Nothing Special   »   [go: up one dir, main page]

JP2697939B2 - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JP2697939B2
JP2697939B2 JP33922189A JP33922189A JP2697939B2 JP 2697939 B2 JP2697939 B2 JP 2697939B2 JP 33922189 A JP33922189 A JP 33922189A JP 33922189 A JP33922189 A JP 33922189A JP 2697939 B2 JP2697939 B2 JP 2697939B2
Authority
JP
Japan
Prior art keywords
light
rotating body
region
area
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33922189A
Other languages
Japanese (ja)
Other versions
JPH03197818A (en
Inventor
正彦 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33922189A priority Critical patent/JP2697939B2/en
Priority to DE1990622571 priority patent/DE69022571T2/en
Priority to EP19900125118 priority patent/EP0439804B1/en
Publication of JPH03197818A publication Critical patent/JPH03197818A/en
Priority to US08/022,409 priority patent/US5323001A/en
Application granted granted Critical
Publication of JP2697939B2 publication Critical patent/JP2697939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明はロータリーエンコーダーに関し、特に、円筒
状の回転体の回転量に応じた信号を光電的に検出するロ
ータリーエンコーダーに関する。
Description: TECHNICAL FIELD The present invention relates to a rotary encoder, and more particularly, to a rotary encoder that photoelectrically detects a signal corresponding to a rotation amount of a cylindrical rotating body.

<従来技術> 円筒状の回転体の回転量を測定する測定器として、本
件出願人が特開昭63−81212号公報で提案したロータリ
ーエンコーダーがある。
<Prior Art> As a measuring instrument for measuring the rotation amount of a cylindrical rotating body, there is a rotary encoder proposed by the present applicant in Japanese Patent Application Laid-Open No. 63-81212.

このロータリーエンコーダーは、円筒状の回転体の回
転量を、簡便な構成で、比較的高い分解能で測定できる
優れた測定器である。
This rotary encoder is an excellent measuring device that can measure the amount of rotation of a cylindrical rotating body with a simple configuration and relatively high resolution.

この効果は、回転体の内部(中空部)に結像光学系を
設け、この結像光学系により、回転体の側面の第1領域
の格子の像を、回転体の回転軸に関して第1領域とは反
対側にある側面の第2領域の格子へ投影することにより
達成されている。
This effect is achieved by providing an imaging optical system inside the rotating body (hollow portion), and using this imaging optical system, the image of the grating in the first area on the side surface of the rotating body can be converted into the first area with respect to the rotation axis of the rotating body. This is achieved by projecting onto the grid of the second region on the side opposite to that of FIG.

<発明の概要> 本発明は上記公報に示されたロータリーエンコーダー
の改良に関するものであり、更に小型化を図ることが可
能なロータリーエンコーダーの提供を目的としている。
<Summary of the Invention> The present invention relates to an improvement of the rotary encoder disclosed in the above publication, and an object of the present invention is to provide a rotary encoder that can be further downsized.

この目的を達成する為に、本発明のロータリーエンコ
ーダーは、光照射手段と円筒状の回転体と光電変換手段
とを備え、円筒状の回転体は円筒の母線に平行な軸を回
転軸として回転し、円筒状の回転体の側面には、回転体
の回転方向に沿って透光部と遮光部とを交互に配列して
格子が形成され、光照射手段からの光を回転体の側面の
第1領域に照射し、第1領域の格子を通過した光を回転
体の回転軸に関して第1領域とは反対側にある回転体の
側面の第2領域に向け、光電変換手段で第2領域の格子
を通過した光を受光して電気信号に変換するものであっ
て、上記第1領域の格子のフーリエ像を上記第2領域の
格子へ投影すべく上記光照射手段と回転体とを構成して
いる。
In order to achieve this object, a rotary encoder according to the present invention includes a light irradiation unit, a cylindrical rotator, and a photoelectric conversion unit, and the cylindrical rotator rotates around an axis parallel to a generating line of the cylinder. Then, on the side surface of the cylindrical rotating body, a lattice is formed by alternately arranging the light transmitting portions and the light shielding portions along the rotation direction of the rotating body, and the light from the light irradiation means is formed on the side surface of the rotating body. The first region is irradiated, and the light that has passed through the lattice of the first region is directed to a second region on the side surface of the rotating body opposite to the first region with respect to the rotation axis of the rotating body. Receiving the light passing through the grating of the first region and converting the light into an electric signal, wherein the light irradiation means and the rotator are configured to project the Fourier image of the grating of the first region onto the grating of the second region. doing.

本発明では、第1領域の格子のフーリエ像を第2領域
の格子へ投影するよう構成している為、円筒状回転体の
内部(中空部)に結像光学系を設ける必要がない。従っ
て、回転体の直径を容易に小さくすることができ、極め
て小型のロータリーエンコーダーを提供することが可能
になる。
In the present invention, since the Fourier image of the grating in the first region is projected onto the grating in the second region, it is not necessary to provide an imaging optical system inside (hollow portion) of the cylindrical rotator. Therefore, the diameter of the rotating body can be easily reduced, and an extremely small rotary encoder can be provided.

本発明の好ましい実施例では、格子のピツチをP、光
照射手段からの光の波長をλ、とする時、円筒状回転体
の直径dが、 を満たすように設定される。また、透光部と遮光部が、
円筒状回転体の側面全体に規制正しく交互に配列される
場合、格子のピツチPは、透光部の総数をnとすると、 となる。
In a preferred embodiment of the present invention, when the pitch of the grating is P and the wavelength of light from the light irradiation means is λ, the diameter d of the cylindrical rotating body is Is set to satisfy. In addition, the light transmitting part and the light shielding part are
In the case where the rotors are arranged alternately and correctly on the entire side surface of the cylindrical rotator, the pitch P of the grating is given by: Becomes

<実施例> 第1図は本発明の一実施例を示す斜視図である。同図
において、1は半導体レーザーであり、波長λの可干渉
光束を放射する。2は半導体レーザー1からの発散光束
を略平行光束に変換するコリメーターレンズ系であり、
半導体レーザー1とコリメーターレンズ系2とで、光照
射手段が構成される。3は円筒状の回転体であり、円筒
の母線と平行な軸5を回転軸として、矢印で示す方向に
回転する。この回転体3は、不図示のコネクタを介し
て、モーター等の駆動軸と連結され、駆動軸の回転量な
どを検出する為の光学式スケールとして使用される。ま
た、軸5と駆動軸の中心軸とは一致しており、回転体の
中心軸と軸5も、ほぼ一致している。回転体3は金属等
の不透明な部材より成り、その側面30には、回転体3の
回転方向に沿って、多数個のスリツト30aがピツチPで
等間隔に並べてある。従って、回転体3の側面30に入射
する光は、スリツト30aを通過し、スリツト30a間の部分
30bで遮光される。即ち30aが透光部、30bが遮光部とな
り、これら透光部30aと遮光部30bが、回転方向に沿って
交互に規制正しく並べられて格子を形成し、光学式スケ
ールを構成することになる。4は光電変換素子であり、
フオトデイテクターより成る。そして、光電変換素子4
は、その受光面40に入射する光の強度に応じた電気信号
を出力する。
<Embodiment> FIG. 1 is a perspective view showing an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a semiconductor laser which emits a coherent light beam having a wavelength λ. Reference numeral 2 denotes a collimator lens system that converts a divergent light beam from the semiconductor laser 1 into a substantially parallel light beam,
The semiconductor laser 1 and the collimator lens system 2 constitute light irradiation means. Reference numeral 3 denotes a cylindrical rotating body, which rotates in a direction indicated by an arrow with a shaft 5 parallel to the generatrix of the cylinder as a rotation axis. The rotating body 3 is connected to a drive shaft such as a motor via a connector (not shown), and is used as an optical scale for detecting a rotation amount of the drive shaft. Also, the shaft 5 and the center axis of the drive shaft coincide, and the center axis of the rotating body and the shaft 5 also substantially coincide. The rotator 3 is made of an opaque member such as a metal, and a plurality of slits 30a are arranged at equal intervals on the side surface 30 of the rotator 3 along the rotation direction of the rotator 3 with the pitch P. Therefore, the light incident on the side surface 30 of the rotating body 3 passes through the slit 30a, and a portion between the slits 30a.
It is shaded by 30b. That is, 30a is a light-transmitting portion, 30b is a light-shielding portion, and these light-transmitting portions 30a and the light-shielding portion 30b are alternately and correctly regulated along the rotation direction to form a grating, thereby forming an optical scale. . 4 is a photoelectric conversion element,
Consists of a photodetector. And the photoelectric conversion element 4
Outputs an electric signal corresponding to the intensity of light incident on the light receiving surface 40.

光照射手段(1,2)の光軸12は軸5と直交しており、
この光軸12は回転体3の側面30の第1領域31と第2領域
32の双方と交叉する。この第1領域31と第2領域32は、
回転体3の、軸5に関する互いに反対側の側面に設定さ
れ、光照射手段(1,2)からの光は、この第1領域31と
第2領域32の各格子を介して、光電変換素子4の受光面
40に向けられる。第1領域31と第2領域32を、軸5に関
して互いに反対側の側面に設定し、対称な配置としたの
は、回転体3の中心軸と軸5との偏心による測定誤差を
軽減する為である。
The optical axis 12 of the light irradiation means (1, 2) is orthogonal to the axis 5,
The optical axis 12 is located between the first area 31 and the second area 31 on the side surface 30 of the rotating body 3.
Cross with both 32. The first region 31 and the second region 32
The light from the light irradiating means (1, 2) is set on the opposite sides of the rotator 3 with respect to the axis 5, and the light from the light irradiating means (1, 2) is 4 light receiving surface
Pointed at 40. The first region 31 and the second region 32 are set on the side surfaces opposite to each other with respect to the axis 5 and are arranged symmetrically in order to reduce a measurement error due to the eccentricity between the center axis of the rotating body 3 and the axis 5. It is.

回転体3の第1領域31の格子と第2領域32の格子の、
光軸12に沿った間隔d(以下、「回転体の直径d」と記
す。)は、格子ピツチがP、波長がλとして、 を満たすように設定されている。このように、回転体3
の直径dを設定することにより、回転体3の中空部に結
像光学系を設けることなく、回転体3の側面30の第1領
域31の格子の像を直接第2領域32の格子へ投影できる。
ここで投影される格子像は、フーリエ像と呼ばれるもの
であり、光回折現象に伴なう、格子の自己結像作用によ
り生じる。本実施例の回転体3は円筒状を成している
為、フーリエ像が多少湾曲し、コントラストが低下し易
いが、以下に示す条件を満たすように、光照射手段(1,
2)と回転体3を構成すれば、実用上問題ない。
Of the lattice of the first region 31 and the lattice of the second region 32 of the rotating body 3,
The distance d along the optical axis 12 (hereinafter referred to as the “diameter d of the rotating body”) is represented by Is set to meet. Thus, the rotating body 3
Is set, the image of the lattice of the first region 31 on the side surface 30 of the rotator 3 is directly projected onto the lattice of the second region 32 without providing an imaging optical system in the hollow portion of the rotator 3. it can.
The grid image projected here is called a Fourier image, and is generated by the self-imaging action of the grid accompanying the light diffraction phenomenon. Since the rotating body 3 of the present embodiment has a cylindrical shape, the Fourier image is slightly curved and the contrast is apt to be reduced. However, the light irradiation means (1,
If the rotator 3 is configured as 2), there is no practical problem.

次に、第1図に示すエンコーダーの、回転体3の回転
角の測定原理を第2図、第3図を用いて、詳しく説明す
る。
Next, the principle of measuring the rotation angle of the rotating body 3 of the encoder shown in FIG. 1 will be described in detail with reference to FIGS.

半導体レーザー1からの光束はコリメーターレンズ系
2により平行光束に変換され、この平行光束で、回転体
3の第1領域31を照射する。この平行光束は第1領域31
の格子で回折され、第1領域31の格子から0次、±1
次、±2次といった回折光が生じ、0次光及び±1次回
折光の2つ若しくは3つの光束同士の干渉により、領域
31の格子のフーリエ像が、回転体3の領域32の格子へ投
影される。このフーリエ像の明暗のピツチは、領域31の
格子のピツチPと等しくなる。また、前述のように、こ
のフーリエ像は湾曲するが、この湾曲は、領域32の曲面
に沿って生じており、測定精度にはあまり影響しない。
尚、このようなフーリエ像の湾曲を小さくする為には、
回転体3の直径dを小さくすればいい。
The light beam from the semiconductor laser 1 is converted into a parallel light beam by the collimator lens system 2, and the first region 31 of the rotating body 3 is irradiated with the parallel light beam. This parallel light beam is transmitted to the first area 31.
Is diffracted by the grating of the first region 31 and is 0 order, ± 1
Then, diffracted light of the second order and ± 2 order is generated, and interference between two or three light beams of the 0th order light and the ± 1st order diffracted light causes an area.
The Fourier image of the 31 grid is projected onto the grid of the region 32 of the rotator 3. The light and dark pitches of this Fourier image are equal to the pitch P of the lattice in the area 31. Further, as described above, the Fourier image is curved, but the curvature occurs along the curved surface of the region 32 and does not significantly affect the measurement accuracy.
In order to reduce the curvature of such a Fourier image,
What is necessary is just to make the diameter d of the rotating body 3 small.

第3図に示すように、回転体3が矢印100方向(CCW方
向)に回転しているとすると、フーリエ像は矢印110方
向(CW方向)に移動する。この時、フーリエ像が投影さ
れている領域32の格子は、矢印100方向へ移動してい
る。従って、回転体3が角度θ回転した時のフーリエ像
と領域32の格子間の相対的角度変化は2θとなり、格子
ピツチの2倍の分解能で回転角の測定が行なえる。
As shown in FIG. 3, if the rotating body 3 is rotating in the direction of arrow 100 (CCW direction), the Fourier image moves in the direction of arrow 110 (CW direction). At this time, the grid in the area 32 where the Fourier image is projected has moved in the direction of the arrow 100. Therefore, the relative angle change between the Fourier image and the grid of the region 32 when the rotating body 3 rotates by the angle θ is 2θ, and the rotation angle can be measured with twice the resolution of the grid pitch.

領域32の格子は領域31の格子のフーリエ像で照明さ
れ、領域32の格子を通過した光が、光電変換素子4の受
光面40に入射する。光電変換素子4は受光した光を電気
信号に変換し、この信号に基づいて回転体3の回転角が
測定される。本実施例のロータリーエンコーダーでは、
前述のように、回転体3が角度θ回転するときに、領域
31の格子のフーリエ像と領域32の格子が相対的に角度2
θ回転するから、回転体3のスリツト3の総数がnであ
れば、回転体3の1回転当り、光電変換素子4から2n個
の正弦波パルスが出力される。回転角の測定は、この正
弦波パルスを順次計数することにより行なわれる。ま
た、光電変換素子4からの正弦波パルスに基づいて、回
転体4の回転速度を検出することもできる。
The grating in the region 32 is illuminated with the Fourier image of the grating in the region 31, and light passing through the grating in the region 32 enters the light receiving surface 40 of the photoelectric conversion element 4. The photoelectric conversion element 4 converts the received light into an electric signal, and the rotation angle of the rotating body 3 is measured based on the signal. In the rotary encoder of this embodiment,
As described above, when the rotating body 3 rotates the angle θ,
The Fourier image of the grid of 31 and the grid of the region 32 have an angle of 2
Therefore, if the total number of the slits 3 of the rotator 3 is n, 2n sine-wave pulses are output from the photoelectric conversion element 4 per rotation of the rotator 3. The measurement of the rotation angle is performed by sequentially counting the sine wave pulses. Further, the rotation speed of the rotating body 4 can be detected based on the sine wave pulse from the photoelectric conversion element 4.

第4図(A),(B)は、第1図に示すエンコーダー
をユニツト化し、被測定物体である(モーター等の)回
転駆動軸8に取付けた状態を示す図であり、第4図
(A)が斜視図、第4図(B)が断面図である。
FIGS. 4 (A) and 4 (B) are views showing a state where the encoder shown in FIG. 1 is unitized and attached to a rotary drive shaft 8 (such as a motor) which is an object to be measured. FIG. 4A is a perspective view, and FIG. 4B is a sectional view.

第4図(A),(B)に示すように、光学式スケール
としての機能を備える回転体3は、回転駆動軸8に直接
取付けられる。一方、半導体レーザー1、コリメーター
レンズ系2、光電変換素子4が、コの字型のホルダー7
に取付けられ、固着される。ここでは、コリメーターレ
ンズ系2として、棒状の屈折率型分布型レンズを使用
し、ユニツト化を容易にし、また全体を小型にしてい
る。
As shown in FIGS. 4A and 4B, the rotating body 3 having a function as an optical scale is directly attached to the rotary drive shaft 8. On the other hand, the semiconductor laser 1, the collimator lens system 2, and the photoelectric conversion element 4 are
It is attached to and fixed. Here, a rod-shaped refractive index type distributed lens is used as the collimator lens system 2 to facilitate the unitization and to make the whole compact.

第1図で示した実施例では、平行光束を回転体3の側
面30の領域31へ照射しているが、領域31の格子のフーリ
エ像の湾曲を補正する為に領域31へ照射する光束を非平
行とすることもある。この場合、湾曲を補正したい方向
にあわせて、発散光束を領域31へ照射したり、収斂光束
を領域31へ照射したりする。
In the embodiment shown in FIG. 1, the parallel light beam is applied to the region 31 on the side surface 30 of the rotating body 3, but the light beam applied to the region 31 is used to correct the curvature of the Fourier image of the lattice of the region 31. It may be non-parallel. In this case, the divergent light beam is applied to the region 31 or the convergent light beam is applied to the region 31 according to the direction in which the curvature is to be corrected.

また、第1図の実施例で半導体レーザーを光源として
使用したのは、小型で、可干渉性の良い単色光を放射す
るからであるが、領域31の格子のフーリエ像を、所望の
コントラストで、領域32の格子へ投影できる光を放射す
るものであれば、他の光源の使用も可能である。一方光
電変換素子4として小型のものを使用し、且つ測定感度
の低下は防ぎたいような場合には、回転体と光電変換素
子の間に集光レンズを設ければ良い。
The reason why the semiconductor laser is used as a light source in the embodiment of FIG. 1 is that it emits monochromatic light that is small and has good coherence. Other light sources can be used as long as they emit light that can be projected onto the grid of the region 32. On the other hand, when a small-sized photoelectric conversion element 4 is used and it is desired to prevent a decrease in measurement sensitivity, a condenser lens may be provided between the rotating body and the photoelectric conversion element.

また第1図に示す実施例では、回転体を金属で構成
し、多数個のスリツトを設けていたが、回転体は、アク
リル等の透明材料で構成することもできる。回転体を透
明材料で構成する場合には、中空又は中実(円柱)の回
転体の内又は外の側面に多数個の遮光部を等間隔で並べ
れば良い。この遮光部の形態としては、例えば本件出願
人が特開昭62−3616号公報で示した様な、V字状の溝が
挙げられる。この溝は回転体の内周面に刻まれ、この溝
で、そこに入射する光を全反射して遮光する。
Further, in the embodiment shown in FIG. 1, the rotating body is made of metal and a plurality of slits are provided. However, the rotating body may be made of a transparent material such as acrylic. When the rotator is made of a transparent material, a large number of light shielding portions may be arranged at equal intervals on the inner or outer side surface of the hollow or solid (cylindrical) rotator. As a form of the light-shielding portion, for example, a V-shaped groove as described in Japanese Patent Application Laid-Open No. 62-3616 by the present applicant can be cited. The groove is formed on the inner peripheral surface of the rotating body, and the light incident on the groove is totally reflected to block the light.

<発明の効果> 以上説明したように、本発明では、円筒状回転体の第
1領域の格子のフーリエ像を第2領域の格子へ投影する
よう、光照射手段と回転体を構成しているので、回転体
の内部(中空部)に結像光学型を使用することなく、回
転体の回転量などの測定を高い分解で行なえる。従っ
て、小型で高分解能をもつロータリーエンコーダーを提
供できる。
<Effects of the Invention> As described above, in the present invention, the light irradiation means and the rotator are configured to project the Fourier image of the lattice of the first region of the cylindrical rotator onto the lattice of the second region. Therefore, it is possible to measure the amount of rotation of the rotator with high resolution without using an imaging optical type inside (hollow portion) of the rotator. Therefore, it is possible to provide a small-sized rotary encoder having high resolution.

また、本発明では、回転軸に対する円筒状回転体の、
取り付け面振れやスラスト変位が生じても、測定精度が
劣化しない。
Further, in the present invention, the cylindrical rotating body with respect to the rotating shaft,
The measurement accuracy does not deteriorate even if the mounting surface oscillates or thrust displacement occurs.

また、円筒状回転体が小型化できる為、慣性力が小さ
くなり、測定中の回転体の振動が小さくなる。従って、
測定精度が安定する。
In addition, since the cylindrical rotating body can be reduced in size, inertial force is reduced, and vibration of the rotating body during measurement is reduced. Therefore,
Measurement accuracy is stable.

また熱などの影響で円筒状回転体が径方向に伸縮して
も、第1領域の格子のフーリエ像と第2領域の格子の光
照射手段の光軸方向に関する位置関係が一定に維持され
る為、熱などの影響により測定精度が劣化しない。
Further, even if the cylindrical rotating body expands and contracts in the radial direction due to the influence of heat or the like, the positional relationship between the Fourier image of the grating in the first area and the light irradiating means of the grating in the second area in the optical axis direction is kept constant. Therefore, measurement accuracy does not deteriorate due to heat or the like.

また結像光学系が不良である為、光照射手段、円筒状
回転体、光電変換手段といった各要素の位置決めが容易
であり、ユニツト化し易い。
In addition, since the imaging optical system is defective, positioning of each element such as the light irradiating means, the cylindrical rotator, and the photoelectric conversion means is easy, and the unit is easily formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す斜視図。 第2図及び第3図は第1図に示すエンコーダーの測定原
理を説明する為の平面図。 第4図(A),(B)は、第1図に示すエンコーダーを
ユニツト化した様子を示す斜視図と断面図。 1……半導体レーザー 2……コリメーターレンズ系 3……円筒状回転体 4……光電変換素子 5……回転軸 31……第1領域(格子) 32……第2領域(格子)
FIG. 1 is a perspective view showing one embodiment of the present invention. FIG. 2 and FIG. 3 are plan views for explaining the measurement principle of the encoder shown in FIG. FIGS. 4 (A) and 4 (B) are a perspective view and a sectional view showing a state where the encoder shown in FIG. 1 is unitized. DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser 2 ... Collimator lens system 3 ... Cylindrical rotating body 4 ... Photoelectric conversion element 5 ... Rotation axis 31 ... 1st area | region (grating) 32 ... 2nd area | region (grating)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光照射手段と円筒状の回転体と光電変換手
段とを備え、円筒状の回転体は円筒の母線に平行な軸を
回転軸として回転し、円筒状の回転体の側面には、回転
体の回転方向に沿って透光部と遮光部とを交互に配列し
て格子が形成され、光照射手段からの光を回転体の側面
の第1領域に照射し、第1領域の格子を通過した光を回
転体の回転軸に関して第1領域とは反対側にある回転体
の側面の第2領域に向け、光電変換手段で第2領域の格
子を通過した光を受光して電気信号に変換するロータリ
ーエンコーダーにおいて、上記第1領域の格子のフーリ
エ像を上記第2領域の格子へ投影すべく上記光照射手段
と回転体とを構成したことを特徴とするロータリーエン
コーダー。
A cylindrical rotator which rotates about an axis parallel to a generatrix of the cylinder, and is provided on a side surface of the cylindrical rotator; A lattice is formed by alternately arranging light-transmitting portions and light-shielding portions along the rotation direction of the rotating body, and irradiates light from the light irradiating means to a first region on a side surface of the rotating body; Of the light passing through the grating in the second area is received by the photoelectric conversion unit, and the light passing through the grating in the second area is directed to the second area on the side surface of the rotating body opposite to the first area with respect to the rotation axis of the rotating body. A rotary encoder for converting an electric signal into an electric signal, wherein the light irradiating unit and the rotating body are configured to project a Fourier image of a lattice of the first area onto a lattice of the second area.
【請求項2】上記格子のピツチをP、上記光照射手段か
らの光の波長をλ、とする時、上記回転体の直径dが、 を満たすことを特徴とする特許請求の範囲第(1)項記
載のロータリーエンコーダー。
2. When the pitch of the grating is P and the wavelength of light from the light irradiation means is λ, the diameter d of the rotating body is The rotary encoder according to claim 1, wherein the following conditions are satisfied.
【請求項3】上記格子の透光部の総数をnとする時、 を満たすことを特徴とする特許請求の範囲第(2)項記
載のロータリーエンコーダー。
3. When the total number of light transmitting portions of the grating is n, The rotary encoder according to claim (2), wherein the rotary encoder is satisfied.
JP33922189A 1989-12-26 1989-12-26 Rotary encoder Expired - Fee Related JP2697939B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33922189A JP2697939B2 (en) 1989-12-26 1989-12-26 Rotary encoder
DE1990622571 DE69022571T2 (en) 1989-12-26 1990-12-21 Rotation detector apparatus.
EP19900125118 EP0439804B1 (en) 1989-12-26 1990-12-21 Rotation detecting apparatus
US08/022,409 US5323001A (en) 1989-12-26 1993-02-24 Rotary encoder with scale member and interference of zero and first order diffraction beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33922189A JP2697939B2 (en) 1989-12-26 1989-12-26 Rotary encoder

Publications (2)

Publication Number Publication Date
JPH03197818A JPH03197818A (en) 1991-08-29
JP2697939B2 true JP2697939B2 (en) 1998-01-19

Family

ID=18325400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33922189A Expired - Fee Related JP2697939B2 (en) 1989-12-26 1989-12-26 Rotary encoder

Country Status (1)

Country Link
JP (1) JP2697939B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256666A (en) * 1992-03-13 1993-10-05 Canon Inc Rotary encoder
JP3116535B2 (en) * 1992-03-13 2000-12-11 キヤノン株式会社 Rotary encoder and encoder

Also Published As

Publication number Publication date
JPH03197818A (en) 1991-08-29

Similar Documents

Publication Publication Date Title
JP2862417B2 (en) Displacement measuring device and method
US5886352A (en) Readhead for an opto-electronic rotary encoder
JP2586121B2 (en) Rotary encoder origin detection system
JP3254737B2 (en) encoder
US10634523B2 (en) Optical rotation angle measuring system
JPH02285214A (en) Length measuring machine and scale member used for the same
JP2697939B2 (en) Rotary encoder
JP3509830B2 (en) Optical rotary encoder
JP2941953B2 (en) Reference position detection method and rotation detector
JPH05256666A (en) Rotary encoder
JP2810521B2 (en) Rotary encoder and device using the same
JPH07119622B2 (en) Rotary encoder
JPH0599638A (en) Angle measuring device
JP3116535B2 (en) Rotary encoder and encoder
JPH045142B2 (en)
JPS62200224A (en) Rotary encoder
JP2810524B2 (en) Rotation detector
JP2688988B2 (en) Optical measuring device
SU853378A1 (en) Interference device for measuring linear and angular displacements
JP2004239855A (en) Reflex photoelectric encoder
JP3679604B2 (en) Displacement information detector
SU714456A1 (en) Photoelectric shaft angular position-to-code converter
JPH045143B2 (en)
JPH045349B2 (en)
JPH07119625B2 (en) Displacement detection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20070919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees