JP2637812B2 - Method for producing phenol - Google Patents
Method for producing phenolInfo
- Publication number
- JP2637812B2 JP2637812B2 JP1004692A JP469289A JP2637812B2 JP 2637812 B2 JP2637812 B2 JP 2637812B2 JP 1004692 A JP1004692 A JP 1004692A JP 469289 A JP469289 A JP 469289A JP 2637812 B2 JP2637812 B2 JP 2637812B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- weight
- cyclohexanol
- phenol
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシクロヘキサノールおよび又はシクロヘキサ
ノンの接触脱水素によるフェノールの製造方法に関し、
更に詳しくは、高活性、高選択率で且つ触媒寿命の長い
フェノールの製造方法に関する。The present invention relates to a method for producing phenol by catalytic dehydrogenation of cyclohexanol and / or cyclohexanone,
More specifically, the present invention relates to a method for producing phenol having high activity, high selectivity and long catalyst life.
シクロヘキサノール、シクロヘキサノン等を接触脱水
素し、フェノールに転化する方法は古くから知られてお
り、その触媒としては白金等の貴金属成分を活性炭に担
持したものが良く知られている。A method of catalytically dehydrogenating cyclohexanol, cyclohexanone, or the like and converting it to phenol has been known for a long time. As a catalyst, a catalyst in which a noble metal component such as platinum is supported on activated carbon is well known.
また、米国特許第3,580,970号公報にはVIII族金属成
分(ニッケル、白金等)と錫から成る触媒、及びそれに
クロム、アルカリ金属の硫酸塩を添加した触媒を用いる
方法が記載されている。U.S. Pat. No. 3,580,970 describes a method using a catalyst comprising a Group VIII metal component (nickel, platinum, etc.) and tin, and a catalyst to which chromium and an alkali metal sulfate are added.
しかしながら前者の触媒は再生が極めて困難な活性炭
担体を用いること、及び白金等の高価な貴金属成分を含
むものであるので、工業上不利である。また、貴金属を
含まない後者の触媒は、活性、選択性が充分でなく、か
つ経時活性低下も大きい等、工業的には満足できるレベ
ルに達してない。However, the former catalyst is industrially disadvantageous because it uses an activated carbon carrier which is extremely difficult to regenerate and contains an expensive noble metal component such as platinum. Further, the latter catalyst containing no noble metal has not reached an industrially satisfactory level, such as insufficient activity and selectivity and a large decrease in activity over time.
本発明はかかる従来のフェノールの製造法における問
題点を解決し、高活性、高選択率でフェノールの製造が
でき、触媒寿命も長いフェノール製造法を提供すること
を目的とするものである。An object of the present invention is to solve the problems in the conventional method for producing phenol and to provide a method for producing phenol that can produce phenol with high activity and high selectivity and has a long catalyst life.
本発明はシクロヘキサノールおよび又はシクロヘキサ
ノンをニッケル及び錫を含有する触媒の存在下に接触脱
水素し、フェノールを製造する方法において、該触媒に
更にアルカリ金属の炭酸塩を含ませることを特徴とす
る。本発明の方法は、高活性、高選択率で脱水素でき、
フェノールが効率よく製造できるとともに、触媒の反応
経時活性低下も著しく低減できる。The present invention provides a method for producing phenol by catalytic dehydrogenation of cyclohexanol and / or cyclohexanone in the presence of a nickel- and tin-containing catalyst, characterized in that the catalyst further contains an alkali metal carbonate. The method of the present invention can dehydrogenate with high activity and high selectivity,
Phenol can be efficiently produced, and the decrease in activity of the catalyst over time can be significantly reduced.
本発明に用いる触媒はニッケル成分、錫成分に加えて
アルカリ金属の炭酸塩を必須成分とするものであって、
通常これら成分は耐火性の無機担体に含有させて用いる
ことができる。ここで耐火性とは本発明の触媒を高温で
再生する場合に、その再生温度に十分に耐える性質をい
う。The catalyst used in the present invention has an alkali metal carbonate as an essential component in addition to the nickel component and the tin component,
Usually, these components can be used by being contained in a refractory inorganic carrier. Here, the term "fire resistance" refers to the property of sufficiently withstanding the regeneration temperature when the catalyst of the present invention is regenerated at a high temperature.
このような担体としては例えばシリカ、シリカ・マグ
ネシア、チタニア、炭化ケイ素、ケイソウ土等を挙げる
ことができ、特にシリカが好ましく用いられる。該無機
担体は、比表面積が1m2/g以上、350m2/g以下で中性ない
し弱アルカリ性を呈するものが好ましい。Examples of such a carrier include silica, silica / magnesia, titania, silicon carbide, and diatomaceous earth, and silica is particularly preferably used. The inorganic carrier preferably has a specific surface area of 1 m 2 / g or more and 350 m 2 / g or less and exhibits neutral to weak alkalinity.
触媒成分の含有量は、ニッケル成分にあってはニッケ
ル金属として担体に対し、2〜20重量%、更に好ましく
は5〜15重量%、錫成分は錫金属として、ニッケル金属
の10〜150重量%、更に好ましくは50〜100重量%、アル
カリ金属の炭酸塩は担体に対して0.5重量%〜20重量
%、好ましくは1〜10重量%が用いられる。The content of the catalyst component is 2 to 20% by weight, more preferably 5 to 15% by weight, as the nickel metal, more preferably 5 to 15% by weight, and the tin component is 10 to 150% by weight of the nickel metal as the tin metal. More preferably, 50 to 100% by weight, and the alkali metal carbonate is used in an amount of 0.5 to 20% by weight, preferably 1 to 10% by weight based on the carrier.
アルカリ金属の炭酸塩としてはリチウム、ナトリウ
ム、カリウム、ルビジウム、セシウムの炭酸塩を挙げる
ことができるが、特にナトリウムまたはカリウムの炭酸
塩が好ましい。これらの炭酸塩の量が前記した量比より
な少ないとフェノールの選択性が劣り、多いと活性が低
下する傾向にあるとともに、重質物の生成が増してく
る。Examples of the alkali metal carbonate include lithium, sodium, potassium, rubidium, and cesium carbonates, and sodium or potassium carbonate is particularly preferable. If the amount of these carbonates is less than the above-mentioned ratio, the selectivity of phenol is inferior. If the amount is large, the activity tends to decrease, and the production of heavy substances increases.
次に、本発明の触媒の代表的な調製法を例示する。先
ず、ニッケル、錫の塩、例えば硝酸ニッケル、塩化錫等
の水、アルコール、アセトン等の溶液を担体に含浸さ
せ、ついで乾燥し、好ましくは300〜500℃の温度で仮焼
する。次に、アルカリ金属の炭酸塩もしくは重炭酸塩溶
液を含浸させた後、乾燥する。ついで水素気流中で好ま
しくは300〜450℃の温度で還元処理することにより調製
される。Next, a typical method for preparing the catalyst of the present invention will be described. First, a carrier is impregnated with a solution of nickel, tin salt, for example, water such as nickel nitrate or tin chloride, alcohol, acetone or the like, then dried, and calcined preferably at a temperature of 300 to 500 ° C. Next, it is impregnated with an alkali metal carbonate or bicarbonate solution and then dried. It is then prepared by a reduction treatment in a hydrogen stream, preferably at a temperature of 300 to 450 ° C.
ニッケルおよび錫の含浸は別個に準次行なってもよい
が混合溶液を用い同時に行うのが好ましい。アルカリ金
属の炭酸塩、重炭酸塩の添加はニッケル成分、錫成分を
担持し、仮焼した後に行うのが好ましい。水素還元処理
は脱水素反応器中で反応前に直接行なってもよい。The impregnation of nickel and tin may be carried out quasi-separately, but it is preferable to carry out the impregnation simultaneously using a mixed solution. The addition of the carbonate or bicarbonate of the alkali metal is preferably carried out after supporting the nickel component and the tin component and calcining them. The hydrogen reduction treatment may be performed directly before the reaction in the dehydrogenation reactor.
本発明において接触脱水素反応における反応温度は、
250℃〜450℃、好ましくは300〜400℃、反応圧力は0.5
〜10気圧、好ましくは1〜5気圧、シクロヘキサノール
及び又はシクロヘキサノンの供給速度は触媒容量の0.1
〜10倍/時、好ましくは0.2〜5倍/時の容積時間空間
速度(LHSV)で行うことが好ましい。In the present invention, the reaction temperature in the catalytic dehydrogenation reaction is:
250 ° C to 450 ° C, preferably 300 to 400 ° C, reaction pressure is 0.5
The feed rate of cyclohexanol and / or cyclohexanone is 0.1 to 10 atm, preferably 1 to 5 atm.
It is preferably carried out at a volume hourly space velocity (LHSV) of up to 10 times / hour, preferably 0.2 to 5 times / hour.
水素分圧は触媒の安定性に影響を与えるので、反応器
に(水素)/(シクロヘキサノール及び又はシクロヘキ
サノン)のモル比として0.5〜10、好ましくは1〜5と
なるように水素を供給するのが望ましい。Since the hydrogen partial pressure affects the stability of the catalyst, hydrogen is supplied to the reactor in a molar ratio of (hydrogen) / (cyclohexanol and / or cyclohexanone) of 0.5 to 10, preferably 1 to 5. Is desirable.
本発明の方法によればシクロヘキサノール及び又はシ
クロヘキサノンを高転化率、高選択率でフェノールへ転
換できる為、1パス当りのフェノール収率が高く、精製
分離の負荷を小とすることができる。更に触媒の経時活
性低下が少ない為、長期の使用に耐えられるとともに、
劣化した触媒も燃焼再生等により容易にその活性、選択
性を回復することができるので、その工業的利点は極め
て大きい。According to the method of the present invention, cyclohexanol and / or cyclohexanone can be converted to phenol with high conversion and high selectivity, so that the phenol yield per pass is high and the load of purification and separation can be reduced. In addition, the catalyst has little decrease in activity over time, so it can withstand long-term use.
The industrial advantage of the deteriorated catalyst is extremely large because its activity and selectivity can be easily recovered by combustion regeneration.
実施例 以下、実施例を挙げて本発明を具体的に説明するが、
本発明は何らこれに限定されるものではない。なお、実
施例及び比較例における転化率並びに選択率は以下によ
る。Examples Hereinafter, the present invention will be described specifically with reference to Examples.
The present invention is not limited to this. The conversion and selectivity in Examples and Comparative Examples are as follows.
ここで、 A:原料液中のシクロヘキサノールとシクロヘキサノンの
合計モル数。 Here, A: the total number of moles of cyclohexanol and cyclohexanone in the raw material liquid.
B:反応液中のシクロヘキサノールとシクロヘキサノンの
合計モル数。B: Total number of moles of cyclohexanol and cyclohexanone in the reaction solution.
ここで、AとBは前記と同一である。 Here, A and B are the same as above.
実施例1 硝酸ニッケル6水塩8g及び塩化錫2水塩2.5gをアルコ
ール8gに溶解した溶液を更に蒸留水15gに溶解させて得
られた溶液を、室温にて市販の球状シリカ(5〜10メッ
シュ、比表面積300m2/g、細孔容積1.07cc/g)20gに吸収
させ、ついで110℃、一夜乾燥後、500℃、10時間空気中
で仮焼した。次いで炭酸カリウム0.4gを蒸留水23gに溶
解させた溶液を該仮焼生成物に吸収させ、110℃、4時
間乾燥後、更に500℃、4時間仮焼した。この触媒はニ
ッケル金属として担体に対し8.1重量%、錫金属として
ニッケル金属に対し81重量%、炭酸カリウムとして担体
に対し2重量%含有していた(触媒A)、この触媒10ml
をステンレス製反応管(20mmφ×300mm長)に充填し、
加熱炉で400℃に加熱し、水素を10/Hrの速度で通気
下、4時間水素還元処理を行った。次いで定量ポンプに
よりシクロヘキサノールを5ml/Hrの速度で供給すると共
に、水素をシクロヘキサノールに対し4モル倍供給し、
反応温度を350℃とし接触脱水素反応を行った。結果を
第1表に示した。Example 1 A solution obtained by dissolving 8 g of nickel nitrate hexahydrate and 2.5 g of tin chloride dihydrate in 8 g of alcohol and further dissolving in 15 g of distilled water was added to a commercially available spherical silica (5 to 10 g) at room temperature. It was absorbed in 20 g of a mesh, a specific surface area of 300 m 2 / g, and a pore volume of 1.07 cc / g), then dried at 110 ° C. overnight, and calcined in air at 500 ° C. for 10 hours. Next, a solution of 0.4 g of potassium carbonate dissolved in 23 g of distilled water was absorbed into the calcined product, dried at 110 ° C. for 4 hours, and calcined at 500 ° C. for 4 hours. This catalyst contained 8.1% by weight of nickel metal with respect to the carrier, 81% by weight of nickel metal with respect to the nickel metal, and 2% by weight of potassium carbonate with respect to the carrier (catalyst A).
Into a stainless steel reaction tube (20 mmφ x 300 mm length)
The mixture was heated to 400 ° C. in a heating furnace, and subjected to a hydrogen reduction treatment for 4 hours while passing hydrogen at a rate of 10 / Hr. Next, cyclohexanol was supplied at a rate of 5 ml / Hr by a metering pump, and hydrogen was supplied at a molar ratio of 4 mol to cyclohexanol.
At a reaction temperature of 350 ° C., a catalytic dehydrogenation reaction was performed. The results are shown in Table 1.
比較例1 炭酸カリウムを担持させてないことを除き、実施例1
と同様に触媒を調製した(触媒B)。この触媒を用い実
施例1と同様な方法でシクロヘキサノールの接触脱水素
反応を行った。結果を第1表に示した。Comparative Example 1 Example 1 except that potassium carbonate was not supported.
A catalyst was prepared in the same manner as in (Catalyst B). Using this catalyst, a catalytic dehydrogenation reaction of cyclohexanol was carried out in the same manner as in Example 1. The results are shown in Table 1.
比較例2 炭酸カリウムに替えて硫酸カリウムを用いたことを除
き、実施例1と同様に触媒を調製した(触媒C)。この
触媒を用い実施例1と同様な方法でシクロヘキサノール
の接触脱水素反応を行った。結果を第1表に示した。Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 except that potassium sulfate was used instead of potassium carbonate (catalyst C). Using this catalyst, a catalytic dehydrogenation reaction of cyclohexanol was carried out in the same manner as in Example 1. The results are shown in Table 1.
実施例2 実施例1で調製した触媒Aを用い実施例1と同様な方
法でシクロヘキサノンの接触脱水素反応を行った結果、
シクロヘキサノンの転化率は98.8%、フェノール選択率
は99mol%であった。 Example 2 As a result of performing a catalytic dehydrogenation reaction of cyclohexanone in the same manner as in Example 1 using the catalyst A prepared in Example 1,
The conversion of cyclohexanone was 98.8%, and the phenol selectivity was 99 mol%.
実施例3 球状シリカ(5〜10メッシュ、比表面積180m2/g、細
孔容積1.05cc/g)及び炭酸カリウム1.0gを用い実施例1
と同様な方法で触媒を調製した(触媒D)。この触媒は
ニッケル金属として担体に対し8.1重量%、錫金属とし
てニッケル金属に対し81重量%、炭酸カルシウムとして
担体に対し5重量%含有するものであった。触媒Dを用
い実施例1と同様な方法で、シクロヘキサノールの接触
脱水素を実施した。Example 3 Example 1 using spherical silica (5 to 10 mesh, specific surface area 180 m 2 / g, pore volume 1.05 cc / g) and potassium carbonate 1.0 g
A catalyst was prepared in the same manner as in (Catalyst D). This catalyst contained 8.1% by weight of nickel metal with respect to the carrier, 81% by weight of tin metal with respect to nickel metal, and 5% by weight of calcium carbonate with respect to the carrier. Using catalyst D, catalytic dehydrogenation of cyclohexanol was carried out in the same manner as in Example 1.
結果を第2表に示した。 The results are shown in Table 2.
又35時間反応後の接触を450℃、空気中で再生処理
し、次いで還元処理した後、その触媒を用いて実施例1
と同条件で接触脱水素を行った結果、転化率98%、フェ
ノール選択率99.2%と初期の活性、選択性と同様な値を
示した。 After 35 hours of contact, the contact was regenerated in air at 450 ° C., then reduced, and the catalyst was used in Example 1 using the catalyst.
As a result of performing catalytic dehydrogenation under the same conditions as above, the conversion rate was 98%, the phenol selectivity was 99.2%, and the initial activity and the selectivity were the same.
比較例3 炭酸カリウムを添加しないことを除き、実施例3と同
様に接触調整を行った。その触媒を用いて実施例3と同
様な方法で接触脱水素を行った結果を第3表に示した。Comparative Example 3 Contact adjustment was performed in the same manner as in Example 3 except that potassium carbonate was not added. Table 3 shows the results of catalytic dehydrogenation using the catalyst in the same manner as in Example 3.
実施例4 触媒Dを用い実施例1と同様の方法で、但し原料をシ
クロヘキサノンとし、LHSV≒1hr-1、反応温度375℃、水
素/シクロヘキサノンモル比4.5の条件で接触脱水素反
応を行った結果、転化率96.7%、フェノール選択率99.1
%であった。 Example 4 The result of performing a catalytic dehydrogenation reaction in the same manner as in Example 1 by using catalyst D but using cyclohexanone as a raw material under the conditions of LHSV ≒ 1 hr −1 , reaction temperature of 375 ° C., and hydrogen / cyclohexanone molar ratio of 4.5. , Conversion rate 96.7%, phenol selectivity 99.1
%Met.
実施例5 炭酸カリウムとして0.5重量%含有する他は実施例1
と同一の触媒を調製し、実施例1と同様な方法でシクロ
ヘキサノールの接触脱水素反応を実施した結果、転化率
98.6%、フェノール選択率98.3%であった。Example 5 Example 1 except that potassium carbonate was contained at 0.5% by weight.
The same catalyst as in Example 1 was prepared, and the catalytic dehydrogenation of cyclohexanol was carried out in the same manner as in Example 1.
The phenol selectivity was 98.6% with 98.6%.
実施例6 実施例1と同様な方法により、ニッケル金属として担
体に対し9重量%、錫金属としてニッケル金属に対し78
重量%及び炭酸カリウムとして担体に対し10重量%をシ
リカに担持させた触媒を調製し、実施例1と同様な方法
でシクロヘキサノールの接触脱水素を実施した結果、転
化率91.5%、フェノール選択率99.1%であった。Example 6 In the same manner as in Example 1, 9% by weight of nickel metal relative to the carrier and 78% of tin metal relative to nickel metal were used.
A catalyst was prepared in which silica was supported on silica at 10% by weight and potassium carbonate as a weight% and potassium carbonate, and catalytic dehydrogenation of cyclohexanol was carried out in the same manner as in Example 1. As a result, the conversion was 91.5% and the phenol selectivity was 99.1%.
実施例7 炭酸カリウムに替えて炭酸ナトリウムを用いたことを
除き、実施例1と同様に触媒を調製した。この触媒を用
い実施例1と同様な方法でシクロヘキサノールの接触脱
水素を実施例した結果、転化率97.8%、フェノール選択
率98.7%であった。Example 7 A catalyst was prepared in the same manner as in Example 1 except that sodium carbonate was used instead of potassium carbonate. As a result of catalytic dehydrogenation of cyclohexanol in the same manner as in Example 1 using this catalyst, the conversion was 97.8% and the phenol selectivity was 98.7%.
Claims (3)
ノンをニッケル及び錫を含有する触媒の存在下に脱水素
してフェノールを製造する方法において、該触媒がアル
カリ金属の炭酸塩を含むことを特徴とするフエノールの
製造方法1. A process for producing phenol by dehydrogenating cyclohexanol and / or cyclohexanone in the presence of a nickel- and tin-containing catalyst, characterized in that the catalyst contains an alkali metal carbonate. Production method
金属である請求項1記載の製造方法2. The method according to claim 1, wherein the alkali metal is sodium or potassium metal.
金属であり、該炭酸塩の含有量が担体に対して1〜10重
量%である請求項1記載の製造方法3. The method according to claim 1, wherein the alkali metal is sodium or potassium metal, and the content of the carbonate is 1 to 10% by weight with respect to the carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1004692A JP2637812B2 (en) | 1989-01-13 | 1989-01-13 | Method for producing phenol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1004692A JP2637812B2 (en) | 1989-01-13 | 1989-01-13 | Method for producing phenol |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02188542A JPH02188542A (en) | 1990-07-24 |
JP2637812B2 true JP2637812B2 (en) | 1997-08-06 |
Family
ID=11590943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1004692A Expired - Fee Related JP2637812B2 (en) | 1989-01-13 | 1989-01-13 | Method for producing phenol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2637812B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8222459B2 (en) | 1997-06-13 | 2012-07-17 | Exxonmobil Chemical Patents Inc. | Process for producing cyclohexanone |
US8487140B2 (en) | 2008-08-29 | 2013-07-16 | Exxonmobil Chemical Patents Inc. | Process for producing phenol |
US9061270B2 (en) | 2010-02-05 | 2015-06-23 | Exxonmobil Chemical Patents Inc. | Cyclohexanone dehydrogenation catalyst and process |
US9242227B2 (en) | 2010-02-05 | 2016-01-26 | Exxonmobil Chemical Patents Inc. | Dehydrogenation catalyst and process |
US9249077B2 (en) | 2009-07-14 | 2016-02-02 | Exxonmobil Chemical Patents Inc. | Dehydrogenation process |
US9579632B2 (en) | 2010-12-17 | 2017-02-28 | Exxonmobil Chemical Patents Inc. | Dehydrogenation catalyst and process |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4882186B2 (en) * | 2001-08-29 | 2012-02-22 | Dic株式会社 | Method for producing 6-hydroxytetralin |
JP2014522382A (en) | 2011-03-28 | 2014-09-04 | エクソンモービル ケミカル パテンツ インコーポレイテッド | Dehydrogenation method |
CN103861626B (en) * | 2014-03-25 | 2015-08-05 | 山东科技大学 | Cyclohexanone catalyst by cyclohexanol dehydrogenation and application thereof |
CN116422339B (en) * | 2023-03-21 | 2024-09-27 | 榆林学院 | Modified gasified slag nickel-tin-loaded catalyst and application thereof in cyclohexanol dehydrogenation |
-
1989
- 1989-01-13 JP JP1004692A patent/JP2637812B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8222459B2 (en) | 1997-06-13 | 2012-07-17 | Exxonmobil Chemical Patents Inc. | Process for producing cyclohexanone |
US8487140B2 (en) | 2008-08-29 | 2013-07-16 | Exxonmobil Chemical Patents Inc. | Process for producing phenol |
US9249077B2 (en) | 2009-07-14 | 2016-02-02 | Exxonmobil Chemical Patents Inc. | Dehydrogenation process |
US9061270B2 (en) | 2010-02-05 | 2015-06-23 | Exxonmobil Chemical Patents Inc. | Cyclohexanone dehydrogenation catalyst and process |
US9242227B2 (en) | 2010-02-05 | 2016-01-26 | Exxonmobil Chemical Patents Inc. | Dehydrogenation catalyst and process |
US9579632B2 (en) | 2010-12-17 | 2017-02-28 | Exxonmobil Chemical Patents Inc. | Dehydrogenation catalyst and process |
Also Published As
Publication number | Publication date |
---|---|
JPH02188542A (en) | 1990-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4287909B2 (en) | Process for producing olefins, in particular propylene, by dehydrogenation | |
US5847250A (en) | Supported palladium catalyst for selective catalytic hydrogenation of acetylene in hydrocarbonaceous streams | |
US5378350A (en) | Process and catalyst for dehydrogenation or dehydrocyclization of hydrocarbons | |
WO1994029021A1 (en) | New catalyst, and processes for dehydrogenating dehydrogenatable hydrocarbons | |
JP2637812B2 (en) | Method for producing phenol | |
JP2742091B2 (en) | Catalyst compositions, methods for their preparation and methods for hydrogenating chlorofluoroalkenes with these compositions | |
JP2805878B2 (en) | Orthoalkylation method | |
EP0204046B1 (en) | Process and catalyst for the conversion of cyclohexanol to cyclohexanone | |
US5053377A (en) | Catalytic compositions, process for obtaining them and process for hydrogenation of 1,1,2-trichloro-1,2,2-trifluoroethane by means of these compositions | |
US5146013A (en) | Process for the production of chloroform from carbon tetrachloride, catalytic compositions and process for obtaining them | |
US4310715A (en) | Steam dealkylation process | |
JP2002509790A (en) | Dehydrogenation catalyst containing at least iron, alkali metal and precious metal | |
JPS6352612B2 (en) | ||
JPH0393602A (en) | Selective removing of carbon monoxide | |
CN109092301B (en) | Catalyst for preparing isopropyl benzene and preparation method thereof | |
CN109092295B (en) | Isopropyl benzene catalyst and preparation method thereof | |
JP2594463B2 (en) | Catalyst for dehydrogenation reaction and method for producing the same | |
US4940829A (en) | Hydrodemethylation of neohexane | |
CA1091642A (en) | Method of preparing high purity alumina containing catalysts | |
JP4512748B2 (en) | Catalyst for water gas conversion reaction | |
CN109096031B (en) | Method for producing isopropyl benzene | |
US3935282A (en) | Process for preparation of α-naphthol | |
JP2612243B2 (en) | Method for producing glycolaldehyde | |
US3065056A (en) | Method of preparing cyanogen | |
JPH0247972B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |