Nothing Special   »   [go: up one dir, main page]

JP2023067870A - Shallow layer ground water contaminant monitor system - Google Patents

Shallow layer ground water contaminant monitor system Download PDF

Info

Publication number
JP2023067870A
JP2023067870A JP2022181465A JP2022181465A JP2023067870A JP 2023067870 A JP2023067870 A JP 2023067870A JP 2022181465 A JP2022181465 A JP 2022181465A JP 2022181465 A JP2022181465 A JP 2022181465A JP 2023067870 A JP2023067870 A JP 2023067870A
Authority
JP
Japan
Prior art keywords
column
filter material
plate
wall
threaded rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022181465A
Other languages
Japanese (ja)
Other versions
JP7351046B2 (en
Inventor
許静
Jing Xu
孔徳洋
De Yang Kong
孔祥吉
Xiangji Kong
何健
Jian He
呉文鋳
Wenzhu Wu
曹莉
Li Cao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Environmental Sciences MEE
Original Assignee
Nanjing Institute of Environmental Sciences MEE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Environmental Sciences MEE filed Critical Nanjing Institute of Environmental Sciences MEE
Publication of JP2023067870A publication Critical patent/JP2023067870A/en
Application granted granted Critical
Publication of JP7351046B2 publication Critical patent/JP7351046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a shallow layer ground water contaminant monitor system capable of optimally coping with problems, to a field condition which is varied easily and complicated, since devices which can monitor for analysis and processing for a shallow layer ground water contaminant substance, are not provided sufficiently, still.SOLUTION: The invention includes, a monitor well and a sampling assembly, and the monitor well is divided sequentially into a protection column, a middle column and a collection column from top to bottom, The upper and lower parts of the collection column are respectively, a cylinder and a cone. A plurality of groups of small holes for underground water to permeate are circumferentially formed in a pipe wall of the collection column at the lower part of the cylinder, and a filter material replacing assembly is arranged on the inner wall of the collection column below the small holes. The system of the invention is suitable for monitoring water quality observation indexes of underground water, especially in-situ monitoring is realized, and sampling difficulty is reduced and sampling work is performed simply and rapidly under a condition of monitoring shallow underground water at different depths.SELECTED DRAWING: Figure 1

Description

本発明は、環境科学、地下水汚染と土壌研究の技術分野に関し、具体的には浅層地下水汚
染物監視システムに関する。
The present invention relates to the technical fields of environmental science, groundwater pollution and soil research, and more particularly to a shallow groundwater contaminant monitoring system.

浅層地下水とは、地表から60メートル以内の帯水層のことである。水深が浅いため、深
い岩盤でろ過されず、工場排水や農地の残留農薬による汚染の可能性が高い。汚染された
地下水を飲むことは、人々の健康に重大な影響を及ぼす。
近年来、農薬をはじめとする農業用化学品やその残留物の土壌・地下水中での動態や遷移
をシミュレーションするためのさまざまな汚染物質遷移モデルが開発されているが、室内
シミュレーションやコンピュータシミュレーションに限定したこうした研究は、実際の複
雑で変化に富んだ現場の状況を真に反映しているとはいえず、浅層地下水汚染物質の分析
・処理のために監視できる装置はまだ不足しているのが現状であるため、複雑で変化しや
すいフィールド条件に対して、これらの問題に最適に対応できる浅層地下水汚染物質監視
装置が求められている。
Shallow groundwater is an aquifer within 60 meters of the surface. Due to the shallow depth of the water, it is not filtered by the deep bedrock, and there is a high possibility of contamination from industrial wastewater and pesticide residues on the farmland. Drinking polluted groundwater has a serious impact on people's health.
In recent years, various contaminant transition models have been developed for simulating the movement and transition of agricultural chemicals, including pesticides, and their residues in soil and groundwater. These limited studies do not truly reflect the actual complex and varied field conditions, and there is still a lack of monitoring equipment for the analysis and treatment of shallow groundwater contaminants. Therefore, there is a need for a shallow groundwater contaminant monitor that can optimally address these issues for complex and variable field conditions.

本発明は、上記の技術的問題を解決するための浅層地下水汚染物監視システムを提供する

本発明の技術的解決手段として、浅層地下水汚染物監視システムは、監視ウェルおよびサ
ンプリングアセンブリを含み、前記監視ウェルは上から下へ順次保護コラム、中間コラム
および収集コラムに分かられ、
前記収集コラムは上部の円筒体と下部の円錐体を含み、円筒体の円錐体に近接する一端の
側壁に均一に地下水浸透用の複数の小孔が設けられ、円筒体と円錐体の接続部の内部にフ
ィルタ材交換アセンブリが設けられ、
前記フィルタ材交換アセンブリはフィルタ材載置板、制御板、材料上昇コラム、および材
料貯蔵筒を含み、
前記フィルタ材載置板は収集コラムの内壁に固定的に接続され、フィルタ材載置板の周方
向に等間隔でフィルタ材落下用の複数組のフィルタ材孔が設けられ、前記制御板は扇葉型
でフィルタ材載置板の下方に配置され、制御板の各葉板はフィルタ材載置板のフィルタ材
孔の位置に対応し、制御板を回転することによりフィルタ材孔の開閉を制御し、前記フィ
ルタ材載置板の下方に落下したフィルタ材を収容するための材料収容ポケットがさらに設
けられ、
前記材料上昇コラムは回転可能なコラムハウジングおよびねじロッドを含み、前記ねじロ
ッドはコラムハウジング内に回転可能に設けられ、コラムハウジングの内壁とねじロッド
の各スパイラル間隔に、コラムハウジングの縦方向シュートに沿って上下に摺動可能なパ
ドルが対応して設けられ、前記各パドルの上下側面にそれぞれ隣接するパドル間に磁気反
発を発生させるための磁気シートが設けられ、前記ねじロッドの各パドルに対応する位置
にパドルが通過するためのバーホールが設けられ、
前記材料上昇コラムの下端がフィルタ材載置板と制御板の中心を貫通してねじロッドの下
端を介して材料収容ポケットの底面に回転可能に接続され、材料上昇コラムはフィルタ材
載置板に回転可能かつ密閉に接続され、材料上昇コラムは制御板とダンピングリングを介
して接続され、
前記材料上昇コラムの上端が材料貯蔵筒内の中心管まで延伸し、コラムハウジングの上端
は、ねじロッドの上端および材料貯蔵筒の頂部に設けられた組合式駆動モータの出力軸に
接続され、前記中心管にフィルタ材を押して排出させるための環状ピストン板が嵌設され
、前記材料貯蔵筒の底面の周方向に複数の排出口が設けられ、前記排出口にそれぞれフィ
ルタ材の自動排出を防止するためのプラグ板が設けられ、前記材料上昇コラムは中間コラ
ムの内壁に接触して係合される。
本発明の一側面として、前記収集コラムの円筒体の上端に、中間コラムまたは保護コラム
にねじ込まれたねじ口が設けられ、前記中間コラムの上下両端の内壁にそれぞれ保護コラ
ム、収集コラムにねじ込まれたねじが設けられ、前記保護コラムはねじ口付き円筒形カバ
ーである。保護コラム、中間コラムおよび収集コラムを着脱可能に組み立てることにより
、監視深度に応じて長さ異なる中間コラムを交換することができ、ねじ込み接続は製造プ
ロセスが簡単で、汎用性が高く、操作しやすいなどの利点がある。
本発明の一側面として、隣接する2つのフィルタ材孔間に円弧状のスロープ板が設けられ
る。各円弧状のスロープ板を設けることで、フィルタ材孔からの落下時フィルタ材をよく
分流し、使用済のフィルタ材のフィルタ材載置板での残留量を少なくすることができる。
本発明の一側面として、前記サンプリングアセンブリは出口パイプ、サンプリングボトル
および機械式ポンプを含み、前記出口パイプは円錐体の底部まで延伸し、テフロンテープ
および防水粘着剤を使用してサンプリングアセンブリの各接続部を密閉して漏れを防止す
る。サンプリングアセンブリは、監視ウェルと効果的に協力して浅層地下水のサンプリン
グ操作を行い、浅層地下水汚染物監視の作業効率を向上させることができる。
本発明の一側面として、前記中間コラムはステンレススチール材料であり、前記プラグ板
は外側に回せる6枚式ゴムシートである。プラグ板を設計することで、材料貯蔵筒内の未
使用フィルタ材が自身の重力下で排出口から排出されるのを防ぎ、同時に中間コラムはス
テンレススチール材料を採用し、浅層地下水の監視作業に対応でき材料コストも抑えるこ
とができる。
本発明の一側面として、前記組合式駆動モータは、コラムハウジングに接続された第1駆
動モータおよびねじロッドに接続された第2駆動モータを含み、前記第1駆動モータは係
合チャックを介してコラムハウジングの上端タブに着脱可能に係合される。組合式駆動モ
ータの第1駆動モータおよび第2駆動モータを設置することで、第1駆動モータおよび第
2駆動モータは反対方向に駆動し、コラムハウジング、ねじロッドを駆動して互いに回転
させて、材料の垂直上昇輸送効率を向上させる。
本発明の一側面として、前記材料貯蔵筒の外側壁の周方向に中間コラムの内壁に接触して
固定された複数組円弧状の板が設けられ、前記円弧状の板はモータプッシュロッドを介し
て材料貯蔵筒の外側壁に接続され、円弧状の板の中間コラムの内壁に接触する側にゴムパ
ッドが設けられる。材料貯蔵筒の円周に配置された電動プッシュロッドによって駆動され
た円弧状の板を通じて、ピックアップや着脱操作を制御しやすく、環状ピストン板の変位
を監視するための距離センサを設けて、ブルートゥース信号などの転送により保護コラム
に設けられたカラ表示器で環状ピストン板の状態を観測し、材料貯蔵筒の交換などを適時
に実施することができる。
本発明の一側面として、前記制御板の各葉片、材料収容ポケットはすべてメッシュ構造で
あり、そのメッシュ開口径がフィルタ材の粒子径よりも小さい。フィルタ材は市販されて
いる粒子径0.2~0.5cmの砂石とバーミキュライトを任意比率で混合した混合物を
採用する。
本発明の一側面として、前記制御板の各葉板の前端にそれぞれ係合ブロックに接続された
円弧状の係合ヘッドが設けられ、前記係合ブロックはフィルタ材載置板の底面に設けられ
た円弧状の溝に摺動可能に接続され、かつ係合ブロックは円弧状の溝に設けられたばねに
接続される。円弧状の係合ヘッドおよび円弧状の溝などの構造を設置することで、回転状
態の制御板の切り替え時過回転などの状況を回避し、監視ウェルの各機能を有効に作動さ
せることができる。
The present invention provides a shallow groundwater contaminant monitoring system to solve the above technical problems.
As a technical solution of the present invention, a shallow groundwater contaminant monitoring system includes a monitoring well and a sampling assembly, said monitoring well is divided into a protection column, an intermediate column and a collection column sequentially from top to bottom,
The collection column includes an upper cylinder and a lower cone, and a side wall of one end of the cylinder adjacent to the cone is uniformly provided with a plurality of small holes for groundwater infiltration, and a connection between the cylinder and the cone. A filter media replacement assembly is provided inside the
the filter media replacement assembly includes a filter media mounting plate, a control plate, a material lift column, and a material reservoir;
The filter material mounting plate is fixedly connected to the inner wall of the collection column, and is provided with a plurality of sets of filter material holes for dropping the filter material at regular intervals in the circumferential direction of the filter material mounting plate. Each leaf plate of the control plate is arranged under the filter material mounting plate in a leaf shape, and each leaf plate of the control plate corresponds to the position of the filter material hole of the filter material mounting plate, and the opening and closing of the filter material hole is controlled by rotating the control plate. and further provided with a material storage pocket for storing the filter material that has fallen below the filter material mounting plate,
Said material raising column includes a rotatable column housing and a threaded rod, said threaded rod being rotatably mounted within the column housing, at each spiral interval between the inner wall of the column housing and the threaded rod, in the longitudinal chute of the column housing. A paddle slidable up and down along the corresponding paddle is provided, and a magnetic sheet is provided on the upper and lower sides of each paddle for generating magnetic repulsion between the adjacent paddles, corresponding to each paddle of the screw rod. A burr hole is provided for the paddle to pass through at the position where
The lower end of the material raising column passes through the center of the filter material mounting plate and the control plate and is rotatably connected to the bottom surface of the material storage pocket through the lower end of the screw rod, and the material raising column is connected to the filter material mounting plate. rotatably and sealingly connected, the material rising column is connected through the control plate and the damping ring,
The upper end of the material raising column extends to the central pipe in the material storage cylinder, the upper end of the column housing is connected to the upper end of the threaded rod and the output shaft of the combined drive motor provided on the top of the material storage cylinder, An annular piston plate for pushing and discharging the filter material is fitted in the central pipe, and a plurality of discharge ports are provided in the circumferential direction of the bottom surface of the material storage tube, and each of the discharge ports prevents automatic discharge of the filter material. A plug plate is provided for the material lift column and is engaged in contact with the inner wall of the intermediate column.
As one aspect of the present invention, the upper end of the cylindrical body of the collection column is provided with a screw port that is screwed into the intermediate column or the protection column, and the inner walls of the upper and lower ends of the intermediate column are screwed into the protection column and the collection column, respectively. A counter screw is provided and the protective column is a threaded cylindrical cover. Detachable assembly of protective, intermediate and collecting columns allows different lengths of intermediate columns to be exchanged according to the monitoring depth, screw connection is simple in manufacturing process, versatile and easy to operate There are advantages such as
In one aspect of the invention, an arcuate slope plate is provided between two adjacent filter material holes. By providing each arc-shaped slope plate, the filter material can be well diverted when it falls from the filter material hole, and the amount of used filter material remaining on the filter material mounting plate can be reduced.
In one aspect of the invention, the sampling assembly includes an outlet pipe, a sampling bottle and a mechanical pump, the outlet pipe extending to the bottom of the cone and using Teflon tape and waterproof adhesive to seal each connection of the sampling assembly. Seal the part to prevent leakage. The sampling assembly can effectively cooperate with the monitoring well for shallow groundwater sampling operations to improve the work efficiency of shallow groundwater contaminant monitoring.
In one aspect of the invention, the intermediate column is of stainless steel material and the plug plate is a six-plate rubber sheet that can be turned outward. The plug plate is designed to prevent the unused filter material in the material storage cylinder from being discharged from the discharge port under its own gravity, while the middle column adopts stainless steel material for shallow groundwater monitoring work. , and the material cost can be reduced.
In one aspect of the present invention, the combined drive motor includes a first drive motor connected to the column housing and a second drive motor connected to the threaded rod, the first drive motor via an engagement chuck. It is removably engaged with the top tabs of the column housing. By installing the first driving motor and the second driving motor of the combined driving motor, the first driving motor and the second driving motor are driven in opposite directions to drive the column housing, the threaded rod to rotate each other, Improve the vertical rising transportation efficiency of materials.
As one aspect of the present invention, a plurality of sets of arc-shaped plates are provided in contact with and fixed to the inner wall of the intermediate column in the circumferential direction of the outer wall of the material storage cylinder, and the arc-shaped plates are connected via a motor push rod. A rubber pad is provided on the side of the arc-shaped plate that contacts the inner wall of the intermediate column. Through an arc-shaped plate driven by an electric push rod placed on the circumference of the material storage cylinder, it is easy to control the pick-up and attachment/detachment operation, and a distance sensor is provided to monitor the displacement of the annular piston plate, and the bluetooth signal By transferring such as, the condition of the annular piston plate can be observed with the empty display provided on the protection column, and the replacement of the material storage cylinder can be carried out in a timely manner.
As one aspect of the present invention, each leaf piece of the control plate and the material storage pocket are all mesh structures, and the mesh opening diameter is smaller than the particle diameter of the filter material. As the filter material, a commercially available mixture of sandstone having a particle size of 0.2 to 0.5 cm and vermiculite in an arbitrary ratio is used.
As one aspect of the present invention, an arc-shaped engaging head connected to an engaging block is provided at the front end of each leaf plate of the control plate, and the engaging block is provided on the bottom surface of the filter material mounting plate. and the engagement block is connected to a spring provided in the arcuate groove. By installing structures such as an arc-shaped engaging head and an arc-shaped groove, it is possible to avoid situations such as over-rotation when switching the rotation state of the control plate, and effectively operate each function of the monitoring well. .

本発明は以下の有益な効果を有する。
(1)本発明の浅層地下水汚染物監視システムは、pH、溶存酸素、酸化還元電位、CO
D、アンモニア性窒素、全窒素、全リンおよび有機汚染物など地下水水質観測指標を農地
転用後の地下水に対する影響の監視に特に適し、現場監視を実現し、深度異なる浅層地下
水監視の条件下で、サンプリングの難しさを低減し、サンプリング作業が簡単かつ迅速で
ある。
(2)本発明の浅層地下水汚染物監視システムは、保護コラム、中間コラムおよび収集コ
ラムの3段の着脱設計により、仕様異なる中間コラムを交換でき、異なる挿入深度で浅層
地下水汚染物のサンプリング監視作業をより精密に制御することができる。
(3)本発明の浅層地下水汚染物監視システムは、フィルタ材交換アセンブリに関連する
構造の設計により、監視ウェルの挿入時の監視時間を延長し、高効率な収集操作を長期間
維持でき、長期間挿入後に土壌などの不純物によって監視ウェルが閉塞して地下水の収集
効率に悪影響を与えるのを回避することができる。
The invention has the following beneficial effects.
(1) The shallow groundwater contaminant monitoring system of the present invention has pH, dissolved oxygen, redox potential, CO
D, ammonia nitrogen, total nitrogen, total phosphorus and organic pollutants, etc., are particularly suitable for monitoring the impact on groundwater after agricultural land conversion. , reducing the difficulty of sampling, the sampling work is simple and fast.
(2) The shallow groundwater contaminant monitoring system of the present invention has a three-stage detachable design of the protection column, the intermediate column and the collection column, so that the intermediate columns with different specifications can be replaced, and the shallow groundwater contaminants can be sampled at different insertion depths. Monitoring work can be controlled more precisely.
(3) The shallow groundwater contaminant monitoring system of the present invention can extend the monitoring time when the monitoring well is inserted by designing the structure associated with the filter media exchange assembly, and can maintain highly efficient collection operation for a long period of time; It can avoid that impurities such as soil clog the monitoring well after long-term insertion, which adversely affects the groundwater collection efficiency.

本発明の監視ウェルの全体外観の概略図である。1 is a schematic diagram of the general appearance of a monitoring well of the present invention; FIG. 本発明の監視ウェルの構造の分解概略図である。FIG. 4 is an exploded schematic diagram of the structure of the monitoring well of the present invention; 本発明の収集コラムの部分断面の概略図である。1 is a schematic view in partial cross-section of a collection column of the invention; FIG. 本発明の材料貯蔵筒の外観概略図である。1 is an external schematic view of a material storage cylinder of the present invention; FIG. 本発明の材料貯蔵筒の部分断面の概略図である。1 is a schematic diagram of a partial cross-section of a material storage tube of the present invention; FIG. 本発明の材料貯蔵筒の組合式駆動モータの構造概略図である。FIG. 4 is a structural schematic view of the combined driving motor of the material storage cylinder of the present invention; 本発明の材料上昇コラムの部分断面の概略図である。1 is a schematic view in partial cross section of a material lift column of the present invention; FIG. 本発明の材料上昇コラムのコラムハウジングの部分断面の概略図である。FIG. 4 is a schematic view in partial cross section of the column housing of the material lift column of the present invention; 本発明の材料上昇コラムのパドルの構造概略図である。FIG. 4 is a structural schematic diagram of the paddle of the material lifting column of the present invention; 本発明フィルタ材載置板の第1状態構造の概略図である。1 is a schematic diagram of a first state structure of a filter material mounting plate of the present invention; FIG. 本発明フィルタ材載置板の第2状態構造の概略図である。FIG. 4 is a schematic view of the second state structure of the filter material mounting plate of the present invention; 本発明フィルタ材載置板の第3状態構造の概略図である。FIG. 4 is a schematic view of the third state structure of the filter material mounting plate of the present invention;

[符号の説明]
1 保護コラム
2 中間コラム
3 収集コラム
31 円筒体
32 円錐体
33 小孔
4 フィルタ材載置板
41 フィルタ材孔
42 円弧状のスロープ板
43 係合ブロック
44 円弧状の溝
45 ばね
5 制御板
51 葉板
52 円弧状の係合ヘッド
6 材料上昇コラム
61 コラムハウジング
611 縦方向シュート
612 パドル
613 タブ
62 ねじロッド
621 バーホール
7 材料貯蔵筒
71 中心管
72 組合式駆動モータ
721 第1駆動モータ
722 第2駆動モータ
723 チャック
73 環状ピストン板
74 排出口
75 プラグ板
76 円弧状の板
77 モータプッシュロッド
8 材料収容ポケット
9 出口パイプ
[Description of symbols]
1 Protective column 2 Intermediate column 3 Collecting column 31 Cylindrical body 32 Conical body 33 Small hole 4 Filter material mounting plate 41 Filter material hole 42 Arc-shaped slope plate 43 Engagement block 44 Arc-shaped groove 45 Spring 5 Control plate 51 Leaf plate 52 arcuate engagement head 6 material lift column 61 column housing 611 longitudinal chute 612 paddle 613 tab 62 threaded rod 621 burr hole 7 material storage barrel 71 central tube 72 combined drive motor 721 first drive motor 722 second drive Motor 723 Chuck 73 Annular piston plate 74 Discharge port 75 Plug plate 76 Arc-shaped plate 77 Motor push rod 8 Material storage pocket 9 Exit pipe

以下、本発明の利点をより良く反映するために、具体的な実施形態と併せて本発明をより
詳細に説明する。
実施例
図1および図2に示すように、浅層地下水汚染物監視システムは、監視ウェルおよびサン
プリングアセンブリを含み、前記監視ウェルは上から下へ順次保護コラム1、中間コラム
2および収集コラム3に分かられ、
収集コラム3の円筒体31の上端に中間コラム2または保護コラム1にねじ込まれたねじ
口が設けられ、中間コラム2はステンレススチール材料を採用し、ステンレススチール材
料を採用することで、浅層地下水の監視作業に対応し材料コストも抑えることができ、中
間コラム2の上下両端の内壁にそれぞれ保護コラム1、収集コラム3にねじ込まれたねじ
が設けられ、保護コラム1はねじ口付き円筒形カバーであり、保護コラム1、中間コラム
2および収集コラム3の着脱可能な組立により、監視深度に応じて長さ異なる中間コラム
2を交換でき、ねじ込み接続により、製造プロセスの難しさが小さく、汎用性が高く、操
作しやすい利点があり、
図3に示すように、前記収集コラム3は上部の円筒体31と下部の円錐体32を含み、円
筒体31の円錐体32に近接する一端の側壁に均一に地下水浸透用の複数の小孔33が設
けられ、円筒体31と円錐体32の接続部の内部にフィルタ材交換アセンブリが設けられ

図3に示すように、フィルタ材交換アセンブリはフィルタ材載置板4、制御板5、材料上
昇コラム6、および材料貯蔵筒7を含み、
図3、図10~図12に示すように、前記フィルタ材載置板4は収集コラム3の内壁に固
定的に接続され、フィルタ材載置板4の周方向に等間隔でフィルタ材落下用の複数組のフ
ィルタ材孔41が設けられ、前記制御板5は扇葉型でフィルタ材載置板4の下方に配置さ
れ、制御板5の各葉板51はフィルタ材載置板4のフィルタ材孔41の位置に対応し、制
御板5を回転することによりフィルタ材孔41の開閉を制御し、前記フィルタ材載置板4
の下方に落下したフィルタ材を収容するための材料収容ポケット8がさらに設けられ、制
御板5の各葉片51、材料収容ポケット8はそれぞれメッシュ構造であり、そのメッシュ
開口径がフィルタ材の粒子径よりも小さく、フィルタ材は市販されている粒子径0.2~
0.5cmの砂石とバーミキュライトを質量比1:2で混合した混合物を採用し、隣接す
る2つのフィルタ材孔41のフィルタ材載置板4にフィルタ材を各フィルタ材孔41に集
中させるための円弧状のスロープ板42が設けられ、各円弧状のスロープ板42を設ける
ことで、フィルタ材孔41からの落下時フィルタ材のを分流する作用を高め、使用済のフ
ィルタ材のフィルタ材載置板4での残留量を低減し、制御板5の各葉板51の前端に係合
ブロック43に接続された円弧状の係合ヘッド52が設けられ、係合ブロック43はフィ
ルタ材載置板4の底面に設けられた円弧状の溝44に摺動可能に接続され、係合ブロック
43は円弧状の溝44内に設けられたばね45に接続され、円弧状の係合ヘッド52およ
び円弧状の溝44などの構造を設置することで、回転状態の制御板5の切り替え時の過回
転などの状況を回避し、監視ウェルの各機能の有効作動を確保することができ、
図7~図9に示すように、前記材料上昇コラム6は回転可能なコラムハウジング61およ
びねじロッド62を含み、前記ねじロッド62はコラムハウジング61内に回転可能に設
けられ、コラムハウジング61の内壁とねじロッド62の各スパイラル間隔に、コラムハ
ウジング61の縦方向シュート611に沿って上下に摺動可能なパドル612が対応して
設けられ、前記各パドル612の上下側面にそれぞれ隣接するパドル612間に磁気反発
を発生させるための磁気シートが設けられ、前記ねじロッド62の各パドル612に対応
する位置にパドル612が通過するためのバーホール621が設けられ、材料上昇コラム
6の下端がフィルタ材載置板4と制御板5の中心を貫通しねじロッド62下端を介して材
料収容ポケット8の底面に回転可能に接続され、材料上昇コラム6はフィルタ材載置板4
に回転可能かつ密閉に接続され、材料上昇コラム6は制御板5とダンピングリングを介し
て接続され、ダンピングリングは市販されているダンピングリングまたはその外形を調整
したもの、例えば摩擦抵抗を有するランタンリングを使用して、コラムハウジング61の
回転初期にコラムハウジング61に従って回転して制御板5の回転切替を実現し、限界に
回転すると回転を停止しコラムハウジング61の回転に影響を与えなく、
図4~図6に示すように、材料上昇コラム6の上端が材料貯蔵筒7内に設けられた中心管
71まで延伸し、コラムハウジング61の上端はねじロッド62上端と材料貯蔵筒7頂部
に設けられた組合式駆動モータ72の出力軸に接続され、組合式駆動モータ72は、コラ
ムハウジング61に接続された第1駆動モータ721およびねじロッド62に接続された
第2駆動モータ722を含み、第1駆動モータ721は係合チャック723を介してコラ
ムハウジング61の上端タブ613に着脱可能に係合され、組合式駆動モータ72の第1
駆動モータ721および第2駆動モータ722を設置することで、第1駆動モータ721
および第2駆動モータ722の反対方向駆動を利用して、コラムハウジング61、ねじロ
ッド62を互いに回転させ、材料の垂直上昇輸送効率を向上させ、
図5に示すように、中心管71にフィルタ材を押して排出させるための環状ピストン板7
3が嵌設され、材料貯蔵筒7の底面の周方向に4つの排出口74が設けられ、排出口74
にそれぞれフィルタ材の自動排出を防止するためのプラグ板75が設けられ、プラグ板7
5は外側に回せることができる6枚式ゴムシートであり、材料貯蔵筒7内の未使用のフィ
ルタ材が自身重力下で排出口74から排出されるのを防ぎ、材料上昇コラム6は中間コラ
ム2の内壁に接触して係合され、材料貯蔵筒7の外側壁の周方向に中間コラム2の内壁に
接触して固定するための複数組の円弧状の板76が設けられ、円弧状の板76はモータプ
ッシュロッド77を介して材料貯蔵筒7の外側壁に接続され、円弧状の板76の中間コラ
ム2の内壁に接触する側にゴムパッドが設けられ、材料貯蔵筒7の円周に設けられた電動
プッシュロッド77によって円弧状の板76を駆動し、電動プッシュロッド77は市販さ
れている電動プッシュロッドまたはその外形を調整して本装置に適合させたものを採用し
、ピックアップや着脱操作を動作させるように制御し、環状ピストン板73の変位を監視
するための距離センサを配置することができ、ブルートゥース信号などの転送によって保
護コラム1に設けられたカラ表示器で環状ピストン板73の状態を観測し、材料貯蔵筒7
の交換などを即時に行い、
図3に示すように、サンプリングアセンブリは出口パイプ9、サンプリングボトルおよび
機械式ポンプを含み、前記出口パイプ9は円錐体32の底部まで延伸し、テフロンテープ
および防水粘着剤を使用してサンプリングアセンブリの各接続部を密閉して漏れを防止す
る。サンプリングアセンブリは、監視ウェルと効果的に協力して浅層地下水のサンプリン
グ操作を行い、浅層地下水汚染物監視の作業効率を向上させることができる。
In the following, the present invention will be described in more detail in conjunction with specific embodiments in order to better reflect the advantages of the present invention.
EXAMPLE As shown in FIGS. 1 and 2, a shallow groundwater contaminant monitoring system includes a monitoring well and a sampling assembly, said monitoring wells sequentially from top to bottom in a protective column 1, an intermediate column 2 and a collection column 3. understand,
The upper end of the cylindrical body 31 of the collecting column 3 is provided with a threaded mouth screwed into the intermediate column 2 or the protective column 1, the intermediate column 2 adopts stainless steel material, and the stainless steel material can be used for shallow groundwater. The inner walls of the upper and lower ends of the intermediate column 2 are provided with screws that are screwed into the protective column 1 and the collection column 3, respectively. The detachable assembly of the protective column 1, the intermediate column 2 and the collecting column 3 allows the intermediate column 2 of different lengths to be replaced according to the monitoring depth, and the threaded connection makes the manufacturing process less difficult and versatile. has the advantages of high and easy to operate,
As shown in FIG. 3, the collecting column 3 comprises an upper cylinder 31 and a lower cone 32, and a plurality of small holes for groundwater infiltration are uniformly formed on one end wall of the cylinder 31 adjacent to the cone 32. 33 is provided, and a filter media replacement assembly is provided inside the junction of the cylinder 31 and the cone 32;
As shown in FIG. 3, the filter media replacement assembly includes a filter media loading plate 4, a control plate 5, a material lift column 6, and a material reservoir tube 7,
As shown in FIGS. 3 and 10 to 12, the filter material mounting plate 4 is fixedly connected to the inner wall of the collection column 3, and the filter material mounting plates 4 are provided at equal intervals in the circumferential direction for dropping the filter material. The control plate 5 is arranged in a fan-leaf shape below the filter material mounting plate 4 , and each leaf plate 51 of the control plate 5 is provided with a filter material hole 41 of the filter material mounting plate 4 . Corresponding to the position of the material hole 41, by rotating the control plate 5, opening and closing of the filter material hole 41 is controlled, and the filter material mounting plate 4
Each leaf piece 51 of the control plate 5 and the material storage pocket 8 have a mesh structure, and the mesh opening diameter is equal to the particle diameter of the filter material. , and the filter material has a commercially available particle size of 0.2 to
A mixture of 0.5 cm sandstone and vermiculite at a mass ratio of 1:2 is used, and the filter material is concentrated in each filter material hole 41 on the filter material mounting plate 4 of two adjacent filter material holes 41. By providing each arc-shaped slope plate 42, the function of diverting the filter material when it falls from the filter material hole 41 is enhanced, and the used filter material is placed on the filter material. In order to reduce the residual amount on the placing plate 4, an arc-shaped engaging head 52 connected to an engaging block 43 is provided at the front end of each leaf plate 51 of the control plate 5, and the engaging block 43 holds the filter material. Slidingly connected to an arc-shaped groove 44 provided in the bottom surface of the plate 4, the engagement block 43 is connected to a spring 45 provided in the arc-shaped groove 44 to form an arc-shaped engagement head 52 and a circular By installing a structure such as an arc-shaped groove 44, it is possible to avoid situations such as over-rotation when switching the control plate 5 in the rotating state, and to ensure effective operation of each function of the monitoring well.
As shown in FIGS. 7 to 9, the material raising column 6 includes a rotatable column housing 61 and a threaded rod 62, the threaded rod 62 is rotatably mounted within the column housing 61, and the inner wall of the column housing 61 A paddle 612 slidable up and down along a longitudinal chute 611 of the column housing 61 is provided at each spiral interval of the threaded rod 62 and between the paddles 612 adjacent to the upper and lower sides of each paddle 612 . A magnetic sheet for generating magnetic repulsion is provided in the threaded rod 62, and bar holes 621 for passing the paddles 612 are provided at positions corresponding to the respective paddles 612 of the threaded rod 62. It is rotatably connected to the bottom surface of the material storage pocket 8 via the lower end of the threaded rod 62 passing through the centers of the mounting plate 4 and the control plate 5 .
, and the material lifting column 6 is connected to the control plate 5 through a damping ring, the damping ring being a commercially available damping ring or its outer shape adjusted, such as a lantern ring having frictional resistance. is used to achieve rotation switching of the control plate 5 by rotating according to the column housing 61 at the initial stage of rotation of the column housing 61, and stopping rotation at the limit rotation without affecting the rotation of the column housing 61,
As shown in FIGS. 4 to 6, the upper end of the material raising column 6 extends to the central tube 71 provided in the material storage cylinder 7, and the upper end of the column housing 61 is connected to the upper end of the threaded rod 62 and the top of the material storage cylinder 7. connected to the output shaft of a provided combined drive motor 72, the combined drive motor 72 including a first drive motor 721 connected to the column housing 61 and a second drive motor 722 connected to the threaded rod 62; The first driving motor 721 is detachably engaged with the upper end tab 613 of the column housing 61 via the engaging chuck 723, and the first driving motor 72 of the combination type driving motor 72 is detachably engaged.
By installing the drive motor 721 and the second drive motor 722, the first drive motor 721
and the opposite direction driving of the second driving motor 722 to rotate the column housing 61 and the threaded rod 62 relative to each other to improve the vertical ascending transportation efficiency of the material;
As shown in FIG. 5, an annular piston plate 7 for pushing the filter material out of the central tube 71 .
3 is fitted, four discharge ports 74 are provided in the circumferential direction of the bottom surface of the material storage cylinder 7, and the discharge ports 74
is provided with a plug plate 75 for preventing automatic discharge of the filter material, and the plug plate 7
5 is a six-sheet rubber sheet that can be turned outward to prevent the unused filter material in the material storage cylinder 7 from being discharged from the discharge port 74 under its own gravity, and the material lifting column 6 is an intermediate column A plurality of sets of arc-shaped plates 76 are provided for contacting and engaging the inner wall of the intermediate column 2 to contact and fix the inner wall of the intermediate column 2 in the circumferential direction of the outer wall of the material storage cylinder 7 . The plate 76 is connected to the outer wall of the material storage cylinder 7 via a motor push rod 77 , and the side of the arc-shaped plate 76 that contacts the inner wall of the intermediate column 2 is provided with a rubber pad. The arc-shaped plate 76 is driven by the provided electric push rod 77, and the electric push rod 77 is a commercially available electric push rod or one adapted to the present device by adjusting its outer shape, and is used for pickup and attachment/detachment. A distance sensor can be arranged to control the operation to operate and monitor the displacement of the annular piston plate 73, and the annular piston plate 73 with a color indicator provided on the protective column 1 by transmission of Bluetooth signals or the like. Observing the state of the material storage cylinder 7
immediately replace the
As shown in Figure 3, the sampling assembly includes an outlet pipe 9, a sampling bottle and a mechanical pump, said outlet pipe 9 extending to the bottom of the cone 32, using Teflon tape and waterproof adhesive to seal the sampling assembly. Seal each connection to prevent leakage. The sampling assembly can effectively cooperate with the monitoring well for shallow groundwater sampling operations to improve the work efficiency of shallow groundwater contaminant monitoring.

上記浅層地下水汚染物監視システムの作業方法は以下のとおりである。
環状ピストン板73の底面および材料貯蔵筒7の底面に華衆PU-LQ30-IN300D
距離センサモジュールを追加し、アメリカマイクロチップPIC18F66K22-I/P
Tマイコンおよび市販されているブルートゥースモジュールを追加し、保護コラム1に設
けられた市販されている表示灯および市販されているブルートゥースモジュールと信号を
受け渡し、緑は未使用フィルタ材状態を示し、赤は使用済フィルタ材状態を示し、
対応の長さ仕様の中間コラム2を選択し、フィルタ材載置板4に最上端の小孔よりも高い
高さでフィルタ材を載置し、材料貯蔵筒7内に未使用フィルタ材を充填し、保護コラム1
、中間コラム2および収集コラム3をねじで接続した後、監視ウェルの組立を完了し、
監視ウェルを垂直に監視土壌エリアに挿入し、浅層地下水が自然状態下で監視ウェルにゆ
っくりと流れ込み、地下水の流れを現実的に模擬し、監視ウェル周囲の土壌を乱しなく、
同時にフィルタ材の作用で、土壌粒子、植物の破片などの不純物を遮断し、地下水に浸透
した土壌粒子、細い植物破片を効果的に除去でき、干渉を低減し、出口パイプからサンプ
ルを容易に吸い上げ、
予設のタイミングで組合式駆動モータ72を作動させると、第1駆動モータ721はまず
低回転数でコラムハウジング61を30°回転させるように駆動し、第1状態から第2状
態に切り替え、つまり制御板5を開状態にし、図10から図11のモードに切り替え、フ
ィルタ材載置板4の使用済フィルタ材をフィルタ材孔41から材料収容ポケット8に落下
させ、
第1駆動モータ721は5秒間隔で再び起動し、継続的に回転して制御板5を第2状態か
ら第3状態に切り替え、つまり制御板5を閉状態にし、図11から図12のモードに切り
替え、同時に第2駆動モータ722を作動させた後、コラムハウジング61とねじロッド
62の相対的な回転下で、コラムハウジング61の各パドル612の摘みにより使用済フ
ィルタ材をねじロッド62に進入させ、パドル612はねじロッド62に従っての上方に
回転して摘みを補助し、使用済フィルタ材を上方に移動させ、パドル612がねじロッド
62の次のバーホール621まで回転すると、コラムハウジング61に沿って下方に1つ
のパドル612だけで摺動し、隣接する2組のパドル612はその間の磁気シートの磁気
反発力によって両者の間隔が制御され、ねじロッド62の各スパイラル間隔に、材料収容
ポケット8に落下した使用済フィルタ材を材料貯蔵筒7の環状ピストン板73の上方に輸
送し、地下水および様々な不純物が含まれた使用済フィルタ材の重力下で下方に向かって
環状ピストン板73を、プラグ板75の閉塞限界を超えるように押し出し、未使用フィル
タ材を各排出口74からフィルタ材載置板4に排出させ、フィルタ材の交換を完了し、
サンプルの収集とき保護コラム1を外し、市販されている機械式ポンプおよび出口パイプ
9によって地下水を吸上げてサンプリングし、サンプリングボトルは茶色ガラス容器であ
り、監視ウェルからの地下水を収集するための水入口が設けられ、
同時に、カラ表示器が赤である場合、保護コラム1を起動し、市販されているコントロー
ラーなどによってモータプッシュロッド77を起動させて円弧状の板76の収縮を駆動し
、その間チャックなどのツールによって安定的に保持し、その後材料貯蔵筒7を取り出し
、フィルタ材を交換し、次に上記のステップで材料貯蔵筒7を現場に配置し、材料貯蔵筒
7の交換を完了する。
The operation method of the shallow groundwater contaminant monitoring system is as follows.
Huazhong PU-LQ30-IN300D is attached to the bottom surface of the annular piston plate 73 and the bottom surface of the material storage cylinder 7 .
Add distance sensor module, American Microchip PIC18F66K22-I/P
Add a T microcomputer and a commercially available bluetooth module, pass the signal with the commercially available indicator light and the commercially available bluetooth module installed in the protection column 1, green indicates the unused filter material status, red indicates Indicates the used filter material condition,
Select an intermediate column 2 with a corresponding length specification, place the filter material on the filter material mounting plate 4 at a height higher than the uppermost small hole, and fill the material storage cylinder 7 with unused filter material. and protective column 1
, after connecting the intermediate column 2 and the collection column 3 with screws, complete the assembly of the monitoring well,
The monitoring well is vertically inserted into the monitoring soil area, and the shallow groundwater flows slowly into the monitoring well under natural conditions, realistically simulating the flow of groundwater, without disturbing the soil around the monitoring well,
At the same time, the action of the filter material can block impurities such as soil particles, plant fragments, etc., and can effectively remove soil particles and thin plant fragments that have penetrated the groundwater, reducing interference and easily sucking up samples from the outlet pipe. ,
When the combined drive motor 72 is activated at a predetermined timing, the first drive motor 721 first drives the column housing 61 at a low rotational speed to rotate the column housing 61 by 30 degrees, thereby switching from the first state to the second state. The control plate 5 is opened, the mode is switched from FIG. 10 to FIG. 11, and the used filter material on the filter material mounting plate 4 is dropped from the filter material hole 41 into the material storage pocket 8,
The first drive motor 721 is restarted at intervals of 5 seconds and continuously rotates to switch the control plate 5 from the second state to the third state, i.e. to close the control plate 5, and the mode of FIGS. 11-12. , and the second driving motor 722 is operated at the same time, the used filter material is pushed into the threaded rod 62 by pinching each paddle 612 of the column housing 61 under the relative rotation of the column housing 61 and the threaded rod 62. , the paddle 612 rotates upward along the threaded rod 62 to assist in picking, moving the spent filter material upward, and into the column housing 61 as the paddle 612 rotates to the next burr hole 621 in the threaded rod 62. The gap between two adjacent paddles 612 is controlled by the magnetic repulsive force of the magnetic sheet between them, and each spiral gap of the threaded rod 62 has a material containing pocket. 8 is transported above the annular piston plate 73 of the material storage cylinder 7, and the annular piston plate 73 is pushed downward under the gravity of the used filter material containing groundwater and various impurities. , pushes out the plug plate 75 so as to exceed the blockage limit, discharges the unused filter material from each discharge port 74 to the filter material mounting plate 4, completes replacement of the filter material,
The protection column 1 is removed when collecting the sample, the groundwater is sucked up and sampled by a commercially available mechanical pump and outlet pipe 9, the sampling bottle is a brown glass container, and the water is used to collect the groundwater from the monitoring well. an entrance is provided,
At the same time, when the empty indicator is red, the protection column 1 is activated, and the motor push rod 77 is activated by a commercially available controller or the like to drive the contraction of the arc-shaped plate 76, meanwhile by a tool such as a chuck. Hold it stably, then take out the material reservoir 7, replace the filter material, and then place the material reservoir 7 on site in the above steps to complete the replacement of the material reservoir 7.

応用例
実験の場合、研究者は以下の具体的な操作ステップに従って実験を行う。
1)総面積約1800mの大規模なフィールドテストプロットを選択し、それぞれ10
0mの面積の9つのモックプロットに分割し、各モックプロットに5つの監視ウェルを
配置する。
2)浅層地下水の監視深度の選択に応じて、一般的に0.1m、0.5m、1m、1.5
m、2mと異なる高さの監視ウェルを組み合わせて使用する。
3)監視ウェルは収集コラム3、中間コラム2および保護コラム1から構成され、中間コ
ラム2は、0.5mのセクションで、いくつかのセクションを組合せることができ、まず
収集コラム3を取り出して、出口パイプ9をフィルタ材交換アセンブリを貫通して収集コ
ラム3の円錐体32の中央まで進入させ、出口パイプ9のヘッドを円錐体32の底部の約
1/3まで延伸させ、監視システムの監視ウェル深度に応じて、中間コラム2はそれぞれ
0、1、2、3、4セクションを組み合わせて接続し、接続完了後収集コラム3にねじ込
まれ、次に出口パイプ9を中間コラム2の上端に引出し、中間コラム2の内壁に固定し、
出口パイプ9の長さが、後にサンプル収集のときサンプリングボトルにアクセルしやすい
ように、中間コラム2から約1m延長できることが望ましく、最後に中間コラム2の上部
開口または収集コラム3の上部開口を保護コラムに接続し、異なる深度の完全監視ウェル
を形成する。
4)浅層地下水汚染検測システムの各接続部にそれぞれテフロンテープまたは防水粘着剤
で密閉し固定する。
5)組み立てた5つの監視ウェルを、保護コラム1が地上から約30cmの高さまで、試
験地に掘削し、操作者の作業障害とならず、サンプリングも容易であり、保護コラム1を
旋回させ、出口パイプ9を引出し、サクションバルブを使用して液体を吸上げ、その後出
口パイプ9を直接用意したサンプリングボトルに接続する。
6)サンプル収集は試験要求に応じて、異なるタイミングでサンプリングしてもよく、異
なる深度の浅層地下水サンプルを収集してもよく、異なるタイミングでサンプリングする
と、サンプルを収集した後保護コラム1を再び旋回させ、雨水や不純物の侵入を防止する

7)サンプルを収集した直後、サンプリングボトルを車載冷蔵庫に保管する必要がある。
For application experiments, researchers follow the specific operational steps below.
1) Select a large field test plot with a total area of about 1800m2 , each with 10
Divide into 9 mock plots with an area of 0 m2 and place 5 monitoring wells in each mock plot.
2) Generally 0.1 m, 0.5 m, 1 m, 1.5 m, depending on the choice of shallow groundwater monitoring depth
A combination of monitoring wells with heights different from 2 m, 2 m is used.
3) The monitoring well consists of a collection column 3, an intermediate column 2 and a protective column 1, the intermediate column 2 is a section of 0.5 m, several sections can be combined, first the collection column 3 is taken out , the outlet pipe 9 is advanced through the filter media exchange assembly to the center of the cone 32 of the collection column 3, the head of the outlet pipe 9 is extended to about one third of the bottom of the cone 32, and the monitoring system is monitored. According to the well depth, the intermediate column 2 is connected by combining 0, 1, 2, 3, 4 sections respectively, screwed into the collecting column 3 after the connection is completed, and then the outlet pipe 9 is pulled out to the upper end of the intermediate column 2. , fixed to the inner wall of the intermediate column 2,
Desirably, the length of the outlet pipe 9 can be extended by about 1 m from the middle column 2 to facilitate access to the sampling bottle later during sample collection, and finally protect the top opening of the middle column 2 or the top opening of the collection column 3. Connect the columns to form full monitoring wells of different depths.
4) Each connection part of the shallow groundwater contamination detection system is sealed and fixed with Teflon tape or waterproof adhesive.
5) Excavate the five assembled monitoring wells in the test site so that the protection column 1 is about 30 cm above the ground, does not interfere with the operator's work, is easy to sample, rotates the protection column 1, Pull out the outlet pipe 9, suck the liquid using the suction valve, and then connect the outlet pipe 9 directly to the prepared sampling bottle.
6) Sample collection may be sampled at different times according to test requirements, shallow groundwater samples at different depths may be collected, and sampling at different times means that after collecting the samples, the protection column 1 may be re-inserted. Rotate to prevent rainwater and impurities from entering.
7) The sampling bottle should be stored in the on-board refrigerator immediately after collecting the sample.

Claims (7)

監視ウェルおよびサンプリングアセンブリを含み、
前記監視ウェルは上から下へ順次保護コラム(1)、中間コラム(2)および収集コラム
(3)に分かられ、
前記収集コラム(3)は上部の円筒体(31)と下部の円錐体(32)を含み、円筒体(
31)の円錐体(32)に近接する一端の側壁に均一に地下水浸透用の複数の小孔(33
)が設けられ、円筒体(31)と円錐体(32)の接続部の内部にフィルタ材交換アセン
ブリが設けられ、
前記フィルタ材交換アセンブリはフィルタ材載置板(4)、制御板(5)、材料上昇コラ
ム(6)、および材料貯蔵筒(7)を含み、
前記フィルタ材載置板(4)は収集コラム(3)の内壁に固定的に接続され、フィルタ材
載置板(4)の周方向に等間隔でフィルタ材落下用の複数組のフィルタ材孔(41)が設
けられ、前記制御板(5)は扇葉型でフィルタ材載置板(4)の下方に配置され、制御板
(5)の各葉板(51)はフィルタ材載置板(4)のフィルタ材孔(41)の位置に対応
し、制御板(5)を回転することによりフィルタ材孔(41)の開閉を制御し、前記フィ
ルタ材載置板(4)の下方に落下したフィルタ材を収容するための材料収容ポケット(8
)がさらに設けられ、
前記材料上昇コラム(6)は回転可能なコラムハウジング(61)およびねじロッド(6
2)を含み、前記ねじロッド(62)はコラムハウジング(61)内に回転可能に設けら
れ、コラムハウジング(61)の内壁とねじロッド(62)の各スパイラル間隔に、コラ
ムハウジング(61)の縦方向シュート(611)に沿って上下に摺動可能なパドル(6
12)が対応して設けられ、前記各パドル(612)の上下側面にそれぞれ隣接するパド
ル(612)間に磁気反発を発生させるための磁気シートが設けられ、前記ねじロッド(
62)の各パドル(612)に対応する位置にパドル(612)が通過するためのバーホ
ール(621)が設けられ、
前記材料上昇コラム(6)の下端がフィルタ材載置板(4)と制御板(5)の中心を貫通
してねじロッド(62)の下端を介して材料収容ポケット(8)の底面に回転可能に接続
され、材料上昇コラム(6)はフィルタ材載置板(4)に回転可能かつ密閉に接続され、
材料上昇コラム(6)は制御板(5)とダンピングリングを介して接続され、
前記材料上昇コラム(6)の上端が材料貯蔵筒(7)内の中心管(71)まで延伸し、コ
ラムハウジング(61)の上端は、ねじロッド(62)の上端および材料貯蔵筒(7)の
頂部に設けられた組合式駆動モータ(72)の出力軸に接続され、前記中心管(71)に
フィルタ材を押して排出させるための環状ピストン板(73)が嵌設され、前記材料貯蔵
筒(7)の底面の周方向に複数の排出口(74)が設けられ、前記排出口(74)にそれ
ぞれフィルタ材の自動排出を防止するためのプラグ板(75)が設けられ、前記材料上昇
コラム(6)は中間コラム(2)の内壁に接触して係合される、
ことを特徴とする浅層地下水汚染物監視システム。
includes monitoring wells and sampling assemblies;
said monitoring wells are divided sequentially from top to bottom into protection column (1), middle column (2) and collection column (3),
Said collecting column (3) comprises an upper cylinder (31) and a lower cone (32), the cylinder (
31) a plurality of small holes (33) for groundwater infiltration uniformly on one side wall adjacent to the cone (32)
) is provided, and a filter media replacement assembly is provided inside the connection of the cylinder (31) and the cone (32),
said filter media replacement assembly comprises a filter media loading plate (4), a control plate (5), a material lift column (6) and a material storage cylinder (7);
The filter material mounting plate (4) is fixedly connected to the inner wall of the collecting column (3), and has a plurality of sets of filter material holes for dropping the filter material at regular intervals in the circumferential direction of the filter material mounting plate (4). (41) is provided, and the control plate (5) is fan-leaf shaped and arranged below the filter material mounting plate (4), and each leaf plate (51) of the control plate (5) is a filter material mounting plate Corresponding to the position of the filter material hole (41) of (4), by rotating the control plate (5), the opening and closing of the filter material hole (41) is controlled, and the filter material mounting plate (4) material storage pocket (8
) is further provided,
Said material rising column (6) comprises a rotatable column housing (61) and a threaded rod (6).
2), wherein the threaded rod (62) is rotatably mounted in the column housing (61), each spiral interval between the inner wall of the column housing (61) and the threaded rod (62), the column housing (61) Paddles (6) slidable up and down along longitudinal chute (611)
12) are provided correspondingly, a magnetic sheet is provided on the upper and lower sides of each paddle (612) for generating magnetic repulsion between the adjacent paddles (612), and the threaded rod (
62) are provided with burr holes (621) for the passage of the paddles (612) at positions corresponding to the respective paddles (612),
The lower end of the material raising column (6) passes through the center of the filter material mounting plate (4) and the control plate (5) and rotates to the bottom surface of the material storage pocket (8) through the lower end of the threaded rod (62). operably connected, the material rising column (6) is rotatably and sealingly connected to the filter material loading plate (4);
The material lifting column (6) is connected with the control plate (5) through a damping ring,
The upper end of said material rising column (6) extends to the central tube (71) in the material storage cylinder (7), and the upper end of the column housing (61) is connected to the upper end of the threaded rod (62) and the material storage cylinder (7). It is connected to the output shaft of a combination type drive motor (72) provided at the top of the material storage tube (71), and an annular piston plate (73) for pushing and discharging the filter material is fitted into the central tube (71). A plurality of discharge ports (74) are provided in the circumferential direction of the bottom surface of (7), each of the discharge ports (74) is provided with a plug plate (75) for preventing automatic discharge of the filter material, and the material rises. the column (6) is contactingly engaged with the inner wall of the intermediate column (2);
A shallow groundwater contaminant monitoring system characterized by:
前記収集コラム(3)の円筒体(31)の上端に、中間コラム(2)または保護コラム(
1)にねじ込まれたねじ口が設けられ、前記中間コラム(2)の上下両端の内壁にそれぞ
れ保護コラム(1)、収集コラム(3)にねじ込まれたねじが設けられ、前記保護コラム
(1)はねじ口付き円筒形カバーである、ことを特徴とする請求項1に記載の浅層地下水
汚染物監視システム。
At the upper end of the cylindrical body (31) of said collecting column (3), an intermediate column (2) or protective column (
The upper and lower inner walls of the intermediate column (2) are provided with screws screwed into the protection column (1) and the collecting column (3), respectively. ) is a threaded cylindrical cover.
隣接する2つのフィルタ材孔(41)間に円弧状のスロープ板(42)が設けられる、こ
とを特徴とする請求項1に記載の浅層地下水汚染物監視システム。
A shallow groundwater contaminant monitoring system according to claim 1, characterized in that an arcuate slope plate (42) is provided between two adjacent filter material holes (41).
前記サンプリングアセンブリは出口パイプ(9)、サンプリングボトルおよび機械式ポン
プを含み、前記出口パイプ(9)は円錐体(32)の底部まで延伸し、テフロンテープお
よび防水粘着剤を使用してサンプリングアセンブリの各接続部を密閉して漏れを防止する
、ことを特徴とする請求項1に記載の浅層地下水汚染物監視システム。
Said sampling assembly comprises an outlet pipe (9), a sampling bottle and a mechanical pump, said outlet pipe (9) extending to the bottom of cone (32), using Teflon tape and waterproof adhesive to seal the sampling assembly. 2. The shallow groundwater contaminant monitoring system of claim 1, wherein each connection is sealed to prevent leakage.
前記組合式駆動モータ(72)は、コラムハウジング(61)に接続された第1駆動モー
タ(721)およびねじロッド(62)に接続された第2駆動モータ(722)を含み、
前記第1駆動モータ(721)は係合チャック(723)を介してコラムハウジング(6
1)の上端タブ(613)に着脱可能に係合される、ことを特徴とする請求項1に記載の
浅層地下水汚染物監視システム。
said combined drive motor (72) comprises a first drive motor (721) connected to the column housing (61) and a second drive motor (722) connected to the threaded rod (62);
The first drive motor (721) is connected to the column housing (6) through an engagement chuck (723).
2. A shallow groundwater contaminant monitoring system according to claim 1, characterized in that: 1) it is removably engaged with the top tab (613);
前記材料貯蔵筒(7)の外側壁の周方向に中間コラム(2)の内壁に接触して固定された
複数組円弧状の板(76)が設けられ、前記円弧状の板(76)はモータプッシュロッド
(77)を介して材料貯蔵筒(7)の外側壁に接続され、円弧状の板(76)の中間コラ
ム(2)の内壁に接触する側にゴムパッドが設けられる、ことを特徴とする請求項1に記
載の浅層地下水汚染物監視システム。
A plurality of sets of arc-shaped plates (76) fixed in contact with the inner wall of the intermediate column (2) are provided in the circumferential direction of the outer wall of the material storage tube (7), and the arc-shaped plates (76) are It is characterized in that it is connected to the outer wall of the material storage cylinder (7) through the motor push rod (77), and a rubber pad is provided on the side of the arc-shaped plate (76) that contacts the inner wall of the intermediate column (2). The shallow groundwater contaminant monitoring system according to claim 1.
前記制御板(5)の各葉板(51)の前端にそれぞれ係合ブロック(43)に接続された
円弧状の係合ヘッド(52)が設けられ、前記係合ブロック(43)はフィルタ材載置板
(4)の底面に設けられた円弧状の溝(44)に摺動可能に接続され、かつ係合ブロック
(43)は円弧状の溝(44)に設けられたばね(45)に接続される、ことを特徴とす
る請求項1に記載の浅層地下水汚染物監視システム。
The front end of each leaf plate (51) of the control plate (5) is provided with an arcuate engagement head (52) respectively connected to an engagement block (43), wherein the engagement block (43) is a filter material. It is slidably connected to an arc-shaped groove (44) provided in the bottom surface of the mounting plate (4), and the engagement block (43) is engaged with a spring (45) provided in the arc-shaped groove (44). The shallow groundwater contaminant monitoring system of claim 1, wherein the system is connected to:
JP2022181465A 2021-09-26 2022-11-12 Shallow groundwater contaminant monitoring system Active JP7351046B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111127970.4A CN113834698B (en) 2021-09-26 2021-09-26 Shallow groundwater pollutant monitoring system
CN202111127970.4 2021-09-26

Publications (2)

Publication Number Publication Date
JP2023067870A true JP2023067870A (en) 2023-05-16
JP7351046B2 JP7351046B2 (en) 2023-09-27

Family

ID=78970310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022181465A Active JP7351046B2 (en) 2021-09-26 2022-11-12 Shallow groundwater contaminant monitoring system

Country Status (2)

Country Link
JP (1) JP7351046B2 (en)
CN (1) CN113834698B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116735280A (en) * 2023-08-14 2023-09-12 中建五局第三建设有限公司 Groundwater sampling device
CN117007763A (en) * 2023-10-07 2023-11-07 山东深海海洋科技有限公司 Environment-friendly seawater quality monitoring device
CN117147220A (en) * 2023-09-01 2023-12-01 辽宁有色勘察研究院有限责任公司 Groundwater sampling device for ecological protection monitoring
CN117213926A (en) * 2023-08-18 2023-12-12 长江生态环保集团有限公司 Multipurpose device for subsurface flow wetland pollutant reduction mechanism research and use method
CN117309497A (en) * 2023-11-29 2023-12-29 山东正源检测科技有限公司 Special sampling base station for water quality detection
CN117466254A (en) * 2023-12-27 2024-01-30 福建铭麟科技有限公司 Potassium persulfate purification process and purification equipment
CN117606851A (en) * 2024-01-23 2024-02-27 云南阿姆德电气工程有限公司 Mineral layering ore belt sampling detection device and application method thereof
CN117949248A (en) * 2024-03-26 2024-04-30 大庆新顺丰石油科技开发有限公司 Oilfield exploration sampling device and sampling method
CN118010428A (en) * 2024-04-09 2024-05-10 东方国际集团上海环境科技有限公司 Multistage sampling device for water quality detection
CN118007613A (en) * 2024-04-09 2024-05-10 渭南职业技术学院 Slope stability monitoring device
CN118130163A (en) * 2024-05-08 2024-06-04 山东省煤田地质规划勘察研究院 Groundwater mobility analysis and sampling device
CN118150794A (en) * 2024-05-10 2024-06-07 合肥工业大学 Water quality monitoring equipment for gardens and method thereof
CN118275641A (en) * 2024-05-31 2024-07-02 南昌理工学院 Water quality monitoring device for environmental engineering
CN118294217A (en) * 2024-06-06 2024-07-05 山东淋垚智慧农业科技有限公司 Detection equipment of constant-pressure water supply control cabinet
CN118329529A (en) * 2024-06-13 2024-07-12 深圳精渔科技有限公司 Sampling device for water quality detection for aquaculture
CN118483392A (en) * 2024-07-16 2024-08-13 中国特种设备检测研究院 Water quality monitoring device for electrolytic water system of hydrogen production station
CN118518416A (en) * 2024-05-10 2024-08-20 江苏汉元工程检测有限公司 Municipal administration sewage detects uses device
CN118582157A (en) * 2024-08-06 2024-09-03 河南洲匠建设工程有限公司 Exploration device and exploration method for hydrogeology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155145A (en) * 2022-06-20 2022-10-11 东台市富安合成材料有限公司 Novel synthetic leather wastewater treatment mechanism and treatment method thereof
CN116500206B (en) * 2023-06-26 2023-12-05 深圳市力容电子有限公司 Electrolyte detection device for capacitor production and detection method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404762A (en) * 1993-01-15 1995-04-11 The Regents Of The Univ. Of California Office Of Technology Transfer Quick-change filter cartridge
EP2039880A2 (en) * 2007-09-24 2009-03-25 Commissariat A L'energie Atomique Multi-level static sampler
CN210803017U (en) * 2019-10-25 2020-06-19 王莱 A groundwater sample collection device for engineering geology reconnaissance
CN111999121A (en) * 2020-09-09 2020-11-27 南京万德斯环保科技股份有限公司 Single-well multi-stage underground water monitoring system
CN212391467U (en) * 2020-04-26 2021-01-22 山东大学 Simple and easy coastal wetland shallow groundwater monitoring devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124719A (en) * 2016-07-07 2016-11-16 环境保护部南京环境科学研究所 Shallow Groundwater Pollution thing monitoring system
CN106153395B (en) * 2016-09-21 2018-05-18 中国地质大学(北京) A kind of underground water integrates sampling apparatus
CN107894350A (en) * 2017-11-18 2018-04-10 吕连勋 One kind pollution long-term sampling equipment of place phreatic water
CN110132650B (en) * 2019-04-30 2021-11-09 同济大学 Sampling method for underground water well group in polluted site
CN110144993A (en) * 2019-04-30 2019-08-20 同济大学 A kind of filter pipe, groundwater monitoring well device and construction method
CN110108517B (en) * 2019-05-30 2024-08-27 中国地质科学院水文地质环境地质研究所 In-situ collection and filtration device based on shallow groundwater and application method thereof
CN112595544B (en) * 2020-12-24 2021-09-21 生态环境部南京环境科学研究所 Sampling device and sampling method for heavy metal contaminated soil in lead-zinc mining area

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404762A (en) * 1993-01-15 1995-04-11 The Regents Of The Univ. Of California Office Of Technology Transfer Quick-change filter cartridge
EP2039880A2 (en) * 2007-09-24 2009-03-25 Commissariat A L'energie Atomique Multi-level static sampler
CN210803017U (en) * 2019-10-25 2020-06-19 王莱 A groundwater sample collection device for engineering geology reconnaissance
CN212391467U (en) * 2020-04-26 2021-01-22 山东大学 Simple and easy coastal wetland shallow groundwater monitoring devices
CN111999121A (en) * 2020-09-09 2020-11-27 南京万德斯环保科技股份有限公司 Single-well multi-stage underground water monitoring system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116735280B (en) * 2023-08-14 2023-10-31 中建五局第三建设有限公司 Groundwater sampling device
CN116735280A (en) * 2023-08-14 2023-09-12 中建五局第三建设有限公司 Groundwater sampling device
CN117213926A (en) * 2023-08-18 2023-12-12 长江生态环保集团有限公司 Multipurpose device for subsurface flow wetland pollutant reduction mechanism research and use method
CN117147220B (en) * 2023-09-01 2024-03-29 辽宁有色勘察研究院有限责任公司 Groundwater sampling device for ecological protection monitoring
CN117147220A (en) * 2023-09-01 2023-12-01 辽宁有色勘察研究院有限责任公司 Groundwater sampling device for ecological protection monitoring
CN117007763A (en) * 2023-10-07 2023-11-07 山东深海海洋科技有限公司 Environment-friendly seawater quality monitoring device
CN117007763B (en) * 2023-10-07 2023-12-15 山东深海海洋科技有限公司 Environment-friendly seawater quality monitoring device
CN117309497A (en) * 2023-11-29 2023-12-29 山东正源检测科技有限公司 Special sampling base station for water quality detection
CN117309497B (en) * 2023-11-29 2024-02-02 山东正源检测科技有限公司 Special sampling base station for water quality detection
CN117466254B (en) * 2023-12-27 2024-04-02 福建铭麟科技有限公司 Potassium persulfate purification process and purification equipment
CN117466254A (en) * 2023-12-27 2024-01-30 福建铭麟科技有限公司 Potassium persulfate purification process and purification equipment
CN117606851A (en) * 2024-01-23 2024-02-27 云南阿姆德电气工程有限公司 Mineral layering ore belt sampling detection device and application method thereof
CN117606851B (en) * 2024-01-23 2024-03-26 云南阿姆德电气工程有限公司 Mineral layering ore belt sampling detection device and application method thereof
CN117949248A (en) * 2024-03-26 2024-04-30 大庆新顺丰石油科技开发有限公司 Oilfield exploration sampling device and sampling method
CN118007613B (en) * 2024-04-09 2024-06-07 渭南职业技术学院 Slope stability monitoring device
CN118010428A (en) * 2024-04-09 2024-05-10 东方国际集团上海环境科技有限公司 Multistage sampling device for water quality detection
CN118007613A (en) * 2024-04-09 2024-05-10 渭南职业技术学院 Slope stability monitoring device
CN118130163A (en) * 2024-05-08 2024-06-04 山东省煤田地质规划勘察研究院 Groundwater mobility analysis and sampling device
CN118150794A (en) * 2024-05-10 2024-06-07 合肥工业大学 Water quality monitoring equipment for gardens and method thereof
CN118518416A (en) * 2024-05-10 2024-08-20 江苏汉元工程检测有限公司 Municipal administration sewage detects uses device
CN118275641A (en) * 2024-05-31 2024-07-02 南昌理工学院 Water quality monitoring device for environmental engineering
CN118294217A (en) * 2024-06-06 2024-07-05 山东淋垚智慧农业科技有限公司 Detection equipment of constant-pressure water supply control cabinet
CN118329529A (en) * 2024-06-13 2024-07-12 深圳精渔科技有限公司 Sampling device for water quality detection for aquaculture
CN118483392A (en) * 2024-07-16 2024-08-13 中国特种设备检测研究院 Water quality monitoring device for electrolytic water system of hydrogen production station
CN118582157A (en) * 2024-08-06 2024-09-03 河南洲匠建设工程有限公司 Exploration device and exploration method for hydrogeology

Also Published As

Publication number Publication date
CN113834698B (en) 2022-04-19
JP7351046B2 (en) 2023-09-27
CN113834698A (en) 2021-12-24

Similar Documents

Publication Publication Date Title
JP2023067870A (en) Shallow layer ground water contaminant monitor system
JP7015427B1 (en) Intelligent collection and analysis equipment for integrated collection and analysis of groundwater deliquescent
CN106153395A (en) A kind of integrated sampling apparatus of subsoil water
CN210690141U (en) Sludge sampler
CN105116130B (en) Soil column device for simulating leaching, greenhouse gas collection and ammonia volatilization
CN211585598U (en) Sewage treatment equipment
CN211085855U (en) Polluted gas extraction device for environmental detection
CN109060449A (en) A kind of water quality detecting device of underwater bionic robot
CN106592747A (en) Drainage device used for collecting municipal sewage
CN106153399B (en) Automatic sampling device for low-power consumption karst cave drip
CN112934950A (en) Heavy metal contaminated soil's phytoremediation device
CN117607006B (en) Soil hydraulic erosion detection container for mining site
CN115616180A (en) Monitoring and sampling device for monitoring water level and pollution of shallow groundwater
CN111238871A (en) Heavy metal soil stratified sampling device convenient to keep apart contrast
CN114576569A (en) Portable natural gas pipeline device that leaks hunting
CN214373606U (en) Automatic sampling device for sewage discharge
CN214225151U (en) Soil pollution environment detection device
CN108687129A (en) A kind of filter device applied to heavy-metal contaminated soil fast purification reparation
CN117109985A (en) Groundwater leaching collection analysis system based on agricultural non-point source pollution research
CN210915583U (en) Sewage filtering device
JP7137044B1 (en) A device that simulates the transition and alteration of organic pollutants in soil
CN106967603A (en) A kind of magnetotactic bacteria sampling culture instrument
CN218067156U (en) Deep collecting space area normal position water sample sampler
CN110639234A (en) A waste liquid collects filter equipment for bioengineering assembly line refines line
CN114034822A (en) Experimental device for simulating influence of atmospheric sedimentation on plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221112

AA79 Non-delivery of priority document

Free format text: JAPANESE INTERMEDIATE CODE: A24379

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7351046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150