase intramolecular dealcoholation reaction of N- (1-alkyloxyalkyl) carbamates and method for producing N-vinyl carbamates
JP3004053B2 (en) Method for producing N-substituted aziridine compound and catalyst
JP2939433B2 (en) Method for producing cyclic N-vinylcarboxylic acid amide
JPH04352760A (en) Production of aminoalkylsulfonic acids
CN113563189B (en) One-step method for efficiently catalyzing CO 2 Method for converting dimethyl carbonate catalyst
CN113072517B (en) Synthetic method of five-membered oxygen heterocyclic compound
US5650544A (en) Process for production of unsaturated ether and catalyst used for production of unsaturated ether
JP2660169B2 (en) Catalyst for producing tertiary N-alkenylcarboxylic amides and method for producing tertiary N-alkenylcarboxylic amides
JP3951006B2 (en) Process for producing alkylene carbonate and catalyst used therefor
JP3784878B2 (en) Production method of vinyl ether
CN111393402A (en) Br nsted acid/quaternary ammonium salt composite catalytic CO2Method for preparing cyclic carbonate by cycloaddition with epoxide
JPH0788353B2 (en) Method for producing aziridine compound
JPH107669A (en) Production of hydroxy-bearing oxetane compound
JP3219803B2 (en) Method for producing oxazoline compound
JPS6078923A (en) Manufacture of alkyl chloride
JPS61291551A (en) Production of aromatic secondary amino compound
JPH08143497A (en) Production of unsaturated ether and catalyst for producing unsaturated ether

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees