Nothing Special   »   [go: up one dir, main page]

JP2021529371A - ユーザにより実行されるアクティビティに基づく主題専門家の決定 - Google Patents

ユーザにより実行されるアクティビティに基づく主題専門家の決定 Download PDF

Info

Publication number
JP2021529371A
JP2021529371A JP2020569745A JP2020569745A JP2021529371A JP 2021529371 A JP2021529371 A JP 2021529371A JP 2020569745 A JP2020569745 A JP 2020569745A JP 2020569745 A JP2020569745 A JP 2020569745A JP 2021529371 A JP2021529371 A JP 2021529371A
Authority
JP
Japan
Prior art keywords
topic
user
activity
indicator
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020569745A
Other languages
English (en)
Other versions
JP7325157B2 (ja
Inventor
スグロ、アントニオ
ガレリ、フランチェスカ
コルテ、ジャンルカ デラ
ジャンファニャ、レオニダ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2021529371A publication Critical patent/JP2021529371A/ja
Application granted granted Critical
Publication of JP7325157B2 publication Critical patent/JP7325157B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3065Monitoring arrangements determined by the means or processing involved in reporting the monitored data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/302Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a software system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3438Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment monitoring of user actions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/81Threshold
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/88Monitoring involving counting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Debugging And Monitoring (AREA)
  • User Interface Of Digital Computer (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

主題専門家を決定するための方法が、コンピュータによって、ある期間中にユーザにより実行される一連の作業を含むアクティビティを監視することと、一連の作業に基づいて、ユーザにより実行されるアクティビティのトピックを決定することと、コンピュータによって、該期間中にトピックと関連付けられたユーザの躊躇パターンを認識することと、認識された躊躇パターンに基づいて、アクティビティを実行する際のユーザの信頼度を指定する、アクティビティと関連付けられた信頼度インジケータを計算することと、信頼度インジケータが信頼度閾値を下回ることに基づいて、決定されたトピックに関する1又は複数の主題専門家を特定することと、特定された主題専門家の少なくとも1人に支援要求をサブミットするようにユーザに促すこととを含む。

Description

本発明は、一般に、情報技術に関し、より詳細には、主題専門家(subject matter expert)を決定するための方法、システム及びコンピュータプログラム製品に関する。
コンピューティングマシン、又は単にコンピュータは、多数のアクティビティを実行するために使用される。例えば、コンピュータのユーザは、ワードプロセッサを用いてテキスト文書を、スプレッドシートを用いて財務報告書を、スライドショーアプリケーションを用いてマルチメディアプレゼンテーションを、CADを用いて技術設計を、IDEアプリケーションを用いてソフトウェアプログラムを準備することなどが可能である。場合によっては、ユーザは、そうしたアプリケーションに精通しておらず、タスクを実行するためにさらなる助けを必要とすることがある。
本開示の1つの実施形態によると、主題専門家を決定するための方法が、コンピュータによって、ある期間中にユーザにより実行される一連の動作を含むアクティビティを監視することと、一連の動作に基づいて、ユーザにより実行されるアクティビティのトピックを決定することと、コンピュータによって、該期間中にトピックと関連付けられたユーザの躊躇パターンを認識することと、認識された躊躇パターンに基づいて、アクティビティを実行する際のユーザの信頼度を指定する、アクティビティと関連付けられた信頼度インジケータを計算することと、信頼度インジケータが信頼度閾値を下回ることに基づいて、決定されたトピックに関する1又は複数の主題専門家を特定し、特定された主題専門家のうちの少なくとも1人に支援要求をサブミットするようにユーザに促すこととを含む。
別の実施形態によると、主題専門家を決定するためのコンピュータシステムが、1つ又は複数のプロセッサ、1つ又は複数のコンピュータ可読メモリ、1つ又は複数のコンピュータ可読有形ストレージデバイス、及び1つ又は複数のメモリの少なくとも1つを介して1つ又は複数のプロセッサの少なくとも1つにより実行される、1つ又は複数のストレージデバイス上に格納されたプログラム命令を含み、該コンピュータシステムは、コンピュータによって、ある期間中にユーザにより実行される一連の動作を含むアクティビティを監視することと、一連の動作に基づいて、ユーザにより実行されるアクティビティのトピックを決定することと、コンピュータによって、該期間中にトピックと関連付けられたユーザの躊躇パターンを認識することと、認識された躊躇パターンに基づいて、アクティビティを実行する際のユーザの信頼度を指定する、アクティビティと関連付けられた信頼度インジケータを計算することと、信頼度インジケータが信頼度閾値を下回ることに基づいて、決定されたトピックに関する1又は複数の主題専門家を特定することと、特定された主題専門家のうちの少なくとも1人に支援要求をサブミットするようにユーザに促すことと、を含む方法を実行することができる。
以下の詳細な説明は、例として与えられたものであり、本発明をそれのみに限定することを意図したものではなく、添付図面と併せて最もよく理解されるであろう。
本開示の1つの実施形態による、コンピュータマシン上で実行されるアクティビティに基づいて専門家を決定するための方法を示す。 本開示の1つの実施形態による、コンピュータマシン上で実行されるアクティビティに基づいて専門家を決定するための方法を示す。 本開示の1つの実施形態による、コンピュータマシン上で実行されるアクティビティに基づいて専門家を決定するための方法を示す。 本開示の1つの実施形態による、コンピュータマシン上で実行されるアクティビティに基づいて専門家を決定するための方法を示す。 本開示の1つの実施形態による、コンピュータマシン上で実行されるアクティビティに基づいて専門家を決定するためのコンピューティングシステムの概略的ブロック図を示す。 本開示の1つの実施形態による、方法を実施するために使用されるソフトウェアコンポーネントを示す 本開示の1つの実施形態による、方法の実施と関連付けられたアクティビティを記述するアクティビティ図を示す。 本開示の1つの実施形態による、方法の実施と関連付けられたアクティビティを記述するアクティビティ図を示す。
図面は必ずしも縮尺通りではない。図面は単に概略的な表現に過ぎず、本発明の特定のパラメータを描写することを意図したものではない。図面は、本発明の典型的な実施形態のみを示すことを意図している。図面において、同様の番号付けは、同様の要素を表す。
特許請求される構造及び方法の詳細な実施形態が本明細書で開示されるが、開示される実施形態は、種々の形態で具体化できる特許請求される構造及び方法の単なる例証に過ぎないことを理解することができる。しかしながら、本発明は、多くの異なる形態で具体化することができ、本明細書で述べられる例示的な実施形態に限定されると解釈すべきではない。説明において、周知の特徴及び技術の詳細は、提示される実施形態を不必要に分かりにくくすることを避けるために省略される場合がある。
コンピュータマシン(以下、「コンピュータ」)を用いて、日々、様々な領域に関連する多数のアクティビティが実行される。しかしながら、それらのアクティビティの一部は、経験のないユーザにとって困難なものである場合がある。例えば、アクティビティがユーザにとって未知であり得る異なる分野の知識を必要とする場合、又はアクティビティが特に特殊もしくは複雑又はその両方であり、それによりユーザにとって課題となる場合がある。これらの状況において、ユーザは、満足のいく方法でアクティビティを実行するために助けを必要とすることがある。この目的のために、ユーザは、一般に、対応するトピックに関する情報の検索を開始する。今日では、このことは、ほとんどの場合、(対応するクエリを検索エンジンにサブミットすることによって)インターネット上で行われる。しかしながら、インターネット検索では、所望の結果が十分に速く提供されず、時間のかかる作業になることがある。
その結果として、ユーザは、トピックの特別な知識を有する主題専門家(subject matter expert、SME)、又は単に専門家の支援を必要とする場合がある。例えば、ソフトウェアプロジェクトに取り組んでいるユーザが、対応するプログラミング言語の専門家、対応するハードウェアアーキテクチャの専門家、又は対応するビジネス分野の専門家に連絡を取る必要がある場合がある。しかしながら、あらゆる特定の状況において専門家を特定するのは容易な作業ではない。この目的のために、ユーザは、一般に、自分が知っている人(例えば、同僚、友人)の中から専門家を検索する。これは、知っている人が本質的に限られているため、あまり効果がない。従って、ユーザを助けるのにより良い立場にある人を見逃す可能性が高い。
さらに、主題専門家は、公開されている個人情報によって、手動で又は自動的に、インターネット上で検索することができる。例えば、検索は、潜在的な主題専門家の教育、仕事、出版物を示すソーシャルネットワークプロファイル又はオンラインフォーラムに基づくことができる。しかしながら、プロファイルが最新のものではない可能性があり、プロファイルにおいて公表された技能が、実際の能力に対応していないこともある。いずれの場合も、個人情報の定義は主観的な基準に基づいており、決して均質ではない。
従って、特定された主題専門家が、必要な助けをユーザに提供できないことがある。この場合、別の主題専門家の検索を1回又は複数回繰り返す必要がある(適切な専門家が見つからないリスクを伴う)。多くの場合、ユーザは、比較的長い時間がたって初めて、自分が専門家の支援を必要とすることに気付く。そうしているうちに、ユーザは、必要な情報の検索に貴重な時間を無駄にしてしまうので(不成功に終わって)、必要なアクティビティを満足のいく効率的な方法で何とか実行することができない。
上述した状況は、ユーザの生産性及び一般性能に悪影響を及ぼす。具体的には、必要な情報及び主題専門家のインターネット検索の失敗、並びに必要な主題専門家でない人とのインターネット上での多数の通信は、これらの動作が大量のコンピューティングリソース(例えば、検索を実行するための計算能力、検索をサブミットするためのネットワークトラフィック、対応する応答の受信、及び潜在的な主題専門家との通信)を必要とするため、対応するコンピューティングシステムの性能に悪影響を及ぼす。
本開示の実施形態は、一般に、情報技術の分野に関し、より詳細には、主題専門家を決定するための方法、システム、及びコンピュータプログラム製品に関する。具体的には、以下に説明される例示的な実施形態は、とりわけ、ユーザのコンピュータとの相互作用のパターンに基づいて、迅速かつ効率的に主題専門家を検索するための方法、システム、及びコンピュータプログラム製品を提供する。従って、本実施形態は、少なくとも、タスクを完了するのに必要な情報及び対応する主題専門家の検索数を大幅に減少させ、適切な主題専門家ではない他のユーザとの、インターネット上で行われる通信数を大幅に減少させることによって、情報技術の技術分野を改善するための能力を有する。検索数及び不適切な主題専門家との通信数を減少させた結果、ユーザの生産性を向上させながら、コンピューティングリソースの利用が最適化される。より具体的には、少なくとも、検索を行うための計算能力の量を減らし、検索をサブミットするためのネットワークトラフィックを減らし、受信する応答量及び他のユーザ(不適切な主題専門家)との通信を制限することによって、コンピューティングリソースの利用が最適化される。
さらに、本開示の実施形態は、客観的で均質の基準に基づいて、主題専門家の検索を全ての利用可能なユーザに拡張する。従って、主題専門家が必要な助けをユーザに提供できる確率が高い。ユーザが主題専門家の支援を必要とし得ることが、ユーザに迅速に通知される。これにより、ユーザが必要なアクティビティを満足のいく方法で行うことができない時間、及び必要な情報を検索するのに費やされる時間が制限される。
ここで図1A〜図1Dを参照すると、本開示の実施形態による、コンピュータマシン上で実行されるアクティビティに基づいて主題専門家を決定するための方法の図が示される。
図1Aによると、ユーザ105uは、コンピュータ110u上で作業する。コンピュータ110u上でのユーザ105uのアクティビティは、連続的に監視される。各アクティビティは、一定期間、コンピュータ110u上でユーザ105uにより実行される一連の動作を含む(例えば、キーボードでデータ/コマンドを入力する、マウスでアクションを行うなど)。
図1Bにおいて、各アクティビティのトピックは、対応する動作に従って決定される。例えば、1つの実施形態において、トピックは、コグニティブ技術をアクティビティの動作に適用することによって決定される。対応する動作に従って、各アクティビティについて信頼度インジケータが計算される。信頼度インジケータは、アクティビティを実行する際のユーザ105uの信頼度を示す。例えば、信頼度インジケータは、ユーザ105uが、以前に入力したデータを削除した、又はインターネット上でアクティビティに関連する情報を検索した回数に基づいている。別の言い方をすれば、信頼度インジケータは、アクティビティの実行中のユーザの躊躇パターン(hesitation pattern)と関連付けられる。
図1Cにおいて、ユーザ105uのクリティカルな状態(critical condition)が検出される。具体的には、クリティカルな状態は、対応する信頼度インジケータに従って、(クリティカルな)アクティビティの(クリティカルな)トピックに関して検出される。例えば、信頼度インジケータが、ユーザ105uが極めて優柔不断であること(例えば、ユーザがデータを繰り返し入力及び削除していることもしくはインターネット上でアクティビティに関連する情報を繰り返し検索していること又はその両方)を示す場合、クリティカルなトピックに関する1又は複数の主題専門家が決定される。主題専門家は、クリティカルなトピックに関するユーザ105u、105eの信頼度インジケータに従って、付加的なコンピュータマシン(例えば、他のコンピュータ110e)上で作業している他のユーザ105eの中から決定される。例えば、各ユーザ105u、105eについて、対応する信頼性インジケータに従って、各トピックに関して専門知識(expertise)インジケータが計算される。専門知識インジケータは、クリティカルなトピックに関するユーザ105u、105eの専門知識を示すものである。別の言い方をすれば、専門知識インジケータは、(クリティカルな)トピックに関するユーザ105u、105eのいずれかの知識と関連付けられる。次に、主題専門家は、ユーザ105u、105eのクリティカルなトピックに関する専門知識インジケータに従って決定される。中央コンピュータマシン、例えばユーザ105u、105eの専門知識インジケータを、それぞれのコンピュータ110u、110eから収集するサーバ115が、この動作を実行することができる。
図1Dに示されるように、ユーザ105uは、選択された主題専門家105eへのクリティカルなアクティビティ支援要求を入力するように促される。支援要求は、1又は複数の主題専門家105eに発行され得ることに留意されたい。次に、支援要求は、主題専門家105eと関連付けられたコンピュータ110eにサブミットされる(コンピュータ110eは通常、対応する応答をユーザ105uのコンピュータ110uに返す)。
ここで図2を参照すると、本開示の実施形態に従った、コンピューティングシステム200の概略ブロック図が示される。
コンピューティングシステム200は、参照番号110と総称される全てのユーザのコンピュータと、サーバ115とを含む。コンピュータ110及びサーバ115は、(例えば、インターネットのようなグローバルタイプの)ネットワーク205を介してそれらの間で通信する。
上述したコンピューティングマシン(コンピュータ110及びサーバ115)の各々は、1つ又は複数のレベルを有する(コンピューティングマシン110、115のタイプに従って適切にスケーリングされたアーキテクチャを有する)バス構造210を介してそれらの間で接続された幾つかのユニットを含む。特に、1つ又は複数のマイクロプロセッサ(μP)215は、コンピューティングマシン110、115の動作を制御する。不揮発性メモリ(ROM)220は、コンピューティングマシン110、115のブートストラップのための基本コードを格納し、揮発性メモリ(RAM)225は、マイクロプロセッサ215によって作業メモリとして使用される。コンピューティングマシン110、115には、例えば、コンピュータ110用のハードディスク及びサーバ115が実装されるデータセンタのストレージデバイスなど、プログラム及びデータを格納するための大容量メモリ230が備えられる。さらに、コンピューティングマシン110、115は、周辺機器用の多数のコントローラ、又は入出力(I/O)ユニット235を含む。例えば、各コンピュータ110の周辺機器235は、キーボード、マウス、モニタ、ネットワーク205に接続するためのネットワークアダプタ(NIC)、取り外し可能ストレージユニット(DVDのような光ディスクなど)に読み書きするためのドライブを含み、一方、サーバ115の周辺機器235は、サーバ115をデータセンタにプラグインし、次にサーバ115をデータセンタのコンソール(例えば、同じく取り外し可能ストレージユニットに読み書きするための類似のドライブを備えたパーソナルコンピュータ)と、ネットワーク205へのアクセスのためにデータセンタのスイッチ/ルータ・サブシステムとに接続するネットワークアダプタを含む。
ここで図3を参照すると、本開示の実施形態に従って、主題専門家を決定するために用いられるソフトウェアコンポーネントが示さる。
図において、全てのソフトウェアコンポーネント(プログラム及びデータ)が、全体として参照番号300を用いて示される。ソフトウェアコンポーネントは、典型的には、大容量メモリ(図示せず)内に格納され、プログラムが実行されるときに、対応するオペレーティングシステム及び他のアプリケーションプログラム(図には示されない)と共に、コンピュータ110及びサーバ115の作業メモリに(少なくとも一部が)ロードされる。プログラムは、最初に、例えば取り外し可能ストレージユニット又はネットワークから、大容量メモリにインストールされる。この点において、各プログラムは、指定された論理機能を実施するための1つ又は複数の実行可能命令を含むモジュール、セグメント、又はコードの一部とすることができる。
各コンピュータ110(1つのみが図に示される)は、以下のソフトウェアコンポーネント、すなわち、対応するユーザによってデータ/コマンドを入力するために使用されるコンピュータ110の1つ又は複数の入力ドライブ305(例えば、キーボード及びマウス)を含む。動作モニタ310は、コンピュータ110上でユーザにより実行される動作を監視する。この目的のために、動作モニタ310は、入力ドライブ305を使用する。動作モニタ310は、監視される動作の監視規則を格納する監視規則リポジトリ315に(読み取りモードで)アクセスする。特に、監視規則リポジトリ315は、監視されるアクティビティに対応する(関連する)ソフトウェアアプリケーション(例えば、ワードプロセッサ、スプレッドシート、スライドショー、CAD及びIDEアプリケーション)をリストに示し、各ソフトウェアアプリケーションについて、監視規則リポジトリ315は、監視される(関連する)動作(例えば、キーのタイピング、ボタンの押下げ、メニュー項目の選択)、及び各アクティビティの信頼度インジケータ(例えば、入力文字数、削除文字数、対応するトピックの検索数)を決定するためにそれらがどのように使用されるかを示す。動作モニタ310は、進行中の現在のアクティビティの動作を記録する動作ログ320に(書き込みモードで)アクセスする。
コンテンツ分析器325は、各アクティビティのコンテンツを分析して、そのトピックを決定する。コンテンツ分析器325は、動作ログ320に(読み取りモードで)アクセスする。コンテンツ分析器325は、全ての可能なトピックに関する情報を格納するトピックリポジトリ330に(読み取りモードで)アクセスする。特に、トピックリポジトリ330は、既知のトピック(例えば、プログラミング言語、ハードウェアアーキテクチャ、ビジネス分野など)をリストに示す。対応する一意の識別子によって示される各トピックに関して、トピックリポジトリ330は、行動パターン、キーワードなどの認識情報を含む。行動分析器335は、ユーザの行動を分析して、各アクティビティについての信頼度インジケータと、各トピックに関する専門知識インジケータとを決定する。行動分析器335は、コンテンツ分析器325を用いて、ユーザの行動に関する情報を格納する行動リポジトリ340に(読み取り/書き込みモードで)アクセスして、信頼度インジケータを決定する。特に、行動リポジトリ340は、ユーザが何らかのアクティビティを実行した各トピック(その識別子によって示される)についてのエントリを含む。エントリは、トピックに関する専門知識インジケータを含む。さらに、エントリは、トピックに関してユーザにより実行された最新のアクティビティについての記録(例えば、100〜500)を有するFIFOキューを含む。次に、各記録は、アクティビティについての信頼度インジケータ、信頼度インジケータの記録時間、アクティビティの期間、及びアクティビティの実行中のユーザの生産性率を含む。
アップローダ345は、ユーザに関する情報をサーバ115にアップロードする。この目的のために、アップローダ345は、動作リポジトリ340に(読み取りモードで)アクセスする。行動分析器335は、ユーザと、クリティカルなアクティビティにおいてユーザを支援することができる主題専門家との相互作用を管理する支援エージェント350を制御する。アップローダ345及び支援エージェント350の両方は、ユーザのプロファイルを格納するプロファイルリポジトリ355に(読み取りモードで)アクセスする。特に、プロファイルは、ユーザの個人情報(例えば、名前、教育、仕事、電子メールアドレスなど)と、主題専門家のための1つ又は複数のフィルタリング基準(例えば、ユーザのホワイト/ブラックリスト、企業など)とを含む。
引き続き図3を参照すると、サーバ115は、次のソフトウェアコンポーネント、すなわち、全てのユーザに関する情報を収集する収集器360を含む。この目的のために、収集器360は、全てのコンピュータ110のアップローダ345と相互作用する。収集器360は、ユーザに関する収集された情報を格納するユーザリポジトリ365に(書き込みモードで)アクセスする。特に、ユーザリポジトリ365は、各ユーザについてのエントリ(ユーザの電子メールアドレスなどの対応する一意の識別子によって示される)を含む。エントリは、ユーザの個人情報と、その識別子によって示される対応するトピックに関する全ての専門知識インジケータとを含む。支援マネージャ370は、(対応するユーザがクリティカルな状態にあるときに)全てのコンピュータ110によってサーバ115にサブミットされた主題専門家に対する要求を管理する。この目的のために、支援マネージャ370は、全てのコンピュータ110の支援エージェント350と相互作用する。さらに、支援マネージャ370は、各ユーザの各クリティカルな状態に対して(全てのユーザの中から)主題専門家を選択する選択器375を使用する。この目的のために、選択器375は、ユーザリポジトリ365に(読み取りモードで)アクセスする。
ここで図4A〜図4Bを参照すると、本開示の1つの実施形態に従った、主題専門家を決定するための方法400のステップを説明するアクティビティ図が示される。
具体的には、図は、方法400を実施することによって汎用コンピュータのユーザを支援するために使用される例示的プロセスを表す。本実施形態において、各ブロックは、対応するコンピューティングマシン(コンピュータ及びサーバ)上で指定された論理機能を実施するための1つ又は複数の実行可能命令に対応する。
コンピュータのスイムレーン(swim-lane)から始まり、コンピュータ上でユーザによって実行されるアクティビティを監視するために、ループが連続的に実行される。ループは、動作モニタが、コンピュータ上でユーザによって実行される現在の動作を検出する(例えば、フッキング技術を使用して)ブロック403から始まる。動作モニタは、ブロック406において、動作が実行される(現在の)ソフトウェアアプリケーションを決定する。1つの実施形態によると、ソフトウェアアプリケーションは、コンピュータのモニタ上のウィンドウフォーカス(すなわち、入力を受信するためにその瞬間に選択されているウィンドウ)に基づいて決定される。動作モニタは、ブロック409において、サーバによって最新に維持される監視規則リポジトリ(例えば、図3の監視規則リポジトリ315)に対してソフトウェアアプリケーションを検証する。ソフトウェアアプリケーションが監視規則リポジトリ内のリストに示されていない場合、それは監視に関連しない。この場合、プロセスは、いずれのアクションも実行することなく、直接ブロック403に戻る。従って、対応する非関連動作は破棄され、これにより、監視されるべき実際のアクティビティ中に散発的に実行され得る動作(例えば、電子メールを読む、インスタントメッセージに応答するなど)の監視を回避することが可能になる。このことは、得られた結果の品質に悪影響を及ぼすことなく、コンピューティングリソースの消費を削減する。
逆に、ソフトウェアアプリケーションが監視規則リポジトリ内のリストに示されている場合、それは監視に関連している。この場合、トピック分析器は、ブロック412において、ユーザが作業している(現在の)トピックを決定する。トピックは、ユーザによって実行された対応する動作に従って決定される(動作ログに、例えば10〜50などの有意な数を有するために必要とされる過渡期間の後)。例えば、トピックは、ユーザによって実行された最新の動作(例えば、動作ログから取り出された最近の10〜100)に従って、トピックリポジトリ(例えば、図3のトピックリポジトリ330)内に示されるものの中から、コグニティブ技術を用いて決定される。トピックリポジトリは、サーバによって最新に維持されることに留意されたい。プロセスは、トピックに従って、ブロック415において分岐する。トピックが変更されていない場合(最初は空の対応する変数で示される、ループの前の反復において決定されたトピックに関して)、動作モニタは、ブロック418において、ユーザが作業している(現在の)アクティビティの期間(対応する変数で示される、その開始時刻からの経過時間に等しい)を検証する。
アクティビティの期間が最大値(例えば、10〜20分)を下回る場合、動作モニタは、ブロック421において、対応するリポジトリからの監視規則に従って動作を処理する。特に、動作モニタは、動作カウンタ(最初はゼロに初期化されている)をインクリメントする。動作モニタは、動作が監視に関連しているかどうかを判断し、もしそうであれば、それをどのように使用する必要があるかを判断する。例えば、文字が入力されると、入力カウンタがインクリメントされ、文字が削除されると、削除カウンタがインクリメントされ、同じトピックに関して検索が行われると、検索カウンタがインクリメントされる。入力/削除/検索カウンタは、動作の開始時にゼロに初期化されることに留意されたい。動作が関連している場合、動作モニタは、ブロック424において、動作を動作ログに保存する。次に、アクティビティのフローは、ブロック403に戻り、同じ動作を連続的に繰り返す。
プロセスは代わりに、トピックが変更された場合にはブロック415から、又はアクティビティの期間が最大値を上回る場合にはブロック418から、ブロック427に進む。どちらの場合にも、アクティビティの監視は完了する。この時点で、行動分析器(図3の行動分析器335のような)は、ブロック427において、実行されたあらゆる削除に従って削除率を計算する。1つの実施形態によると、削除率は、削除カウンタを動作カウンタで割ったものにスケーリング係数を乗じた値に設定される(0〜1の範囲になるように)。行動分析器は、ブロック430において、トピックに関して実行されたあらゆる検索に従って検索率を計算する。1つの実施形態によると、検索率は、検索カウンタにスケーリング係数を乗じた値に設定される(0〜1の範囲になるように)。削除率及び検索率の両方とも、アクティビティを実行する際のユーザの優柔不断(又は躊躇)を示すものである(削除率及び検索率が高いほど、動作に関するユーザの躊躇が大きい)。行動分析器は、ブロック433において、削除率及び検索率に従って、アクティビティについての信頼度インジケータを計算する。例えば、信頼度インジケータは、削除率と検索率の合計にスケーリング係数を掛けた値を、1から引いた値に設定される(0〜1の範囲になるように、ここで、信頼度インジケータが高いほど、アクティビティを実行するユーザの信頼度が高くなる)。それに応じて、行動分析器は、ブロック436において、行動リポジトリ(図3の行動リポジトリ340のような)を更新する。特に、トピックに関する入力が存在しない場合(ユーザが以前そのトピックを扱ったことがないため)、トピックに関して(新しい)エントリが追加される。いずれの場合も、アクティビティの期間は、現在の時間からその開始時間を引いたものとして計算され、アクティビティの生産性率は、入力カウンタと削除カウンタとの差を動作カウンタで割ってスケーリング係数を掛けたものとして計算される(0〜1の範囲になるように)。行動分析器は、対応するキューの記録を前方にシフトさせ(最も古いものを失う可能性がある)、次に、信頼度インジケータ、信頼度インジケータの記録時間(現在の時刻に設定される)、アクティビティの期間、及びアクティビティの生産性率をキューの最初の記録に挿入する。
行動分析器は、ブロック439において、トピックに関する相対的アクティビティ期間を計算する。例えば、特定のアクティビティ期間は、(行動リポジトリ内の対応するエントリのキューから取り出された)トピックに関して実行されたアクティビティの期間の合計として計算され、総アクティビティ期間は、(行動リポジトリ内の全てのエントリのキューから取り出された)全てのトピックに関して実行されたアクティビティの期間の合計として計算される。相対的アクティビティ期間は、特定のアクティビティ期間を総アクティビティ期間で割ったものにスケーリング係数を掛けたものに設定される(0〜1の範囲になるように)。すると、相対的アクティビティ期間は、ユーザがどれだけの頻度でトピックに取り組んでいるかを示すものとなる。行動分析器は、ブロック442において、ユーザの生産性を示すトピックに関する生産性インジケータを計算する。1つの実施形態によると、生産性インジケータは、記録時間に従って重み付けされたトピックに関して実行されたアクティビティの生産性率の平均に設定され、ここで、(行動リポジトリ内の対応するエントリのキューから取り出された)記録時間が古いほど、重みが低くなる。行動分析器は、ブロック445において、対応する信頼度インジケータ、相対的アクティビティ期間、及び生産性インジケータに従って、トピックに関する専門知識インジケータを計算する。例えば、専門知識インジケータは、生産性インジケータに相対的アクティビティ期間を掛けたものに、記録時間に従って重み付けされた信頼性インジケータの平均を加えた値に設定され、ここで、(行動リポジトリ内の対応するエントリのキューから取り出された)記録時間が古いほど、重みが低くなる。このように、専門知識インジケータは、生産性、費やした時間、及びトピックに取り組む際のユーザの信頼度と共に増大する。次に、行動分析器は、(前の値を置き換えることによって)専門知識インジケータを行動リポジトリの対応するエントリに保存する。
ここでアクティビティのフローは、ブロック448において、アクティビティの信頼度インジケータに従って分岐する。信頼度インジケータが信頼度閾値(例えば、0.3〜0.5)を下回る場合、プロセスはブロック451に進む。この場合、ユーザは、アクティビティを実行する際に低い信頼度を示している(すなわち、トピックに関する対応する削除動作もしくは検索又はその両方によって示されるように、多くの優柔不断を伴う)。すると、ユーザは、トピックに関する専門家の支援を必要とする可能性が高い。従って、ユーザによる手動の確認後、行動分析器は、(クリティカルな)アクティビティの(クリティカルな)トピックに関する(クリティカルな)ユーザのクリティカルな状態を検出する。クリティカルな状態を検出すること応答して、支援エージェントは、ブロック454において、ユーザを支援することができる主題専門家に対する対応する選択要求をサーバにサブミットする。選択要求は、クリティカルなユーザの識別子、クリティカルなトピックの識別子、及びもしある場合には(図3のプロファイルリポジトリ355のようなプロファイルリポジトリから取り出された)適用可能なフィルタリング基準を含む。
サーバのスイムレーンに移ると、選択器は、ブロック457において、いずれかのクリティカルユーザのコンピュータによってサブミットされたいずれかの選択要求を受信する。選択要求に応答して、選択器は、ブロック460において、(クリティカルな状態にある)クリティカルなユーザを支援するための主題専門家として、他のユーザのうちの1又は複数を選択する。主題専門家は、(図3のユーザリポジトリ365のようなユーザリポジトリに示されるような)ユーザのクリティカルなトピックに関する専門知識インジケータに従って選択される。例えば、フィルタリング基準を満たし、かつ、クリティカルなトピックに関する専門知識インジケータがクリティカルなユーザのクリティカルなトピックに関する専門知識インジケータよりも(厳密に)高い、他の全てのユーザが抽出される。次に、主題専門家は、これらのユーザの中から専門知識インジケータの降順で最大数まで(例えば、最初の5〜10)に決定される。選択器は、ブロック463において、対応する選択応答をクリティカルなユーザのコンピュータに返す。選択応答は、決定された主題専門家をリストに示し、各々が、その個人情報、及び(ユーザリポジトリから取り出された)クリティカルなトピックに関する専門知識インジケータを有する。その後、プロセスはブロック457に戻り、次の選択要求を待つ。
(クリティカルな)ユーザのコンピュータのスイムレーンに戻ると、ブロック466において、支援エージェントが選択応答を受信する。選択応答を受信することに応答して、支援エージェントは、ブロック469において、ユーザに、クリティカルなトピックの支援要求を入力し、主題専門家のうちの1又は複数を選択するように促す。その後、支援エージェントは、ブロック472において、支援要求を、選択応答内の連絡先により示される(選択された)主題専門家のコンピュータにサブミットする。選択された主題専門家が支援要求に応答すると仮定すると、支援エージェントは、ブロック475において、対応するコンピュータから対応する支援応答を受信する。アクティビティのフローは、ブロック478において、(ユーザにより手動で示される)クリティカルな状態の状況に従って分岐する。クリティカルな状態がまだ解決されていない場合、プロセスはブロック472に戻り、同じ動作を繰り返し行う。プロセスは代わりに、(ひとたびクリティカルな状態が解決されると、又はユーザが異なるように進むことを決定すると)ブロック478から、又は(信頼度インジケータが、ユーザがクリティカルな状態にないことを示す信頼度閾値を上回る場合)ブロック448から直接、ブロック403に戻る。次に、動作モニタは、全ての対応する変数/カウンタをリセットすることによって、(トピックが変更されたときには、監視された最後の動作から開始される)新しいアクティビティの監視を開始する。
完全に独立した方法において、プロセスは、アップロードのタイムアウトが満了するとすぐに(例えば、15〜60日ごとに)、コンピュータのスイムレーンにおいてブロック481からブロック484へと進む。これに応答して、アップローダは、最後の検証以降に変更した個人情報(プロファイルリポジトリにおける)及び専門知識インジケータ(行動リポジトリにおける)を決定する。必要に応じて、アップローダは、更新された個人情報及び専門知識インジケータをサーバにアップロードする(ユーザが対応する権限を与えた場合)。次に、プロセスはブロック481に戻り、同じ動作を定期的に繰り返す。従って、これらの動作は、コンピューティングシステムの性能への影響が無視できるほどであるように、時折(場合によっては、オフピーク時間中に)実行される。いずれの場合も、個人情報及び専門知識インジケータのダイナミクスは非常に低いので、これが得られた結果の品質に悪影響を及ぼすことはない。サーバのスイムレーンに移ると、収集器は、ブロック487において、いずれかのユーザのコンピュータによってアップロードされたいずれかの個人情報もしくは専門知識インジケータ又はその両方を受信する。これに応答して、収集器は、ブロック490において、それに応じてユーザリポジトリを更新する。次に、プロセスはブロック487に戻り、次のアップロードを待つ。
従って、本開示の実施形態は、コンピュータ(ラップトップ、携帯電話など)上でアクティビティを実行しているユーザが、主題専門家(SME)の助けを必要とするときを識別し、ユーザがアクティビティを実行するのを助けることができる利用可能なSMEを特定するための方法、システム、及びコンピュータプログラム製品を提供する。1つの実施形態によると、コンピュータアクティビティ監視エンジンが、コンピュータのキーボード上での多数の入力キャンセル又は同じ作業項目の何回もの言い換えのような躊躇パターンを認識すること、又はインターネット上でのコンテンツに関するユーザのアクティビティ中にユーザが行った検索を識別することによって、ユーザのアクティビティを監視する。さらに、コンピュータ主題識別エンジンは、上の監視と同時に、コグニティブサービス(Watson Cognitive Serviceのような)を用いて、コンピュータ上でフォーカスを有するウィンドウのコンテンツを分析し、ユーザが取り組んでいるトピックを識別する。最後に、コンピュータインデクサエンジンは、アクティビティ監視エンジン及び主題識別エンジンによってもたらされる情報を相関させ、ユーザに関連付けられたSMEインデックスを計算することによって、その特定のトピックに関するユーザの専門知識をランク付けする。:
SMEIndex=K*E、ここで、
E:観察者時間枠における専門知識=a*(A/TA)−b*B−c*C(小文字は、各要素の重要性に応じた幾つかのスケール係数。)
K=生産性スケール係数
そして、
A:その特定のトピックに費やした時間数
TA:総作業時間
B:躊躇率
C:ウェブ検索率
SMEは、ユーザが、自分のSMEIndexの値に従って専門知識ランク付けリストのどこに着地したかを検証し、現ユーザを助けるのに十分なインデックスを有する、最低でもより高いSMEIndexを有する人の可能なリストを提案する。
当然ながら、局所的かつ特定の要件を満たすために、当業者であれば、本開示に多くの論理的もしくは物理的又はその両方の修正及び変更を適用することができる。より具体的には、本開示は、本開示の1つ又は複数の実施形態を参照して、一定の程度の特定性をもって記載してきたが、他の実施形態も同様に、形状及び詳細における様々な省略、置換及び変更が可能であることを理解されたい。特定的には、本開示の異なる実施形態は、そのより完全な理解を提供するために、上の説明中に記載された(数値などの)特定の詳細なしで実施することさえ可能である。逆に、不必要な詳細で説明を不明瞭にしないために、周知の特徴が省略又は簡略化されている場合がある。さらに、本開示の任意の実施形態に関して記載された特定の要素もしくは方法ステップ又はその両方は、一般的な設計選択上の問題として任意の他の実施形態に組み込むことができることが明示的に意図される。他方、群で提示された各項目は、それに反することを示すことなく、それらの共通の提示のみに基づいて、同じリストの他の項目の事実上の等価物として解釈されるべきではない(そうではなく、それらは、別個の一意の項目として個別に識別される);同様に、異なる実施形態、示又は代替物は、互いに事実上の等価物として解釈されるべきではない(そうではなく、それらは、本開示の別個の自律的表現である)。いずれの場合でも、各数値は、(既に行われていない限り)約(about)という用語によって修飾されたものとして読み取られるべきであり、数値の各範囲は、(その端点を含む)範囲内の連続体に沿った任意の可能な数値を明示的に特定するものとして意図されるべきである。さらに、序数又は他の修飾子は、単に、同じ名前を有する要素を区別するためのラベルとして使用され、それら自体で何らかの優先度、優先順位又は順番を示すものでもない。含む(include)、含む(comprise)、有する(have)、包含する(contain)、含む(involve)(及びそれらの任意の形態)という用語は、オープンで非網羅的な意味を意図する(すなわち、記述された項目に限定されない)べきであり、基づく(based on)、依存する(dependent on)、従う(according to)、の関数(function of)(及びそれらの任意の形)という用語は、非排他的な関係(すなわち、可能なさらなる変数が含まれる)を意図するべきであり、1つ(a/an)という用語は、(明示的に別段の指定がない限り)1つ又は複数の項目と意図すべきであり、また、ための手段(means for)(又はあらゆる手段と機能を組み合わせた(means-plus-function)形)という用語は、関連する機能を行うために適合又は構成された任意の構造として意図すべきである。
例えば、1つの実施形態は、ユーザコンピューティングマシンのユーザを支援するための方法(ユーザコンピューティングマシンの各々について以下のステップを含む方法)を提供する。しかしながら、ユーザは、任意の数及び任意のタイプのもの(例えば、プログラマ、会計士、作家など)とすることができ、任意のユーザコンピューティングマシン上で作業することができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)複数のアクティビティを監視することを含む。しかしながら、アクティビティは、任意の数及び任意のタイプのもの(例えば、上述したものに関して、部分的なアクティビティ、異なるアクティビティ、又は付加的なアクティビティなど)とすることができる。
1つの実施形態において、各アクティビティは、対応する期間中、ユーザコンピューティングマシン上で対応するユーザによって実行される一連の動作を含む。しかしながら、動作は、任意のタイプのもの(例えば、任意のタイプの関連する動作のみ、又は実行された全ての動作)とすることができ、さらに、各アクティビティは、任意の期間(例えば、最大期間又はその完了までの期間)中に監視することができる。
1つの実施形態において、方法は、対応する動作に従ってアクティビティの対応するトピックを(ユーザコンピューティングマシンによって)決定することを含む。しかしながら、トピックは、任意のタイプのもの(例えば、既知のトピックのみ、又は任意の制限なし)とすることができ、対応する動作に従って任意の方法で(例えば、コグニティブ、人工知能、ファジー論理技術を用いて、ローカル又はオンラインのいずれかで)決定することができる(例えば、任意の数の最新のもののみ、又は任意の数の全てであってもよい)。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)アクティビティについてのユーザの信頼度を示す対応する信頼インジケータを計算することを含む。しかしながら、信頼度インジケータは、任意のタイプのもの(例えば、連続値又は離散的レベルによって定義され、信頼度に応じて増減するもの)とすることができる。
1つの実施形態において、各信頼度インジケータは、対応する動作に従って計算される。しかしながら、信頼度インジケータは、任意の方法で(例えば、削除動作、対応するトピックの検索、又はそれらの任意の組み合わせに従って)計算することができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)ユーザの(アクティビティのうちのクリティカルなもののトピックのうちのクリティカルなものについての)クリティカルな状態を検出することを含む。しかしながら、クリティカルな状態は、任意の方法で(例えば、手動確認を要求して、又は自動的に)検出することができる。
1つの実施形態において、クリティカルな状態は、対応する信頼度インジケータに従って検出される。しかしながら、クリティカルな状態は、信頼度インジケータに従って任意の方法で(例えば、信頼度インジケータを任意の信頼度閾値と比較することによって、信頼度インジケータが信頼度閾値に達するとすぐに、又はこれが2より多い検証のために持続した後にのみ)検出することができる。
1つの実施形態において、方法は、クリティカルな状態に応答して、(ユーザコンピューティングマシンによって)クリティカルなトピックに関する1又は複数の主題専門家を決定することを含む。しかしながら、主題専門家は、任意の数のものとすることができ、任意の方法で(例えば、対応する要求をリモートでサブミットすることによって、又はユーザコンピューティングマシンによってローカルに)決定することができる。
1つの実施形態において、主題専門家は、ユーザコンピューティングマシンの他のもののユーザの他のものの中から決定される。しかしながら、主題専門家は、任意の他のユーザの中から決定することもできる(例えば、任意のフィルタリング基準に従って限定される、又は無差別に決定することができる)。
1つの実施形態において、主題専門家は、ユーザのクリティカルなトピックに関する信頼性インジケータに従って決定される。しかしながら、主題専門家は、ユーザの信頼性インジケータに従って任意の方法で(例えば、任意の対応する専門知識インジケータを計算することによって、又は直接)決定することができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)クリティカルなアクティビティの支援要求を入力するようにユーザに促すことを含む。しかしながら、ユーザに任意の方法で(例えば、単に支援要求を入力するように要求するか、又はそのコンテンツも提案することによって)促すこともできる。
1つの実施形態において、支援要求は、主題専門家のうちの選択された1又は複数にアドレス指定される。しかしながら、選択された主題専門家は、任意の数(最大全てまで)とすることができ、任意の方法で(例えば、手動で又は自動的に)選択することができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)選択された主題専門家のユーザコンピューティングマシンに支援要求をサブミットすることを含む。しかしながら、支援要求は、任意の方法で(例えば、電子メール、インスタントメッセージ、郵便で)サブミットすることができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)対応する動作の任意の削除されたものに従って、信頼度インジケータの各々を計算することを含む。しかしながら、削除動作は、任意のタイプのもの(例えば、文字、語、句の削除)とすることができ、それらは、信頼性インジケータを計算するために任意の方法で(例えば、単独で、又は他の任意の数及びタイプの値と任意の方法で組み合わせて)使用することができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)対応する動作の対応するトピックの任意の検索に従って、信頼度インジケータの各々を計算することを含む。しかしながら、検索は、任意のタイプのもの(例えば、いずれかの検索エンジン、データベース、ソフトウェアアプリケーションのヘルプ機能において、オンライン又はローカルのいずれか)とすることができ、それらは、信頼性インジケータを計算するために任意の方法で(例えば、単独で、又は他の任意の数及びタイプの値と任意の方法で組み合わせて)使用することができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)トピックに関するユーザの専門知識を示す対応する専門知識インジケータを計算することを含む。しかしながら、専門知識インジケータは、任意のタイプのもの(例えば、連続値又は離散的なレベルで定義され、専門知識に応じて増減するもの)とすることができる。
1つの実施形態において、各専門知識インジケータは、複数の対応する信頼性インジケータに従って計算される。しかしながら、専門知識インジケータは、(例えば、任意の数又は全ての中で最新のアクティビティのもののみが、それらの記録時間に従って重み付けされて、又はそれらとは独立して)対応する信頼性インジケータの任意の方法での関数として(例えば、信頼性インジケータのみに従って、又は任意の他の数及びタイプの値と任意の方法で組み合わせて)計算することができる。
1つの実施形態において、方法は、ユーザのクリティカルなトピックに関する専門知識インジケータに従って、(ユーザコンピューティングマシンによって)主題専門家を決定することを含む。しかしながら、主題専門家は、専門知識インジケータに従って任意の方法で(例えば、専門知識インジケータがユーザの専門知識インジケータよりも高い他のユーザの中から、所定の数だけ、又はその専門知識インジケータがユーザの専門知識インジケータの10〜20%などの閾値によって高くなるまで、又は無差別に、主題専門家のみを選択することによって)決定することができる。
1つの実施形態において、方法は、トピックのアクティビティの特定のアクティビティ期間と、全てのトピックのアクティビティの総アクティビティ期間との間の比較に従って、(ユーザコンピューティングマシンによって)トピックの各々についての相対的アクティビティ期間を計算することを含む。しかしながら、アクティビティ期間は、対応するアクティビティの期間の任意の方法での関数として(例えば、それらの記録時間に従って、又はそれとは独立して重み付けされた)任意の方法で(例えば、任意の数又はその全てにおいて最新のアクティビティのみを考慮して)計算することができ、さらに、相対的アクティビティ期間は、特定のアクティビティ期間間と総アクティビティ期間との間の任意の比較(例えば、それらの比、差、スケーリングされた又はそのままのいずれかとして)に従って計算することができる。
1つの実施形態において、方法は、対応する相対的なアクティビティ期間に従って、(ユーザコンピューティングマシンによって)トピックの各々についての専門知識インジケータを計算することを含む。しかしながら、専門知識インジケータは、相対的アクティビティ期間に従って(例えば、いずれかの線形又は非線形関数を用いて)任意の方法で計算することができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)トピックに関するユーザの生産性を示す、トピックの各々についての生産性インジケータを計算することを含む。しかしながら、生産性インジケータは、任意のタイプのもの(例えば、連続値又は離散レベルによって定義され、生産性に応じて増減するもの)とすることができる。
1つの実施形態において、生産性インジケータは、トピックに関する動作の生産性の高いものと、トピックに関する全ての動作との比較に従って計算される。しかしながら、生産性の高い動作は、(例えば、文字、語、フレーズ、関数、プログラム命令を書き込む)任意のタイプのものとすることができ、生産性インジケータを計算するために、全ての動作と任意の方法で(例えば、その数もしくは期間に従って、比、差として、スケーリングされて又はそのままのいずれかで)比較することができる。
1つの実施形態において、方法は、対応する生産性インジケータに従って、トピックの各々についての専門知識インジケータを(ユーザコンピューティングマシンによって)計算することを含む。しかしながら、専門知識インジケータは、生産性インジケータに従って任意の方法で(例えば、いずれかの線形又は非線形関数を用いて)計算することができる。
1つの実施形態において、方法は、記録時間に従って重み付けされた複数の対応する信頼性インジケータに従って、(ユーザのコンピューティングマシンによって)トピックの各々についての専門知識インジケータを計算することを含む。しかしながら、信頼性インジケータは、その記録時間に従って(例えば、いずれかの線形又は非線形関数を用いて)任意の方法で重み付けすることができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)ユーザの専門知識インジケータを中央コンピューティングマシンにアップロードすることを含む。しかしながら、専門知識インジケータは、任意の方法で(例えば、定期的に、又は要求に応じて)任意の中央コンピューティングマシンにアップロードすることができる。
1つの実施形態において、方法は、クリティカルな状態に応答して、(ユーザコンピューティングマシンによって)クリティカルなトピックの選択要求を中央コンピューティングマシンにサブミットすることを含む。しかしながら、選択要求は、任意のタイプのものとすることができ(例えば、いずれの付加的な情報の有無にもかかわらず、クリティカルなトピックを示す)、任意の方法で(例えば、メッセージ、リモートコマンドとして)サブミットすることができる。
1つの実施形態において、これにより、中央コンピューティングマシンが、ユーザの専門知識インジケータに従って、他のユーザの中から主題専門家を選択する。しかしながら、主題専門家は、任意の数及び任意の方法で選択することができる。
1つの実施形態において、方法は、(ユーザコンピューティングマシンによって)中央コンピューティングマシンから主題専門家の表示を受信することを含む。しかしながら、主題専門家の表示は、任意のタイプのもの(例えば、いずれの付加的な情報の有無にかかわらず、その連絡先)とすることができ、任意の方法で(例えば、メッセージに埋め込まれて、対応するリンクを有して)受信することができる。
1つの実施形態において、方法は、対応するトピックが変更するまで、又は最大期間に達するまで、(ユーザコンピューティングマシンによって)アクティビティの各々を監視することを含む。しかしながら、最大期間は、任意の値(例えば、トピックに従って、固定又は可変の値、又はその全てについて同じ値)を有することができる。
1つの実施形態において、方法は、対応するトピックに関する関連しない動作のうちの非関連動作を破棄することによって、(ユーザコンピューティングマシンによって)アクティビティを監視することを含む。しかしながら、非関連動作は、任意のタイプのもの(例えば、上述のものに関して、部分的な、異なる、又は追加の非関連動作)とすることができ、任意の方法で廃棄することができる(例えば、完全に、又はトピックの決定のためもしくは信頼度インジケータの計算のためだけに)。
1つの実施形態において、方法は、ユーザの1つ又は複数のフィルタリング基準に従って、(ユーザコンピューティングマシンによって)クリティカルなトピックに関する主題専門家を決定することを含む。しかしながら、フィルタリング基準は、任意の数のもの(なし、まで)及び任意のタイプのもの(例えば、上述したものに関して、部分的な、異なる、又は追加のフィルタリング基準)とすることができる。
1つの実施形態において、方法は、ユーザコンピューティングマシンによって、コグニティブ技術を用いてアクティビティのトピックを決定することを含む。しかしながら、コグニティブ技術は、任意のタイプのもの(例えば、人工知能、機械学習、推論、自然言語、意味分析処理、又はそれらの任意の組み合わせに基づくもの)とすることができる。
一般的に、同じ解決法が(より多くのステップもしくはその一部の同じ機能を有する同様のステップを用いること、必須ではない一部のステップを削除すること、又はさらなる任意のステップを追加することによって)同等の方法によって同じ解決法が実施される場合に適用され、さらに、それらのステップは、(少なくとも部分的に)異なる順序で、同時に、又は交互に実行することができる。
1つの実施形態は、コンピュータプログラムがユーザコンピューティングマシン上で実行されるとき、ユーザコンピューティングマシンに上述の方法を実行させるように構成されたコンピュータプログラムを提供する。1つの実施形態は、プログラム命令がそこに具体化されたコンピュータ可読ストレージ媒体を含むコンピュータプログラム製品を提供し、プログラム命令は、ユーザコンピューティングマシンに同じ方法を実行させるように、ユーザコンピューティングマシンによって実行可能である。しかしながら、コンピュータプログラムは、スタンドアロンモジュールとして、既存のソフトウェアプログラム(例えば、任意のソフトウェアアプリケーション)のためのプラグインとして、又は後者に直接実装することさえできる。さらに、コンピュータプログラムは、任意のユーザコンピューティングマシン上で実行することもできる。
1つの実施形態は、上述した方法の各ステップを実行するように構成された手段を含むシステムを提供する。1つの実施形態は、同じ方法のステップの各々を実行するための回路(すなわち、例えばソフトウェアによって適切に構成された任意のハードウェア)を含むシステムを提供する。しかしながら、システムは、任意のタイプのもの(例えば、各ユーザコンピューティングマシン単独、中央コンピューティングシステム単独、いずれかのローカルエリアネットワーク、広域ネットワーク、グローバルネットワーク、セルラーネットワーク、又は衛星ネットワークを介してそれらの間で通信し、任意のタイプの有線もしくは無線又はその両方の接続を利用する中央コンピューティングシステム)とすることができ、さらに、各ユーザコンピューティングマシン及び中央コンピューティングマシンは、任意のタイプのもの(例えば、デスクトップ、ラップトップ、タブレット、スマートフォン、サーバ)とすることができ、それらは、任意の物理マシン、仮想マシン、又はそれの静的もしくは動的組み合わせ(例えば、クラウド環境における)によって実施することができる。いずれの場合も、本開示の実施形態による解決法は、ハードウェア構造でも(例えば、半導体材料の1つ又は複数のチップ内に集積された電子回路によって)、又は適切にプログラムされたもしくは他の方法で構成されたソフトウェアとハードウェアの組み合わせで実施するのにも適している。
一般に、システムが異なる構造を有するか、又は同等のコンポーネントを含むか、又は他の動作特性を有する場合には、同様の考慮事項が適用される。いずれの場合にも、そのあらゆるコンポーネントを、より多くの要素に分離してもよく、又は、2つより多いコンポーネントを互いに組み合わせて1つの要素にしてもよく、さらに、対応する動作の並行した実行を支援するために、各コンポーネントを複製することができる。さらに、特段の断りのない限り、一般的に、異なるコンポーネント間のいずれの相互作用も連続的である必要はなく、直接的であっても、又は1つ又は複数の中間物介する間接的なものであってもよい。
本発明は、システム、方法もしくはコンピュータプログラム製品又はその組み合わせを任意の可能な技術的詳細レベルで統合したものとすることができる。コンピュータプログラム製品は、プロセッサに本発明の態様を実行させるためのコンピュータ可読プログラム命令を有するコンピュータ可読ストレージ媒体(単数又は複数)を含むことができる。コンピュータ可読ストレージ媒体は、命令実行デバイスにより使用される命令を保持及び格納できる有形デバイスとすることができる。コンピュータ可読ストレージ媒体は、例えば、これらに限定されるものではないが、電子記憶装置、磁気記憶装置、光学記憶装置、電磁気記憶装置、半導体記憶装置、又は上記のいずれかの適切な組み合わせとすることができる。コンピュータ可読ストレージ媒体のより具体的な例の非網羅的なリストとして、以下のもの、すなわち、ポータブルコンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、消去可能プログラム可能読み出し専用メモリ(EPROM又はフラッシュメモリ)、スタティックランダムアクセスメモリ(SRAM)、ポータブルコンパクトディスク読み出し専用メモリ(CD−ROM)、デジタル多用途ディスク(DVD)、メモリスティック、パンチカード若しくは命令がそこに記録された溝内の隆起構造のような機械的にエンコードされたデバイス、及び上記のいずれかの適切な組み合わせが挙げられる。本明細書で使用される場合、コンピュータ可読ストレージ媒体は、電波、又は他の自由に伝搬する電磁波、導波管もしくは他の伝送媒体を通じて伝搬する電磁波(例えば、光ファイバケーブルを通る光パルス)、又はワイヤを通って送られる電気信号などの、一時的信号自体として解釈されない。本明細書で説明されるコンピュータ可読プログラム命令は、コンピュータ可読ストレージ媒体からそれぞれのコンピューティング/処理デバイスに、又は、例えばインターネット、ローカルエリアネットワーク、広域ネットワークもしくは無線ネットワーク又はその組み合わせを介して外部コンピュータ又は外部ストレージデバイスにダウンロードすることができる。ネットワークは、銅伝送ケーブル、光伝送ファイバ、無線伝送、ルータ、ファイアウォール、スイッチ、ゲートウェイコンピュータもしくはエッジサーバ又はその組み合わせを含むことができる。各コンピューティング/処理デバイスにおけるネットワーク・アダプタ・カード又はネットワークインターフェースは、ネットワークからコンピュータ可読プログラム命令を受け取り、コンピュータ可読プログラム命令を転送して、それぞれのコンピューティング/処理デバイス内のコンピュータ可読ストレージ媒体に格納する。本発明の動作を実行するためのコンピュータ可読プログラム命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、機械命令、機械依存命令、マイクロコード、ファームウェア命令、状態設定データ、集積回路のための構成データ、又は、Smalltalk、C++などのオブジェクト指向プログラミング言語、及び、「C」プログラミング言語若しくは類似のプログラミング言語などの従来の手続き型プログラミング言語を含む1つ又は複数のプログラミング言語の任意の組み合わせで記述されるソース・コード又はオブジェクト・コードとすることができる。コンピュータ可読プログラム命令は、完全にユーザのコンピュータ上で実行される場合もあり、一部がユーザのコンピュータ上で、独立型ソフトウェア・パッケージとして実行される場合もあり、一部がユーザのコンピュータ上で実行され、一部が遠隔コンピュータ上で実行される場合もあり、又は完全に遠隔コンピュータ若しくはサーバ上で実行される場合もある。最後のシナリオにおいて、遠隔コンピュータは、ローカルエリアネットワーク(LAN)若しくは広域ネットワーク(WAN)を含むいずれかのタイプのネットワークを通じてユーザのコンピュータに接続される場合もあり、又は外部コンピュータへの接続がなされる場合もある(例えば、インターネットサービスプロバイダを用いたインターネットを通じて)。幾つかの実施形態において、例えば、プログラム可能論理回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)、又はプログラム可能論理アレイ(PLA)を含む電子回路は、本発明の態様を実施するために、コンピュータ可読プログラム命令の状態情報を利用することによって、コンピュータ可読プログラム命令を実行して、電子回路を個別化することができる。本発明の態様は、本発明の実施形態による方法、装置(システム)及びコンピュータプログラム製品のフローチャート図及び/又はブロック図を参照して説明される。フローチャート図及び/又はブロック図の各ブロック、並びにフローチャート図及び/又はブロック図におけるブロックの組み合わせは、コンピュータ可読プログラム命令によって実装できることが理解されるであろう。これらのコンピュータ可読プログラム命令を、汎用コンピュータ、専用コンピュータ、又は他のプログラム可能データ処理装置のプロセッサに与えて機械を製造し、それにより、コンピュータ又は他のプログラム可能データ処理装置のプロセッサによって実行される命令が、フローチャート及び/又はブロック図の1つ又は複数のブロック内で指定された機能/動作を実施するための手段を作り出すようにすることができる。これらのコンピュータプログラム命令を、コンピュータ、他のプログラム可能データ処理装置もしくは他のデバイス又はその組み合わせを特定の方式で機能させるように指示することができるコンピュータ可読媒体内に格納し、それにより、そのコンピュータ可読媒体内に格納された命令が、フローチャート及び/又はブロック図の1つ又は複数のブロックにおいて指定された機能/動作の態様を実施する命令を含む製品を含むようにすることもできる。コンピュータプログラム命令を、コンピュータ、他のプログラム可能データ処理装置、又は他のデバイス上にロードして、一連の動作ステップをコンピュータ、他のプログラム可能データ処理装置、又は他のデバイス上で行わせてコンピュータ実施のプロセスを生産し、それにより、コンピュータ又は他のプログラム可能装置上で実行される命令が、フローチャート及び/又はブロック図の1つ又は複数のブロックにおいて指定された機能/動作を実行するためのプロセスを提供するようにすることもできる。図面内のフローチャート及びブロック図は、本発明の様々な実施形態による、システム、方法、及びコンピュータプログラム製品の可能な実装の、アーキテクチャ、機能及び動作を示す。この点に関して、フローチャート内の各ブロックは、指定された論理機能を実装するための1つ又は複数の実行可能命令を含む、モジュール、セグメント、又はコードの一部を表すことができる。幾つかの代替的な実装において、ブロック内に示される機能は、図に示される順序とは異なる順序で生じることがある。例えば、連続して示される2つのブロックは、関与する機能に応じて、実際には実質的に同時に実行されることもあり、又はこれらのブロックはときとして逆順で実行されることもある。ブロック図及び/又はフローチャート図の各ブロック、並びにブロック図及び/又はフローチャート図におけるブロックの組み合わせは、指定された機能又は動作を実行する、又は専用のハードウェアとコンピュータ命令との組み合わせを実行する、専用ハードウェアベースのシステムによって実装できることにも留意されたい。
本発明の種々の実施形態の説明は、例証の目的で提示したものであるが、網羅的であることも、又は開示された実施形態に限定することも意図しない。説明される実施形態の範囲から逸脱することなく、当業者には、多くの修正及び変形が明らかであろう。本明細書で用いられる用語は、実施形態の原理、実際的な用途、若しくは市場において見出される技術に優る技術的改善を最も良く説明するように、又は当業者が本明細書に含まれる実施形態を理解することを可能にするように、選択されたものである。

Claims (20)

  1. 主題専門家を決定するための方法であって、
    コンピュータによって、ある期間中にユーザにより実行される一連の動作を含むアクティビティを監視することと、
    前記一連の動作に基づいて、前記ユーザにより実行される前記アクティビティのトピックを決定することと、
    前記コンピュータによって、前記期間中に前記トピックと関連付けられた前記ユーザの躊躇パターンを認識することと、
    認識された前記躊躇パターンに基づいて、前記アクティビティを実行する際の前記ユーザの信頼度を指定する、前記アクティビティと関連付けられた信頼度インジケータを計算することと、
    前記信頼度インジケータが信頼度閾値を下回ることに基づいて、決定された前記トピックに関する1又は複数の主題専門家を特定することと、
    特定された前記主題専門家のうちの少なくとも1人に支援要求をサブミットするように前記ユーザに促すことと
    を含む、方法。
  2. 監視規則リポジトリに基づいて、前記一連の動作が現在実行されているソフトウェアアプリケーションを特定すること
    をさらに含む、請求項1に記載の方法。
  3. 前記ソフトウェアアプリケーションは、前記コンピュータのモニタ上でのウィンドウフォーカスに基づいて特定される、請求項2に記載の方法。
  4. 前記トピックは、コグニティブ技術を用いて、トピックリポジトリ及び前記一連の動作内の最新の動作に従って決定される、請求項1に記載の方法。
  5. 前記コンピュータによって、前記躊躇パターンを認識することは、
    前記期間中、前記トピックと関連付けられた削除率及び検索率を求めること
    を含む、請求項1に記載の方法。
  6. 前記信頼度インジケータは、前記削除率と前記検索率との合計に0〜1の範囲の第1のスケーリング係数を掛けたものを1から引いたものに設定され、前記信頼度インジケータが高いほど、前記アクティビティを実行する際の前記ユーザの前記信頼度が高くなる、請求項5に記載の方法。
  7. トピックの変更に応答して、前記アクティビティの前記監視を完了することと、
    新しいアクティビティの監視を開始することと
    をさらに含む、請求項1に記載の方法。
  8. 前記アクティビティの期間が最大値を上回ることに応答して、前記アクティビティの前記監視を完了することと、
    新しいアクティビティの監視を開始することと
    をさらに含む、請求項1に記載の方法。
  9. 前記ユーザがどれくらいの頻度で前記トピックに関して作業したかを示す、前記トピックに関する相対的アクティビティ期間を計算することであって、前記相対的アクティビティ期間は、特定のアクティビティ期間を総アクティビティ期間で割ったものに、0〜1の範囲の第2のスケーリング係数を掛けたものに設定される、計算することと、
    前記アクティビティを実行する前記ユーザの生産性を示す、前記トピックに関する生産性インジケータを計算することと
    をさらに含む、請求項1に記載の方法。
  10. 前記生産性インジケータは、対応する記録時間に従って重み付けされた前記トピックに関して前に実行されたアクティビティの生産率の平均に設定され、前記記録時間が古いほど、前記重み付けが低くなる、請求項9に記載の方法。
  11. 前記信頼度インジケータ、相対的アクティビティ期間及び生産性インジケータに基づいて、前記トピックに関する専門知識インジケータを計算することと、
    1又は複数の付加的なユーザと関連付けられた専門知識インジケータが、前記トピックに関する計算された前記専門知識インジケータを上回ることに基づいて、前記1又は複数の付加的なユーザを前記トピックに関する主題専門家として選択することと
    をさらに含む、請求項9に記載の方法。
  12. 主題専門家を決定するためのコンピュータシステムであって、前記コンピュータシステムは、
    1つ又は複数のプロセッサ、1つ又は複数のコンピュータ可読メモリ、1つ又は複数のコンピュータ可読有形ストレージデバイス、及び前記1つ又は複数のメモリの少なくとも1つを介して前記1つ又は複数のプロセッサの少なくとも1つにより実行される、前記1つ又は複数のストレージデバイスの少なくとも1つに格納されたプログラム命令を含み、前記コンピュータシステムは、
    コンピュータによって、ある期間中にユーザにより実行される一連の動作を含むアクティビティを監視することと、
    前記一連の動作に基づいて、前記ユーザにより実行される前記アクティビティのトピックを決定することと、
    前記コンピュータによって、前記期間中に前記トピックと関連付けられた前記ユーザの躊躇パターンを認識することと、
    認識された前記躊躇パターンに基づいて、前記アクティビティを実行する際の前記ユーザの信頼度を指定する、前記アクティビティと関連付けられた信頼度インジケータを計算することと、
    前記信頼度インジケータが信頼度閾値を下回ることに基づいて、決定された前記トピックに関する1又は複数の主題専門家を特定することと、
    特定された前記主題専門家のうちの少なくとも1人に支援要求をサブミットするように前記ユーザに促すことと
    を含む方法を実行することができる、コンピュータシステム。
  13. 監視規則リポジトリに基づいて、前記一連の動作が現在実行されているソフトウェアアプリケーションを特定すること
    をさらに含む、請求項12に記載のコンピュータシステム。
  14. 前記ソフトウェアアプリケーションは、前記コンピュータのモニタ上でウィンドウフォーカスに基づいて特定される、請求項13に記載のコンピュータシステム。
  15. 前記トピックは、コグニティブ技術を用いて、トピックリポジトリ及び前記一連の動作内の最新の動作に従って決定される、請求項12に記載のコンピュータシステム。
  16. 前記コンピュータによって、前記躊躇パターンを認識することは、
    前記期間中、前記トピックと関連付けられた削除率及び検索率を求めること
    を含む、請求項12に記載のコンピュータシステム。
  17. 前記信頼度インジケータは、前記削除率と前記検索率との合計に0〜1の範囲の第1のスケーリング係数を掛けたものを1から引いたものに設定され、前記信頼度インジケータが高いほど、前記アクティビティを実行する際の前記ユーザの前記信頼度が高くなる、請求項16に記載のコンピュータシステム。
  18. 前記ユーザがどれくらいの頻度で前記トピックに関して作業したかを示す、前記トピックに関する相対的アクティビティ期間を計算することであって、前記相対的アクティビティ期間は、特定のアクティビティ期間を総アクティビティ期間で割ったものに、0〜1の範囲の第2のスケーリング係数を掛けたものに設定される、計算することと、
    前記アクティビティを実行する前記ユーザの生産性を示す、前記トピックに関する生産性インジケータを計算することと
    をさらに含む、請求項12に記載のコンピュータシステム。
  19. 前記生産性インジケータは、対応する記録時間に従って重み付けされた前記トピックに関して前に実行されたアクティビティの生産率の平均に設定され、前記記録時間が古いほど、前記重み付けが低くなる、請求項18に記載のコンピュータシステム。
  20. 前記信頼度インジケータ、相対的アクティビティ期間及び生産性インジケータに基づいて、前記トピックに関する専門知識インジケータを計算することと、
    1又は複数の付加的なユーザと関連付けられた専門知識インジケータが、前記トピックに関する計算された前記専門知識インジケータを上回ることに基づいて、前記1又は複数の付加的なユーザを前記トピックに関する主題専門家として選択することと
    をさらに含む、請求項18に記載のコンピュータシステム。
JP2020569745A 2018-06-20 2019-05-13 ユーザにより実行されるアクティビティに基づく主題専門家の決定 Active JP7325157B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/012,851 US11182266B2 (en) 2018-06-20 2018-06-20 Determination of subject matter experts based on activities performed by users
US16/012,851 2018-06-20
PCT/IB2019/053928 WO2019243911A1 (en) 2018-06-20 2019-05-13 Determination of subject matter experts based on activities performed by users

Publications (2)

Publication Number Publication Date
JP2021529371A true JP2021529371A (ja) 2021-10-28
JP7325157B2 JP7325157B2 (ja) 2023-08-14

Family

ID=68981939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020569745A Active JP7325157B2 (ja) 2018-06-20 2019-05-13 ユーザにより実行されるアクティビティに基づく主題専門家の決定

Country Status (4)

Country Link
US (1) US11182266B2 (ja)
JP (1) JP7325157B2 (ja)
CN (1) CN112136117B (ja)
WO (1) WO2019243911A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220043913A1 (en) * 2019-12-10 2022-02-10 Winkk, Inc Analytics with shared traits
JP7567070B2 (ja) 2021-05-20 2024-10-15 ネットスコープ, インク. 組織のセキュリティポリシーに対するユーザコンプライアンスの信頼度のスコアリング

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177847A (ja) * 2002-12-05 2003-06-27 Hideki Nishimoto データ処理システム、データ処理装置、データ処理用プログラム
JP2004030536A (ja) * 2002-06-28 2004-01-29 Toshiba Corp 情報処理装置および同装置で使用される文字入力支援方法
JP2005174346A (ja) * 2003-12-11 2005-06-30 Xerox Corp リコメンダシステムにおけるユーザアクティビティに基づいた専門知識マッピングのための方法
JP2006521610A (ja) * 2003-03-27 2006-09-21 インターナショナル・ビジネス・マシーンズ・コーポレーション ウィンドウを管理する方法および装置
JP2009169519A (ja) * 2008-01-11 2009-07-30 Nec Corp 情報提示装置、情報提示方法、および情報提示用プログラム
JP2009259127A (ja) * 2008-04-18 2009-11-05 Konica Minolta Business Technologies Inc 表示操作部を備えた装置
JP2010108388A (ja) * 2008-10-31 2010-05-13 Konica Minolta Medical & Graphic Inc 情報処理装置
US20130013546A1 (en) * 2010-09-24 2013-01-10 International Business Machines Corporation Providing community for customer questions
JP2014197329A (ja) * 2013-03-29 2014-10-16 日本電気株式会社 支援装置及び支援方法
JP2016131022A (ja) * 2015-01-14 2016-07-21 ゼネラル・エレクトリック・カンパニイ 案件解決ログに基づいて専門家を検索するための方法、システム、およびユーザインターフェース
WO2017195544A1 (ja) * 2016-05-10 2017-11-16 株式会社Nttドコモ 処理装置、情報処理システム及び処理方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050004788A1 (en) 2003-07-03 2005-01-06 Lee Hang Shun Raymond Multi-level confidence measures for task modeling and its application to task-oriented multi-modal dialog management
US7243109B2 (en) 2004-01-20 2007-07-10 Xerox Corporation Scheme for creating a ranked subject matter expert index
US7543232B2 (en) 2004-10-19 2009-06-02 International Business Machines Corporation Intelligent web based help system
US7552199B2 (en) 2005-09-22 2009-06-23 International Business Machines Corporation Method for automatic skill-gap evaluation
US8468194B2 (en) 2008-12-30 2013-06-18 International Business Machines Corporation Expertise referrals using a real-time communication system
US20100262610A1 (en) 2009-04-09 2010-10-14 International Business Machines Corporation Identifying Subject Matter Experts
US9909878B2 (en) * 2012-03-05 2018-03-06 Here Global B.V. Method and apparatus for triggering conveyance of guidance information
US9779260B1 (en) 2012-06-11 2017-10-03 Dell Software Inc. Aggregation and classification of secure data
US9015313B2 (en) * 2013-03-14 2015-04-21 Google Inc. Providing actionable content to a computing device based on user actions
US9940361B2 (en) 2013-03-15 2018-04-10 Unitedhealth Group Incorporated Intelligent presence server systems and methods
GB2519546A (en) * 2013-10-24 2015-04-29 Ibm Assistive technology during interactive computer use
US20150347912A1 (en) 2014-05-27 2015-12-03 Sony Corporation Activity tracking based recommendation
US20160140186A1 (en) * 2014-11-14 2016-05-19 Manfred Langen Identifying Subject Matter Experts
US9866504B2 (en) 2015-04-20 2018-01-09 International Business Machines Corporation Identifying end users in need of technical assistance
US10133993B2 (en) 2015-08-31 2018-11-20 Microsoft Technology Licensing, Llc Expert database generation and verification using member data
US10114894B2 (en) * 2015-09-28 2018-10-30 International Business Machines Corporation Enhancing a search with activity-relevant information
US20170220971A1 (en) * 2016-01-28 2017-08-03 International Business Machines Corporation Social networking data processing system based on communication framework with subject matter experts to improve web analytics analysis
US10339923B2 (en) * 2016-09-09 2019-07-02 International Business Machines Corporation Ranking based on speech pattern detection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030536A (ja) * 2002-06-28 2004-01-29 Toshiba Corp 情報処理装置および同装置で使用される文字入力支援方法
JP2003177847A (ja) * 2002-12-05 2003-06-27 Hideki Nishimoto データ処理システム、データ処理装置、データ処理用プログラム
JP2006521610A (ja) * 2003-03-27 2006-09-21 インターナショナル・ビジネス・マシーンズ・コーポレーション ウィンドウを管理する方法および装置
JP2005174346A (ja) * 2003-12-11 2005-06-30 Xerox Corp リコメンダシステムにおけるユーザアクティビティに基づいた専門知識マッピングのための方法
JP2009169519A (ja) * 2008-01-11 2009-07-30 Nec Corp 情報提示装置、情報提示方法、および情報提示用プログラム
JP2009259127A (ja) * 2008-04-18 2009-11-05 Konica Minolta Business Technologies Inc 表示操作部を備えた装置
JP2010108388A (ja) * 2008-10-31 2010-05-13 Konica Minolta Medical & Graphic Inc 情報処理装置
US20130013546A1 (en) * 2010-09-24 2013-01-10 International Business Machines Corporation Providing community for customer questions
JP2014197329A (ja) * 2013-03-29 2014-10-16 日本電気株式会社 支援装置及び支援方法
JP2016131022A (ja) * 2015-01-14 2016-07-21 ゼネラル・エレクトリック・カンパニイ 案件解決ログに基づいて専門家を検索するための方法、システム、およびユーザインターフェース
WO2017195544A1 (ja) * 2016-05-10 2017-11-16 株式会社Nttドコモ 処理装置、情報処理システム及び処理方法

Also Published As

Publication number Publication date
CN112136117A (zh) 2020-12-25
US11182266B2 (en) 2021-11-23
CN112136117B (zh) 2024-03-01
JP7325157B2 (ja) 2023-08-14
US20190391895A1 (en) 2019-12-26
WO2019243911A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US10607146B2 (en) Predicting user question in question and answer system
JP6097288B2 (ja) ソーシャル・ネットワークで起動する(powered)クエリ・サジェスチョン
US9292597B2 (en) Smart question routing and answerer growing for online community question-answer services
US9165305B1 (en) Generating models based on user behavior
US20190164084A1 (en) Method of and system for generating prediction quality parameter for a prediction model executed in a machine learning algorithm
US20160357790A1 (en) Resolving and merging duplicate records using machine learning
WO2019089229A1 (en) An omni-platform question answering system
US20140279739A1 (en) Resolving and merging duplicate records using machine learning
US20170091629A1 (en) Intent platform
US20170024392A1 (en) Methods and systems of building intelligent systems to index user content from multiple cloud-computing platforms
US11354378B2 (en) Web experience augmentation based on local and global content preferences
US20070112719A1 (en) System and method for dynamically generating and managing an online context-driven interactive social network
US20210382893A1 (en) Intelligently identifying the most knowledgable person based on multiple data source inputs
US10789283B2 (en) Systems and methods for notifying an author of contextual suggested content
JP7488871B2 (ja) 対話推薦方法、装置、電子機器、記憶媒体ならびにコンピュータプログラム
US20180314972A1 (en) Application display and discovery by predicting behavior through machine-learning
US20160086100A1 (en) Selecting strangers for information spreading on a social network
US20200111046A1 (en) Automated and intelligent time reallocation for agenda items
US10885275B2 (en) Phrase placement for optimizing digital page
JP7546741B6 (ja) 反復的な人工知能を用いて、通信決定木を通る経路の方向を指定する
US20210264480A1 (en) Text processing based interface accelerating
US11615163B2 (en) Interest tapering for topics
JP7325157B2 (ja) ユーザにより実行されるアクティビティに基づく主題専門家の決定
US11380306B2 (en) Iterative intent building utilizing dynamic scheduling of batch utterance expansion methods
US11100407B2 (en) Building domain models from dialog interactions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230728

R150 Certificate of patent or registration of utility model

Ref document number: 7325157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150