Nothing Special   »   [go: up one dir, main page]

JPS61291551A - Production of aromatic secondary amino compound - Google Patents

Production of aromatic secondary amino compound

Info

Publication number
JPS61291551A
JPS61291551A JP60134689A JP13468985A JPS61291551A JP S61291551 A JPS61291551 A JP S61291551A JP 60134689 A JP60134689 A JP 60134689A JP 13468985 A JP13468985 A JP 13468985A JP S61291551 A JPS61291551 A JP S61291551A
Authority
JP
Japan
Prior art keywords
catalyst
formula
expressed
reaction
aniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60134689A
Other languages
Japanese (ja)
Other versions
JPH062716B2 (en
Inventor
Hiroshi Okuno
浩 奥野
Moriharu Yamamoto
山本 守治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Nohyaku Co Ltd
Original Assignee
Nihon Nohyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Nohyaku Co Ltd filed Critical Nihon Nohyaku Co Ltd
Priority to JP60134689A priority Critical patent/JPH062716B2/en
Publication of JPS61291551A publication Critical patent/JPS61291551A/en
Publication of JPH062716B2 publication Critical patent/JPH062716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as an intermediate for medicines, agricultural chemicals, etc., industrially and advantageously in high yield, by reacting an aniline with an alcohol in the presence of a catalyst containing a specific metal oxide and magnesium. CONSTITUTION:An aniline expressed by formula I (X is H, halogen, lower alkyl or lower alkoxy; n is an integer 1-3) is reacted with an alcohol expressed by the formula ROH (R is alkyl or phenyl) in the presence of at least two or more metal oxides selected from zinc, cadmium, aluminum, iron, calcium, nickel, copper and titanium and magnesium oxide to afford the aimed compound expressed by formula II. MgO-Zn)-Al2O3, etc., may be cited as a combination as a preferred catalyst. The catalyst having deteriorated activity can be regener ated by feeding heated air thereto. The catalyst is readily handled without forming high polymer tarry materials and ethers.

Description

【発明の詳細な説明】 本発明は芳香族第二級アミン化合物の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aromatic secondary amine compound.

すなわち本発明は、一般式(I): (式中Xは水素原子、ハロゲン原子、低級アルキル基又
は低級アルコキシ基を表わし、nは1乃至Sの整数であ
る) で表わされるアニリン類と一般式(■):ROH(It
) (式中几はアルキル基、又はフェニル基を表わす) で表わされるアルコール類とを亜鉛(Zn)、カドミウ
ム(Cd)、アルミニウム(A/)、鉄(Fe)、力A
/ンウA (Ca)、ニッケル(Ni)、鋼(Cu) 
、チタン(Ti)  の中から選ばれた少くとも二種の
金属酸化物と酸化マグネシウムを含有する触媒の存在下
え反応させることを特徴とする一般式(I):(式中X
%n及びRは前記と同じ意味を表わす)で表わされる芳
香族第二級アミノ化合物の製造方法に関する。
That is, the present invention provides anilines represented by the general formula (I): (wherein X represents a hydrogen atom, a halogen atom, a lower alkyl group, or a lower alkoxy group, and n is an integer from 1 to S) and the general formula (■):ROH(It
) (wherein the formula represents an alkyl group or a phenyl group) Alcohols represented by zinc (Zn), cadmium (Cd), aluminum (A/), iron (Fe),
/NuA (Ca), Nickel (Ni), Steel (Cu)
, titanium (Ti) and at least two metal oxides selected from titanium (Ti) and a catalyst containing magnesium oxide.
%n and R have the same meanings as above).

一般にアニリン類とアルコール類とを種々の触媒の存在
下で反応させてN−アルキル化およびN−アリール化を
行なうことはよく知られておシ、たとえば硫酸触媒法(
ユニットプロセス・インオーガニックケミストリー、第
850頁。
It is well known that anilines and alcohols are generally reacted in the presence of various catalysts to perform N-alkylation and N-arylation.
Unit Process Inorganic Chemistry, page 850.

1958年)、濃燐酸触媒法(米国特許第299151
1号)、アルミナ触媒法(ヘミツクニス・チェントラル
プラット、第2579頁。
(1958), concentrated phosphoric acid catalyst method (U.S. Pat. No. 299,151)
No. 1), Alumina Catalyst Method (Hemitskunis-Centralplatt, p. 2579).

1953年)等が挙げられる。しかしながらこれらの方
法は、いづれも高分子タール様物質が副生ずるため目的
物の収量の低下を招くのみならず、特に硫酸および濃燐
酸触媒法においては、触媒の取り扱い、生成物の分離お
よび精製が困難でありて、工業的規模の製造においては
、非常に複雑な工程となって諸設備が高価となり、また
アルミナ触媒法においても特にエーテル類が副生じ、そ
の結果アルコールの回収分離工程における設備費が更に
高価になる。またマグネシア触媒法(米国特許第355
8706号)があるが、この場合、反応温度が高い上転
化率が低く工業的に不利である。
1953). However, all of these methods not only result in a decrease in the yield of the target product due to the production of polymeric tar-like substances, but also require the handling of the catalyst, separation and purification of the product, especially in the sulfuric acid and concentrated phosphoric acid catalyst methods. It is difficult to manufacture on an industrial scale, and the process is very complicated and equipment is expensive.Also, even in the alumina catalyst method, ethers in particular are produced as by-products, resulting in high equipment costs in the alcohol recovery and separation process. becomes even more expensive. Also, the magnesia catalyst method (U.S. Patent No. 355)
No. 8706), but in this case, the reaction temperature is high and the upper conversion rate is low, which is industrially disadvantageous.

本発明者らは触媒の取扱いが容易で高分子タール様物質
およびエーテル類の副生がなく比較的低温において好収
率で選択的にアニリン類をN−モノアルキル化及びN−
モノアリール化する方法を検討した結果、Zn、 Cd
1A/1Fe%Ca。
The present inventors have demonstrated the ability to selectively N-monoalkylate anilines and N-
As a result of examining methods for monoarylation, Zn, Cd
1A/1Fe%Ca.

Ni、Cu%Tiの中から選ばれた少くとも二種の金属
の酸化物と酸化マグネシウムを含有する触媒を使用する
方法が、触媒の活性も優れ触媒の調製および取扱いが容
品であり、再焼成により再生が可能であるという経済的
且つ工業的に有利で優れたものであることを見い出し、
本発明の方法を完成した。
A method using a catalyst containing at least two metal oxides selected from Ni, Cu%Ti and magnesium oxide has excellent catalyst activity, is easy to prepare and handle, and is easy to recycle. We discovered that it is economically and industrially advantageous and excellent because it can be regenerated by firing.
The method of the present invention has been completed.

本発明の方法で使用する金属酸化物触媒はZn、 Cd
、 AI%Fe、 Ca%Ni、 Cu%Tiの中から
選ばれた二種の金属の酸化物と酸化マグネシウムを含有
する。この場合の酸化マグネシウムと他の酸化物の合計
との割合はモル比で1 : 101〜1であることが望
ましい。
The metal oxide catalyst used in the method of the present invention is Zn, Cd
, AI%Fe, Ca%Ni, Cu%Ti, and magnesium oxide. In this case, the molar ratio of magnesium oxide to the sum of other oxides is preferably 1:101 to 1.

これらの触媒中、好ましい組合せの例としてはMgO−
ZnO−Alz03 lMgO−CdOk120s −
MgO−ZnO−Fe、0. 、 MgO−CdO−F
e2O3が挙げられる。
Among these catalysts, a preferable combination is MgO-
ZnO-Alz03 lMgO-CdOk120s -
MgO-ZnO-Fe, 0. , MgO-CdO-F
Examples include e2O3.

これらの触媒は、公知の方法に従い、例えば次のように
して調製される。成分元素の可溶性塩(例えばMg O
Z n O−A1203系を得る場合にあっては、硝酸
マグネシウム、硝酸亜鉛、硝酸アルミニウム)の水溶液
を混合し、アルカリを加えて沈殿を得る。得られた沈殿
を充分に水洗後乾燥し、例えば空気中で500〜800
℃で2時間焼成した後、破砕ないし打錠によシ触媒を調
製する。この場合触媒を不活性な担体に担持させてもよ
いし、担体に担持させなくとも良い。
These catalysts are prepared according to known methods, for example, as follows. Soluble salts of component elements (e.g. MgO
When obtaining the ZnO-A1203 system, aqueous solutions of magnesium nitrate, zinc nitrate, and aluminum nitrate are mixed, and an alkali is added to obtain a precipitate. The obtained precipitate is thoroughly washed with water and dried, for example, in the air at a temperature of 500 to 800
After calcination at ℃ for 2 hours, the catalyst is prepared by crushing or tableting. In this case, the catalyst may be supported on an inert carrier, or may not be supported on a carrier.

本発明の方法における反応の様式としては、加圧接触法
又は気相接触法のどちらでも、その目標を達成できるが
、気相接触法は反応が連続的に実施できる点でより好ま
しい。
As for the reaction mode in the method of the present invention, either the pressurized contact method or the gas phase contact method can achieve the goal, but the gas phase contact method is more preferable in that the reaction can be carried out continuously.

又、アニリン類に対するアルコール類のモル比は11倍
モル以上であればよいが、好ましくはα5〜10倍モル
である。
Further, the molar ratio of the alcohol to the aniline may be at least 11 times the mole, but is preferably α5 to 10 times the mole.

1 又、反応温度は150〜450℃の範囲が好ましく
、反応は水素ガス、炭酸ガス、アルゴンガス、ヘリウム
ガス、窒素ガスの存在下、又は不存在下で行なわれる。
1 The reaction temperature is preferably in the range of 150 to 450°C, and the reaction is carried out in the presence or absence of hydrogen gas, carbon dioxide gas, argon gas, helium gas, or nitrogen gas.

反応により活性の低下した触媒は熱した空気を送ること
Kよシ再生できる。
The catalyst whose activity has decreased due to the reaction can be regenerated by supplying hot air.

反応終了後は副生じた水層を分液し、油層ビを分留する
と目的物が得られるが、必要があれば再結晶法、カラム
クロマトグラフィ法等の方法によってさらに精製するこ
とも可能である。
After the reaction is complete, the desired product can be obtained by separating the aqueous layer produced as a by-product and fractionating the oil layer, but if necessary, it is also possible to further purify it by methods such as recrystallization or column chromatography. .

このようにして得られる芳香族第二級アミノ化合物は、
一般化学工業における中間体、特に医薬、J[等の中間
体として有用である。
The aromatic secondary amino compound obtained in this way is
It is useful as an intermediate in the general chemical industry, especially as an intermediate for pharmaceuticals, J[, etc.

次に実施例によって本発明を更に詳細に説明するが、本
発明はこれらに限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1: 硝酸マグネシウム82重量部、硝酸亜鉛5重量部、硝酸
アルミニウム13重量部の混合水溶液に攪拌下、アンモ
ニア水を理論量の1.05〜t1倍加え沈殿を得た。沈
殿を充分水洗後乾燥し、550℃で5時間焼成して目的
の触媒を得た(酸化物モル比MgO:ZnO:A/10
3 =9 Q : 5 : 5 )。
Example 1: To a mixed aqueous solution of 82 parts by weight of magnesium nitrate, 5 parts by weight of zinc nitrate, and 13 parts by weight of aluminum nitrate, 1.05 to 1 times the theoretical amount of ammonia water was added under stirring to obtain a precipitate. The precipitate was thoroughly washed with water, dried, and calcined at 550°C for 5 hours to obtain the desired catalyst (oxide molar ratio MgO:ZnO:A/10
3 = 9 Q: 5: 5).

内径5絽のガラス製気相接触用反応管に前記触媒1gを
充填し320℃に加熱する。次に反応管に窒素′jk2
0d/分の速度で通じながら蒸発器にアニリン1重量部
とメタノール1重量部よシなる混合液を&5g/時間の
速度で注入した0発生した混合蒸気は反応管中の触媒と
接触して反応しながら留出する。反応開始後5時間迄の
反応物を採取しガスクロマトゲ2フイーで分析したとこ
ろN−メチルアニリンのみが検出され、転化率はアニリ
ン基準で94.5−であった。
A glass reaction tube for vapor phase contact with an inner diameter of 5 cm was filled with 1 g of the catalyst and heated to 320°C. Next, nitrogen ′jk2 is added to the reaction tube.
A mixed solution of 1 part by weight of aniline and 1 part by weight of methanol was injected into the evaporator at a rate of &5g/hour while flowing at a rate of 0d/min.The mixed vapor generated came into contact with the catalyst in the reaction tube and reacted. Distillate while doing so. When the reaction product was collected up to 5 hours after the start of the reaction and analyzed using a gas chromatograph 2F, only N-methylaniline was detected, and the conversion rate was 94.5- on the basis of aniline.

実施例2: 実施例1の触媒を用いて、反応温度を変える以外は実施
例1と同一の条件で反応を行なった。
Example 2: Using the catalyst of Example 1, a reaction was carried out under the same conditions as Example 1 except that the reaction temperature was changed.

反応開始後5時間迄の反応物を採取し分析を行なった。The reaction product was collected up to 5 hours after the start of the reaction and analyzed.

結果を表1に示す。他の触媒についても同様の条件で反
応を行なった。結果を表1にまとめて示す。
The results are shown in Table 1. Reactions were conducted with other catalysts under similar conditions. The results are summarized in Table 1.

実施例5: 実施例1の触媒を用いて、反応温度を550℃とし、且
つアニリン類とアルコール類を表1に示したものに変え
る以外は実施例1と同一の条件で反応を行なった。結果
を表2に示す。
Example 5: Using the catalyst of Example 1, a reaction was carried out under the same conditions as Example 1 except that the reaction temperature was 550° C. and the anilines and alcohols were changed to those shown in Table 1. The results are shown in Table 2.

2−′ /′ /’ 実施例4: アルコール類としてフェノールを用いる以外は実施例1
と同様の方法で反応を行りたところ、高収率でN−フェ
ニルアニリンが得られた。
2-'/'/' Example 4: Example 1 except for using phenol as the alcohol
When the reaction was carried out in the same manner as above, N-phenylaniline was obtained in high yield.

(ほか1名)(1 other person)

Claims (1)

【特許請求の範囲】 一般式( I ): ▲数式、化学式、表等があります▼( I ) (式中Xは水素原子、ハロゲン原子、低級アルキル基又
は低級アルコキシ基を表わし、nは1乃至3の整数であ
る) で表わされるアニリン類と一般式(II): ROH(II) (式中Rはアルキル基、又はフェニル基を表わす) で表わされるアルコール類とを亜鉛(Zn)、カドミウ
ム(Cd)、アルミニウム(Al)、鉄(Fe)、カル
シウム(Ca)、ニッケル(Ni)、銅(Cu)、チタ
ン(Ti)の中から選ばれた少なくとも二種の金属酸化
物と酸化マグネシウムを含有する触媒の存在下で反応さ
せることを特徴とする一般式(III):▲数式、化学式
、表等があります▼(III) (式中X、n及びRは前記と同じ意味を表わす)で表わ
される芳香族第二級アミノ化合物の製造方法。
[Claims] General formula (I): ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, X represents a hydrogen atom, a halogen atom, a lower alkyl group, or a lower alkoxy group, and n is 1 to Anilines represented by the general formula (II): ROH (II) (wherein R represents an alkyl group or a phenyl group) are combined with zinc (Zn), cadmium Contains at least two metal oxides selected from Cd), aluminum (Al), iron (Fe), calcium (Ca), nickel (Ni), copper (Cu), and titanium (Ti) and magnesium oxide. General formula (III) characterized by the reaction being carried out in the presence of a catalyst: ▲ There are mathematical formulas, chemical formulas, tables, etc. A method for producing an aromatic secondary amino compound.
JP60134689A 1985-06-20 1985-06-20 Method for producing aromatic secondary amino compound Expired - Lifetime JPH062716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60134689A JPH062716B2 (en) 1985-06-20 1985-06-20 Method for producing aromatic secondary amino compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134689A JPH062716B2 (en) 1985-06-20 1985-06-20 Method for producing aromatic secondary amino compound

Publications (2)

Publication Number Publication Date
JPS61291551A true JPS61291551A (en) 1986-12-22
JPH062716B2 JPH062716B2 (en) 1994-01-12

Family

ID=15134277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134689A Expired - Lifetime JPH062716B2 (en) 1985-06-20 1985-06-20 Method for producing aromatic secondary amino compound

Country Status (1)

Country Link
JP (1) JPH062716B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863140A1 (en) * 1997-03-07 1998-09-09 Basf Aktiengesellschaft Process for N-alkylation of amines
JP2006028145A (en) * 2004-07-22 2006-02-02 National Institute Of Advanced Industrial & Technology Preparation method of monosubstituted n-alkylanilines
CN100386145C (en) * 2006-06-07 2008-05-07 山东轻工业学院 Solid catalyst for synthesizing propylene glycol ether and its preparing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863140A1 (en) * 1997-03-07 1998-09-09 Basf Aktiengesellschaft Process for N-alkylation of amines
JP2006028145A (en) * 2004-07-22 2006-02-02 National Institute Of Advanced Industrial & Technology Preparation method of monosubstituted n-alkylanilines
CN100386145C (en) * 2006-06-07 2008-05-07 山东轻工业学院 Solid catalyst for synthesizing propylene glycol ether and its preparing process

Also Published As

Publication number Publication date
JPH062716B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US4375566A (en) Process for producing ortho-alkylated phenols from anisoles
EP0010902B1 (en) Process for the production of (meth)acrylic acid by the catalytic vapour phase oxidation of isobutane or propane
EP0581131B1 (en) A process for producing alkylene carbonates
JP2672191B2 (en) Method for producing 1,1,1,3,3,3-hexafluoropropane and 2-chloro-1,1,1,3,3,3-hexafluoropropane
US4057581A (en) Process for preparing diphenylamines
US4605766A (en) Alkylation process
JPS59152350A (en) Condensation of organic compound
JPS61291551A (en) Production of aromatic secondary amino compound
US4721810A (en) Catalytic alkylation of aromatic amines with ethers
EP0370730B1 (en) Method of producing ethylenediamines
JPS6251269B2 (en)
JPS61291549A (en) Production of aromatic secondary amino compound
EP0271093B1 (en) Method of producing formamide compounds
CA2312514A1 (en) Process for the production of malononitrile
US5262570A (en) Method of producing ethylenediamines
CN117886718B (en) Preparation method of high-selectivity asymmetric urea compound and asymmetric urea compound
US4042629A (en) Preparation of hexamethylene diamine from 2-cyanocyclopentanone and adiponitrile
JPS58128371A (en) Preparation of indole compound
RU2205067C1 (en) N-methylalanine production catalyst
US5235107A (en) Method of producing ethylenediamines
PL84344B1 (en)
JP2764078B2 (en) Preparation of acyclic ethyleneamines
JP3446760B2 (en) Method for producing ethylene carbonate
JPS58121270A (en) Preparation of indole
JP2001172230A (en) Method for producing diarylamines