Nothing Special   »   [go: up one dir, main page]

JP2517035B2 - Frequency discrimination circuit - Google Patents

Frequency discrimination circuit

Info

Publication number
JP2517035B2
JP2517035B2 JP62336618A JP33661887A JP2517035B2 JP 2517035 B2 JP2517035 B2 JP 2517035B2 JP 62336618 A JP62336618 A JP 62336618A JP 33661887 A JP33661887 A JP 33661887A JP 2517035 B2 JP2517035 B2 JP 2517035B2
Authority
JP
Japan
Prior art keywords
phase difference
output
circuit
input signal
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62336618A
Other languages
Japanese (ja)
Other versions
JPH01176103A (en
Inventor
健三 占部
勝實 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP62336618A priority Critical patent/JP2517035B2/en
Publication of JPH01176103A publication Critical patent/JPH01176103A/en
Application granted granted Critical
Publication of JP2517035B2 publication Critical patent/JP2517035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Measuring Phase Differences (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアナログ信号、データ信号等によって周波数
変調が施された信号の復調や、入力信号の周波数偏差の
計測等に応用される周波数弁別回路に関する。
The present invention relates to a frequency discriminating circuit applied to demodulation of a signal frequency-modulated by an analog signal, a data signal or the like, or a frequency deviation measurement of an input signal. Regarding

〔従来の技術とその問題点〕[Conventional technology and its problems]

入力信号の瞬時周波数を弁別する方法として従来は、
セラミック素子の同調特性を利用する方法(セラミック
ディスクリミネータ)や、クオドラチャ検波方式等があ
る。
Conventionally, as a method for discriminating the instantaneous frequency of an input signal,
There are methods that utilize the tuning characteristics of ceramic elements (ceramic discriminator), quadrature detection methods, and the like.

しかしながらこれらは、セラミック素子や90゜位相シ
フト用インダクタンス素子等,IC化に適さないデバイス
を必要とし、ICの外部に付加して用いるにしても、小形
化に限界がある上に、処理対象となる搬送波は特定の中
間周波に限定されるため、ヘテロダイン受信機に応用が
限られる等、小形化,汎用化に問題があった。
However, these require devices such as ceramic elements and inductance elements for 90 ° phase shift that are not suitable for IC, and even if they are used outside the IC, there is a limit to miniaturization, and they are not to be processed. Since the carrier wave is limited to a specific intermediate frequency, its application to a heterodyne receiver is limited, and there is a problem in miniaturization and generalization.

また、入力信号と同一の周波数を有し、互いに位相が
π/2ラジアンだけ異なる2つの局部発振波と入力信号と
を周波数混合することによって2つの互いに直交するベ
ースバンド信号を抽出し、その一方のπ/2ラジアンシフ
ト信号と他方のベースバンド信号のアナログ乗算から得
られる2つの乗算出力を取り出し、これらの差を周波数
弁別出力とする、いわゆる直交検波方式が汎用性の高い
方式としてあげられる。
Further, two locally oscillating baseband signals are extracted by frequency-mixing two local oscillation waves having the same frequency as the input signal and having phases different from each other by π / 2 radian, and one of them. A so-called quadrature detection method, which takes out two multiplication outputs obtained by analog multiplication of the π / 2 radian shift signal and the other baseband signal and uses the difference between them as a frequency discrimination output, is a highly versatile method.

しかし、この方式において歪のない弁別出力を得るに
は、出来るだけ理想的なアナログ乗算器を2回路必要と
し、回路規模が大きくなり、小形化に適さないという問
題点があった。
However, in order to obtain a discriminative output without distortion in this system, two ideal analog multiplier circuits are required, the circuit scale becomes large, and there is a problem that it is not suitable for miniaturization.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記従来の問題点を解決するためになされた
ものであって、アナログ乗算器を使用せずに無歪の周波
数弁別動作を実現することによって小形化,IC化が容易
であり、かつ汎用性に優れる周波数弁別回路を提供しよ
うとするものである。
The present invention has been made to solve the above-mentioned conventional problems, downsizing by implementing a distortion-free frequency discrimination operation without using an analog multiplier, easy IC, and, It is intended to provide a frequency discriminating circuit having excellent versatility.

即ち、本発明回路は、入力信号Rの中心周波数と同一
周波数を有する局部発振出力Lを得る局部発振回路1
と、局部発振出力Lの極性を反転し極性反転出力を得
る極性反転器2と、入力信号Rと局部発振出力L,及び入
力信号Rと極性反転出力をそれぞれ入力しそれぞれ2
つの入力RとL,Rととの位相差に対し周期2πラジア
ンで直線的上昇または下降を繰り返す鋸歯状形の位相差
特性に従って第1,第2位相差検出出力θ1を得る第
1,第2位相差検出回路31,32と、入力信号Rと局部発振
出力Lを入力しこれらの位相差に対し周期2πラジアン
でπラジアン毎に2値判定値を呈する位相差判定出力C
を得る位相差判定回路4と、第1,第2位相差検出出力θ
1を入力しその時間微分動作によってそれぞれ第1,
第2微分出力D1,D2を得る第1,第2微分器51,52と、第1,
第2微分出力D1,D2を入力しこれらの2つの入力の一方
を位相差判定出力Cの2値状態に対応して選択し、これ
らの切替出力Dを得る切替回路6と、切替出力Dを入力
し伝送回線における雑音によって生じたベースバンド帯
域外の雑音成分を除去して周波数弁別出力Sを得る低域
濾波器7とよりなり、位相差判定出力Cの2値変化を与
える入力信号Rと局部発振出力Lとの位相差点は、第1,
第2位相差検出出力θ1の鋸歯状形の位相差検出特
性における不連続変化を与える位相差点に対し±π/2ラ
ジアンの位相差を有するように第1,第2位相差検出回路
31,32及び位相差判定回路4を構成すると共に、切替回
路6は第1または第2位相差検出出力θまたはθ
不連続変化を与える位相差点上で位相差判定出力Cが示
す2値状態,及びその逆の状態に対し第2または第1微
分出力D2またはD1、及び第1または第2微分出力D1また
はD2をそれぞれ選択し、切替出力するように構成したも
のである。
That is, the circuit of the present invention is the local oscillation circuit 1 that obtains the local oscillation output L having the same frequency as the center frequency of the input signal R.
, A polarity inverter 2 which inverts the polarity of the local oscillation output L to obtain a polarity inversion output, and an input signal R and a local oscillation output L, and an input signal R and a polarity inversion output, respectively.
The first and second phase difference detection outputs θ 1 and θ 2 are obtained in accordance with the phase difference characteristic of a sawtooth shape that repeats linearly rising or falling with a period of 2π radians with respect to the phase difference between one input R and L, R.
1, the second phase difference detection circuit 31, 32, the input signal R and the local oscillation output L are input, and the phase difference judgment output C which presents a binary judgment value every π radian with a period of 2π radians for these phase differences.
Phase difference determination circuit 4 for obtaining the first and second phase difference detection outputs θ
1 and θ 2 are input, and by the time differential operation,
The first and second differentiators 51 and 52 for obtaining the second differential outputs D 1 and D 2
A switching circuit 6 for inputting the second differential outputs D 1 and D 2 and selecting one of these two inputs in accordance with the binary state of the phase difference determination output C, and obtaining these switching outputs D; An input signal which is composed of a low-pass filter 7 which inputs D and removes a noise component outside the baseband band caused by noise in the transmission line to obtain a frequency discrimination output S, and which gives a binary change of the phase difference judgment output C. The phase difference point between R and the local oscillation output L is
Phase difference detection of the second phase difference detection outputs θ 1 and θ 2 with a phase difference of ± π / 2 radians with respect to the phase difference point that gives a discontinuous change in the phase difference detection characteristic of the sawtooth shape circuit
31 and 32 and the phase difference determination circuit 4 are configured, and the switching circuit 6 has the phase difference determination output C indicated by 2 at the phase difference point at which the first or second phase difference detection output θ 1 or θ 2 is discontinuously changed. It is configured so that the second or first differential output D 2 or D 1 and the first or second differential output D 1 or D 2 are selected and switched for the value state and the opposite state, respectively. is there.

〔作 用〕[Work]

局部発振回路1より入力信号Rの中心周波数と同一周
波数を有する局部発振出力Lが得られ、この局部発振出
力Lと入力信号Rが第1位相差検出回路31に入力されて
これより両入力の位相差に対し周期2πラジアンで直線
的上昇または下降を繰り返す鋸歯状形の位相差特性に従
って第1位相差検出出力θが得られる。
A local oscillation output L having the same frequency as the center frequency of the input signal R is obtained from the local oscillation circuit 1, and this local oscillation output L and the input signal R are input to the first phase difference detection circuit 31 and both of these inputs are input. The first phase difference detection output θ 1 is obtained according to the phase difference characteristic of a sawtooth shape that repeats linearly rising or falling with a period of 2π radians with respect to the phase difference.

また、局部発降出力Lは極性反転器2に入力されてこ
れより極性が反転された極性反転出力が得られ、この
極性反転出力と入力信号Rが第2位相差検出回路32に
入力され、両入力Rとの位相差に対し周期2πラジア
ンで直線的上昇または下降を繰り返す鋸歯状形の位相差
特性に従って第2位相差検出出力θが得られる。
Further, the local oscillating output L is input to the polarity reversing device 2 to obtain a polarity reversing output whose polarity is reversed. The polarity reversing output and the input signal R are input to the second phase difference detection circuit 32, The second phase difference detection output θ 2 is obtained according to the phase difference characteristic of the sawtooth shape in which the phase difference between both inputs R is repeated linearly with a period of 2π radians.

入力信号Rと局部発降出力Lが位相差判定回路4に入
力されてこれらの位相差に対し周期2πラジアンでπラ
ジアン毎に2値判定値を呈する位相差判定出力Cが得ら
れる。
The input signal R and the local output / departure output L are input to the phase difference determination circuit 4, and a phase difference determination output C that exhibits a binary determination value every π radian with a period of 2π radians for these phase differences is obtained.

この位相差判定出力Cの2値変化を与える入力信号R
と局部発降出力Lとの位相差点は、第1,第2位相差検出
出力θ1の鋸歯状形の位相差検出特性における不連
続変化を与える位相差点に対し±π/2ラジアンの位相差
を有するものとなる。
An input signal R that gives a binary change of the phase difference determination output C
The phase difference between the local output L and the local output L is ± π / 2 radian with respect to the phase difference that gives a discontinuous change in the phase difference detection characteristics of the first and second phase difference detection outputs θ 1 and θ 2. Have a phase difference of.

第1,第2位相差検出出力θ1はそれぞれ第1,第2
微分器51,52に入力され、その時間微分動作によってこ
れよりそれぞれ第1,第2微分出力D1,D2が得られる。こ
れらの2つの入力θ1の一方は切替回路6により位
相差判定出力Cの2値状態に対応して選択され、切替出
力Dとして取り出される。
The first and second phase difference detection outputs θ 1 and θ 2 are respectively the first and second
The first and second differential outputs D 1 and D 2 are obtained from the time-differentiating operations of the differentiators 51 and 52. One of these two inputs θ 1 and θ 2 is selected by the switching circuit 6 in accordance with the binary state of the phase difference determination output C, and is taken out as the switching output D.

即ち、切替回路6は第1または第2位相差検出出力θ
またはθの不連続変化を与える位相差点上で位相差
判定出力Cが示す2値状態、及びその逆の状態に対し第
2または第1微分出力D2またはD1,及び第1または第2
微分出力D1またはD2をそれぞれ選択し、切替出力する。
That is, the switching circuit 6 outputs the first or second phase difference detection output θ.
For the binary state indicated by the phase difference determination output C on the phase difference point giving a discontinuous change of 1 or θ 2 and the opposite state, the second or first differential output D 2 or D 1 , and the first or first differential output Two
Select the differential output D 1 or D 2 respectively and switch output.

この切替出力Dは低域濾波器7に入力され、伝送回路
における雑音によって生じたベースバンド帯域外の雑音
成分が除去され、第1,第2位相差検出出力θ1の不
連続変化に起因する第1,第2微分出力D1,D2上のインパ
ルス出力の影響が回避されて低域濾波器7より周波数弁
別出力Sが得られることになる。
This switching output D is input to the low-pass filter 7, noise components outside the baseband band generated by noise in the transmission circuit are removed, and discontinuous changes in the first and second phase difference detection outputs θ 1 and θ 2 The influence of the impulse output on the first and second differential outputs D 1 and D 2 caused by the above is avoided, and the frequency discrimination output S is obtained from the low-pass filter 7.

〔実施例〕〔Example〕

図面に基づいて本発明の実施例を説明する。 An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明回路の一実施例の構成を示すブロック
図、第2図(a),(b)はそれぞれ本発明における第
1,第2位相差検出回路の位相差検出特性及び位相差判定
回路の出力特性を示す図、第3図(a),(b)はそれ
ぞれ第1,第2位相差検出回路の一構成例及び位相差判定
回路の一構成例を示す接続図である。
FIG. 1 is a block diagram showing the construction of an embodiment of the circuit of the present invention, and FIGS. 2 (a) and 2 (b) are respectively the first embodiment of the present invention.
FIG. 1 is a diagram showing the phase difference detection characteristics of the second phase difference detection circuit and the output characteristics of the phase difference determination circuit, and FIGS. 3 (a) and 3 (b) are configuration examples of the first and second phase difference detection circuits, respectively. FIG. 3 is a connection diagram showing a configuration example of a phase difference determination circuit.

第1図においてRは直流を含むベースバンド信号によ
って周波数変調が施された入力信号、1は局部発振器
で、入力信号Rの中心周波数と同一の周波数を有する局
部発振出力Lを発する。2は極性反転器で、局部発振出
力Lを入力し、この入力Lの極性反転出力,即ちπラジ
アンの位相差を持つ出力を得る。
In FIG. 1, R is an input signal that is frequency-modulated by a baseband signal containing direct current, and 1 is a local oscillator that emits a local oscillation output L having the same frequency as the center frequency of the input signal R. Reference numeral 2 is a polarity inverter, which receives the local oscillation output L and obtains a polarity inversion output of the input L, that is, an output having a phase difference of π radian.

31,32はそれぞれ第1,第2位相差検出回路で、入力信
号Rと局部発振出力,及び入力信号Rと極性反転出力
をそれぞれ入力し各々の位相差に対し周期2πラジア
ンで直線的上昇または下降を繰り返す鋸歯状形の位相差
特性に従って第1,第2位相差検出出力θ1を発す
る。
Reference numerals 31 and 32 denote first and second phase difference detection circuits, which respectively input the input signal R and the local oscillation output, and the input signal R and the polarity inversion output, and linearly rise with a period of 2π radians for each phase difference or The first and second phase difference detection outputs θ 1 and θ 2 are emitted according to the phase difference characteristic of the sawtooth shape which repeats the downward movement.

4は位相差判定回路で、入力信号Rと局部発振出力L
を入力し両者の位相差に対し周期2πラジアンでπラジ
アン毎に2値判定値“L",“H"を出力する特性を有す
る。Cはその位相差判定出力である。この位相差判定出
力Cの2値状態“H"→“L",“L"→“H"の変化を与える
入力信号Rと局部発振出力Lとの位相差点は第1,第2位
相差検出出力θ1の鋸歯状形の位相差検出特性の不
連続変化(垂直下降または上昇)を与える位相点に対し
±π/2の偏差を有している。
4 is a phase difference determination circuit, which is an input signal R and a local oscillation output L
And a binary judgment value “L” or “H” is output for each π radian with a period of 2π radians with respect to the phase difference between them. C is the phase difference determination output. The phase difference point between the local oscillation output L and the input signal R which gives the change of the binary state “H” → “L”, “L” → “H” of the phase difference judgment output C is the first and second phase difference detection. It has a deviation of ± π / 2 with respect to the phase point that gives a discontinuous change (vertical fall or rise) in the sawtooth-shaped phase difference detection characteristics of the outputs θ 1 and θ 2 .

第1,第2位相差検出回路31,32及び位相差判定回路4
の特性例を図示すると、それぞれ第2図(a),(b)
のようになる。第2図(a),(b)の縦軸はそれぞれ
第1,第2位相差検出回路31,32の出力θ1のレベル
及び位相差判定回路4の出力Cの2値論理状態を表し、
横軸はいずれも入力信号Rに対する局部発振出力Lの位
相差θラジアンを表している。
First and second phase difference detection circuits 31, 32 and phase difference determination circuit 4
FIG. 2A and FIG. 2B show characteristic examples of
become that way. The vertical axes in FIGS. 2A and 2B represent the binary logic states of the outputs θ 1 and θ 2 of the first and second phase difference detection circuits 31 and 32 and the output C of the phase difference determination circuit 4, respectively. Represents
The horizontal axis represents the phase difference θ radian of the local oscillation output L with respect to the input signal R.

第2図(a)の実線で示す特性はθの特性で、最大
値+V1,最小値−Vを有し、θが2πラジアンの整数倍
の点で不向きの不連続変化を示す鋸歯状形を呈する場合
を示す。このときθの特性は第2位相差検出回路32の
一方の入力が局部発振出力Lに対しπラジアンの位相
差を有するため、位相差θに対しては破線で示したよう
にθの特性をπラジアンだけ移位した特性となる。
The characteristic indicated by the solid line in FIG. 2 (a) is the characteristic of θ 1 , which has a maximum value + V 1 and a minimum value −V, and shows an undesired discontinuous change when θ is an integer multiple of 2π radians. The case where the shape is exhibited is shown. At this time, the characteristic of θ 2 is that as one input of the second phase difference detection circuit 32 has a phase difference of π radian with respect to the local oscillation output L, the phase difference of θ 1 as shown by the broken line is shown. The characteristics are shifted by π radians.

第2図(b)の位相差判定出力Cの特性は、前述した
ようにθ1の垂直下降点より±π/2ラジアンだけず
れた位相差点で変化するから図の例では、θがπ/2ラジ
アンの奇数倍の点で“H",“L"状態が交番する、矩形特
性となっている。このような諸特性を有する第1,第2位
相差検出回路31,32および位相差判定回路4は、入力信
号R,局部発振出力L,極性反転出力が2値論理値に整形
されている場合、それぞれ第3図(a)及び(b)に示
す構成例によって実現できる。
The characteristic of the phase difference determination output C in FIG. 2 (b) changes at the phase difference point deviated by ± π / 2 radian from the vertical descent point of θ 1 and θ 2 as described above. Has a rectangular characteristic in which the “H” and “L” states alternate at points that are an odd multiple of π / 2 radians. When the input signal R, the local oscillation output L, and the polarity inversion output are shaped into a binary logic value, the first and second phase difference detection circuits 31 and 32 and the phase difference determination circuit 4 having such characteristics are shaped. Can be realized by the configuration examples shown in FIGS. 3 (a) and 3 (b), respectively.

第3図(a)の311はLまたはを入力し、その立ち
上がりに同期して入力信号Rの周期に比べ充分短いパル
スを発生する単安定マルチバイブレータ、312はRをト
リガ入力(T)とし、単安定マルチバイブレータ311の
パルス出力をリセット入力(R)とするDタイプフリッ
プフロップ回路で、データ入力(D)は論理状態“H"に
保持されている。
311 in FIG. 3 (a) inputs L or, and a monostable multivibrator that generates a pulse sufficiently shorter than the cycle of the input signal R in synchronization with its rising edge, and 312 uses R as a trigger input (T), In the D-type flip-flop circuit in which the pulse output of the monostable multivibrator 311 is used as the reset input (R), the data input (D) is held in the logic state "H".

313はこのフリップフロップ回路312のデータ出力
(Q)を入力し、入力信号Rの搬送波周波数成分やその
高調波成分を除去する低域濾波器で、その出力は第1,第
2位相差検出出力θ1となる。
313 is a low-pass filter that receives the data output (Q) of the flip-flop circuit 312 and removes the carrier frequency component of the input signal R and its harmonic components, the output of which is the first and second phase difference detection outputs. θ 1 and θ 2 .

以上の構成によると、入力信号Rの立ち上がりによっ
てDタイプフリップフロップ回路312はデータ入力
(D)の“H"状態をサンプル出力するので、セット状態
(Q=“H")となり、L,の立ち上がりにより、リセッ
ト状態(Q=“L")に復旧するからRの位相に対するL,
の位相差Qが0<θ<2πの範囲ではDタイプフリッ
プフロップ回路312の出力の“H"状態のデューティ比率
は、θに比例する。従って、これを低域濾波器313で平
滑化すると、低域濾波器313の出力はθに比例する電圧
になり、第2図(a)の実線の特性が得られることがわ
かる。
According to the above configuration, the D-type flip-flop circuit 312 samples and outputs the "H" state of the data input (D) in response to the rising edge of the input signal R, so that the set state (Q = "H") is reached and the rising edge of L, By this, the reset state (Q = “L”) is restored, so L for the phase of R,
In the range where the phase difference Q is 0 <θ <2π, the duty ratio of the output of the D type flip-flop circuit 312 in the “H” state is proportional to θ. Therefore, if this is smoothed by the low-pass filter 313, the output of the low-pass filter 313 becomes a voltage proportional to θ, and it can be seen that the characteristic indicated by the solid line in FIG. 2 (a) is obtained.

第3図(b)の41は入力信号Rおよび局部発振出力L
を入力とする排他的論理和回路、42はこの回路41の出力
を入力し、第3図(a)の313と同様の機能を有する低
域濾波器、43は低域濾波器42の出力を2値論理値に整形
するレベル比較器で、その出力は位相差判定出力Cとな
る。
41 in FIG. 3 (b) indicates an input signal R and a local oscillation output L.
An exclusive OR circuit having 42 as an input, the input of the output of this circuit 41, a low-pass filter having the same function as 313 of FIG. 3 (a), and 43 the output of the low-pass filter 42. This is a level comparator that shapes into a binary logic value, and its output becomes a phase difference determination output C.

以上の構成により、排他的論理和回路41の出力は、R
とLが同相(θ=0)のとき、および逆相(θ=±π)
のとき、それぞれ全て“L",及び全て“H"となり、π/2
ラジアンの位相差(θ=±π/2)の場合には“H"と“L"
が同一の割合で発生するから、低域濾波器42によるその
平滑化出力は、θ=0,θ=±π,θ=±π/2のそれぞれ
において、最小値,最大値,および前2者の平均値を与
える三角形の特性を呈する。従ってレベル比較器43にお
いて前記の平均値をしきい値として、これを2値判定す
れば、第2図(b)の矩形の特性が得られることがわか
る。
With the above configuration, the output of the exclusive OR circuit 41 is R
And L are in phase (θ = 0), and in reverse phase (θ = ± π)
, All become “L” and all “H”, and π / 2
“H” and “L” in the case of radian phase difference (θ = ± π / 2)
Are generated at the same rate, the smoothed output by the low-pass filter 42 is the minimum value, the maximum value, and the former two values at θ = 0, θ = ± π, and θ = ± π / 2, respectively. It exhibits the property of a triangle giving the average value of. Therefore, if the level comparator 43 uses the above-mentioned average value as a threshold value and makes a binary decision, it can be seen that the rectangular characteristic of FIG. 2 (b) is obtained.

次に、第1図にもどって、51,52はそれぞれのθ
びθを入力し、その微分波形を出力する第1,第2微分
器で、D1およびD2はその微分出力である。6は微分出力
D1,D2および位相判定出力Cを入力し、Cの2値状態に
対応して、D1,D2のいずれか一方を選択し、切替出力す
る切替回路で、アナログスイッチにより構成できる。7
は低域濾波器で、切替回路6の出力D(D1またはD2)を
入力し、伝送回線における雑音によって切替出力Dに生
じたベースバンド帯域外の雑音成分を除去する低域濾波
器であり、その出力Sは、低域濾波動作によって抽出さ
れたベースバンド信号から成る周波数弁別出力である。
Next, returning to FIG. 1, 51 and 52 are first and second differentiators that input θ 1 and θ 2 respectively and output their differential waveforms, and D 1 and D 2 are their differential outputs. is there. 6 is differential output
A switching circuit for inputting D 1 and D 2 and a phase determination output C, selecting one of D 1 and D 2 according to the binary state of C, and switching and outputting can be constituted by an analog switch. 7
Is a low-pass filter that receives the output D (D 1 or D 2 ) of the switching circuit 6 and removes the noise component outside the baseband generated at the switching output D due to the noise in the transmission line. And its output S is a frequency discriminating output consisting of the baseband signal extracted by the low pass filtering operation.

上記の構成において第1図に示した本発明回路の構成
例と第3図(a),(b)に示した本発明における第1,
第2位相差検出回路及び位相差判定回路の構成例並びに
第2図(a),(b)に示した第1,第2位相差検出回路
及び位相差判定回路の特性例に基づき、その周波数弁別
動作と効果を数式およびタイムチャートを用いて詳細に
説明する。
In the above-mentioned configuration, an example of the configuration of the circuit of the present invention shown in FIG. 1 and the first and second aspects of the present invention shown in FIGS. 3 (a) and 3 (b)
Based on the configuration examples of the second phase difference detection circuit and the phase difference determination circuit and the characteristic examples of the first and second phase difference detection circuits and the phase difference determination circuit shown in FIGS. The discrimination operation and effect will be described in detail by using mathematical expressions and time charts.

今、第1図の各信号θ12,D1,D2,Dおよび第2図の
θの時間波形をそれぞれθ(t),θ(t),D
1(t),D2(t),D(t),θ(t)とおき、またCの
2値状態“H",“L"をそれぞれ+1,0に置き換えた時間波
形をC(t)とおく。さらに、切替回路6の動作はC=
“H"(C(t)=+1)のときD1を,またC=“L"(C
(t)=0)のときD2を、それぞれ選択し出力するもの
とする。このとき、第1図,第2図から以下の諸関係式
が導出できる。
Now, the time waveforms of the signals θ 1 , θ 2 , D 1 , D 2 , D of FIG. 1 and θ of FIG. 2 are respectively represented by θ 1 (t), θ 2 (t), D.
1 (t), D 2 (t), D (t), θ (t), and the time waveform obtained by replacing the binary states “H” and “L” of C with +1 and 0 respectively is C (t )far. Further, the operation of the switching circuit 6 is C =
D 1 when “H” (C (t) = + 1), and C = “L” (C
When (t) = 0, D 2 is selected and output. At this time, the following various relational expressions can be derived from FIGS. 1 and 2.

Dt=D1(t)・C(t)+D2(t)(1−C(t))
……(5) 但し、δ{・}は、ディラックのインパルス関数で第
2図で説明したθ1の不連続点での微分により生成
されるものである。ここで、第2図(a),(b)に示
したθ1とCとの関係により、次式 が成立するから、(1)〜(7)式をまとめると、最終
的に下式 を得る。
D t = D 1 (t) · C (t) + D 2 (t) (1-C (t))
(5) However, δ {·} is a Dirac impulse function and is generated by differentiating at the discontinuous points of θ 1 and θ 2 described in FIG. Here, from the relationship between θ 1 and θ 2 and C shown in FIGS. Therefore, the following formula is finally obtained by summing the formulas (1) to (7). Get.

この(8)式によって、切替出力波形D(t)はdθ
(t)/dt,即ち、入力信号Rの中心角周波数からの角周
波数偏差(Δωとおく)に比例するから、D(t)は周
波数弁別出力になることが明らかである。
From this equation (8), the switching output waveform D (t) is dθ
Since it is proportional to (t) / dt, that is, the angular frequency deviation (set as Δω) from the central angular frequency of the input signal R, it is clear that D (t) is a frequency discriminant output.

以上の数式により示した周波数弁別動作の具体例を次
にタイムチャートを用いて示すと、第4図(a),
(b)のようになる。
A specific example of the frequency discriminating operation represented by the above mathematical formula will be shown next with reference to a time chart in FIG.
It becomes like (b).

第4図(a),(b)はそれぞれ前記角周波数偏差Δ
ωの絶対値が相対的に大きい場合(Δω=±ωとす
る)、および小さい場合(Δω=±ωとする)の各時
間波形を示しており、Δω=ΔωH,Δω>0,およびΔ
ω=−ΔωH,−Δω<0の場合をそれぞれ実線および
破線で表している(但しΔω>Δω)。
4 (a) and 4 (b) show the angular frequency deviation Δ, respectively.
The time waveforms when the absolute value of ω is relatively large (Δω = ± ω H ) and when it is small (Δω = ± ω L ) are shown, and Δω = Δω H , Δω L > 0 , And Δ
The case of ω = −Δω H , −Δω L <0 is shown by a solid line and a broken line, respectively (where Δω H > Δω L ).

第4図(a)では(b)に比べ位相差θの変化(位相
回転)が速いため、θ(t),θ(t)の鋸歯状波
の変化は(a)の方が(b)よりも速くなる。このた
め、これらの時間微分波形D1(t),D2(t)はθ
(t),θ(t)の変化の、不連続点に生ずる下向
き、または上向きの鋭いインパルス列以外の部分はθ
(t),θ(t)の直線傾斜部分の傾きに比例した一
定電圧を呈し、(a)の方が(b)よりも大きい。この
ことは、この一定電圧値をΔω=ΔωH,Δω(実線)
のそれぞれに対し、vH,vLとおくと、Δω=−ΔωH,−
Δω(破線)ではそれぞれ、−vH,−vLとなり、か
つ、vH,vLは(1)〜(4)式より、下式 で与えられることからも明らかである。
In FIG. 4A, since the change (phase rotation) of the phase difference θ is faster than that of (b), the change of the sawtooth wave of θ 1 (t) and θ 2 (t) is (a) It will be faster than b). Therefore, these time differential waveforms D 1 (t) and D 2 (t) are θ
The part of the change in 1 (t), θ 2 (t) other than the downward or upward sharp impulse train occurring at the discontinuous point is θ 1
A constant voltage proportional to the inclination of the linear inclination portion of (t) and θ 2 (t) is exhibited, and (a) is larger than (b). This means that this constant voltage value is Δω = Δω H , Δω L (solid line)
If v H and v L are set for each of the above, Δω = −Δω H , −
Δω L (broken line) is −v H , −v L , respectively, and v H , v L are expressed by the following equations (1) to (4). It is also clear from what is given by.

一方、前述の鋭いインパルス列は、(3),(4)式
の各右辺の〔〕内第2項に該当するもので、その周期は
D1(t),D2(t)の各々において角周波数Δωで発生
するので、このままではΔωが小さい場合、インパルス
列の基本波成分は周波数弁別出力のベースバンド信号帯
域内に混入し、低域濾波器7では除去不可能な歪成分と
なることから、D1(t)あるいはD2(t)をそのまま低
域濾波する処理は不適当である。
On the other hand, the sharp impulse train described above corresponds to the second term in [] on the right side of each of the equations (3) and (4), and its period is
Since the angular frequency Δω is generated in each of D 1 (t) and D 2 (t), if Δω is small as it is, the fundamental wave component of the impulse train is mixed in the baseband signal band of the frequency discrimination output, and Since the distortion component that cannot be removed by the bandpass filter 7 is low, the process of low-pass filtering D 1 (t) or D 2 (t) as it is is not appropriate.

ここで位相差判定回路4の判定出力波形C(t)は第
2図(a),(b)の関係により第4図(a),(b)
の下から2段目に示したように、D1(t)のインパルス
発生時にC(t)=0(C=“L")、D2(t)のインパ
ルス発生時にC(t)=+1(C=“H")となることが
わかる。
Here, the judgment output waveform C (t) of the phase difference judgment circuit 4 is shown in FIGS. 4 (a) and 4 (b) according to the relationship of FIGS. 2 (a) and 2 (b).
As shown in the second row from the bottom of, D 1 (t) C ( t) at the time of impulse generation of = 0 (C = "L" ), C during impulse generation of D 2 (t) (t) = + 1 It can be seen that (C = “H”).

従って第1図の切替回路6の入力D1(t),D2(t)
の切替出力動作論理を、 となるように構成すればD(t)は実効的には(5)式
で表されD1(t)とD2(t)のインパルス発生時点を交
互に回避した切替出力波形となるので、第4図(a),
(b)の最下段に示したようにD(t)には、ベースバ
ンド信号帯域内に歪を含まず、周波数弁別出力±ΔωH,
±Δωに比例する一定出力±vH,±vLをそれぞれ得る
ことができる。
Therefore, the inputs D 1 (t) and D 2 (t) of the switching circuit 6 in FIG.
The switching output operation logic of If it is configured so that D (t) is effectively expressed by the equation (5), it becomes a switching output waveform that alternately avoids the impulse generation points of D 1 (t) and D 2 (t). Figure 4 (a),
As shown at the bottom of (b), D (t) does not include distortion in the baseband signal band, and the frequency discrimination output ± Δω H ,
It is possible to obtain constant outputs ± v H and ± v L that are proportional to ± Δω L , respectively.

〔発明の効果〕〔The invention's effect〕

以上、詳細に説明したように本発明によれば、理論的
に無歪で不要高調波を含まない周波数弁別動作を得るこ
とができる。またこれを実現するに当たり、局部発振回
路として従来の直交検波方式にあった互いにπ/2ラジア
ンの位相差を有する2つの局部発振出力や、アナログ乗
算器等を必要とせず、単に演算増幅器,レベル比較器,
アナログスイッチ,論理回路等を主要構成要素とし、リ
ニアIC,スイッチドキャパシタ回路やCMOS回路等の技術
の応用で回路が形成でき、回路規模が小さいのでIC化,
小形低消費電力化に適する。さらに応用に関しては、ス
ーパーヘテロダイン受信機に限らず、受信波を直接ベー
スバンド領域に変換する方式の受信機にも適用できるな
ど、汎用性に優れるという利点がある。
As described in detail above, according to the present invention, it is possible to obtain a frequency discrimination operation that is theoretically distortion-free and does not include unnecessary harmonics. In order to realize this, two local oscillation outputs having a phase difference of π / 2 radians, which are in the conventional quadrature detection system, as a local oscillation circuit, an analog multiplier, etc. are not required, and an operational amplifier and a level are simply used. Comparator,
With analog switches, logic circuits, etc. as the main constituent elements, circuits can be formed by application of technologies such as linear ICs, switched capacitor circuits, CMOS circuits, etc.
Suitable for small size and low power consumption. Further, the application is not limited to the super-heterodyne receiver, and can be applied to a receiver that directly converts the received wave into the baseband region, and thus has an advantage of excellent versatility.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明回路の一実施例の構成を示すブロック
図、第2図(a),(b)はそれぞれ本発明における第
1,第2位相差検出回路の位相差検出特性及び位相差判定
回路の出力特性を示す図、第3図(a),(b)はそれ
ぞれ第1,第2位相差検出回路の一構成例及び位相差判定
回路の一構成例を示す接続図、第4図(a),(b)は
それぞれ入力信号の角周波数偏差Δωの絶対値が相対的
に大きい場合及び小さい場合の各時間波形例を示すタイ
ムチャートである。 1……局部発振回路、R……入力信号、L……局部発振
出力、2……極性反転器、……極性反転出力、31,32
……第1,第2位相差検出回路、θ1……その第1,第
2位相差検出出力、4……位相差判定回路、C……その
位相差判定出力、51,52……第1,第2微分器、D1,D2……
その第1,第2微分出力、6……切替回路、D……切替出
力、7……低域濾波器、S……周波数弁別出力。
FIG. 1 is a block diagram showing the construction of an embodiment of the circuit of the present invention, and FIGS. 2 (a) and 2 (b) are respectively the first embodiment of the present invention.
FIG. 1 is a diagram showing the phase difference detection characteristics of the second phase difference detection circuit and the output characteristics of the phase difference determination circuit, and FIGS. 3 (a) and 3 (b) are configuration examples of the first and second phase difference detection circuits, respectively. And a connection diagram showing a configuration example of the phase difference determination circuit, and FIGS. 4 (a) and 4 (b) are time waveform examples when the absolute value of the angular frequency deviation Δω of the input signal is relatively large and small, respectively. 2 is a time chart showing. 1 ... Local oscillation circuit, R ... Input signal, L ... Local oscillation output, 2 ... Polarity reversing device, ... Polarity reversing output, 31, 32
...... First and second phase difference detection circuits, θ 1 , θ 2 ...... The first and second phase difference detection outputs, 4 ...... Phase difference determination circuit, C ...... The phase difference determination output, 51, 52 …… First and second differentiators, D 1 , D 2 ……
The first and second differential outputs, 6 ... switching circuit, D ... switching output, 7 ... low-pass filter, S ... frequency discrimination output.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入力信号Rの中心周波数と同一周波数を有
する局部発振出力Lを得る局部発振回路1と、局部発振
出力Lの極性を反転し極性反転出力を得る極性反転器
2と、入力信号Rと局部発振出力L,及び入力信号Rと極
性反転出力をそれぞれ入力しそれぞれ2つの入力Rと
L,Rととの位相差に対し周期2πラジアンで直線的上
昇または下降を繰り返す鋸歯状形の位相差特性に従って
第1,第2位相差検出出力θ1を得る第1,第2位相差
検出回路31,32と、入力信号Rと局部発振出力Lを入力
しこれらの位相差に対し周期2πラジアンでπラジアン
毎に2値判定値を呈する位相差判定出力Cを得る位相差
判定回路4と、第1,第2位相差検出出力θ1を入力
しその時間微分動作によってそれぞれ第1,第2微分出力
D1,D2を得る第1,第2微分器51,52と、第1,第2微分出力
D1,D2を入力しこれらの2つの入力の一方を位相差判定
出力Cの2値状態に対応して選択し、これらの切替出力
Dを得る切替回路6と、切替出力Dを入力し伝送回線に
おける雑音によって生じたベースバンド帯域外の雑音成
分を除去して周波数弁別出力Sを得る低域濾波器7とよ
りなり、位相差判定出力Cの2値変化を与える入力信号
Rと局部発振出力Lとの位相差点は、第1,第2位相差検
出出力θ1の鋸歯状形の位相差検出特性における不
連続変化を与える位相差点に対し±π/2ラジアンの位相
差を有するように第1,第2位相差検出回路31,32及び位
相差判定回路4を構成すると共に、切替回路6は第1ま
たは第2位相差検出出力θまたはθの不連続変化を
与える位相差点上で位相差判定出力Cが示す2値状態,
及びその逆の状態に対し第2または第1微分出力D2また
はD1、及び第1または第2微分出力D1またはD2をそれぞ
れ選択し、切替出力するように構成した周波数弁別回
路。
1. A local oscillator circuit 1 for obtaining a local oscillation output L having the same frequency as the center frequency of an input signal R, a polarity inverter 2 for inverting the polarity of the local oscillation output L to obtain a polarity inversion output, and an input signal. R and the local oscillation output L, and the input signal R and the polarity inversion output are input respectively and two inputs R and
First and second phase difference detection outputs θ 1 and θ 2 are obtained according to the phase difference characteristic of a sawtooth shape that repeats linear rising and falling with a period of 2π radians with respect to the phase difference between L and R Phase difference detection circuits 31 and 32, and a phase difference determination output C that receives the input signal R and the local oscillation output L and obtains a phase difference determination output C that presents a binary determination value every π radian with a period of 2π radians for these phase differences. The circuit 4 and the first and second phase difference detection outputs θ 1 and θ 2 are input and the first and second differential outputs are made by the time differentiating operation.
First and second differentiators 51 and 52 for obtaining D 1 and D 2 , and first and second differentiator outputs
D 1 and D 2 are input, one of these two inputs is selected according to the binary state of the phase difference determination output C, and the switching circuit 6 that obtains these switching outputs D and the switching output D are input. A low-pass filter 7 for obtaining a frequency discrimination output S by removing a noise component outside the baseband caused by noise in a transmission line, and an input signal R and a local oscillation for giving a binary change of a phase difference judgment output C. The phase difference point with the output L is ± π / 2 radian phase difference point with respect to the phase difference point that gives a discontinuous change in the sawtooth phase difference detection characteristics of the first and second phase difference detection outputs θ 1 and θ 2. The first and second phase difference detection circuits 31 and 32 and the phase difference determination circuit 4 are configured to have, and the switching circuit 6 gives a discontinuous change in the first or second phase difference detection output θ 1 or θ 2. Binary state indicated by the phase difference determination output C on the phase difference point,
A frequency discriminating circuit configured to select the second or first differential output D 2 or D 1 and the first or second differential output D 1 or D 2 for the opposite state and switch output.
JP62336618A 1987-12-31 1987-12-31 Frequency discrimination circuit Expired - Lifetime JP2517035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336618A JP2517035B2 (en) 1987-12-31 1987-12-31 Frequency discrimination circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336618A JP2517035B2 (en) 1987-12-31 1987-12-31 Frequency discrimination circuit

Publications (2)

Publication Number Publication Date
JPH01176103A JPH01176103A (en) 1989-07-12
JP2517035B2 true JP2517035B2 (en) 1996-07-24

Family

ID=18301018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336618A Expired - Lifetime JP2517035B2 (en) 1987-12-31 1987-12-31 Frequency discrimination circuit

Country Status (1)

Country Link
JP (1) JP2517035B2 (en)

Also Published As

Publication number Publication date
JPH01176103A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
JP2982567B2 (en) Receiver
EP1959562B1 (en) Fully differential demodulator with variable gain and method for demodulating a signal
JPH0129469B2 (en)
US4475219A (en) Demodulator for frequency-shift-keyed binary data signals
EP0370539A1 (en) Phase detector and frequency demodulator including such a phase detector
JP2517035B2 (en) Frequency discrimination circuit
JP2002257547A (en) Method and device for synchronous demodulation of multiply modulated signal
KR100667648B1 (en) Fm signal demodulation method and device thereof
JP3729366B2 (en) Clock recovery circuit for packet FSK receiver
US7916813B2 (en) Receiver device
US4618830A (en) PSK demodulator using asynchronous local oscillator
US5850161A (en) Digital FM demodulator using pulse generators
JP2517028B2 (en) Frequency detection circuit
JP2005348208A (en) Phase lock circuit
JP3658768B2 (en) FM receiver
JPH0626345B2 (en) FSK signal demodulator
JP2518860B2 (en) Phase synchronization circuit
JP3658769B2 (en) Receiver
JPH06105917B2 (en) FSK detection circuit
KR940000929B1 (en) Digital frequency shift keying modulating circuit
JP4267786B2 (en) Direct conversion receiver for frequency shift keyed signals
SU1392630A1 (en) Duplex phase telegraphy signal demodulator
JPS61142842A (en) Carrier wave lead-in auxiliary system
RU2522854C1 (en) Method of demodulating minimum frequency-shift keying signals and apparatus for realsing said method
JPS59168752A (en) Frequency detector