JPH0525580B2 - - Google Patents
Info
- Publication number
- JPH0525580B2 JPH0525580B2 JP30853487A JP30853487A JPH0525580B2 JP H0525580 B2 JPH0525580 B2 JP H0525580B2 JP 30853487 A JP30853487 A JP 30853487A JP 30853487 A JP30853487 A JP 30853487A JP H0525580 B2 JPH0525580 B2 JP H0525580B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- slab
- toughness
- haz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 49
- 239000010959 steel Substances 0.000 claims description 49
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 238000009749 continuous casting Methods 0.000 claims description 6
- 239000000498 cooling water Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 238000001816 cooling Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 12
- 239000010953 base metal Substances 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 230000002411 adverse Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910000532 Deoxidized steel Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Description
(産業上の利用分野)
本発明は小入熱溶接から大入熱溶接に至るまで
熱影響部(HAZ)の低温靱性が優れた大径鋼管
の製造法に関するものである。〔鉄鋼業において
はUOE、スパイラル、ケージ鋼管に適用するこ
とが最も望ましい。この製造法で製造された大径
鋼管は天然ガス、原油輸送用大径ラインパイプ等
に用いることができる。〕
(従来の技術)
低合金鋼のHAZ靱性は、(1)結晶粒のサイズ、
(2)高炭素島状マルテンサイト(M )、上部ベイ
ナイト(Bu)などの硬化相の分散状態、(3)粒界
脆化の有無、(4)元素のミクロ偏析など種々の冶金
学的要因に支配される。
なかでもHAZの結晶粒のサイズは低温靱性に
大きな影響を与えることが知られており、HAZ
組織を微細化する数多くの技術が開発実用化され
ている。
特開昭61−79745号公報によればTi酸化物(主
としてTi2O3)を微細分散させた鋼は、溶融線近
傍でもHAZ組織を小さくすることができ、優れ
た低温靱性が得られることが開示されている。
また、Ti酸化物を微細分散させる方法として
特開昭61−229461号公報には凝固時の冷却速度20
〜400℃/分で鋳造することが開示されている。
しかしながら実際に連続鋳造法によつて鋳片を製
造する場合、幅方向、厚み方向を含めた鋳片全体
にわたり冷却速度を制御することは非常に困難で
ある。
冷却速度の遅くなる鋳片中心部は、Ti酸化物
が粗大化する傾向にあり、その個数も著しく減少
するため、HAZの組織が十分に微細化されず
HAZの靱性劣化は避けられない。
(発明が解決しようとする問題点)
本発明は低温靱性の優れた大径鋼管を安価に製
造するための製造法を提案するもので、本発明法
で製造した大径鋼管は、溶融線近傍を含めた
HAZ全域で組織が微細化し、優れた低温靱性を
有する。
問題点を解決するための手段
本発明の要旨は、C:0.005〜0.15%、Si:0.5
%以下、Mn:0.5〜2.2%、P:0.02%以下、S:
0.005%以下、Al:0.005%以下、Nb:0.01〜0.1
%、Ti:0.005〜0.03%、N:0.001〜0.005%、
O:0.0015〜0.006%を基本成分とし、必要に応
じてV:0.01〜0.1%、Ni:0.05〜1.0%、Cu:
0.05〜1.0%、Cr:0.05〜0.5%、Mo:0.05〜0.4
%、B:0.0005〜0.003%、Ca:0.001〜0.005%、
REM:0.01〜0.05%の一種または二種以上を含有
し、残部が鉄および不可避的不純物からなる溶鋼
から連続鋳造法によつて鋳片を製造するに際し、
鋳片短片側の2次冷却水を水量密度350〜840/
m2とし、Tiを含有する酸化物を50〜500個/mm2
含有する鋳片を製造し、引き続いて加熱・圧延を
行ない、その後鋼板エツジ部を突き合わせ溶接す
ることを特徴とする低温靱性の優れた大径鋼管の
製造方法である。
以下本発明について説明する。
Ti酸化物(主としてTi2O3)はγ粒の粗大化抑
制能力は小さいが、γ−α変態時にγ粒内に存在
するTi2O3を主成分として、放射状に微細なアシ
キユラーフエライト(AF)が生成し、HAZ組織
を著しく微細化する。
Ti2O3は溶融線近傍の1400℃以上に加熱される
領域(粗粒域)でも安定であり、この領域でも組
織の微細化に効果を発揮する。またTi、O、N
のバランスが適正であると微細なTiNも生成し、
これは1350℃以下に加熱された領域(亜粗領域)
のγ粒の粗大化を抑制して、HAZ組織を微細化
する。この結果、HAZ組織は全域にわたつて微
細化し、極めて優れた低温靱性が得られる。
鋼中にTi2O3、TiNを微細分散させるために
は、Ti、O、およびN量の適正化、溶鋼か
ら連続鋳造法によつて鋳片を製造する際の液相線
〜固相線間の冷却速度の適正化が必要である。
以下にこの点について説明する。
まずTi、O、N量を、それぞれTi:0.005〜
0.03%、O:0.0015〜0.006%、N:0.001〜0.005
%に限定した。Ti、O、N量の下限はTi2O3、
TiNを生成するための必要最小量である。Tiの
上限はTiCの生成による低温靱性の劣化を防止す
るためであり、Oの上限は非金属介在物の生成に
よる鋼の清浄度、靱性の劣化を防止するためであ
る。またN量の上限、は固溶NによるHAZ靱性
の劣化を防止するために0.005%とした。
しかし単に個々の元素量を限定するだけでは微
細なTi2O3、TiNの両析出物を同時に安定して得
ることができないので、Ti、O、N量のバラン
スを−0.010%≦〔Ti〕−2〔O〕−3.4〔N〕≦+0.01
5
%にすることが望ましい。
つぎにTi2O3を鋼中に微細分散させるために
は、溶鋼から連続鋳造法によつて鋳片を製造する
際に、凝固冷速を規定しかつ制御することが重要
であるが、鋳片全体にわたり凝固冷速を規定しか
つ制御することは実際上非常に困難である。
さらに、大径鋼管を製造する場合、通常鋼板エ
ツジを突合せ溶接することを考えると、必ずしも
鋳片全体の凝固冷速を規定する必要がない。
この点に関して本発明者らの研究の結果、連続
鋳造時の鋳片短片側の2次冷却を水量の適正化を
はかることによつて、鋳片の短片側エツジ部だけ
凝固時の冷速を制御でき、その後エツジ部を突合
せ溶接する新しい大径鋼管の製造法を発明した。
鋳片短片側の2次冷却を水量密度を、350〜840
/m2とすることによつてTiを含有する酸化物
を50〜500個/mm2含有させることができる。この
結果、鋼板エツジ部を突合せ溶接した場合に極め
て優れたHAZ靭性が得られる。
鋳片短片側の2次冷却の水量密度を、350〜840
/m2と限定した理由は、2次冷却の水量密度が
350/m2未満となると、鋳片短片側のTi酸化物
の個数が減少しHAZ靭性が劣化するためである。
また2次冷却の水量密度が840/m2以上となる
と鋳片に表面疵が発生するためである。
鋳片を圧延した後、鋼板エツジ部を突合せ溶接
する際、開発加工するための最大量は、鋳片短片
側の厚み50mmに相当するので、鋳片短片側の2次
冷却帯は凝固厚50mm以内の範囲で十分である。
本発明でのTi含有酸化物の個数は、1000倍の
光学顕微鏡で観察される0.1μm以上のTi含有酸化
物を指し。鋳片エツジ部に微細なTi酸化物を50
〜500個/mm2分散させた後、この鋳片を加熱・圧
延した鋼板のエツジ部同士を突き合せ溶接した大
径鋼管は、溶融線近傍でもHAZ組織が微細化さ
れ、優れた低温靭性を有する。
また、たとえTi2O3、TiNが鋼中に微細分散し
ていても基本成分が適当でないと優れたHAZ靭
性は得られない。
以下、この点について説明する。
Cの下限0.005%は母材および溶接部の強度の
確保ならびにNb、Vなどの添加時に、これらの
効果を発揮させるための最小量である。しかしC
量が多すぎると、母材、溶接部の低温靭性に悪影
響を及ぼすだけでなく、溶接性、HAZ靭性も劣
化させる元素であるため、その上限を0.15%に限
定した。
Siは脱酸上鋼に含まれる元素であるが、溶接
性、HAZ靭性を劣化させる元素であるため上限
を0.5%とした。
Mnは強度靭性を確保する上で不可欠な元素で
あり、その下限は0.6%である。しかしMnが多す
ぎると鋼の焼入れ性が増加して溶接性、HAZ靭
性を劣化させるので上限を2.5%とした。
本発明鋼において不純物であるP、Sをそれぞ
れ0.02%以下、0.005%以下とした理由は、母材、
HAZの低温靭性をより一層向上させるためであ
る。P量の低減は、接合部における粒界破壊傾向
を減少させ、S量の低減は、粒界フエライトの生
成を抑制する傾向がある。最も好ましいP、S量
は、それぞれ0.01%、0.0020%以下である。
Alは一般に脱酸上鋼に含まれる元素であるが、
本発明では好ましくない元素であり、その上限を
0.005%とした。これはAlが鋼中に含まれている
とOと結合してTi2O3ができないためである。脱
酸はTiだけでも可能であり、本発明においてAl
量は少ないほど良く、0.002%以下が望ましい。
Nbは本発明鋼において重要な必須元素であり、
高強度鋼においてはNbを添加することなく優れ
た接合部の靭性を得ることは困難である。Nbは
γ粒界に生成するフエライトを抑制し、Ti2O3を
主成分とする微細なAFの生成を促進する働きが
ある。この効果を得るためには最低0.01%のNb
量が必要である。しかしながらNb量が多すぎる
と、逆に微細なAFの生成を妨げるのでその上限
を0.1%とした。
つぎにV、Ni、Cu、Cr、Mo、B、Ca、REM
を添加する理由について説明する。
基本成分にさらに、これらの元素を添加する主
たる目的は、本発明鋼の特徴を損なうことなく、
強度、靭性など特性の向上をはかるためである。
したがつて、その添加量は自ら制限されるべき性
質のものである。
VはNbとほぼ同じ効果を持つ元素であるが、
0.01%以下では効果が少なく、上限は0.06%まで
許容できる。
Niは溶接性、接合部靭性に悪影響をおよぼす
ことなく、母材の強度、靭性を向上させるが、
1.0%を超えると溶接性に好ましくないため上限
を2.0%とした。
CuはNiとほぼ同様の効果とともに耐食性、耐
水素誘起割れ性などにも効果があるが、1.0%を
超えると熱間圧延時にCu−クラツクが発生し、
製造困難となる。このため上限を1.0%とした。
Crは母材、溶接部の強度を高めるが、多すぎ
ると溶接性や接合部靭性を劣化させる。その上限
は0.5%である。
Moは母材の強度、靭性をともに向上させる元
素であるが、多すぎるとCrと同様に母材、接合
部の靭性、溶接性の劣化招きを好ましくない。そ
の上限は0.4%である。
なおNi、Cu、Cr、Moの添加量の下限は、材
質上での効果が得られるための最小量値とすべき
で、いずれも0.05%である。
Bは鋼の焼入れ性を増大させ強度を増加させる
元素である。接合部のγ粒界に偏析した固溶Bは
フエライトの生成を抑制し、Ti2O3からの微細な
AFの生成を助ける。またNと結合したBNはフ
エライト発生核としての作用をもちHAZ組織を
微細化する。
このようなBの効果を得るためには、最低
0.0005%のB量が必要である。しかしB量が多す
ぎるとFe23(CB)6などの粗大な析出物がγ粒界に
析出して低温靭性を劣化させる。このためB量の
上限を0.003%に制限する必要がある。
Ca、REMは硫化物(MnS)の形態を制御し、
低温靭性を向上(シヤルピー吸収エネルギーを増
加)させるほか、耐水素誘起割れ性の改善にも効
果を発揮する。しかしCa量0.001%以下では実用
上効果がなく、また0.005%を超えて添加すると
CaO、CaSが多量に生成して大型介在物となり、
鋼の靭性のみならず清浄度を害し、また溶接性に
も悪影響を与える。このため添加量の範囲を
0.001〜0.005%に制限した。
REMについてもCaと同様の効果をもち、その
適正範囲は0.001〜0.005%である。
さて、本発明における鋳片再加熱後の圧延方法
としては、いわゆる普通圧延あるいは加工熱処理
が挙げられる。加工熱処理の方法としては、(1)制
御圧延、(2)制御圧延−加速冷却、(3)圧延直接焼入
れ−焼戻しなどがある。
最も好ましいのは制御圧延と加速冷却の組合せ
である。なお、製造後脱水素などの目的でAc1変
態点以下の温度に再加熱しても本発明の特徴を損
なうものではない。
また造管時の溶接方法としてはサブマージアー
ク溶接、フラツシユバツト溶接、電子ビーム溶接
等が挙げられ、いずれの溶接方法で溶接を行なつ
ても、本発明の特徴を損なうものではない。
(実施例)
転炉−連続鋳造−厚板−造管工程において種々
の成分の鋼板から大径鋼管を製造し、溶接部の
HAZ靭性を調査した。
なおHAZ部の靭性は板厚1/2tから採取したシ
ヤルピー試験片を用いた。
表1に実施例を示す。
本発明法で製造した大径鋼管は全て良好な母材
特性およびHAZ靭性を有するのに対して、本発
明法によらない比較鋼はHAZ靭性が劣り、厳し
い環境下で使用される鋼板として適切でない。
比較鋼において鋼8および鋼9はAl量が多す
ぎるために、Tiを含有する酸化物の個数が少な
くHAZの組織が微細化されず、HAZ靭性が悪
い。鋼10、鋼11および鋼12は鋳片短片側の2次冷
却水の水量密度が小さいために、凝固冷速が遅
く、溶接部でのTiを含有する酸化物の個数が少
ないため、HAZの組織が微細化されずHAZ靭性
が悪い。鋼13は鋳片短片側の2次冷却水の水量密
度が大きいために、鋳片に表面疵ができて大径鋼
管として使用できない。
(Industrial Application Field) The present invention relates to a method for producing large diameter steel pipes with excellent low-temperature toughness in the heat affected zone (HAZ), from low heat input welding to high heat input welding. [In the steel industry, it is most desirable to apply to UOE, spiral, and cage steel pipes. Large-diameter steel pipes manufactured by this manufacturing method can be used as large-diameter line pipes for transporting natural gas and crude oil. ] (Conventional technology) The HAZ toughness of low alloy steel is determined by (1) grain size;
(2) various metallurgical factors such as the dispersion state of hardened phases such as high carbon island martensite (M) and upper bainite (Bu), (3) presence or absence of grain boundary embrittlement, and (4) micro-segregation of elements. ruled by. In particular, it is known that the grain size of HAZ has a large effect on low-temperature toughness.
A number of techniques for making microstructures smaller have been developed and put into practical use. According to Japanese Patent Application Laid-open No. 61-79745, steel in which Ti oxide (mainly Ti 2 O 3 ) is finely dispersed can have a small HAZ structure even near the melting line, and has excellent low-temperature toughness. is disclosed. In addition, as a method for finely dispersing Ti oxide, Japanese Patent Application Laid-Open No. 61-229461 describes a cooling rate of 20% during solidification.
Casting at ~400°C/min is disclosed.
However, when a slab is actually manufactured by a continuous casting method, it is very difficult to control the cooling rate over the entire slab including the width direction and thickness direction. In the center of the slab, where the cooling rate is slow, Ti oxide tends to become coarser and the number of Ti oxides decreases significantly, so the HAZ structure is not refined enough.
Deterioration of HAZ toughness is unavoidable. (Problems to be Solved by the Invention) The present invention proposes a manufacturing method for inexpensively manufacturing large-diameter steel pipes with excellent low-temperature toughness. including
The structure is refined throughout the HAZ and has excellent low-temperature toughness. Means for Solving the Problems The gist of the present invention is that C: 0.005 to 0.15%, Si: 0.5
% or less, Mn: 0.5 to 2.2%, P: 0.02% or less, S:
0.005% or less, Al: 0.005% or less, Nb: 0.01~0.1
%, Ti: 0.005-0.03%, N: 0.001-0.005%,
The basic component is O: 0.0015-0.006%, V: 0.01-0.1%, Ni: 0.05-1.0%, Cu:
0.05~1.0%, Cr: 0.05~0.5%, Mo: 0.05~0.4
%, B: 0.0005-0.003%, Ca: 0.001-0.005%,
REM: When manufacturing slabs by continuous casting method from molten steel containing 0.01 to 0.05% of one or more types, with the remainder consisting of iron and unavoidable impurities,
The secondary cooling water on the short side of the slab has a water volume density of 350 to 840/
m 2 and 50 to 500 Ti-containing oxides/mm 2
This is a method for producing large diameter steel pipes with excellent low-temperature toughness, which is characterized by producing slabs containing the same, followed by heating and rolling, and then butt-welding the edges of the steel plates. The present invention will be explained below. Ti oxide (mainly Ti 2 O 3 ) has a small ability to suppress the coarsening of γ grains, but during γ-α transformation, Ti 2 O 3 present in γ grains is the main component, and it produces radially fine acyl ferrite. (AF) is generated and significantly refines the HAZ structure. Ti 2 O 3 is stable even in the region heated to 1400°C or higher near the melting line (coarse grain region), and is effective in refining the structure even in this region. Also Ti, O, N
If the balance is appropriate, fine TiN will also be generated,
This is an area heated to below 1350℃ (sub-coarse area)
This suppresses the coarsening of γ grains and refines the HAZ structure. As a result, the HAZ structure becomes finer over the entire area, resulting in extremely excellent low-temperature toughness. In order to finely disperse Ti 2 O 3 and TiN in steel, it is necessary to optimize the amounts of Ti, O, and N, and to maintain the liquidus line to solidus line when producing slabs from molten steel by continuous casting. It is necessary to optimize the cooling rate between. This point will be explained below. First, the amounts of Ti, O, and N are determined from Ti: 0.005 to 0.005, respectively.
0.03%, O: 0.0015-0.006%, N: 0.001-0.005
%. The lower limit of the amount of Ti, O, and N is Ti 2 O 3 ,
This is the minimum amount required to generate TiN. The upper limit of Ti is set to prevent deterioration of low-temperature toughness due to the formation of TiC, and the upper limit of O is set to prevent deterioration of the cleanliness and toughness of the steel due to the formation of nonmetallic inclusions. Further, the upper limit of the N content was set to 0.005% in order to prevent deterioration of HAZ toughness due to solid solution N. However, it is not possible to stably obtain both fine precipitates of Ti 2 O 3 and TiN at the same time by simply limiting the amount of each element, so the balance between the amounts of Ti, O, and N must be adjusted to -0.010%≦[Ti] -2[O]-3.4[N]≦+0.01
Five
% is desirable. Next, in order to finely disperse Ti 2 O 3 in steel, it is important to specify and control the solidification cooling rate when producing slabs from molten steel by continuous casting. It is very difficult in practice to define and control the rate of solidification cooling throughout the piece. Furthermore, when manufacturing large-diameter steel pipes, it is not necessarily necessary to specify the solidification and cooling rate of the entire slab, considering that steel plate edges are usually butt welded. As a result of research conducted by the present inventors regarding this point, by optimizing the amount of water for secondary cooling of the short side of the slab during continuous casting, the cooling rate during solidification of only the edge of the short side of the slab could be reduced. We have invented a new method for manufacturing large-diameter steel pipes that can be controlled and then butt-welded at the edges. For secondary cooling on the short side of the slab, set the water density to 350 to 840.
/ m2 , it is possible to contain 50 to 500 Ti-containing oxides/ mm2 . As a result, extremely excellent HAZ toughness can be obtained when the steel plate edges are butt welded. The water density for secondary cooling on the short side of the slab should be set to 350 to 840.
/m 2 is because the water density of secondary cooling is
This is because if it is less than 350/m 2 , the number of Ti oxides on the short side of the slab will decrease, and the HAZ toughness will deteriorate.
Also, if the water density for secondary cooling is 840/m 2 or more, surface defects will occur in the slab. After rolling the slab, when butt welding the edges of the steel plates, the maximum amount for development processing corresponds to the thickness of the short side of the slab of 50 mm, so the secondary cooling zone on the short side of the slab has a solidification thickness of 50 mm. A range within this range is sufficient. The number of Ti-containing oxides in the present invention refers to Ti-containing oxides with a size of 0.1 μm or more observed under a 1000x optical microscope. 50% fine Ti oxide on the edge of the slab
After dispersing ~500 pieces/ mm2 , these slabs are heated and rolled, and the edges of the steel plates are butt welded to produce large diameter steel pipes.The HAZ structure is refined even near the melting line, and it has excellent low-temperature toughness. have Further, even if Ti 2 O 3 and TiN are finely dispersed in the steel, excellent HAZ toughness cannot be obtained unless the basic components are appropriate. This point will be explained below. The lower limit of 0.005% of C is the minimum amount to ensure the strength of the base metal and welded part and to exhibit these effects when adding Nb, V, etc. But C
If the amount is too large, it not only adversely affects the low-temperature toughness of the base metal and welded joint, but also deteriorates weldability and HAZ toughness, so the upper limit was limited to 0.15%. Si is an element contained in deoxidized steel, but since it is an element that deteriorates weldability and HAZ toughness, the upper limit was set at 0.5%. Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.6%. However, too much Mn increases the hardenability of the steel and deteriorates weldability and HAZ toughness, so the upper limit was set at 2.5%. The reason why the impurities P and S in the steel of the present invention are set to 0.02% or less and 0.005% or less, respectively, is that the base material,
This is to further improve the low temperature toughness of the HAZ. A reduction in the amount of P tends to reduce the tendency for grain boundary fracture at the joint, and a reduction in the amount of S tends to suppress the formation of grain boundary ferrite. The most preferable amounts of P and S are 0.01% and 0.0020% or less, respectively. Al is an element generally included in deoxidized steel,
In the present invention, it is an undesirable element, and its upper limit is
It was set as 0.005%. This is because when Al is contained in steel, it combines with O to form Ti 2 O 3 . Deoxidation is possible with Ti alone, and in the present invention, Al
The smaller the amount, the better, preferably 0.002% or less. Nb is an important essential element in the steel of the present invention,
In high-strength steel, it is difficult to obtain excellent joint toughness without adding Nb. Nb has the function of suppressing ferrite generated at the γ grain boundaries and promoting the generation of fine AF mainly composed of Ti 2 O 3 . A minimum of 0.01% Nb is required to obtain this effect.
Quantity is required. However, if the amount of Nb is too large, it will hinder the formation of fine AF, so the upper limit was set at 0.1%. Next, V, Ni, Cu, Cr, Mo, B, Ca, REM
The reason for adding is explained below. The main purpose of adding these elements to the basic components is to improve the characteristics of the steel of the present invention without impairing its characteristics.
This is to improve properties such as strength and toughness.
Therefore, the amount added must be limited. V is an element that has almost the same effect as Nb, but
Below 0.01%, the effect is small, and an upper limit of 0.06% is acceptable. Ni improves the strength and toughness of the base metal without adversely affecting weldability and joint toughness, but
If it exceeds 1.0%, it is unfavorable for weldability, so the upper limit was set at 2.0%. Cu has almost the same effects as Ni, as well as corrosion resistance and hydrogen-induced cracking resistance, but if it exceeds 1.0%, Cu cracks will occur during hot rolling.
It becomes difficult to manufacture. For this reason, the upper limit was set at 1.0%. Cr increases the strength of the base metal and weld zone, but too much Cr deteriorates weldability and joint toughness. The upper limit is 0.5%. Mo is an element that improves both the strength and toughness of the base metal, but if it is present in too much, it is undesirable as it causes deterioration of the toughness and weldability of the base metal and joints, similar to Cr. Its upper limit is 0.4%. Note that the lower limit of the amount of Ni, Cu, Cr, and Mo added should be the minimum value for obtaining the effect on the material, and each is 0.05%. B is an element that increases the hardenability and strength of steel. The solid solution B segregated at the γ grain boundaries of the joint suppresses the formation of ferrite and removes fine particles from Ti 2 O 3 .
Helps generate AF. Furthermore, BN combined with N acts as a ferrite generation nucleus and refines the HAZ structure. In order to obtain this effect of B, the minimum
A B content of 0.0005% is required. However, if the amount of B is too large, coarse precipitates such as Fe 23 (CB) 6 will precipitate at the γ grain boundaries, deteriorating the low-temperature toughness. Therefore, it is necessary to limit the upper limit of the amount of B to 0.003%. Ca, REM controls the morphology of sulfide (MnS),
In addition to improving low-temperature toughness (increasing Charpy absorbed energy), it is also effective in improving hydrogen-induced cracking resistance. However, if Ca content is less than 0.001%, it has no practical effect, and if it exceeds 0.005%,
Large amounts of CaO and CaS are generated and become large inclusions.
It impairs not only the toughness but also the cleanliness of the steel, and also has an adverse effect on weldability. For this reason, the range of addition amount is
It was limited to 0.001-0.005%. REM also has the same effect as Ca, and its appropriate range is 0.001 to 0.005%. Now, the rolling method after reheating the cast slab in the present invention includes so-called normal rolling or processing heat treatment. Examples of processing heat treatment methods include (1) controlled rolling, (2) controlled rolling-accelerated cooling, and (3) direct rolling quenching-tempering. Most preferred is a combination of controlled rolling and accelerated cooling. Note that even if the product is reheated to a temperature below the Ac 1 transformation point for the purpose of dehydrogenation or the like after production, the features of the present invention will not be impaired. Further, welding methods during pipe manufacturing include submerged arc welding, flash butt welding, electron beam welding, etc., and the features of the present invention will not be impaired even if welding is performed using any of the welding methods. (Example) In the converter-continuous casting-thick plate-tube manufacturing process, large-diameter steel pipes were manufactured from steel plates of various compositions, and the welded parts were
HAZ toughness was investigated. Note that the toughness of the HAZ part was measured using a Charpy test piece taken from a 1/2 t thick plate. Examples are shown in Table 1. The large diameter steel pipes manufactured by the method of the present invention all have good base metal properties and HAZ toughness, whereas the comparative steels not manufactured by the method of the present invention have poor HAZ toughness and are not suitable as steel plates used in harsh environments. Not. Among the comparative steels, Steel 8 and Steel 9 have too much Al content, so the number of Ti-containing oxides is small, the HAZ structure is not refined, and the HAZ toughness is poor. Steel 10, Steel 11, and Steel 12 have a low water density of secondary cooling water on the short side of the slab, so the solidification cooling rate is slow, and the number of Ti-containing oxides in the weld is small, so the HAZ The structure is not refined and the HAZ toughness is poor. Steel 13 cannot be used as a large-diameter steel pipe because the secondary cooling water on the short side of the slab has a high water density, which causes surface scratches on the slab.
【表】【table】
【表】
* 単位 ppm
[Table] * Unit: ppm
【表】
(発明の効果)
本発明により溶接部の低温靭性の優れた大径鋼
管を、安価に製造することが可能となり、極寒地
などの厳しい環境下で使用されるラインパイプの
安全性を、大きく向上させることができた。[Table] (Effects of the invention) The present invention makes it possible to inexpensively manufacture large-diameter steel pipes with excellent low-temperature toughness at welded parts, improving the safety of line pipes used in harsh environments such as extremely cold regions. , we were able to make a big improvement.
Claims (1)
る溶鋼から連続鋳造法によつて鋳片を製造するに
際し、鋳片短片側の2次冷却水を水量密度350〜
840/m2とし、Tiを含有する酸化物を50〜500
個/mm2含有する鋳片を製造し、引き続いて加
熱・圧延を行ない、その後鋼板エツジ部を突き合
わせ溶接することを特徴とする低温靱性の優れた
大径鋼管の製造方法。 2 重量%で C:0.005〜0.15%、 Si:0.5%以下、 Mn:0.5〜2.2%、 P:0.02%以下、 S:0.005%以下、 Al:0.005%以下、 Nb:0.01〜0.1%、 Ti:0.005〜0.03%、 N:0.001〜0.005%、 O:0.0015〜0.006%、 に必要に応じて V:0.01〜0.1%、 Ni:0.05〜1.0%、 Cu:0.05〜1.0%、 Cr:0.05〜0.5%、 Mo:0.05〜0.4%、 B:0.0005〜0.003%、 Ca:0.001〜0.005%、 REM:0.01〜0.05%、 の一種または二種以上を含有し、残部が鉄および
不可避的不純物からなる溶鋼から連続鋳造法によ
つて鋳片を製造するに際し、鋳片短片側の2次冷
却水を水量密度350〜840/m2とし、Tiを含有
する酸化物を50〜500個/mm2含有する鋳片を製造
し、引き続いて加熱・圧延を行ない、その後鋼板
エツジ部を突き合わせ溶接することを特徴とする
低温靱性の優れた大径鋼管の製造方法。[Claims] 1% by weight: C: 0.005 to 0.15%, Si: 0.5% or less, Mn: 0.5 to 2.2%, P: 0.02% or less, S: 0.005% or less, Al: 0.005% or less, Nb: 0.01~0.1%, Ti: 0.005~0.03%, N: 0.001~0.005%, O: 0.0015~0.006%, and the balance is iron and unavoidable impurities. During manufacturing, the secondary cooling water on the short side of the slab should be kept at a water density of 350~
840/ m2 , and 50 to 500 of Ti-containing oxide.
A method for producing a large diameter steel pipe with excellent low-temperature toughness, characterized by producing a slab containing 1/mm 2 , followed by heating and rolling, and then butt welding the edges of the steel plates. 2% by weight C: 0.005-0.15%, Si: 0.5% or less, Mn: 0.5-2.2%, P: 0.02% or less, S: 0.005% or less, Al: 0.005% or less, Nb: 0.01-0.1%, Ti : 0.005~0.03%, N: 0.001~0.005%, O: 0.0015~0.006%, as required V: 0.01~0.1%, Ni: 0.05~1.0%, Cu: 0.05~1.0%, Cr: 0.05~ Contains one or more of the following: 0.5%, Mo: 0.05~0.4%, B: 0.0005~0.003%, Ca: 0.001~0.005%, REM: 0.01~0.05%, with the remainder consisting of iron and inevitable impurities. When producing slabs from molten steel by the continuous casting method, the secondary cooling water on the short side of the slab has a water density of 350 to 840/m 2 and contains 50 to 500 Ti-containing oxides/mm 2 . A method for producing large diameter steel pipes with excellent low-temperature toughness, characterized by producing slabs, followed by heating and rolling, and then butt welding the edges of the steel plates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30853487A JPH01150453A (en) | 1987-12-08 | 1987-12-08 | Production of large diameter steel pipe having excellent ductility at low temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30853487A JPH01150453A (en) | 1987-12-08 | 1987-12-08 | Production of large diameter steel pipe having excellent ductility at low temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01150453A JPH01150453A (en) | 1989-06-13 |
JPH0525580B2 true JPH0525580B2 (en) | 1993-04-13 |
Family
ID=17982188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30853487A Granted JPH01150453A (en) | 1987-12-08 | 1987-12-08 | Production of large diameter steel pipe having excellent ductility at low temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01150453A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2950076B2 (en) * | 1993-01-08 | 1999-09-20 | 住友金属工業株式会社 | Steel for welded structures |
JP2011246805A (en) | 2010-04-30 | 2011-12-08 | Nippon Steel Corp | Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor |
JP2011246804A (en) | 2010-04-30 | 2011-12-08 | Nippon Steel Corp | Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor |
WO2012070354A1 (en) * | 2010-11-22 | 2012-05-31 | 新日本製鐵株式会社 | Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor |
JP5135559B2 (en) * | 2010-11-22 | 2013-02-06 | 新日鐵住金株式会社 | Electron beam welding joint, steel for electron beam welding, and manufacturing method thereof |
-
1987
- 1987-12-08 JP JP30853487A patent/JPH01150453A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01150453A (en) | 1989-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3408385B2 (en) | Steel with excellent heat-affected zone toughness | |
JPWO2018185851A1 (en) | Vertical seam welded steel pipe | |
JP4171169B2 (en) | Ultra-high-strength steel pipe with seam welds with excellent cold cracking resistance and manufacturing method thereof | |
JPH03202422A (en) | Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone | |
JP6665658B2 (en) | High strength steel plate | |
JPWO2018185853A1 (en) | Vertical seam welded steel pipe | |
JP4341395B2 (en) | High strength steel and weld metal for high heat input welding | |
JP2653594B2 (en) | Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone | |
JPH0860292A (en) | High tensile strength steel excellent in toughness in weld heat-affected zone | |
JPH0527703B2 (en) | ||
JPH0541683B2 (en) | ||
JPH0757886B2 (en) | Process for producing Cu-added steel with excellent weld heat-affected zone toughness | |
JPH0525580B2 (en) | ||
JPS63210235A (en) | Manufacture of steel excellent in toughness at low temperature in welding heat affected zone | |
JPH03162522A (en) | Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone | |
JPH09296253A (en) | Extremely thick high strength steel pipe excellent in low temperature toughness | |
JP2688312B2 (en) | High strength and high toughness steel plate | |
JP2002371338A (en) | Steel superior in toughness at laser weld | |
JP3882701B2 (en) | Method for producing welded structural steel with excellent low temperature toughness | |
JP3854412B2 (en) | Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method | |
JP4369555B2 (en) | High strength steel pipes and pipelines with excellent weld toughness | |
JP3764593B2 (en) | High strength steel pipe with excellent toughness of weld heat affected zone | |
JPH07278653A (en) | Production of steel excellent in cold toughness on welding heat affected zone | |
JP7272471B2 (en) | steel plate | |
JPH02175815A (en) | Manufacture of high tensile steel stock for welded construction excellent in toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080413 Year of fee payment: 15 |