JP2758597B2 - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JP2758597B2 JP2758597B2 JP62151824A JP15182487A JP2758597B2 JP 2758597 B2 JP2758597 B2 JP 2758597B2 JP 62151824 A JP62151824 A JP 62151824A JP 15182487 A JP15182487 A JP 15182487A JP 2758597 B2 JP2758597 B2 JP 2758597B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- conductivity type
- semiconductor laser
- laser device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、単一横モードで発振するAlGaInP系の半導
体レーザ装置に関する。
(従来の技術)
最近、有機金属熱分解法(以後MOVPEと略す)による
結晶成長により形成された単一横モードで発振するAlGa
InP系の半導体レーザ装置として、第3図に示すような
構造が報告されている(Extended Abstrarts of the 18
th Conference on Solid State Devices and Material
s,Tokyo,1986,pp.153−156)。この構造は、第1回目の
成長でn型GaAs基板1上に、n型(Al0.5Ga0.5)0.51In
0.49Pクラッド層2、GaInP活性層3、p型(Al0.5Ga
0.5)0.51In0.49Pクラッド層4、p型GaAsキャップ層
7を順次形成する。次にフォトリソグラフィによりSiO2
をマスクとして、メサストライプを形成する。そして、
SiO2マスクをつけたまま、第2回目の成長を行ないエッ
チングしたところをn型GaAs層8で埋め込む。次にSiO2
マスクを除去し、p型全面に電極が形成できるように第
3回目の成長でp型GaAsコンタクト層9を成長する。
この構造により電流はn型GaAs層8によりブロックさ
れメサストライプ部にのみ注入される。また、メサスト
ライプ形成のエッチングのときに、メサストライプ部以
外のp型クラッド層の厚みを光のとじ込めには不十分な
厚みにまでエッチングするのでn型GaAs層8のある部分
では、このn型GaAs層8に光が吸収され、メサストライ
プ部にのみ光は導波される。このようにこの構造では、
電流狭窄機構と光導波機構が同時につくりつけられる。
(発明が解決しようとする問題)
上述の構造では、活性層3とn型GaAs層8の距離を決
定するメサストライプ形成時のエッチングは時間制御型
のエッチングである。このため、エッチング後のp型ク
ラッド層の厚みの制御性と再現性が悪く、素子のロット
間での特性のバラツキが大きいという問題があった。
本発明の目的は、この問題点を解決した半導体レーザ
装置を提供することにある。
(問題点を解決するための手段)
この発明は、第1導電型GaAs基板上に、この基板に格
子整合する(AlxGa1-x)wIn1-wP(0≦x≦0.3,W〜0.5
1)からなる活性層と、この活性層を挟む(AlyGa1-y)w
In1-wP(x+0.4≦y)からなるクラッド層により形成
されたダブルヘテロ構造を設け、前記基板と反対側の第
2導電型クラッド層上に両側を(AlyGa1-y)wIn1-wPで
挟まれた時の量子準位が、活性層の発振エネルギーと比
べ、発光光の吸収を受けない膜厚の第2導電型(AlzGa
1-z)wIn1-wP(z≦y−0.4)層と、この層上に設けら
れたメサストライプ状の第2導電型(AlyGa1-y)wIn1-w
Pクラッド層と、このメサストライプ状のクラッド層以
外の部分に第1導電型のGaAs層を設けたことを特徴とす
る。
(作用)
上述の本発明の構成を用いると、電流狭窄については
従来構造と同一機構であり、光導波についても、p型
(AlyGa1-y)wIn1-wPで挟みこんだ(AlzGa1-z)wIn1-wP
層が、バルクでは、活性層の発光を吸収する組成でも、
本発明では、膜厚を準位が量子化し、その量子準位が活
性層の発振エネルギーよりも大きくなる厚みに規定して
あるので活性層からの光は、この層では吸収されず、メ
サ状のクラッド層にしみ出し、従来構造と同一機構で横
モードが制御される。また(AlxGa1-x)wIn1-wP(W〜
0.51)混晶はxに0.4以上の差があれば、塩酸系のエッ
チング液によりxが大きい組成の結晶をxの小さい組成
の結晶に比べ30倍以上速くエッチングできる。このた
め、本構造の製作過程では、メサストライプ形成時に、
メサストライプ部以外の場所のp型クラッドのエッチン
グを、かなりの時間幅をもって上部と下部のp型クラッ
ド層の間で止めることができる。このため、MOVPEなど
の膜厚制御性に優れた成長法を用いれば、ロット間で特
性のバラツキの小さな素子が再現性よく得られる。
(実施例)
以下、本発明の実施例を図面を用いて説明する。第1
図は、本発明の実施例に示す半導体レーザ装置の断面図
であり、第2図はこの半導体レーザ装置の製作工程図で
ある。
まず1回目の成長で、n型GaAs基板1(S:ドープ、n
=2×1018cm-3)上に、n型(Al0.5Ga0.5)0.51In0.49
Pクラッド層2(n=1×1018cm-3;厚み1.2μm)、Ga
InP活性層3(アンドープ;厚み0.1μm)、下部p型
(Al0.5Ga0.5)0.51In0.49Pクラッド層4(p=5×10
17cm-3;厚み0.3μm)、p型GaInP層5(p=1×1018c
m-340Å)、上部p型(Al0.5Ga0.5)0.51In0.49Pクラ
ッド層6(p=5×1017cm-3;厚み1μm)、p型GaAs
キャップ層7(p=2×1018cm-3;厚み0.5μm)を順次
成長形式した(第2図(a))。成長には、減圧MOVPE
法を用い成長条件は、温度700℃、圧力70Torr、V/III=
200、キャリアガス(Hz)の全流量15(l/min)とした。
原料にはトリメチルインジウム(TMI:(CH3)3In)、ト
リエチルガリウム(TEG:(C2H5)3Ga)、トリメチルア
ルミニウム(TMA:(CH3)3Al)、アルシン(AsH3)、ホ
スフィン(PH3)、p型ドーパント:ジメチル亜鉛(DM
Z:(CH3)2Zn)、n型ドーパント:セレン化水素(H2S
e)を用いた。こうして成長したウェアにフォトリソグ
ラフィによりストライプ状のSiO2マスク10を形成した
(第2図(b))。次にこのSiO210を用いてリン酸系の
エッチング液によりp型GaAsキャップ層7をメサ状にエ
ッチングした。つづいて、(Al0.5Ga0.5)0.51In0.49P
に対するエッチングレートが6000Å/min、GaInPに対す
るエッチングレートが50Å/minである塩酸系のエッチン
グ液により、上部p型(Al0.5Ga0.5)0.51In0.49Pクラ
ッド層6をメサ状にエッチングした(第2図(c))。
そしてSiO2マスク10をつけたままMOVPEにより2回目の
成長を行ないn型GaAs層8を成長した(第2図
(d))。次にSiO2マスク10をエッチングで除去し(第
2図(e))、MOVPEにより3回目の成長を行ってp型G
aAsコンタクト層9を成長した(第2図(f))。2回
目、3回目の成長条件は上述の1回目の成長と同一であ
る。最後にp,n両電極を形成して、キャピティ長250μm
にへき開し、個々のチップに分離した。
上述の方法により作製した本発明のレーザウェハ3ロ
ットと、従来のレーザウェハ3ロットから得られた素子
(各ロットにつき30個)の基本横モード発振での最大光
出力の平均値を表1に示す。
表1からわかるように、本発明を用いると、活性層と
光を吸収するGaAs層の距離を設計値通りにつくりつける
ことができ、ロット間の特性のバラツキを小さくおさえ
ることができる。
以上述べた実施例では、活性層をGaInP、クラッド層
を(Al0.5Ga0.5)0.51In0.49Pとしたが、発振波長を変
える(短波長にする)には、本発明の要件を満たす範囲
で活性層のAl組成を増やせばよい。また、実施例では、
3層のクラッド層を共に同一組成としたが、レーザに求
める特性により変化させても良い。
(発明の効果)
このように本発明により、成長ロット間の特性のバラ
ツキの小さな基本横モード制御AlGaInP系半導体レーザ
装置を得ることができる。Description: TECHNICAL FIELD The present invention relates to an AlGaInP-based semiconductor laser device that oscillates in a single transverse mode. (Prior Art) Recently, AlGas oscillating in a single transverse mode formed by crystal growth by metal organic pyrolysis (hereinafter abbreviated as MOVPE).
As an InP-based semiconductor laser device, a structure as shown in FIG. 3 has been reported (Extended Abstrarts of the 18th Edition).
th Conference on Solid State Devices and Material
s, Tokyo, 1986, pp.153-156). In this structure, an n-type (Al 0.5 Ga 0.5 ) 0.51 In
0.49 P cladding layer 2, GaInP active layer 3, p-type (Al 0.5 Ga
0.5 ) 0.51 In 0.49 A P cladding layer 4 and a p-type GaAs cap layer 7 are sequentially formed. Then SiO 2 by photolithography
Is used as a mask to form a mesa stripe. And
The second growth is performed with the SiO 2 mask attached and the etched portion is buried with an n-type GaAs layer 8. Next, SiO 2
The mask is removed, and the p-type GaAs contact layer 9 is grown in the third growth so that an electrode can be formed on the entire surface of the p-type. With this structure, the current is blocked by the n-type GaAs layer 8 and injected only into the mesa stripe portion. Further, at the time of etching for the formation of the mesa stripe, the thickness of the p-type cladding layer other than the mesa stripe portion is etched to a thickness that is insufficient for trapping light. Light is absorbed by the type GaAs layer 8, and light is guided only to the mesa stripe portion. Thus, in this structure,
A current confinement mechanism and an optical waveguide mechanism are simultaneously created. (Problem to be Solved by the Invention) In the above-described structure, the etching at the time of forming the mesa stripe for determining the distance between the active layer 3 and the n-type GaAs layer 8 is time-controlled etching. For this reason, the controllability and reproducibility of the thickness of the p-type clad layer after etching are poor, and there is a problem in that the variation in characteristics between element lots is large. An object of the present invention is to provide a semiconductor laser device that solves this problem. (Means for Solving the Problems) According to the present invention, on a GaAs substrate of the first conductivity type, lattice matching (Al x Ga 1-x ) w In 1-w P (0 ≦ x ≦ 0.3, W ~ 0.5
The active layer consisting of 1) and the active layer sandwiched between (Al y Ga 1-y ) w
A double heterostructure formed by a cladding layer made of In 1-w P (x + 0.4 ≦ y) is provided, and both sides (Al y Ga 1-y ) are formed on the second conductivity type cladding layer opposite to the substrate. The quantum level when sandwiched between w In 1-w P is the second conductivity type (Al z Ga) with a thickness that does not absorb the emitted light compared to the oscillation energy of the active layer.
1-z ) w In 1-w P (z ≦ y−0.4) layer and a mesa stripe-shaped second conductivity type (Al y Ga 1-y ) w In 1-w provided on this layer
A GaAs layer of the first conductivity type is provided on a portion other than the P cladding layer and the mesa stripe cladding layer. (Operation) When the above-described configuration of the present invention is used, the current confinement has the same mechanism as that of the conventional structure, and the optical waveguide is sandwiched by p-type (Al y Ga 1-y ) w In 1-w P. (Al z Ga 1-z ) w In 1-w P
If the layer has a composition that absorbs light emitted from the active layer in bulk,
In the present invention, the level of the film is quantized, and the quantum level is specified to be a thickness that is larger than the oscillation energy of the active layer. And the transverse mode is controlled by the same mechanism as that of the conventional structure. Also, (Al x Ga 1-x ) w In 1-w P (W ~
0.51) If there is a difference of x of 0.4 or more in the mixed crystal, a hydrochloric acid-based etchant can etch a crystal having a large x composition more than 30 times faster than a crystal having a small x composition. For this reason, in the manufacturing process of this structure, when forming the mesa stripe,
Etching of the p-type cladding at locations other than the mesa stripe portion can be stopped between the upper and lower p-type cladding layers with a considerable time width. For this reason, if a growth method excellent in film thickness controllability such as MOVPE is used, an element having a small variation in characteristics between lots can be obtained with good reproducibility. (Example) Hereinafter, an example of the present invention will be described with reference to the drawings. First
FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2 is a manufacturing process diagram of the semiconductor laser device. First, in the first growth, the n-type GaAs substrate 1 (S: doped, n
= 2 × 10 18 cm −3 ) and n-type (Al 0.5 Ga 0.5 ) 0.51 In 0.49
P cladding layer 2 (n = 1 × 10 18 cm −3 ; thickness 1.2 μm), Ga
InP active layer 3 (undoped; thickness 0.1 μm), lower p-type (Al 0.5 Ga 0.5 ) 0.51 In 0.49 P clad layer 4 (p = 5 × 10
17 cm -3 ; thickness 0.3 μm), p-type GaInP layer 5 (p = 1 × 10 18 c
m -3 40 Å), upper p-type (Al 0.5 Ga 0.5) 0.51 In 0.49 P cladding layer 6 (p = 5 × 10 17 cm -3; thickness 1 [mu] m), p-type GaAs
The cap layer 7 (p = 2 × 10 18 cm −3 ; thickness 0.5 μm) was sequentially grown (FIG. 2A). For growth, reduced pressure MOVPE
The growth conditions were as follows: temperature 700 ° C, pressure 70 Torr, V / III =
The total flow rate of 200 and carrier gas (Hz) was set to 15 (l / min).
Raw materials include trimethylindium (TMI: (CH 3 ) 3 In), triethyl gallium (TEG: (C 2 H 5 ) 3 Ga), trimethyl aluminum (TMA: (CH 3 ) 3 Al), arsine (AsH 3 ), Phosphine (PH 3 ), p-type dopant: dimethyl zinc (DM
Z: (CH 3 ) 2 Zn), n-type dopant: hydrogen selenide (H 2 S
e) was used. A stripe-shaped SiO 2 mask 10 was formed on the thus grown wear by photolithography (FIG. 2B). Next, the p-type GaAs cap layer 7 was etched into a mesa using a phosphoric acid-based etchant using this SiO 2 10. Then, (Al 0.5 Ga 0.5 ) 0.51 In 0.49 P
The upper p-type (Al 0.5 Ga 0.5 ) 0.51 In 0.49 P clad layer 6 was etched into a mesa shape using a hydrochloric acid-based etchant having an etching rate of 6000 ° / min for Al and an etching rate of 50 ° / min for GaInP (second). Figure (c).
Then, the second growth was performed by MOVPE with the SiO 2 mask 10 attached, and the n-type GaAs layer 8 was grown (FIG. 2 (d)). Next, the SiO 2 mask 10 is removed by etching (FIG. 2E), and a third growth is performed by MOVPE to form a p-type G
An aAs contact layer 9 was grown (FIG. 2 (f)). The second and third growth conditions are the same as the first growth described above. Finally, both p and n electrodes are formed, and the capacity length is 250 μm
And cleaved into individual chips. Table 1 shows the average value of the maximum light output in the fundamental transverse mode oscillation of the three laser wafer lots of the present invention manufactured by the above-described method and the three laser wafer lots obtained by the conventional method (30 pieces for each lot). As can be seen from Table 1, when the present invention is used, the distance between the active layer and the GaAs layer that absorbs light can be set as designed, and variations in characteristics between lots can be suppressed. In the above-described embodiment, the active layer is GaInP and the cladding layer is (Al 0.5 Ga 0.5 ) 0.51 In 0.49 P. However, in order to change the oscillation wavelength (to make the wavelength shorter), the range satisfying the requirements of the present invention is used. What is necessary is just to increase Al composition of an active layer. In the embodiment,
Although the three cladding layers have the same composition, they may be changed according to the characteristics required for the laser. (Effect of the Invention) As described above, according to the present invention, it is possible to obtain a fundamental lateral mode control AlGaInP-based semiconductor laser device having small variations in characteristics between growth lots.
【図面の簡単な説明】
第1図は本発明の一実施例を示す断面図、第2図(a)
〜(f)は本発明の製作工程を示す断面図、第3図は、
従来の半導体レーザ装置の例を示す断面図である。図に
おいて、1はn型GaAs基板、2はn型(Al0.5Ga0.5)
0.51In0.49Pクラッド層、3はGaInP活性層、4は下部
p型(Al0.5Ga0.5)0.51In0.49Pクラッド層、5はp型
GaInP層、6は上記p型(Al0.5Ga0.5)0.51In0.49Pク
ラッド層、7はp型GaAsキャップ層、8はn型GaAs層、
9はp型GaAsコンタクト層、10はSiO2マスクである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 (a).
To (f) are cross-sectional views showing the manufacturing process of the present invention, and FIG.
FIG. 11 is a cross-sectional view illustrating an example of a conventional semiconductor laser device. In the figure, 1 is an n-type GaAs substrate, 2 is an n-type (Al 0.5 Ga 0.5 )
0.51 In 0.49 P cladding layer, 3 is GaInP active layer, 4 is lower p-type (Al 0.5 Ga 0.5 ) 0.51 In 0.49 P cladding layer, 5 is p-type
GaInP layer, 6 is the p-type (Al 0.5 Ga 0.5 ) 0.51 In 0.49 P cladding layer, 7 is the p-type GaAs cap layer, 8 is the n-type GaAs layer,
9 is a p-type GaAs contact layer, and 10 is a SiO 2 mask.
フロントページの続き (56)参考文献 特開 昭63−43387(JP,A) 特開 昭62−200785(JP,A) 特開 昭61−77384(JP,A) J.Appl.Phys.,Vol. 61,No.5,1 March 1987, PP.1714−1719 (58)調査した分野(Int.Cl.6,DB名) H01S 3/18 - 3/19Continuation of the front page (56) References JP-A-63-43387 (JP, A) JP-A-62-200785 (JP, A) JP-A-61-77384 (JP, A) Appl. Phys. Vol. 61, No. 5, 1 March 1987, PP. 1714-1719 (58) Field surveyed (Int.Cl. 6 , DB name) H01S 3/18-3/19
Claims (1)
(AlxGa1-x)wIn1-wP(0≦x≦0.3,w〜0.51)からなる
活性層と、この活性層を挟む(AlyGa1-y)wIn1-wP(x
+0.4≦y)からなるクラッド層により形成されたダブ
ルヘテロ構造を設け、前記基板と反対側の第2導電型ク
ラッド層上に両側を(AlyGa1-y)wIn1-wPで挟まれた時
の量子準位が、活性層の発振エネルギーと比べ、発光光
の吸収を受けない膜厚の第2導電型(AlzGa1-z)wIn1-w
P(z≦y−0.4)層と、この層上に設けられたメサスト
ライプ状の第2導電型(AlyGa1-y)wIn1-wPクラッド層
と、このメサストライプ状のクラッド層以外の部分に第
1導電型のGaAs層を設けたことを特徴とする半導体レー
ザ装置。(57) [Claims] An active layer made of (Al x Ga 1 -x ) w In 1 -w P (0 ≦ x ≦ 0.3, w to 0.51) lattice-matched to the first conductivity type GaAs substrate, and the active layer Sandwich (Al y Ga 1-y ) w In 1-w P (x
+ 0.4 ≦ y), a double heterostructure formed by a cladding layer composed of (Al y Ga 1-y ) w In 1-w P is provided on the second conductivity type cladding layer opposite to the substrate. The second conductive type (Al z Ga 1-z ) w In 1-w has a thickness at which the quantum level when sandwiched between the layers does not absorb the emitted light compared with the oscillation energy of the active layer.
A P (z ≦ y−0.4) layer, a mesa-stripe-shaped second conductivity type (Al y Ga 1-y ) w In 1-w P clad layer provided on this layer, and a mesa-stripe clad A semiconductor laser device comprising a first conductivity type GaAs layer provided in a portion other than the layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62151824A JP2758597B2 (en) | 1987-06-17 | 1987-06-17 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62151824A JP2758597B2 (en) | 1987-06-17 | 1987-06-17 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63314882A JPS63314882A (en) | 1988-12-22 |
JP2758597B2 true JP2758597B2 (en) | 1998-05-28 |
Family
ID=15527117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62151824A Expired - Lifetime JP2758597B2 (en) | 1987-06-17 | 1987-06-17 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2758597B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5161167A (en) * | 1990-06-21 | 1992-11-03 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser producing visible light |
JP4027126B2 (en) | 2002-03-08 | 2007-12-26 | シャープ株式会社 | Semiconductor laser device and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2555282B2 (en) * | 1986-08-08 | 1996-11-20 | 株式会社東芝 | Semiconductor laser device and method of manufacturing the same |
-
1987
- 1987-06-17 JP JP62151824A patent/JP2758597B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
J.Appl.Phys.,Vol.61,No.5,1 March 1987,PP.1714−1719 |
Also Published As
Publication number | Publication date |
---|---|
JPS63314882A (en) | 1988-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7026182B2 (en) | Semiconductor device, semiconductor laser, their manufacturing methods and etching methods | |
JP3116675B2 (en) | Semiconductor laser | |
US5604764A (en) | Semiconductor laser | |
JP3863962B2 (en) | Nitride III-V compound semiconductor light emitting device and method for manufacturing the same | |
JP2002057406A (en) | Edge non-injection type semiconductor laser and its manufacturing method | |
JP4002422B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH05259574A (en) | Semiconductor laser device and manufacture thereof | |
JP2980302B2 (en) | Semiconductor laser | |
JP2758597B2 (en) | Semiconductor laser device | |
JP3254812B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP2679974B2 (en) | Semiconductor laser device | |
JP2865160B2 (en) | Manufacturing method of semiconductor laser | |
JP2550725B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP3071021B2 (en) | Method of manufacturing semiconductor laser device | |
US6686217B2 (en) | Compound semiconductor device manufacturing method | |
JP2973215B2 (en) | Semiconductor laser device | |
JPH10242563A (en) | Manufacture of semiconductor light emitting device | |
JP2924435B2 (en) | Semiconductor laser and method of manufacturing the same | |
JPH0437598B2 (en) | ||
JPH07176830A (en) | Manufacture of semiconductor light-emitting element | |
JP2812187B2 (en) | Manufacturing method of semiconductor laser | |
JPH0658988B2 (en) | Semiconductor laser device | |
JP2500588B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH11168256A (en) | Light-emitting element and its manufacturing method | |
JPH08250806A (en) | Semiconductor light emitting element and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080313 Year of fee payment: 10 |