JP2555400B2 - Consumable nozzle electroslag welding method - Google Patents
Consumable nozzle electroslag welding methodInfo
- Publication number
- JP2555400B2 JP2555400B2 JP63020484A JP2048488A JP2555400B2 JP 2555400 B2 JP2555400 B2 JP 2555400B2 JP 63020484 A JP63020484 A JP 63020484A JP 2048488 A JP2048488 A JP 2048488A JP 2555400 B2 JP2555400 B2 JP 2555400B2
- Authority
- JP
- Japan
- Prior art keywords
- weld metal
- wire
- welding
- flux
- welding method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Nonmetallic Welding Materials (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、消耗ノズル式エレクトロスラグ溶接方法に
関するものである。The present invention relates to a consumable nozzle type electroslag welding method.
<従来の技術> この消耗ノズル式エレクトロスラグ溶接法は、厚さが
100mmを超える厚板でも1ラン溶接が可能で能率が良い
ので適用範囲の拡大が望まれているのが現状である。<Prior art> This consumable nozzle type electroslag welding method is
Since it is possible to perform one-run welding even for thick plates exceeding 100 mm and the efficiency is high, it is the current situation that the range of application is desired to be expanded.
しかし板厚が50mmでも700KJ/cm程度の大入熱溶接とな
るため、溶接金属並びに鋼板の溶接熱影響部において、
ミクロ組織が粗大となり、靭性の劣化或いは耐割れ性の
劣化等が避けられず、利用に当たっては−20℃程度迄に
限られており、又、耐割れ性から強度的にも適用鋼種は
軟鋼50キロハイテン鋼に限られているのが実状である。However, even if the plate thickness is 50 mm, it will be a large heat input welding of about 700 KJ / cm, so in the weld heat affected zone of the weld metal and steel plate,
The microstructure becomes coarse, deterioration of toughness or deterioration of crack resistance is unavoidable, and it is limited to about -20 ° C in use, and also from the viewpoint of crack resistance, the applicable steel type is mild steel 50 The reality is that it is limited to kilo-high-tensile steel.
ところが最近鋼板においては、耐大入熱性の研究がな
され、この様な大入熱性溶接においても継手靭性が改善
された鋼板が開発され、従前より更に低温仕様或いはYP
40、YP42等の強度の高い鋼への適用研究がなされる段階
にある。However, recently, with respect to steel sheets, research on large heat input resistance has been conducted, and steel sheets with improved joint toughness have been developed even in such large heat input welding, and even lower temperature specifications or YP
It is in the stage of being studied for application to high strength steels such as 40 and YP42.
これに伴って溶接金属においても更に低温靭性の改善
並びに耐割れ性の改善が要望されている。Accordingly, in the weld metal, further improvement in low temperature toughness and crack resistance have been demanded.
これに応えて溶接金属をTi−B化する方法が、多数提
案されている。In response to this, many methods for converting the weld metal to Ti-B have been proposed.
例えば特公昭51−30020号公報に粉粒状B合金及びTi
を含有させた複合ワイヤ(フラックス入りワイヤ)を用
いて行うエレクトロスラグ溶接法が開示されている。For example, Japanese Examined Patent Publication (Kokoku) No. 51-3020 discloses powdery granular B alloy and Ti
There is disclosed an electroslag welding method using a composite wire (flux-cored wire) containing a metal.
又特開昭52−70955号公報には軟鋼、低合金鋼のエレ
クトロスラグ溶接法において溶接金属成分を電極、フラ
ックスその他母材等から入って来る成分と賄として、0.
002〜0.08%のTiと、0.0004〜0.004%のBをフラックス
の添加合金から供給する溶接法が開示されている。Further, Japanese Patent Laid-Open No. 52-70955 discloses that in the electroslag welding method for mild steel and low alloy steel, the weld metal component is used as a component of the electrode, flux and other components coming from the base metal, etc.
A welding method is disclosed in which 002 to 0.08% Ti and 0.0004 to 0.004% B are supplied from a flux addition alloy.
更に特公昭51−4502号公報にはフラックス入り電極ワ
イヤーと鋼パイプにスラグ生成剤を塗装した被覆消耗ノ
ズルを併用する消耗ノズル式エレクトロスラグ溶接方法
が開示されている。Further, Japanese Patent Publication No. 51-4502 discloses a consumable nozzle type electroslag welding method in which a flux-cored electrode wire and a coated consumable nozzle in which a slag forming agent is coated on a steel pipe are used together.
<発明が解決しようとする問題点> しかしながら特公昭51−30020号公報開示の方法及び
特開昭52−70955号公報開示の方法並びに特公昭51〜450
2号公報開示の方法で形成される溶接金属の靭性は0〜
−20℃程度で、本発明者等が本発明の目的とする−40℃
程度の溶接金属の靭性レベルには致っていないのが現状
である。<Problems to be Solved by the Invention> However, the method disclosed in Japanese Patent Publication No. 51-30020 and the method disclosed in Japanese Patent Publication No. 52-70955, and Japanese Patent Publications No. 51-450.
The weld metal formed by the method disclosed in Japanese Patent Publication No. 2 has a toughness of 0 to
At about -20 ° C, the present inventors aim to obtain -40 ° C.
At present, the weld metal toughness level is not so high.
<問題点を解決するための手段> 本発明は上記した問題点を解決して、前記目的を満た
す溶接方法を提供するものであって、その手段は、 (1)重量%で、 C:0.03〜0.09% B:0.0003〜0.005% Mn:0.8〜1.80% Ni:0.10〜0.8% Ti:0.003〜0.03% Cu:0.10〜0.8% 但しCu+Ni≧0.15% を含有し、その他鉄及び不可避的成分からなる溶接金属
を形成せしめ、該溶接金属を冷却速度0.3〜5℃/secで5
00℃以下迄連続的に冷却する事を第1の手段とし、 (2)第1の手段において、 重量%で、 C:≦0.15% Al:≦0.07% Mn:0.8〜2.0% Ti:0.006〜0.05% Si:≦0.4% Ni:0.3〜1.0% Cu:0.3〜1.0% その他鉄及び不可避的成分からなる鋼板を、 ワイヤ重量に対して、 B:≦0.020% を含有するフラックスを内蔵したワイヤを用いて溶接す
ることにより溶接金属を形成する事を第2の手段とし、 (3)第1の手段において、 重量%で、 C:≦0.15% Al:≦0.07% Mn:0.8〜2.0% Ti:0.006〜0.05% Si:≦0.4% その他鉄及び不可避的成分からなる鋼板を、 ワイヤ重量に対して、 B:≦0.020% Ni:0.3〜1.0% Cu:0.3〜1.0% を含有するフラックスを内蔵したワイヤを用いて溶接す
ることにより溶接金属を形成する事を第3の手段とし、 (4)第1の手段において、 重量%で、 C:≦0.15% Al:≦0.07% Mn:0.8〜2.0% Ti:0.006〜0.05% Si:≦0.4% その他鉄及び不可避的成分からなる鋼板を、 ワイヤ重量に対して、 B:≦0.020% Ni:0.3〜1.0% を含有するフラックスを内蔵したワイヤを用いて溶接す
ることにより溶接金属を形成する事を第4の手段とし、 (5)第1の手段において、 重量%で、 C:≦0.15% Al:≦0.07% Mn:0.8〜2.0% Ti:0.006〜0.05% Si:≦0.4% その他鉄及び不可避的成分からなる鋼板を、 ワイヤ重量に対して、 B:≦0.020% Cu:0.3〜1.0% を含有するフラックスを内蔵したワイヤを用いて溶接す
ることにより溶接金属を形成する事を第5の手段とする
消耗ノズル式エレクトロスラグ溶接方法である。<Means for Solving Problems> The present invention solves the above problems and provides a welding method satisfying the above-mentioned object, which means (1)% by weight, C: 0.03 〜0.09% B: 0.0003〜0.005% Mn: 0.8〜1.80% Ni: 0.10〜0.8% Ti: 0.003〜0.03% Cu: 0.10〜0.8% However, it contains Cu + Ni ≧ 0.15% and consists of other iron and inevitable components. Form a weld metal, and cool the weld metal at a cooling rate of 0.3 to 5 ° C / sec.
The first means is to continuously cool it to below 00 ° C. (2) In the first means, C: ≤ 0.15% Al: ≤ 0.07% Mn: 0.8-2.0% Ti: 0.006- 0.05% Si: ≤ 0.4% Ni: 0.3 to 1.0% Cu: 0.3 to 1.0% A steel plate composed of other iron and unavoidable components, and a wire with a built-in flux containing B: ≤ 0.020% of the wire weight. The second means is to form a weld metal by welding using (3) In the first means, C: ≤ 0.15% Al: ≤ 0.07% Mn: 0.8-2.0% Ti: 0.006 to 0.05% Si: ≤ 0.4% Steel plate composed of other iron and unavoidable components, with a built-in flux containing B: ≤ 0.020% Ni: 0.3 to 1.0% Cu: 0.3 to 1.0% of the wire weight. The third means is to form a weld metal by welding using a wire. (4) In the first means, C: ≤ 0.15% Al: ≤ 0.07% Mn: 0.8 2.0% Ti: 0.006 to 0.05% Si: ≤ 0.4% Steel sheet composed of other iron and unavoidable components, and a wire with a built-in flux containing B: ≤ 0.020% Ni: 0.3 to 1.0% relative to the weight of the wire. The fourth means is to form a weld metal by welding using (5) In the first means, C: ≤ 0.15% Al: ≤ 0.07% Mn: 0.8-2.0% Ti: 0.006 to 0.05% Si: ≤0.4% Weld steel plate consisting of other iron and unavoidable components with a wire containing a flux containing B: ≤ 0.020% Cu: 0.3 to 1.0%, based on the weight of the wire. This is a consumable-nozzle type electroslag welding method in which the fifth means is to form weld metal.
これ等の手段を達成する為に、本発明が溶接金属、鋼
材、フラックス入りワイヤーの成分を限定する理由を以
下に説明する。The reason why the present invention limits the components of the weld metal, the steel material, and the flux-cored wire in order to achieve these means will be described below.
溶接金属が上記の各元素を各限定の範囲含有すると望
ましい低温靭性と耐割れ性が得られる事は当業分野では
周知である。しかしこの周知の範囲の溶接金属から目的
とする材質が得られていないのが問題点として既に述べ
た様に現状である。It is well known in the art that the weld metal can obtain desired low temperature toughness and crack resistance when each of the above-mentioned elements is contained in respective limited ranges. However, as described above, the problem is that the desired material has not been obtained from the weld metal in this known range.
当業分野で望ましいとし、本発明者も同様に認識して
いる各元素の添加理由は次の通りである。The reason for adding each element, which is desirable in the art and is also recognized by the present inventor, is as follows.
溶接金属のC、Mnは共に強度の維持と靭性、曲げ加工
性劣化防止の点から、Ti、及びBは靭性の確保の点か
ら、Cu、Niは靭性の維持と曲げ加工性維持の点からであ
る。C and Mn of the weld metal both maintain strength and prevent deterioration of toughness and bendability. Ti and B maintain toughness, while Cu and Ni maintain toughness and bendability. Is.
この周知の溶接金属成分から目的とする材質を生成す
るのは、冷却速度を島状マルテンサイトを含む硬化組織
及び粗大フェライト、粗大ベイナイト組織の生成を防止
出来る範囲とし、又冷却停止温度を高温域におけるフェ
ライト、ベイナイト組織の粗大成長を抑制し、低温域変
態を利用して微細組織にする範囲とする事にある。The target material is produced from this well-known weld metal component by setting the cooling rate to a range that can prevent the formation of a hardened structure containing island-like martensite and coarse ferrite and coarse bainite structure, and the cooling stop temperature in the high temperature range. It is intended to suppress the coarse growth of the ferrite and bainite structures in (3) and to make a fine structure by utilizing low temperature transformation.
又安定して上記溶接金属の成分を形成し、更にこの溶
接金属から所期の材質を得るには、被溶接鋼にこの分野
で通常用いられる元素を一般に知られている理由で添加
する。即ちC、Mn、Siは、共に強度の維持と靭性、溶接
性の安定の点から、A1は脱酸と靭性の維持の点から、C
u、Niは靭性の経済的な維持の点から、Tiは大入熱溶接
熱影響部の靭性維持の点からそれぞれ上記の範囲で添加
し、Nは0.005%以下の含有量として上記のTiの添加効
果を更に安定させる手段とする事を含むものである。Further, in order to stably form the above-mentioned components of the weld metal and further obtain a desired material from the weld metal, the elements usually used in this field are added to the steel to be welded for the reason generally known. That is, C, Mn, and Si are both C from the viewpoint of maintaining strength and stability of toughness and weldability, and A1 is C from the viewpoint of deoxidizing and maintaining toughness.
u and Ni are added from the viewpoint of economical maintenance of toughness, Ti is added within the above range from the viewpoint of maintenance of toughness of the heat affected zone of high heat input welding, and N is added as 0.005% or less of the above Ti content. This is to include means for further stabilizing the effect of addition.
又フラックス入りワイヤのCu、Niは、被溶接鋼板にC
u、Niが所要量添加されていると必要ではないが、被溶
接鋼板に殆ど添加されていない場合、又は被溶接鋼板か
らの成分希釈量だけでは不十分な場合に該不足分を補給
して溶接金属の成分を適正範囲に調整する点から上記の
範囲の添加条件とするものである。Also, Cu and Ni of the flux cored wire are C on the steel plate to be welded.
It is not necessary if u and Ni have been added in the required amounts, but if they are hardly added to the steel plate to be welded, or if the component dilution amount from the steel plate to be welded is not sufficient, supplement the shortage. From the viewpoint of adjusting the composition of the weld metal to an appropriate range, the addition condition is within the above range.
又フラックス入りワイヤのBは、溶接金属の所要量が
微量なBを適正範囲に的確に調整するのにワイヤ内蔵の
フラックスからの供給が最も望ましいので上記の範囲と
するものである。Further, B of the flux-cored wire is in the above range because it is most desirable to supply it from the flux containing the wire in order to accurately adjust the amount B of the weld metal, which is required in a small amount, to an appropriate range.
これにより溶接金属中のBは溶接金属のB過剰による
硬化を防ぎつつ、溶接金属中のミクロ組織においてオー
ステナイト組織からフェライト組織への変態時にオース
テナイト粒界に粗大フェライトが生成するのを抑制して
本発明者等が目的とする高靭性及び耐割れ性を確保する
のである。As a result, B in the weld metal prevents hardening of the weld metal due to excess B, and suppresses the formation of coarse ferrite at the austenite grain boundaries during transformation from the austenite structure to the ferrite structure in the microstructure of the weld metal. The inventors ensure high toughness and crack resistance that are the objectives.
<作用> 本発明者等は前記した問題を解決する為、消耗ノズル
式エレクトロスラグ溶接法について種々実験、検討した
結果、該溶接法は溶融スラグの抵抗熱によって溶融池を
形成して溶接を行う為、Ti、Bは先ずスラグ浴中に酸化
物の形で存在し、スラグと溶融金属間の反応で溶融金属
中に移行するので歩留が安定せず、Ti、B添加の効果が
充分に得られず実用に致らない事が判明した。<Operation> In order to solve the above-mentioned problems, the present inventors have conducted various experiments and studies on the consumable nozzle type electroslag welding method, and as a result, the welding method performs welding by forming a molten pool by resistance heat of the molten slag. Therefore, Ti and B first exist in the slag bath in the form of oxides and are transferred to the molten metal by the reaction between the slag and the molten metal, so that the yield is not stable and the effect of adding Ti and B is sufficient. It turned out that it was not obtained and was not suitable for practical use.
つまりTiは酸素との親和力が大きく酸化消耗されやす
く、消耗ノズル式エレクトロスラグ溶接法において、ソ
リッドワイヤ、フラックス入りワイヤ、被覆消耗ノズル
或いは添加フラックスに含有させてもフラグ浴中で酸化
され、浴接金属中への移行は極めて少なく、殆どは酸化
物としてスラグ中に留まる事が判明した。In other words, Ti has a strong affinity with oxygen and is easily oxidized and consumed.In the consumable nozzle type electroslag welding method, Ti is oxidized in the flag bath even if it is contained in a solid wire, a flux cored wire, a coated consumable nozzle or an added flux, so that the bath contact It was found that there was very little migration into the metal, and most remained in the slag as oxides.
又移行した少量のTiは、微細なフエライトを生成する
為の核としては働かず、従ってミクロ組織の改善、靭性
の向上に寄与しない事も明らかになった。It was also clarified that a small amount of transferred Ti does not work as a nucleus for forming fine ferrite and therefore does not contribute to the improvement of microstructure and toughness.
これ等から必要なTiは特公昭51−30020号公報及び特
開昭52−70955号公報の如くフラックスの添加合金等に
より外部から添加・供給する事なく、溶接母材つまり被
溶接鋼板から希釈溶融供給する方法に付いて実験を続
け、これが最も実用性の高いTiの供給方法である事を確
認したのである。From these, the required Ti is diluted and melted from the welding base metal, that is, the steel plate to be welded, without externally adding and supplying it with an alloy with added flux etc. as in Japanese Patent Publication No. 51-30020 and Japanese Patent Publication No. 52-70955. We continued to experiment with the supply method and confirmed that this was the most practical Ti supply method.
又B、Cu、Niは、Tiに比して酸素との親和力は小さ
く、消耗ノズル式エレクトロスラグ溶接法においても溶
接金属へ比較的移行し易く、特にBの適正添加範囲は極
めて狭く、且つ微量を正確に添加する事を要し、添加方
法によってはBの添加の効果が得られない事が判明し
た。Further, B, Cu, and Ni have a smaller affinity for oxygen than Ti, and relatively easily migrate to the weld metal even in the consumable nozzle type electroslag welding method. Especially, the appropriate addition range of B is extremely narrow and a trace amount. It was found that it was necessary to add B accurately, and the effect of addition of B could not be obtained depending on the addition method.
つまり消耗ノズル、該ノズルの被覆或いは添加フラッ
クスに含有させて添加すると、これ等が高温のスラグ浴
に接触した時、Bは酸化物としてスラグ浴中に存在し、
Tiよりも還元されやすいのでスラグ・メタル間反応で溶
接金属中へは移行するが、板厚が違ったり、溶接条件の
変動によって溶融池の大きさが変化すると、溶融池とス
ラグ浴界面の接触面積比が変わる為、溶融金属中のBの
濃度が変化するのである。In other words, when added to the consumable nozzle, coating of the nozzle, or added flux by adding it to the flux, when these are brought into contact with a high temperature slag bath, B exists as an oxide in the slag bath,
Since it is more easily reduced than Ti, it moves into the weld metal due to the reaction between the slag and metal, but if the size of the molten pool changes due to different plate thickness or changes in welding conditions, the contact between the molten pool and the slag bath interface Since the area ratio changes, the concentration of B in the molten metal changes.
従って溶融金属中のB量を所要量とする為には板厚毎
に被覆ノズルにおいて被覆の厚さを変えるか、Bの含有
量を変える必要があり、又添加フラックスにおいてはフ
ラックスの添加量或いはBの含有量を変える必要が生じ
実用的ではない事が判明した。Therefore, in order to adjust the amount of B in the molten metal to the required amount, it is necessary to change the thickness of the coating in the coating nozzle or the content of B for each plate thickness. It was found that it was not practical because it was necessary to change the B content.
又ソリッドワイヤから添加する場合は、Bはスラグ浴
の比較的内部迄供給されるが、スラグ浴中で溶融酸化さ
れ、酸化物としてスラグ中に存在してスラグ・メタル界
面反応で溶接金属中に移行するが、被覆ノズルに含有さ
せた場合と同様な理由で実用的でない事が判明した。When adding from a solid wire, B is supplied to the relatively inside of the slag bath, but it is melted and oxidized in the slag bath and exists in the slag as an oxide, and is present in the weld metal by the slag-metal interface reaction. However, it was found to be impractical for the same reason as when it was contained in the coating nozzle.
又フラックス入りワイヤに含有させた場合は、スラグ
浴中でワイアの外皮が先ず高温のスラグと接触して高温
となるが、ワイヤの内蔵フラックスは外皮からの熱伝導
が良好でなく、ソリッドワイヤの場合に比して比較的低
温の侭スラグ浴底部に供給される事が判明した。When contained in the flux-cored wire, the outer skin of the wire first comes into contact with the hot slag in the slag bath to reach a high temperature, but the built-in flux of the wire does not have good heat conduction from the outer skin and It was found that it was supplied to the bottom of the slag bath at a relatively low temperature compared to the case.
これによって内蔵フラックス中のBの酸化度は小さく
有効な形で溶融金属中に移行し易く、又条件変動或いは
板厚の差による変動の影響が少ないので微量を適正範囲
に正確に添加する事が可能となる事を見出した。As a result, the degree of oxidation of B in the built-in flux is small, and it easily migrates into the molten metal in an effective form, and the influence of fluctuations in conditions or fluctuations due to differences in plate thickness is small. I found that it would be possible.
この知見を基にフラックス入りワイヤを用いて所要の
Bを供給する実験を続け、最も安定して微量のBを極め
て狭い適用範囲に供給出来る事を確認したのである。Based on this finding, we continued experiments to supply the required amount of B using a flux-cored wire and confirmed that the most stable amount of B can be supplied in an extremely narrow application range.
又本発明者等は上記した実験・検討を通じて、被溶接
鋼板の溶接時の溶融による希釈率は通常30〜60%程度で
あり、更に溶接金属中へは被溶接鋼板が含有するTiの20
〜50%程度が移行する事を知見した。Further, the inventors of the present invention, through the above-mentioned experiments and examinations, the dilution ratio of the steel plate to be welded due to melting during welding is usually about 30 to 60%, and the weld metal contains 20% of Ti contained in the steel plate to be welded.
It was discovered that about 50% will be transferred.
これを基に本発明において所要とするTiは対象とする
被溶接鋼板のみから供給するので、該対象鋼板のTiの含
有量は0.006〜0.050重量%が必要になるのである。Based on this, the Ti required in the present invention is supplied only from the target steel plate to be welded, so the Ti content of the target steel plate must be 0.006 to 0.050% by weight.
又消耗ノズル式エレクトロスラグ溶接方法は一般的に
溶接入熱が著しく大きい為、溶接後の冷却が極めて遅く
なる、従って溶接金属組織は著しく粗大化する為低温高
靭性を確保する事は甚だ困難である。In addition, in the consumable nozzle type electroslag welding method, the welding heat input is generally extremely large, so that the cooling after welding is extremely slow. Therefore, it is very difficult to secure the low temperature and high toughness because the weld metal structure is significantly coarsened. is there.
この現象は、被溶接鋼板の厚みに相当して入熱量が変
わっても、消耗ノズル式エレクトロスラグ溶接にあって
は溶接後の冷却速度が殆ど変わらない事によっている、
この為溶接入熱量が注目されその制御が検討されている
が、本発明者等は上記実験により、溶接入熱量ではなく
冷却速度を制御するする事に重要な意味がある事を知見
した。This phenomenon is due to the fact that even if the heat input amount changes corresponding to the thickness of the steel plate to be welded, in the consumable nozzle type electroslag welding, the cooling rate after welding hardly changes,
For this reason, the welding heat input amount has been paid attention to and its control has been studied, but the present inventors have found from the above experiments that it is important to control the cooling rate rather than the welding heat input amount.
この知見を基に本発明者等は前記の組織の粗大化の改
善について種々の実験と検討を繰り返し、その結果溶接
金属のC含有量が0.03〜0.09%の範囲になると、微量の
CuとNiの存在と、溶接後の溶接金属部の冷却速度と冷却
停止温度を所定の範囲に選ぶ事によって、溶接部にも微
細フェライト組織と微細ベーナイト組織からなる高靭性
溶接金属が得られる事を見出した。Based on this knowledge, the present inventors repeated various experiments and studies for improving the coarsening of the structure, and as a result, when the C content of the weld metal was in the range of 0.03 to 0.09%, a trace amount
The presence of Cu and Ni, and by selecting the cooling rate and cooling stop temperature of the weld metal after welding within the specified range, a high toughness weld metal consisting of a fine ferrite structure and a fine bainite structure can be obtained in the weld part. Found.
本発明は以上の知見に基づいて前記した手段を構成し
たものである。The present invention constitutes the above-mentioned means based on the above findings.
<実施例> (1)消耗ノズル式エレクトロスラグ溶接条件 ・溶接電流 450Amp ・溶接電圧 46V ・溶接速度 1.7cm/min ・溶接入熱 730KJ/cm (2)被溶接鋼板(厚み50mm)の成分を表1に示す。<Examples> (1) Consumable nozzle type electroslag welding conditions-Welding current 450Amp-Welding voltage 46V-Welding speed 1.7cm / min-Welding heat input 730KJ / cm (2) Composition of welded steel plate (thickness 50mm) Shown in 1.
(3)供試ワイヤのフラックス成分を表2に示す。(3) Table 2 shows the flux components of the test wire.
(4)被溶接鋼板と供試ワイヤと冷却条件の組み合わせ
及び得られた溶接金属の成分とその特性を表3に示す。(4) Table 3 shows the combinations of the steel plate to be welded, the test wire, and the cooling conditions, the components of the obtained weld metal and their characteristics.
表3に明らかな如く、No1〜3、6、7、10、11、1
4、15、19、22、23、25、28、30、32の本発明例は、何
れも良好な靭性を示すvE−20℃値が得られ、更にvE−40
℃においても10kgf・m以上の優れた低温靭性が得られ
た。As is clear from Table 3, No1 ~ 3,6,7,10,11,1
Inventive examples of 4, 15, 19, 22, 23, 25, 28, 30, and 32 all have vE-20 ° C values showing good toughness, and vE-40
Excellent low temperature toughness of 10 kgf · m or more was obtained even at ℃.
一方Noが4、5、8、9、12、13、16、17、18、20、
21、24、26、27、29、31、33の比較例は共に極めて悪い
靭性しか得られなかった。 On the other hand, No is 4, 5, 8, 9, 12, 13, 16, 17, 18, 20,
The comparative examples of 21, 24, 26, 27, 29, 31, and 33 all had extremely poor toughness.
即ち、冷却速度が高めに外れた3、低めに外れた4、
冷却停止温度が高めに外れた8、9、溶接金属のC量が
低めに外れた12、13、高めに外れた16、17、CuとNiが被
溶接鋼材、ワイヤのフラックスの何れからも供給され
ず、溶接金属に存在しなかった20、同様にワイヤのフラ
ックスからの供給がなく溶接金属にBが存在しない21、
ワイヤフラックスのBが上限を外れていたので溶接金属
のBが高めに外れた24、被溶接鋼材のMnが下限を外れた
ので溶接金属のMnが低めを外れた26、被溶接鋼材Tiを含
有していないので溶接金属にTiが存在しなかった27、被
溶接鋼材のTiが上限を外れていたので溶接金属のTiが高
めに外れた29、ワイヤフラックスのNi含有量が上限を外
れていたので溶接金属のNiが高めに外れた31、同様にし
てCuが高めに外れた33の各々は一部vE−20℃で良い靭性
を示すものもあったが、本発明が目的とするvE−40℃で
は上記した如く目標の10kgf・m以上の靭性を有する溶
接金属を備えた消耗ノズル式エレクトロスラグ溶接鋼材
は得られなかった。That is, the cooling rate is off 3, and the cooling rate is off 4,
Cooling stop temperature is too high 8,9, Weld metal C amount is too low 12,13, Highly deviating 16,17, Cu and Ni are supplied from welded steel and wire flux. No, it was not present in the weld metal 20, similarly there was no supply from the wire flux and there was no B in the weld metal 21,
The B of the wire flux was out of the upper limit, so the B of the weld metal was out of the upper range 24, and the Mn of the welded steel material was out of the lower limit, so the Mn of the weld metal was out of the lower range 26, and the welded steel material Ti was included. Since there was no Ti in the weld metal27, the Ti of the steel to be welded was outside the upper limit, the Ti of the weld metal was outside the upper limit29, and the Ni content of the wire flux was outside the upper limit. Therefore, Ni of the weld metal 31 was deviated to a higher degree, and similarly 33, where Cu was deviated to a higher degree, each had a part having good toughness at vE-20 ° C, but vE- which is the object of the present invention. At 40 ° C, as described above, a consumable nozzle type electroslag welded steel material having a weld metal having a toughness of 10 kgf · m or more as a target could not be obtained.
<発明の効果> 本発明は上記した如く溶接部を含む溶接鋼材に必要な
耐割れ性、靭性を確保するのに当たって必要なTi、Bの
供給を、Tiは母材鋼材から希釈供給し、Bはフラックス
入りワイヤに含有せしめて供給するのでそれぞれの歩留
は高く、しかも正確に供給出来るので厳しい添加範囲を
常に維持出来、目的の成分を有する溶接金属が確実に得
られると共に、この溶接金属の凝固過程を所定の冷却速
度で所定の冷却停止温度迄冷却するので、目的の材質を
有する組織とする事が出来、生産性の向上、コストの低
減と共に、溶接鋼材の靭性、耐割れ性を一段と向上、安
定せしめる等消耗ノズル式エレクトロスラグ溶接方法の
実用性を飛躍的に向上する等もたらす効果は大きい。<Effects of the Invention> The present invention supplies Ti and B necessary for securing the crack resistance and toughness necessary for the welded steel material including the welded portion as described above, and Ti is diluted and supplied from the base steel material, and B is supplied. Is contained in the flux-cored wire and is supplied, so each yield is high, and since it can be supplied accurately, a strict addition range can always be maintained, and a weld metal with the target components can be reliably obtained. Since the solidification process is cooled to a predetermined cooling stop temperature at a predetermined cooling rate, it is possible to obtain a structure having a target material, improve productivity, reduce cost, and further improve toughness and crack resistance of welded steel. It has a great effect of dramatically improving the practicality of the consumable nozzle type electroslag welding method such as improvement and stabilization.
Claims (5)
を形成せしめ、該溶接金属を冷却速度0.3〜5℃/secで5
00℃以下迄連続的に冷却する事を特徴とする消耗ノズル
式エレクトロスラグ溶接方法。1. By weight%, C: 0.03 to 0.09% B: 0.0003 to 0.005% Mn: 0.8 to 1.80% Ni: 0.10 to 0.8% Ti: 0.003 to 0.03% Cu: 0.10 to 0.8% where Cu + Ni ≧ 0.15% And forming a weld metal containing other iron and unavoidable components, and cooling the weld metal at a cooling rate of 0.3 to 5 ° C./sec.
Consumable nozzle type electroslag welding method characterized by continuous cooling to below 00 ℃.
ることにより溶接金属を形成する事を特徴とする請求項
1に記載の消耗ノズル式エレクトロスラグ溶接方法。2. By weight%, C: ≦ 0.15% Al: ≦ 0.07% Mn: 0.8-2.0% Ti: 0.006-0.05% Si: ≦ 0.4% Ni: 0.3-1.0% Cu: 0.3-1.0% Other iron 2. A weld metal is formed by welding a steel sheet composed of a metal and an unavoidable component with a wire containing a flux containing B: ≤0.020% with respect to the weight of the wire. Consumable Nozzle Electroslag Welding Method.
ることにより溶接金属を形成する事を特徴とする請求項
1に記載の消耗ノズル式エレクトロスラグ溶接方法。3. In weight%, C: ≦ 0.15% Al: ≦ 0.07% Mn: 0.8-2.0% Ti: 0.006-0.05% Si: ≦ 0.4% Steel plate composed of other iron and inevitable components is added to the wire weight. On the other hand, the weld metal is formed by welding using a wire containing a flux containing B: ≦ 0.20% Ni: 0.3 to 1.0% Cu: 0.3 to 1.0%. Consumable Nozzle Electroslag Welding Method.
ることにより溶接金属を形成する事を特徴とする請求項
1に記載の消耗ノズル式エレクトロスラグ溶接方法。4. By weight%, C: ≦ 0.15% Al: ≦ 0.07% Mn: 0.8-2.0% Ti: 0.006-0.05% Si: ≦ 0.4% Steel plate consisting of other iron and inevitable components is added to the wire weight. On the other hand, the consumable nozzle electroslag according to claim 1, wherein a weld metal is formed by welding using a wire containing a flux containing B: ≤ 0.020% Ni: 0.3 to 1.0%. Welding method.
ることにより溶接金属を形成する事を特徴とする請求項
1に記載の消耗ノズル式エレクトロスラグ溶接方法。5. In wt%, C: ≤ 0.15% Al: ≤ 0.07% Mn: 0.8-2.0% Ti: 0.006-0.05% Si: ≤ 0.4% A steel plate containing other iron and inevitable components is added to the wire weight. On the other hand, the consumable nozzle electroslag according to claim 1, wherein a weld metal is formed by welding using a wire containing a flux containing B: ≤ 0.020% Cu: 0.3 to 1.0%. Welding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63020484A JP2555400B2 (en) | 1988-01-29 | 1988-01-29 | Consumable nozzle electroslag welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63020484A JP2555400B2 (en) | 1988-01-29 | 1988-01-29 | Consumable nozzle electroslag welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01197097A JPH01197097A (en) | 1989-08-08 |
JP2555400B2 true JP2555400B2 (en) | 1996-11-20 |
Family
ID=12028406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63020484A Expired - Lifetime JP2555400B2 (en) | 1988-01-29 | 1988-01-29 | Consumable nozzle electroslag welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2555400B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6953508B2 (en) | 2003-01-02 | 2005-10-11 | Sumitomo Metal Industries, Ltd. | High strength steel weld having improved resistance to cold cracking and a welding method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5268836A (en) * | 1975-12-05 | 1977-06-08 | Mitsubishi Heavy Ind Ltd | Electroslag welding process |
JPS5270955A (en) * | 1975-12-10 | 1977-06-13 | Sumikin Welding Electrode Co | Process for high tenacity electroslag welding of soft steel and low alloy steel |
-
1988
- 1988-01-29 JP JP63020484A patent/JP2555400B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5268836A (en) * | 1975-12-05 | 1977-06-08 | Mitsubishi Heavy Ind Ltd | Electroslag welding process |
JPS5270955A (en) * | 1975-12-10 | 1977-06-13 | Sumikin Welding Electrode Co | Process for high tenacity electroslag welding of soft steel and low alloy steel |
Also Published As
Publication number | Publication date |
---|---|
JPH01197097A (en) | 1989-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5744782A (en) | Advanced consumable electrodes for gas metal arc (GMA) welding of high strength low alloy (HSLA) steels | |
JP4660315B2 (en) | Manufacturing method of thick high strength steel plate with excellent toughness and thick high strength steel plate with excellent toughness | |
WO1997032684A9 (en) | Consumable electrodes for gma welding of hsla steels | |
JP6373550B2 (en) | Gas shield arc welding method | |
KR100709521B1 (en) | Welding joint of large heat input welding and welding method thereof | |
JPH03236419A (en) | Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance | |
JPH0527703B2 (en) | ||
JP7432723B2 (en) | Welded parts with excellent fatigue strength of welded parts and manufacturing method thereof | |
JPS62252695A (en) | Submerged arc welding method for low temperature steel | |
JPH03162522A (en) | Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone | |
JP2555400B2 (en) | Consumable nozzle electroslag welding method | |
JPH02125812A (en) | Manufacture of cu added steel having superior toughness of weld heat-affected zone | |
JPH0765097B2 (en) | Method for producing H-section steel excellent in fire resistance and weld toughness | |
JPH10183295A (en) | Steel material excellent in toughness at heat-affected zone in large heat input weld, and its production | |
JPH0525580B2 (en) | ||
JP7272471B2 (en) | steel plate | |
JPH02220795A (en) | Consumable nozzle type electroslag welding method | |
JPS621842A (en) | Tough, high tension steel having superior toughness in weld zone | |
JP3598600B2 (en) | Weld metal having high strength and toughness and method of forming the same | |
JP2587564B2 (en) | Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone | |
JPH03211251A (en) | High strength for welding structure having excellent fracture toughness in heat affected zone | |
JPH10265896A (en) | Thick steel plate excellent in toughness in weld heat-affected zone | |
JPH06145791A (en) | Production of plate of low alloy high tensile strength steel excellent in characteritic in resistance weld zone | |
JPH04160113A (en) | Manufacture of non-heat treated steel sheet excellent in high heat input welding haz toughness | |
JPH06172917A (en) | Production of high tensile strength steel for large heat input welding, excellent in toughness at low temperature |