Nothing Special   »   [go: up one dir, main page]

JP2021105490A - Vacuum type water heater - Google Patents

Vacuum type water heater Download PDF

Info

Publication number
JP2021105490A
JP2021105490A JP2019237450A JP2019237450A JP2021105490A JP 2021105490 A JP2021105490 A JP 2021105490A JP 2019237450 A JP2019237450 A JP 2019237450A JP 2019237450 A JP2019237450 A JP 2019237450A JP 2021105490 A JP2021105490 A JP 2021105490A
Authority
JP
Japan
Prior art keywords
heat medium
medium liquid
heat
main heater
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019237450A
Other languages
Japanese (ja)
Other versions
JP7390186B2 (en
Inventor
山口 剛志
Takeshi Yamaguchi
剛志 山口
太田 裕
Yutaka Ota
裕 太田
健一 穂積
Kenichi Hozumi
健一 穂積
智郎 三浦
Tomoo Miura
智郎 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Thermoener Co Ltd
Original Assignee
Nippon Thermoener Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Thermoener Co Ltd filed Critical Nippon Thermoener Co Ltd
Priority to JP2019237450A priority Critical patent/JP7390186B2/en
Publication of JP2021105490A publication Critical patent/JP2021105490A/en
Application granted granted Critical
Publication of JP7390186B2 publication Critical patent/JP7390186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To increase thermal efficiency, reduce annual energy consumption and running cost and reduce CO2 while controlling a device from being complicated and increased in size.SOLUTION: A vacuum type water heater includes: a sealed can body 2 of which interior is held to be atmospheric pressure or less; a heat medium liquid tank 4 formed in a lower part in the sealed can body 2 to store heat medium liquid 3 therein; a decompression steam chamber 5 formed in an upper part in the sealed can body 2; a hot water heat exchanger 6 disposed in the decompression steam chamber 5 to condense and liquefy steam generated inside the decompression steam chamber 5 by exchanging heat of the steam with water; and heating means 7 disposed in the heat medium liquid 3 in the heat medium liquid tank 4 to heat and evaporate the heat medium liquid 3. The heating means 7 includes: a main heater 8; and an auxiliary heating device 9 of which output power is larger than the main heater 8. The main heater 8 is disposed on a side lower than the auxiliary heating device 9.SELECTED DRAWING: Figure 1

Description

本発明は、内部が大気圧以下に保持された密閉状の缶体と、缶体内の下部に形成された熱媒液を貯留する熱媒液槽と、缶体内の上部に形成された減圧蒸気室と、減圧蒸気室に配置されて減圧蒸気室内に発生した蒸気を水との熱交換により凝縮して液化させる温水熱交換器と、熱媒液槽内の熱媒液中に配置されて熱媒液を加熱蒸発させる加熱手段とを備え、温水発生装置として用いられる真空式温水機に関する。 In the present invention, a closed can body whose inside is kept below atmospheric pressure, a heat medium solution tank for storing a heat medium solution formed in the lower part of the can body, and a reduced pressure vapor formed in the upper part of the can body. A hot water heat exchanger that is arranged in the chamber and the decompression steam chamber to condense and liquefy the steam generated in the decompression steam chamber by heat exchange with water, and heat that is arranged in the heat medium in the heat medium tank. The present invention relates to a vacuum type water heater which is provided with a heating means for heating and evaporating a medium liquid and is used as a hot water generator.

従来、温水発生装置として用いられる真空式温水機としては、例えば、図6に示す構造のものが知られている(特許文献1参照、以下、従来技術1という。)。 Conventionally, as a vacuum type water heater used as a hot water generator, for example, the one having the structure shown in FIG. 6 is known (see Patent Document 1, hereinafter referred to as the prior art 1).

即ち、前記真空式温水機は、図6に示す如く、缶体51、バーナ52、燃焼室53、減圧蒸気室54、熱媒水55、温水熱交換器56、水管57、抽気ポンプ(図示省略)等を備えており、缶体51内を抽気ポンプにより大気圧以下に減圧して真空に近い状態とし、この状態でバーナ52により熱媒水55を加熱沸騰させて減圧蒸気室54内にそのときの熱媒水55と同じ温度の蒸気を発生させ、その蒸気が温水熱交換器56の表面で凝縮することで温水熱交換器56内の給水を加熱し、温水を作るようにしたものである。
この真空式温水機は、缶体51内が減圧されているため、温水熱交換器から多量の温水を取り出す高負荷運転時においても、要求される温度の温水を素早く負荷側へ供給できるメリットがある。
That is, as shown in FIG. 6, the vacuum water heater includes a can body 51, a burner 52, a combustion chamber 53, a decompression steam chamber 54, a heat medium 55, a hot water heat exchanger 56, a water pipe 57, and an air extraction pump (not shown). ) Etc., and the inside of the can body 51 is depressurized to below atmospheric pressure by an bleeding pump to bring it into a state close to vacuum. A steam with the same temperature as the heat medium 55 at the time is generated, and the steam condenses on the surface of the hot water heat exchanger 56 to heat the water supply in the hot water heat exchanger 56 to make hot water. be.
Since the inside of the can body 51 is decompressed in this vacuum type water heater, there is an advantage that hot water at the required temperature can be quickly supplied to the load side even during high load operation in which a large amount of hot water is taken out from the hot water heat exchanger. be.

しかし、従来技術1のように燃焼式バーナにより熱媒水を加熱している真空式温水機においては、熱効率が80%〜95%程度までとなる問題点があり、さらに、缶体容量や使用燃料に応じたバーナの選定が必要となるため、多種類のバーナを用意しておく必要があるという問題点もある。 However, the vacuum type water heater in which the heat medium is heated by the combustion type burner as in the prior art 1 has a problem that the thermal efficiency is about 80% to 95%, and further, the capacity of the can body and the use. Since it is necessary to select a burner according to the fuel, there is also a problem that it is necessary to prepare various types of burners.

上記の熱効率を高めるため、燃焼排ガス中に含まれる水蒸気の潜熱を回収する熱回収装置を付設することが提案されている(特許文献2参照、以下、従来技術2という。)。しかし従来技術2では、熱回収装置を別個に設けるため装置全体が大型化するうえ、燃焼排ガスが熱交換により低温となるため白煙が生じたり、燃焼排ガス中の水蒸気が凝縮するため発生する凝縮液の中和処理装置や腐食対策が必要になる問題点がある。 In order to improve the above thermal efficiency, it has been proposed to attach a heat recovery device for recovering the latent heat of water vapor contained in the combustion exhaust gas (see Patent Document 2, hereinafter referred to as the prior art 2). However, in the prior art 2, since the heat recovery device is separately provided, the entire device becomes large, and white smoke is generated because the combustion exhaust gas becomes low temperature due to heat exchange, or the water vapor in the combustion exhaust gas is condensed, which is generated. There is a problem that a liquid neutralization treatment device and corrosion countermeasures are required.

また、熱効率を高めるため、ヒートポンプ給湯器などの高温水と補助用の燃焼式バーナとを用いる真空式温水機の発明がある(特許文献3参照、以下、従来技術3という。)。この従来技術3は前記高温水を主熱源としており、燃焼式バーナを補助的に使用しているため、缶体効率が高く、年間エネルギー消費量とランニングコストの低減及びCOの削減を図ることができる利点がある。しかし従来技術3では、熱媒液槽を燃焼式バーナのための熱媒液槽と、高温水用の熱媒液槽との二つの槽に区画していることから、装置が大型化する問題がある。さらに、前記温水熱交換器を低温側と高温側とに分け、低温側温水熱交換器の下方位置の高温水用熱媒液槽に温水熱交換器で凝縮した熱媒液を導く構造となっており、温水熱交換器を二つに分割するため装置が複雑化、大型化する問題もある。 Further, in order to improve thermal efficiency, there is an invention of a vacuum type water heater using high temperature water such as a heat pump water heater and an auxiliary combustion type burner (see Patent Document 3, hereinafter referred to as prior art 3). Since the prior art 3 uses the high-temperature water as the main heat source and uses a combustion burner as an auxiliary, the can body efficiency is high, and the annual energy consumption and running cost are reduced and CO 2 is reduced. There is an advantage that can be done. However, in the prior art 3, since the heat medium liquid tank is divided into two tanks, a heat medium liquid tank for a combustion type burner and a heat medium liquid tank for high temperature water, there is a problem that the apparatus becomes large in size. There is. Further, the hot water heat exchanger is divided into a low temperature side and a high temperature side, and the heat medium liquid condensed by the hot water heat exchanger is guided to the heat medium liquid tank for high temperature water located below the hot water heat exchanger on the low temperature side. Since the hot water heat exchanger is divided into two, there is a problem that the device becomes complicated and large.

特開平11−337002号公報Japanese Unexamined Patent Publication No. 11-337002 特開2012−102906号公報Japanese Unexamined Patent Publication No. 2012-102906 特許6359321号公報Japanese Patent No. 6359321

本発明は、これらの問題点に鑑みて為されたものであり、その目的は、装置の複雑化と大型化を抑制しながら、熱効率が高く、年間エネルギー消費量とランニングコストの低減及びCOの削減等を図れるようにした真空式温水機を提供することにある。 The present invention has been made in view of these problems, and an object of the present invention is to reduce the complexity and size of the device, to achieve high thermal efficiency, to reduce annual energy consumption and running cost, and to reduce CO 2 The purpose is to provide a vacuum type water heater that can reduce the amount of carbon dioxide.

本発明は前記課題を解決するために、次のように構成したものである。
即ち本発明に係る真空式温水機は、内部が大気圧以下に保持された密閉状の缶体と、缶体内の下部に形成されて熱媒液を貯留する熱媒液槽と、缶体内の上部に形成された減圧蒸気室と、減圧蒸気室に配置されて減圧蒸気室内に発生した蒸気を水との熱交換により凝縮して液化させる温水熱交換器と、熱媒液槽内の熱媒液中に配置されて熱媒液を加熱蒸発させる加熱手段とを備えた真空式温水機であって、前記加熱手段は、主加熱器と、前記主加熱器よりも出力が大きい補助用加熱装置とを備え、前記主加熱器は、前記補助用加熱装置よりも下方に配置されていることを特徴とする。なお、前記補助用加熱装置の出力が主加熱器よりも大きいとは、補助用加熱装置が主加熱器よりも、多量の熱媒液を速やかに加熱できる高い加熱能力を備えていることをいう。
The present invention is configured as follows in order to solve the above problems.
That is, the vacuum water heater according to the present invention has a hermetically sealed can body whose inside is kept below atmospheric pressure, a heat medium solution tank formed in the lower part of the can body to store the heat medium solution, and the inside of the can body. A decompression steam chamber formed at the top, a hot water heat exchanger that is arranged in the decompression steam chamber and condenses and liquefies the steam generated in the decompression steam chamber by heat exchange with water, and a heat medium in a heat medium solution tank. A vacuum-type water heater provided with a heating means arranged in a liquid to heat and evaporate a heat medium liquid, wherein the heating means includes a main heater and an auxiliary heating device having a larger output than the main heater. The main heater is provided below the auxiliary heating device. The fact that the output of the auxiliary heating device is larger than that of the main heater means that the auxiliary heating device has a higher heating capacity capable of quickly heating a large amount of heat medium solution than the main heater. ..

前記主加熱器と補助用加熱装置は熱媒液槽の熱媒液中に上下に配置されるので、設置面積を拡げたり熱媒液槽を複数に分割したりする必要がなく、真空式温水機の大型化、複雑化が抑制される。 Since the main heater and the auxiliary heating device are arranged vertically in the heat medium of the heat medium tank, there is no need to expand the installation area or divide the heat medium tank into a plurality of vacuum hot water. The size and complexity of the machine are suppressed.

前記主加熱器により周囲の熱媒液は加熱されて蒸発し、熱媒液蒸気となる。この熱媒液蒸気は前記温水熱交換器の表面で、温水熱交換器に供給される水との熱交換により冷却されて凝縮し、液滴となって前記熱媒液槽に滴下する。 The surrounding heat medium is heated by the main heater and evaporated to become heat medium vapor. The heat medium liquid vapor is cooled and condensed on the surface of the hot water heat exchanger by heat exchange with water supplied to the hot water heat exchanger, and is dropped into the hot water heat exchanger tank as droplets.

真空式温水機から多量の温水が取り出されるなど、温水熱交換器での負荷が大きくなると、温水熱交換器で冷却され凝縮して滴下する熱媒液が増加し、熱媒液槽の熱媒液温度が低下する。そして熱媒液槽内の熱媒液の温度が設定温度以下になると、前記補助用加熱装置が駆動される。補助用加熱装置はその出力が主加熱器よりも大きいため、熱媒液槽内の熱媒液が急速に加熱され蒸発する。この結果、多量に発生した熱媒液蒸気により前記温水熱交換器内を流通する水が速やかに加熱され、真空式温水機から多量の温水が取り出される。 When the load on the hot water heat exchanger becomes large, such as when a large amount of hot water is taken out from the vacuum water heater, the heat medium that is cooled by the hot water heat exchanger, condenses, and drops increases, and the heat medium in the heat medium tank increases. The liquid temperature drops. Then, when the temperature of the heat medium liquid in the heat medium liquid tank becomes equal to or lower than the set temperature, the auxiliary heating device is driven. Since the output of the auxiliary heating device is larger than that of the main heater, the heat medium solution in the heat medium solution tank is rapidly heated and evaporated. As a result, the water flowing in the hot water heat exchanger is quickly heated by the heat medium liquid steam generated in a large amount, and a large amount of hot water is taken out from the vacuum type water heater.

前記補助用装置は出力が大きく、その伝熱面では周囲の熱媒液が激しく沸騰する発達した核沸騰状態となっていることから、伝熱面上で大きな気泡が形成され、次々と離脱する。従って、補助用加熱装置が駆動される高負荷運転時においては、補助用加熱装置の伝熱面から離脱した気泡の上昇により熱媒液槽内に熱媒液の対流が生じ、熱媒液槽内の熱媒液全体が良好に加熱されるうえ、主加熱器の周囲の熱媒液が流動し、主加熱器の熱伝達率が一層向上する。 Since the auxiliary device has a large output and is in a developed nucleate boiling state in which the surrounding heat transfer liquid boils violently on the heat transfer surface, large bubbles are formed on the heat transfer surface and are separated one after another. .. Therefore, during high-load operation in which the auxiliary heating device is driven, convection of the heat medium solution occurs in the heat medium solution tank due to the rise of bubbles separated from the heat transfer surface of the auxiliary heating device, and the heat medium solution tank. In addition to satisfactorily heating the entire heat medium inside, the heat medium around the main heater flows, further improving the heat transfer rate of the main heater.

一方、真空式温水機の待機運転時など、温水熱交換器の負荷が小さい低負荷運転時には、前記補助用加熱装置は停止され、伝熱面からの気泡の離脱や上昇がみられなくなる。この結果、補助用加熱装置よりも下方の、主加熱器の周囲の熱媒液は低温となっており、主加熱器の伝熱面との温度差が大きくなることから、主加熱器の周囲の熱媒液が効率よく加熱される。そして、主加熱器により加熱された熱媒液は上昇し、これにより熱媒液槽全体の熱媒液が加熱されて蓄熱量が多くなるので、必要に応じて前記補助用加熱装置を駆動することにより、真空式温水機が高負荷運転に速やかに切り換えられる。 On the other hand, during low-load operation in which the load of the hot water heat exchanger is small, such as during standby operation of the vacuum water heater, the auxiliary heating device is stopped, and bubbles do not separate or rise from the heat transfer surface. As a result, the heat medium around the main heater, which is below the auxiliary heating device, has a low temperature, and the temperature difference from the heat transfer surface of the main heater becomes large. The heat transfer solution is efficiently heated. Then, the heat medium liquid heated by the main heater rises, which heats the heat medium liquid of the entire heat medium liquid tank and increases the amount of heat storage, so that the auxiliary heating device is driven as necessary. As a result, the vacuum water heater can be quickly switched to high-load operation.

前記主加熱器は、補助用加熱装置の下方に配置されていればよいが、熱媒液槽の底部に配置されていると、補助用加熱装置が停止している低負荷運転時において、より低温の熱媒液を加熱するとともに、主加熱器の加熱により熱媒液槽内の熱媒液全体を加熱できるので、好ましい。 The main heater may be arranged below the auxiliary heating device, but if it is arranged at the bottom of the heat medium liquid tank, it is more suitable during low load operation when the auxiliary heating device is stopped. It is preferable because the entire heat medium solution in the heat medium solution tank can be heated by heating the main heater while heating the low temperature heat medium solution.

前記主加熱器は、前記熱媒液槽内に配置されて熱媒液槽内の熱媒液を加熱する装置であればよく、特定の加熱装置に限定されない。例えば、主加熱器は電気ヒータなどであっても良い。しかし前記主加熱器が、熱媒液が沸騰する温度よりも高い温度の流体が内部を流通する配管を備えていると、熱媒液と効率よく熱交換できて好ましい。 The main heater may be any device that is arranged in the heat medium solution tank and heats the heat medium solution in the heat medium solution tank, and is not limited to a specific heating device. For example, the main heater may be an electric heater or the like. However, if the main heater is provided with a pipe through which a fluid having a temperature higher than the temperature at which the heat medium liquid boils flows, it is preferable that heat can be efficiently exchanged with the heat medium liquid.

特に、前記流体がヒートポンプの冷媒であり、前記主加熱器が、ヒートポンプの冷媒を冷却するための冷媒熱交換器、すなわち凝縮器であると、例えば凝縮器を用いた温水設備などを別途必要とせず、簡単でコンパクトな構成にできるうえ、ヒートポンプで発生する熱量が直接的に利用されるので、熱媒液が効率よく加熱されて好ましい。 In particular, if the fluid is the refrigerant of the heat pump and the main heater is a refrigerant heat exchanger for cooling the refrigerant of the heat pump, that is, a condenser, for example, a hot water facility using a condenser is required separately. It is preferable that the heat medium is efficiently heated because the amount of heat generated by the heat pump is directly used in addition to being able to form a simple and compact structure.

また前記流体としては、燃焼式バーナから排出される排ガスなどの高温ガスであってもよいが、ヒートポンプの冷媒のほか、高温水が好ましく用いられる。なお、前記高温水とは、具体的には例えば、ヒートポンプ給湯機により得られた高温水、コージェネレーションシステムのエンジン冷却水、太陽熱温水器により得られた高温水、温泉水、その他の高温水などをいう。 The fluid may be a high-temperature gas such as exhaust gas discharged from a combustion burner, but high-temperature water is preferably used in addition to the refrigerant of the heat pump. Specifically, the high-temperature water includes, for example, high-temperature water obtained by a heat pump water heater, engine cooling water of a cogeneration system, high-temperature water obtained by a solar water heater, hot spring water, and other high-temperature water. To say.

前記補助用加熱装置としては、前記主加熱器よりも出力が大きければよく、例えば電気ヒータやエンジン排ガスなどであっても良い。しかし、補助用加熱装置が燃焼式バーナを備えると、火力が強く、多量の熱媒液を速やかに加熱できるので好ましい。なお、燃焼式バーナを備える補助用加熱装置とは、燃焼式バーナのほか、火炉、排ガスが周囲を通過する水管群、煙管路などを備える装置をいい、これらのいずれかあるいは複数が、熱媒液槽内の熱媒液中に配置される。 The auxiliary heating device may have an output larger than that of the main heater, and may be, for example, an electric heater or engine exhaust gas. However, it is preferable that the auxiliary heating device is provided with a combustion type burner because it has a strong thermal power and can quickly heat a large amount of heat medium. The auxiliary heating device provided with a combustion type burner means a device provided with a furnace, a group of water pipes through which exhaust gas passes through, a smoke pipe line, etc., in addition to the combustion type burner, and any one or more of these is a heat medium. It is placed in the heat medium in the liquid tank.

前記真空式温水機は、さらに第2の主加熱器を前記補助用加熱装置の鉛直方向上方の熱媒液中であって、前記温水熱交換器の鉛直方向下方に備えていてもよい。この場合、補助用加熱装置が停止中は、主加熱器の周囲の熱媒液槽の底部の熱媒液は低温となっており、一方、第2主加熱器は温水熱交換器の鉛直方向下方に配置してあるので、温水熱交換器の表面で凝縮した低温の熱媒液が第2主加熱器の周囲の熱媒液に落下している。この結果、前記の主加熱器と第2主加熱器により、熱媒液槽内の熱媒液全体が効率よく加熱される。なお、前記第2主加熱器の出力の大きさは、前記主加熱器と同程度であってもよく、あるいは異なっていてもよい。 The vacuum water heater may further include a second main heater in the heat medium solution vertically above the auxiliary heating device and below the vertical direction of the hot water heat exchanger. In this case, while the auxiliary heating device is stopped, the heat medium at the bottom of the heat medium tank around the main heater is at a low temperature, while the second main heater is in the vertical direction of the hot water heat exchanger. Since it is arranged below, the low-temperature heat medium condensed on the surface of the hot water heat exchanger has fallen into the heat medium around the second main heater. As a result, the entire heat medium solution in the heat medium solution tank is efficiently heated by the main heater and the second main heater. The magnitude of the output of the second main heater may be the same as or different from that of the main heater.

また補助用加熱装置が駆動されているときは、補助用加熱装置の伝熱面で熱媒液が激しく沸騰して上昇流が生じるため、補助用加熱装置の上方に配置された第2主加熱器は、伝熱面での熱伝達率が著しく向上する。しかも、補助用加熱装置の上方に配置された第2主加熱器は熱媒液槽の液面近傍に位置するため、この第2主加熱器がバッフルの役割を果たし、液面の遊動が抑制される。この結果、補助用加熱装置が駆動中であっても、熱媒液の沸騰による飛沫が上方の温水熱交換器の表面に降りかかることが軽減され、熱媒液蒸気の凝縮熱が温水熱交換器の表面に効率よく伝達されるので、温水熱交換器を液面から離隔させたり、温水熱交換器を大型化させる必要がなく、真空式温水機全体がコンパクトに形成される。 Further, when the auxiliary heating device is driven, the heat transfer solution is violently boiled on the heat transfer surface of the auxiliary heating device to generate an upward flow, so that the second main heating is arranged above the auxiliary heating device. The vessel has a significantly improved heat transfer rate on the heat transfer surface. Moreover, since the second main heater arranged above the auxiliary heating device is located near the liquid level of the heat medium liquid tank, this second main heater acts as a baffle and the movement of the liquid level is suppressed. Will be done. As a result, even when the auxiliary heating device is being driven, splashes due to boiling of the heat medium liquid are reduced from falling on the surface of the hot water heat exchanger above, and the heat of condensation of the heat medium liquid vapor is transferred to the hot water heat exchanger. Since it is efficiently transmitted to the surface of the water, there is no need to separate the hot water heat exchanger from the liquid surface or increase the size of the hot water heat exchanger, and the entire vacuum water heater is compactly formed.

前記主加熱器は、前記補助用加熱装置が駆動されている間は加熱を停止するとともに、前記補助用加熱装置の駆動が停止されている間は周囲の熱媒液を加熱し、前記第2主加熱器は、前記補助用加熱装置が駆動されている間は周囲の熱媒液を加熱するとともに、前記補助用加熱装置の駆動が停止されている間は加熱を停止してもよい。この場合、補助用加熱装置が駆動されている高負荷運転時にあっては、補助用加熱装置の上方に配置された第2主加熱器により、熱媒液が効率よく加熱される。また、補助用加熱装置の駆動が停止されている低負荷運転時にあっては、補助用加熱装置の下方に配置されている主加熱器により加熱された熱媒液が熱媒液槽内を上昇するので、この主加熱器により熱媒液槽内の熱媒液全体が加熱される。 The main heater stops heating while the auxiliary heating device is being driven, and heats the surrounding heat medium while the auxiliary heating device is not being driven. The main heater may heat the surrounding heat medium while the auxiliary heating device is being driven, and may stop heating while the auxiliary heating device is not being driven. In this case, during high-load operation in which the auxiliary heating device is driven, the heat medium solution is efficiently heated by the second main heater arranged above the auxiliary heating device. Further, during low-load operation in which the driving of the auxiliary heating device is stopped, the heat medium liquid heated by the main heater arranged below the auxiliary heating device rises in the heat medium liquid tank. Therefore, the entire heat medium solution in the heat medium solution tank is heated by this main heater.

前記第2主加熱器は、前記主加熱器と同様の、熱媒液が沸騰する温度よりも高い温度の流体が内部を流通する配管を備えていてもよい。この場合、前記の高温流体は、前記主加熱器と第2主加熱器とのいずれか一方に切換弁等を介して流通するものであってもよく、これにより、高負荷時と低負荷時とで、主加熱器による加熱と低負荷時用加熱器による加熱とを切り換えることができて好ましい。 The second main heater may include a pipe similar to the main heater, in which a fluid having a temperature higher than the temperature at which the heat medium liquid boils flows through the inside. In this case, the high-temperature fluid may be circulated to either one of the main heater and the second main heater via a switching valve or the like, whereby, when the load is high and when the load is low. Therefore, it is preferable to be able to switch between heating by the main heater and heating by the heater for low load.

前記真空式温水機は、前記熱媒液槽内の熱媒液を前記主加熱器の周囲と熱媒液槽の液面近傍との間で流動させる流動装置を備えていてもよい。この場合、前記補助用加熱装置が停止中であっても、主加熱器の伝熱面の周囲の熱媒液が移動することから、主加熱器の伝熱面で熱媒液が効率よく加熱される。しかも、熱媒液槽内で主加熱器の周囲の熱媒液が液面近傍へ移動することから、熱媒液槽全体の熱媒液が加熱され、蓄熱量が多くなって、高負荷運転へ速やかに切り換えられる。 The vacuum type water heater may include a flow device for flowing the heat medium liquid in the heat medium liquid tank between the periphery of the main heater and the vicinity of the liquid level of the heat medium liquid tank. In this case, even if the auxiliary heating device is stopped, the heat transfer solution around the heat transfer surface of the main heater moves, so that the heat transfer solution is efficiently heated on the heat transfer surface of the main heater. Will be done. Moreover, since the heat medium liquid around the main heater moves to the vicinity of the liquid surface in the heat medium liquid tank, the heat medium liquid of the entire heat medium liquid tank is heated, the amount of heat storage increases, and high load operation is performed. Can be quickly switched to.

前記流動装置は、例えば熱媒液槽内に配置された撹拌機等であってもよいが、前記熱媒液槽内の主加熱器の周囲と熱媒液槽の液面近傍との間に設けた循環ポンプを備える熱媒液路であると、簡単な構造であり、熱媒液槽を大型化することがなく、真空式温水機をコンパクトに構成できて好ましい。なお、前記循環ポンプは、主加熱器の周囲の熱媒液を熱媒液槽の液面近傍に供給するものであってもよいが、熱媒液槽の液面近傍の熱媒液を主加熱器の周囲へ供給すると、主加熱器の加熱による熱媒液の上昇と相まって、主加熱器の周囲に上昇流を生じるので、周囲の熱媒液を効率よく加熱できてより好ましい。 The flow device may be, for example, a stirrer or the like arranged in the heat medium liquid tank, but between the periphery of the main heater in the heat medium liquid tank and the vicinity of the liquid level of the heat medium liquid tank. It is preferable that the heat medium liquid passage provided with the provided circulation pump has a simple structure and can compactly configure the vacuum water heater without increasing the size of the heat medium liquid tank. The circulation pump may supply the heat medium liquid around the main heater to the vicinity of the liquid surface of the heat medium liquid tank, but mainly the heat medium liquid near the liquid level of the heat medium liquid tank. When it is supplied to the periphery of the heater, an ascending flow is generated around the main heater in combination with the rise of the heat medium due to the heating of the main heater, so that it is more preferable that the surrounding heat medium can be efficiently heated.

本発明の真空式温水機は、上記のように構成され作用するので、次の効果を奏する。
(1)加熱手段の主加熱器と補助用加熱装置とを熱媒液槽の熱媒液中に上下に配置しているので、設置面積を拡げたり熱媒液槽を複数に分割したりする必要がなく、真空式温水機の大型化、複雑化を抑制できる。
(2)主加熱器は補助用加熱装置の下方に配置されているので、補助用加熱装置が停止中は主加熱器の周囲の熱媒液が低温となっており、主加熱器の伝熱面との温度差が大きいことから、主加熱器は、周囲の熱媒液を効率よく加熱することができる。この結果、真空式温水機の熱効率が高く、年間エネルギー消費量とランニングコストの低減及びCOの削減等を図ることができる。
(3)主加熱器よりも出力が大きい補助用加熱装置を備えているので、温水熱交換器から多量の温水を供給する高負荷運転時には、補助用加熱装置を駆動することで容易に対応することができる。
(4)主加熱器により加熱された熱媒液は熱媒液槽内を上昇するので、補助用加熱装置の停止中であっても、熱媒液槽全体の熱媒液が加熱されて蓄熱量が多くなる。これにより、必要に応じて前記補助用加熱装置を駆動することで、真空式温水機を高負荷運転に速やかに切り換えることができる。
Since the vacuum water heater of the present invention is configured and operates as described above, it has the following effects.
(1) Since the main heater of the heating means and the auxiliary heating device are arranged vertically in the heat medium liquid of the heat medium liquid tank, the installation area can be expanded or the heat medium liquid tank can be divided into a plurality of parts. There is no need to do so, and the size and complexity of the vacuum water heater can be suppressed.
(2) Since the main heater is located below the auxiliary heating device, the heat medium around the main heating device is at a low temperature while the auxiliary heating device is stopped, and the heat transfer of the main heating device is high. Since the temperature difference from the surface is large, the main heater can efficiently heat the surrounding heat medium. As a result, the thermal efficiency of the vacuum water heater is high, and the annual energy consumption and running cost can be reduced, and CO 2 can be reduced.
(3) Since it is equipped with an auxiliary heating device that has a larger output than the main heater, it can be easily handled by driving the auxiliary heating device during high-load operation in which a large amount of hot water is supplied from the hot water heat exchanger. be able to.
(4) Since the heat medium liquid heated by the main heater rises in the heat medium liquid tank, the heat medium liquid of the entire heat medium liquid tank is heated and heat is stored even when the auxiliary heating device is stopped. The amount will increase. Thereby, the vacuum type water heater can be quickly switched to the high load operation by driving the auxiliary heating device as needed.

本発明の実施形態に係る真空式温水機を示す、真空式温水機の一部を省略した縦断正面図である。It is a vertical sectional front view which shows the vacuum type water heater which concerns on embodiment of this invention, omitting a part of the vacuum type water heater. 本発明の他の実施形態に係る真空式温水機を示す、真空式温水機の一部を省略した縦断正面図である。It is a vertical sectional front view which shows the vacuum type water heater which concerns on other embodiment of this invention, omitting a part of the vacuum type water heater. 本発明の更に他の実施形態に係る真空式温水機を示す、真空式温水機の一部を省略した縦断正面図である。It is a vertical sectional front view which shows the vacuum type water heater which concerns on still another Embodiment of this invention, omitting a part of the vacuum type water heater. 本発明の実施形態の変形例1に係る真空式温水機を示す、真空式温水機の一部を省略した縦断側面図である。It is a vertical sectional side view which shows the vacuum type water heater which concerns on the modification 1 of the Embodiment of this invention, omitting a part of the vacuum type water heater. 本発明の実施形態の変形例2に係る真空式温水機を示す、真空式温水機の一部を省略した縦断側面図である。It is a vertical sectional side view which shows the vacuum type water heater which concerns on the modification 2 of the Embodiment of this invention, omitting a part of the vacuum type water heater. 従来の真空式温水機の縦断面図である。It is a vertical sectional view of a conventional vacuum type water heater.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は本発明の実施形態に係る真空式温水機を示し、当該真空式温水機1は、内部が大気圧以下に保持された密閉状の缶体2と、缶体2内の下部に形成され、熱媒液3(例えば、水)を貯留する熱媒液槽4と、缶体2内の上部に形成され、抽気ポンプ(図示省略)により減圧された減圧蒸気室5と、減圧蒸気室5に配置され、減圧蒸気室内5に発生した蒸気を水との熱交換により凝縮して液化させる温水熱交換器6と、熱媒液槽4内の熱媒液3中に配置されて熱媒液3を加熱蒸発させる加熱手段7とを備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a vacuum type water heater according to an embodiment of the present invention, in which the vacuum type water heater 1 is formed in a closed can body 2 whose inside is held below atmospheric pressure and a lower portion inside the can body 2. A heat medium liquid tank 4 for storing the heat medium liquid 3 (for example, water), a decompression steam chamber 5 formed in the upper part of the can body 2 and decompressed by an bleeding pump (not shown), and a decompression steam chamber. A hot water heat exchanger 6 arranged in the decompression steam chamber 5 to condense and liquefy the steam generated in the decompression steam chamber 5 by heat exchange with water, and a heat medium arranged in the heat medium liquid 3 in the heat medium liquid tank 4. A heating means 7 for heating and evaporating the liquid 3 is provided.

前記温水熱交換器6は、減圧蒸気室5に水平姿勢で配置されており、缶体2の側壁面に水の入口6aとその上方の温水の出口6bとが形成され、水入口6aが折返部6cを経て温水出口6bに接続してある。 The hot water heat exchanger 6 is arranged in a decompression steam chamber 5 in a horizontal position, and a water inlet 6a and a hot water outlet 6b above the water inlet 6a are formed on the side wall surface of the can body 2, and the water inlet 6a is folded back. It is connected to the hot water outlet 6b via part 6c.

前記加熱手段7は、主加熱器8と補助用加熱装置9とを備えており、前記補助用加熱装置9の出力は前記主加熱器8の出力よりも大きく、多量の熱媒液3を速やかに加熱できる高い加熱能力を備えている。なお、前記補助用加熱装置9の高い加熱能力とは、適用される缶体2の容量などによっても異なるので、具体的に数値を限定することはできないが、例えば、補助用加熱装置9の交換熱量が主加熱器8の交換熱量の10倍程度以上である場合などをいう。そして、前記主加熱器8は、前記補助用加熱装置9よりも下方で、熱媒液槽4の底部に配置されている。 The heating means 7 includes a main heater 8 and an auxiliary heating device 9, and the output of the auxiliary heating device 9 is larger than the output of the main heater 8, so that a large amount of heat medium liquid 3 can be quickly applied. It has a high heating capacity that can heat up. Since the high heating capacity of the auxiliary heating device 9 differs depending on the capacity of the applied can body 2 and the like, the numerical value cannot be specifically limited, but for example, replacement of the auxiliary heating device 9 This refers to a case where the amount of heat is about 10 times or more the amount of heat exchanged by the main heater 8. The main heater 8 is arranged at the bottom of the heat medium liquid tank 4 below the auxiliary heating device 9.

前記主加熱器8には、ヒートポンプ11の冷媒を冷却するための冷媒熱交換器である凝縮器が用いてある。即ち、前記主加熱器8の冷媒入口8bにはヒートポンプ11の圧縮機12からの導入配管13が接続してあり、主加熱器8の冷媒出口8cにヒートポンプ11の膨張弁14への導出配管15が接続してある。 A condenser, which is a refrigerant heat exchanger for cooling the refrigerant of the heat pump 11, is used in the main heater 8. That is, the introduction pipe 13 from the compressor 12 of the heat pump 11 is connected to the refrigerant inlet 8b of the main heater 8, and the outlet pipe 15 to the expansion valve 14 of the heat pump 11 is connected to the refrigerant outlet 8c of the main heater 8. Is connected.

前記ヒートポンプ11の冷媒は、圧縮機12により、前記缶体2内の圧力下で熱媒液3が沸騰する温度(以下、熱媒液3の飽和温度という)よりも高い温度に加熱されたのち、導入配管13を経て前記主加熱器8の冷媒入口8bに送られる。この高い温度の冷媒は主加熱器8の配管内を流通し、周囲の熱媒液3と熱交換されて冷却される。そしてこの冷却された冷媒は、冷媒出口8cから導出配管15を経てヒートポンプ11に戻され、膨張弁14と蒸発器16と圧縮機12を順に経て加熱され、再び主加熱器8の冷媒入口8bへ送られる。 The refrigerant of the heat pump 11 is heated by the compressor 12 to a temperature higher than the temperature at which the heat medium liquid 3 boils under the pressure inside the can body 2 (hereinafter, referred to as the saturation temperature of the heat medium liquid 3). , It is sent to the refrigerant inlet 8b of the main heater 8 via the introduction pipe 13. This high-temperature refrigerant circulates in the piping of the main heater 8 and exchanges heat with the surrounding heat medium liquid 3 to be cooled. Then, the cooled refrigerant is returned from the refrigerant outlet 8c to the heat pump 11 via the lead-out pipe 15, heated through the expansion valve 14, the evaporator 16 and the compressor 12 in this order, and again to the refrigerant inlet 8b of the main heater 8. Sent.

一方、主加熱器8の伝熱面8aは、前記加熱された冷媒により熱媒液3の飽和温度よりも高い温度に加熱されるので、周囲の熱媒液3は加熱されて熱媒液蒸気となる。このとき、前記冷媒により加熱される主加熱器8の伝熱面8aの温度は、飽和温度よりも高いものの、熱媒液3の飽和温度との差である過熱度は低い。 On the other hand, since the heat transfer surface 8a of the main heater 8 is heated to a temperature higher than the saturation temperature of the heat medium liquid 3 by the heated refrigerant, the surrounding heat medium liquid 3 is heated and the heat medium liquid steam. It becomes. At this time, although the temperature of the heat transfer surface 8a of the main heater 8 heated by the refrigerant is higher than the saturation temperature, the degree of superheat, which is the difference from the saturation temperature of the heat medium liquid 3, is low.

しかし、主加熱器8が配置されている、前記補助用加熱装置9よりも下方の、熱媒液槽4の底部は、熱媒液3の温度が低いため、主加熱器8の伝熱面8aと周囲の熱媒液3との温度差は大きく、この主加熱器8により周囲の熱媒液3が効率よく加熱される。そして、主加熱器8により効率よく加熱された熱媒液3は、熱媒液槽4内を上昇して対流するため、前記補助用加熱装置9が停止中であっても、主加熱器8により、熱媒液槽4内の熱媒液3全体が加熱され、蓄熱量が多くなる。 However, since the temperature of the heat medium liquid 3 is low at the bottom of the heat medium liquid tank 4 below the auxiliary heating device 9 where the main heater 8 is arranged, the heat transfer surface of the main heater 8 is provided. The temperature difference between 8a and the surrounding heat medium is large, and the main heater 8 efficiently heats the surrounding heat medium 3. Then, since the heat medium liquid 3 efficiently heated by the main heater 8 rises in the heat medium liquid tank 4 and convects, the main heater 8 is stopped even when the auxiliary heating device 9 is stopped. As a result, the entire heat medium solution 3 in the heat medium solution tank 4 is heated, and the amount of heat stored increases.

なお、この実施形態では、主加熱器8にヒートポンプの凝縮器を用いているので、主加熱器8の周囲の熱媒液3は、ヒートポンプ11の冷媒により、ヒートポンプで発生する熱量が直接的に利用され、効率よく熱媒液3が加熱される。一方、ヒートポンプ11は、主加熱器8が熱媒液槽4の熱媒液3を部分的にしか加熱できない場合、冷媒が十分に冷却されず、熱媒液槽4の底部の熱媒液が低温であるにも関わらず、昇温が完了したと判断して停止してしまうおそれがある。しかし、この実施形態では、前記主加熱器8が熱媒液槽4の熱媒液3全体を加熱していることから、ヒートポンプの停止のおそれが低減される。また、主加熱器8に用いるヒートポンプ11の凝縮器は、密閉状の缶体2内に配置されているので腐食のおそれが低減されており、万一、凝縮器からヒートポンプ11の冷媒が漏れ出たとしても、温水熱交換器6内の水とは遮断されているので、温水熱交換器6から取り出される温水にヒートポンプ11の冷媒が混入するおそれがない。 In this embodiment, since the condenser of the heat pump is used for the main heater 8, the amount of heat generated by the heat pump is directly generated by the refrigerant of the heat pump 11 in the heat medium liquid 3 around the main heater 8. It is used and the heat medium solution 3 is efficiently heated. On the other hand, in the heat pump 11, when the main heater 8 can only partially heat the heat medium liquid 3 in the heat medium liquid tank 4, the refrigerant is not sufficiently cooled and the heat medium liquid at the bottom of the heat medium liquid tank 4 is removed. Even though the temperature is low, it may be judged that the temperature rise is completed and the temperature may stop. However, in this embodiment, since the main heater 8 heats the entire heat medium liquid 3 in the heat medium liquid tank 4, the risk of the heat pump stopping is reduced. Further, since the condenser of the heat pump 11 used for the main heater 8 is arranged in the sealed can body 2, the risk of corrosion is reduced, and the refrigerant of the heat pump 11 leaks from the condenser by any chance. Even so, since the water in the hot water heat exchanger 6 is cut off, there is no possibility that the refrigerant of the heat pump 11 will be mixed in the hot water taken out from the hot water heat exchanger 6.

前記主加熱器8の加熱により発生した熱媒液蒸気は、前記減圧蒸気室5内の前記温水熱交換器6の表面で、温水熱交換器6に供給される水との熱交換により冷却されて凝縮し、液滴となって前記熱媒液槽4に滴下する。一方、温水熱交換器6に供給された水は、前記熱媒液蒸気との熱交換により加熱され、これにより、所望の温度の温水が温水熱交換器6から取り出される。 The heat medium liquid steam generated by heating the main heater 8 is cooled by heat exchange with water supplied to the hot water heat exchanger 6 on the surface of the hot water heat exchanger 6 in the decompression steam chamber 5. Condenses into droplets and drops into the heat medium liquid tank 4. On the other hand, the water supplied to the hot water heat exchanger 6 is heated by heat exchange with the heat medium liquid steam, whereby hot water having a desired temperature is taken out from the hot water heat exchanger 6.

前記真空式温水機1の温水熱交換器6から多量の温水が取り出されるなど、温水熱交換器6での負荷が、主加熱器8の加熱能力よりも大きくなる(以下、高負荷運転時ともいう)と、温水熱交換器6で冷却され凝縮して滴下する熱媒液3が増加し、熱媒液槽4内の熱媒液3の温度が低下する。そこで、熱媒液槽4に付設された液温検出器19により検出される熱媒液3の温度が設定温度以下になると、前記補助用加熱装置9が制御装置20により駆動される。なお、高負荷運転時であるか否かは、熱媒液3の温度による判断に代えて、例えば温水熱交換器6から取り出さる湯量に基づいて負荷の大きさを判断し、補助用加熱装置9の駆動を制御してもよい。 The load on the hot water heat exchanger 6 becomes larger than the heating capacity of the main heater 8 (hereinafter, both during high load operation), such as when a large amount of hot water is taken out from the hot water heat exchanger 6 of the vacuum water heater 1. The heat medium liquid 3 that is cooled by the hot water heat exchanger 6 and condensed and dropped increases, and the temperature of the heat medium liquid 3 in the heat medium liquid tank 4 decreases. Therefore, when the temperature of the heat medium liquid 3 detected by the liquid temperature detector 19 attached to the heat medium liquid tank 4 becomes equal to or lower than the set temperature, the auxiliary heating device 9 is driven by the control device 20. Whether or not it is during high-load operation is determined by determining the magnitude of the load based on, for example, the amount of hot water taken out from the hot water heat exchanger 6, instead of determining by the temperature of the heat medium liquid 3, and the auxiliary heating device. The drive of 9 may be controlled.

前記補助用加熱装置9は、熱源である燃焼式バーナ21と、燃焼室である火炉22と、水管23群と、排気筒24とを備えている。火炉22と水管23群は前記熱媒液槽4内の熱媒液3に水没されており、火炉22の鉛直方向下方に前記主加熱器8が配置されている。そして火炉22の周面と水管23の内面が熱媒液3と接しており、熱媒液3への伝熱面9aとなっている。 The auxiliary heating device 9 includes a combustion burner 21 as a heat source, a furnace 22 as a combustion chamber, a group of water pipes 23, and an exhaust stack 24. The furnace 22 and the water pipe 23 group are submerged in the heat medium liquid 3 in the heat medium liquid tank 4, and the main heater 8 is arranged below the furnace 22 in the vertical direction. The peripheral surface of the furnace 22 and the inner surface of the water pipe 23 are in contact with the heat transfer liquid 3, and serve as a heat transfer surface 9a to the heat medium liquid 3.

燃焼式バーナ21が制御装置20により駆動されると、燃焼式バーナ21の強い火力により、補助用加熱装置9の伝熱面9aが加熱される。熱媒液槽4内の熱媒液3は、前記主加熱器8により加熱されており、蓄熱量が多いので、出力が大きな補助用加熱装置9の伝熱面9aが加熱されると、火炉22の周囲の熱媒液3と水管23内を流通する熱媒液3が速やかに加熱され、温水熱交換器6が高負荷運転へ切り換えられて、増加した温水負荷に対して不足する主加熱器8の加熱能力が良好に補われる。 When the combustion burner 21 is driven by the control device 20, the heat transfer surface 9a of the auxiliary heating device 9 is heated by the strong thermal power of the combustion burner 21. The heat medium liquid 3 in the heat medium liquid tank 4 is heated by the main heater 8 and has a large amount of heat storage. Therefore, when the heat transfer surface 9a of the auxiliary heating device 9 having a large output is heated, the furnace The heat medium liquid 3 around 22 and the heat medium liquid 3 flowing in the water pipe 23 are quickly heated, the hot water heat exchanger 6 is switched to high load operation, and the main heating is insufficient for the increased hot water load. The heating capacity of the vessel 8 is well supplemented.

一方、温水熱交換器6での負荷が低下して主加熱器8の加熱能力よりも小さくなると、温水熱交換器6の表面から滴下する凝縮熱媒液3が少なくなり、熱媒液槽4内の熱媒液3の温度が上昇する。そして、熱媒液3の温度が設定温度を超えたことを前記液温検出器19が検出すると、制御装置20は前記補助用加熱装置9の駆動を停止する。この結果、燃焼式バーナ21を用いる補助用加熱装置9は、温水負荷が高いときや、真空式温水機1の起動時に熱媒液3を早急に昇温させたいときなど、多量の熱媒液3を急速に加熱するときにのみ駆動されるので、缶体効率の向上、年間エネルギー消費量とランニングコストの低減及びCOの削減を図ることができる。 On the other hand, when the load on the hot water heat exchanger 6 decreases and becomes smaller than the heating capacity of the main heater 8, the amount of condensed heat medium 3 dripping from the surface of the hot water heat exchanger 6 decreases, and the heat medium tank 4 The temperature of the heat medium solution 3 inside rises. Then, when the liquid temperature detector 19 detects that the temperature of the heat medium liquid 3 exceeds the set temperature, the control device 20 stops driving the auxiliary heating device 9. As a result, the auxiliary heating device 9 using the combustion burner 21 has a large amount of heat medium, such as when the hot water load is high or when the heat medium 3 is to be heated quickly when the vacuum water heater 1 is started. Since it is driven only when 3 is heated rapidly, it is possible to improve the efficiency of the can body, reduce the annual energy consumption and running cost, and reduce CO 2 .

前記主加熱器8は補助用加熱装置9の下方に配置されていることから、真空式温水機1の設置面積を拡げたり熱媒液槽4を複数に分割したりする必要がなく、真空式温水機1は、大型化、複雑化することが抑制され、コンパクトに形成されている。 Since the main heater 8 is arranged below the auxiliary heating device 9, it is not necessary to expand the installation area of the vacuum water heater 1 or divide the heat medium liquid tank 4 into a plurality of vacuum type water heaters. The water heater 1 is compactly formed while being suppressed from becoming large and complicated.

図2は本発明の他の実施形態に係る真空式温水機を示し、当該真空式温水機1の加熱手段7は、補助用加熱装置9の鉛直方向上方の熱媒液3中であって、前記温水熱交換器6の鉛直方向下方に、第2の主加熱器10を備えている。 FIG. 2 shows a vacuum water heater according to another embodiment of the present invention, in which the heating means 7 of the vacuum water heater 1 is in the heat medium solution 3 vertically above the auxiliary heating device 9. A second main heater 10 is provided below the hot water heat exchanger 6 in the vertical direction.

前記第2主加熱器10は、前記主加熱器8と同様の、ヒートポンプ11の凝縮器が用いてあり、主加熱器8と同様、補助用加熱装置9よりも出力が小さい。なお、第2主加熱器10の出力は、主加熱器8の出力と比べて同程度であってもよく、あるいは異なっていてもよい。そして、第2主加熱器10の冷媒入口10bは、ヒートポンプ11の圧縮機12からの導入配管13に、導入分岐管17を介して接続してあり、第2主加熱器10の冷媒出口10cは、ヒートポンプ11の膨張弁14への導出配管15に、導出分岐管18を介して接続してある。その他の構成は図1に示す真空式温水機と同様構造に構成され、同様の作用効果を奏することができるため、図1に示す真空式温水機と同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。 The second main heater 10 uses the same condenser of the heat pump 11 as the main heater 8, and has a smaller output than the auxiliary heating device 9 like the main heater 8. The output of the second main heater 10 may be about the same as or different from the output of the main heater 8. The refrigerant inlet 10b of the second main heater 10 is connected to the introduction pipe 13 from the compressor 12 of the heat pump 11 via the introduction branch pipe 17, and the refrigerant outlet 10c of the second main heater 10 is connected. , The heat pump 11 is connected to the lead-out pipe 15 to the expansion valve 14 via the lead-out branch pipe 18. Other configurations are the same as those of the vacuum water heater shown in FIG. 1, and the same effects can be obtained. Therefore, the same reference numbers are assigned to the same parts and members as those of the vacuum water heater shown in FIG. The detailed description thereof will be omitted.

前記補助用加熱装置9が停止中は、主加熱器8の周囲の、熱媒液槽4の底部の熱媒液3は低温となっているので、前記の実施形態と同様、主加熱器8により周囲の熱媒液3が効率よく加熱される。一方、第2主加熱器10は温水熱交換器6の鉛直方向下方に配置してあるので、温水熱交換器6の表面で凝縮した低温の熱媒液3が第2主加熱器10の周囲に落下し、これにより、第2主加熱器10により周囲の熱媒液3が効率よく加熱される。この結果、補助用加熱装置9の下方に配置された前記主加熱器8と、補助用加熱装置9の上方の熱媒液3中に配置された前記第2主加熱器10とにより、熱媒液槽4内の熱媒液3全体が効率よく加熱される。 While the auxiliary heating device 9 is stopped, the heat medium liquid 3 at the bottom of the heat medium liquid tank 4 around the main heater 8 is at a low temperature, so that the main heater 8 is the same as in the above embodiment. The surrounding heat medium liquid 3 is efficiently heated. On the other hand, since the second main heater 10 is arranged below the hot water heat exchanger 6 in the vertical direction, the low-temperature heat medium liquid 3 condensed on the surface of the hot water heat exchanger 6 is around the second main heater 10. The second main heater 10 efficiently heats the surrounding heat medium liquid 3. As a result, the heat medium is formed by the main heater 8 arranged below the auxiliary heating device 9 and the second main heating device 10 arranged in the heat medium solution 3 above the auxiliary heating device 9. The entire heat medium liquid 3 in the liquid tank 4 is efficiently heated.

温水熱交換器6から多量の温水が取り出される高負荷運転時には、前記の実施形態と同様に、熱媒液槽4内の熱媒液3の温度が低下するので、前記補助用加熱装置9が駆動される。補助用加熱装置9は出力が大きく、周囲の熱媒液3は激しく沸騰する発達した核沸騰状態となっている。そして、伝熱面上で形成された大きな気泡は、次々と離脱して上昇するので、補助用加熱装置9の上方に熱媒液3の上昇流が生じる。この結果、補助用加熱装置9の上方に配置された前記第2主加熱器10は、伝熱面10aの周囲の熱媒液3がこの上昇流により流動するので、熱伝達率が著しく向上する。 During high-load operation in which a large amount of hot water is taken out from the hot water heat exchanger 6, the temperature of the heat medium liquid 3 in the heat medium liquid tank 4 drops as in the above embodiment, so that the auxiliary heating device 9 is used. Driven. The auxiliary heating device 9 has a large output, and the surrounding heat medium liquid 3 is in a developed nucleate boiling state in which it boils violently. Then, the large bubbles formed on the heat transfer surface are separated one after another and rise, so that an upward flow of the heat medium solution 3 is generated above the auxiliary heating device 9. As a result, in the second main heater 10 arranged above the auxiliary heating device 9, the heat transfer coefficient is remarkably improved because the heat medium liquid 3 around the heat transfer surface 10a flows by this rising flow. ..

前記補助用加熱装置9の加熱により補助用加熱装置9の伝熱面9aから熱媒液3蒸気の気泡が多数発生する。しかし、補助用加熱装置9の上方に配置された第2主加熱器10は、熱媒液槽4の液面近傍に位置しているので、この第2主加熱器10があたかもバッフルのように作用して液面の遊動が抑制される。これにより、補助用加熱装置9が駆動中であっても、沸騰した熱媒液3の飛沫が上方の温水熱交換器6の表面に降りかかることが軽減されるので、熱媒液蒸気の凝縮熱が温水熱交換器6の表面に効率よく伝達される。この結果、温水熱交換器6を液面から離隔させたり、温水熱交換器6を大型化させる必要がなく、真空式温水機1全体がコンパクトに形成される。 By heating the auxiliary heating device 9, a large number of bubbles of the heat medium liquid 3 vapor are generated from the heat transfer surface 9a of the auxiliary heating device 9. However, since the second main heater 10 arranged above the auxiliary heating device 9 is located near the liquid level of the heat medium liquid tank 4, the second main heater 10 looks like a baffle. It acts to suppress the movement of the liquid surface. As a result, even when the auxiliary heating device 9 is being driven, the splashes of the boiling heat medium liquid 3 are reduced from falling on the surface of the hot water heat exchanger 6 above, so that the heat of condensation of the heat medium liquid vapor is reduced. Is efficiently transmitted to the surface of the hot water heat exchanger 6. As a result, it is not necessary to separate the hot water heat exchanger 6 from the liquid surface or increase the size of the hot water heat exchanger 6, and the entire vacuum water heater 1 is compactly formed.

なお、前記主加熱器8で加熱された熱媒液3は熱媒液槽4内を上昇するので、この主加熱器8により熱媒液3全体を加熱することができる。このため、補助用加熱装置9が停止中は、第2主加熱器10の加熱を停止してもよい。また、高負荷運転時に、補助用加熱装置9の加熱により熱媒液槽4内の熱媒液3全体が十分に加熱される場合には、主加熱器8の加熱を停止することも可能である。 Since the heat medium liquid 3 heated by the main heater 8 rises in the heat medium liquid tank 4, the entire heat medium liquid 3 can be heated by the main heater 8. Therefore, while the auxiliary heating device 9 is stopped, the heating of the second main heater 10 may be stopped. Further, during high load operation, if the entire heat medium liquid 3 in the heat medium liquid tank 4 is sufficiently heated by the heating of the auxiliary heating device 9, it is possible to stop the heating of the main heater 8. be.

そこで、図2に示すように、前記導入配管13と導入分岐管17との接続部、および導出配管15と導出分岐管18との接続部に、それぞれ切換弁17a,18aを設け、低負荷運転時にはヒートポンプの冷媒を主加熱器8に案内し、高負荷運転時にはヒートポンプの冷媒を第2主加熱器10に案内するように、各切換弁17a,18aを制御してもよい。これにより、低負荷時にあっても熱媒液槽4内の熱媒液3全体を加熱できるものでありながら、主加熱器8による加熱と第2主加熱器10による加熱とのいずれか一方が用いられるので、缶体効率が一層向上し、年間エネルギー消費量とランニングコストの低減及びCOの削減をさらに図ることができる。 Therefore, as shown in FIG. 2, switching valves 17a and 18a are provided at the connection portion between the introduction pipe 13 and the introduction branch pipe 17 and the connection portion between the lead-out pipe 15 and the lead-out branch pipe 18, respectively, for low load operation. The switching valves 17a and 18a may be controlled so that the refrigerant of the heat pump is sometimes guided to the main heater 8 and the refrigerant of the heat pump is guided to the second main heater 10 during high load operation. As a result, even when the load is low, the entire heat medium solution 3 in the heat medium solution tank 4 can be heated, but either the heating by the main heater 8 or the heating by the second main heater 10 can be performed. Since it is used, the efficiency of the can body is further improved, and the annual energy consumption and running cost can be further reduced and CO 2 can be further reduced.

図3は本発明の他の実施形態に係る真空式温水機を示し、この真空式温水機1は、熱媒液槽4内の熱媒液3を、主加熱器8の周囲と熱媒液槽4の液面近傍との間で流動させる流動装置25を備えている。即ち、主加熱器8の周囲である熱媒液槽4内の底部と、熱媒液槽4の液面近傍との間には、循環ポンプ26を備える熱媒液路27が設けてあり、この循環ポンプ26を備えた熱媒液路27が前記流動装置25を構成している。その他の構成は図1に示す真空式温水機と同様構造に構成され、同様の作用効果を奏することができるため、図1に示す真空式温水機と同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。 FIG. 3 shows a vacuum type water heater according to another embodiment of the present invention. In this vacuum type water heater 1, the heat medium solution 3 in the heat medium solution tank 4 is placed around the main heater 8 and the heat medium solution. A flow device 25 for flowing between the tank 4 and the vicinity of the liquid level is provided. That is, a heat transfer passage 27 provided with a circulation pump 26 is provided between the bottom of the heat medium liquid tank 4 around the main heater 8 and the vicinity of the liquid level of the heat medium liquid tank 4. The heat medium liquid passage 27 provided with the circulation pump 26 constitutes the flow device 25. Other configurations are the same as those of the vacuum water heater shown in FIG. 1, and the same effects can be obtained. Therefore, the same reference numbers are assigned to the same parts and members as those of the vacuum water heater shown in FIG. The detailed description thereof will be omitted.

前記循環ポンプ26は、補助用加熱装置9が停止している状態で、熱媒液槽4に付設された液温検出器19により検出される熱媒液3の温度が設定温度以下になると、制御装置20により駆動され、熱媒液槽4の液面近傍の熱媒液3が、熱媒液路27を経て熱媒液槽4の底部に案内され、主加熱器8の周囲に供給される。この熱媒液3の供給により、主加熱器8の周囲の熱媒液3が流動することから、主加熱器8の伝熱面8aで熱媒液3が効率よく加熱される。また、熱媒液槽4の液面近傍の熱媒液3が主加熱器8の周囲へ移動することから、主加熱器8の周囲を通過する上昇流が熱媒液槽4内に生じ、熱媒液槽4全体の熱媒液3が加熱される。これにより、蓄熱量が多くなるので、必要に応じて補助用加熱装置9を駆動することにより、温水熱交換器6を高負荷運転へ速やかに切り換えることができる。 In the circulation pump 26, when the temperature of the heat medium liquid 3 detected by the liquid temperature detector 19 attached to the heat medium liquid tank 4 becomes equal to or lower than the set temperature while the auxiliary heating device 9 is stopped. Driven by the control device 20, the heat medium liquid 3 near the liquid level of the heat medium liquid tank 4 is guided to the bottom of the heat medium liquid tank 4 via the heat medium liquid passage 27, and is supplied to the periphery of the main heater 8. NS. Since the heat medium liquid 3 around the main heater 8 flows by the supply of the heat medium liquid 3, the heat medium liquid 3 is efficiently heated on the heat transfer surface 8a of the main heater 8. Further, since the heat medium liquid 3 near the liquid surface of the heat medium liquid tank 4 moves to the periphery of the main heater 8, an ascending flow passing around the main heater 8 is generated in the heat medium liquid tank 4. The heat medium solution 3 of the entire heat medium solution tank 4 is heated. As a result, the amount of heat stored increases, so that the hot water heat exchanger 6 can be quickly switched to high-load operation by driving the auxiliary heating device 9 as needed.

なお、この実施形態では、前記循環ポンプ26が熱媒液槽4の液面の熱媒液3を熱媒液槽4の底部に案内しているので、熱媒液槽4内に熱媒液3の上昇流が生じやすく、熱媒液槽4全体の熱媒液3が良好に加熱され、好ましい。しかし本発明では、循環ポンプ26が熱媒液槽4の底部の熱媒液3を熱媒液槽4の液面近傍に案内するものであってもよく、この場合も、主加熱器8の周囲に熱媒液3の流動を生じるうえ、熱媒液槽4内の熱媒液3全体を加熱できる点で、この実施形態と同様の効果を奏することができる。また、この実施形態では、循環ポンプ26を備えた熱媒液路27で流動装置25を構成したが、本発明に用いる流動装置25は、熱媒液槽4内の熱媒液3を主加熱器の伝熱面8aの周囲と熱媒液槽4の液面近傍との間で流動させる装置であればよく、例えば熱媒液槽4内に配置された撹拌機等であってもよい。 In this embodiment, since the circulation pump 26 guides the heat medium liquid 3 on the liquid surface of the heat medium liquid tank 4 to the bottom of the heat medium liquid tank 4, the heat medium liquid is contained in the heat medium liquid tank 4. It is preferable that the ascending flow of 3 is likely to occur and the heat transfer liquid 3 of the entire heat medium liquid tank 4 is satisfactorily heated. However, in the present invention, the circulation pump 26 may guide the heat medium liquid 3 at the bottom of the heat medium liquid tank 4 to the vicinity of the liquid surface of the heat medium liquid tank 4, and in this case as well, the main heater 8 may be used. The same effect as that of this embodiment can be obtained in that the heat medium liquid 3 flows around and the entire heat medium liquid 3 in the heat medium liquid tank 4 can be heated. Further, in this embodiment, the flow device 25 is configured by the heat transfer passage 27 provided with the circulation pump 26, but the flow device 25 used in the present invention mainly heats the heat medium solution 3 in the heat medium solution tank 4. Any device may be used as long as it is a device that flows between the periphery of the heat transfer surface 8a of the vessel and the vicinity of the liquid surface of the heat medium liquid tank 4, and may be, for example, a stirrer or the like arranged in the heat medium liquid tank 4.

本発明は、上記の各実施形態に限定されず、本発明の趣旨を逸脱しない範囲において、種々の変更が可能である。 The present invention is not limited to each of the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記の各実施形態においては、主加熱器8としてヒートポンプの凝縮器を用いた。しかし本発明で用いる主加熱器は、熱媒液槽内に配置されて熱媒液を加熱する装置であればよく、特定の加熱装置に限定されない。例えば、内部を高温水や高温ガスなどの流体が流通する配管や、電気ヒータなどを用いることも可能である。主加熱器に用いることができる高温水とは、例えば、ヒートポンプ給湯機により得られた高温水、コージェネレーションシステムのエンジン冷却水、太陽熱温水器により得られた高温水、温泉水、その他の高温水などを挙げることができる。 For example, in each of the above embodiments, a heat pump condenser was used as the main heater 8. However, the main heater used in the present invention may be any device that is arranged in the heat medium solution tank to heat the heat medium solution, and is not limited to a specific heating device. For example, it is possible to use a pipe through which a fluid such as high-temperature water or high-temperature gas flows, an electric heater, or the like. The high-temperature water that can be used for the main heater is, for example, high-temperature water obtained by a heat pump water heater, engine cooling water of a cogeneration system, high-temperature water obtained by a solar water heater, hot spring water, or other high-temperature water. And so on.

また、上記の各実施形態においては、補助用加熱装置9として燃焼式バーナ21と、熱媒液槽4内の熱媒液3に水没されている火炉22と水管23群を備える装置を用いた。しかし本発明で用いる補助用加熱装置は、多量の熱媒液を速やかに加熱できる装置であればよく、例えば電気ヒータやエンジン排ガスなどであっても良い。 Further, in each of the above embodiments, as the auxiliary heating device 9, a combustion type burner 21 and a device including a furnace 22 submerged in the heat medium liquid 3 in the heat medium liquid tank 4 and a group of water pipes 23 are used. .. However, the auxiliary heating device used in the present invention may be any device that can quickly heat a large amount of heat medium, and may be, for example, an electric heater or engine exhaust gas.

また、上記の各実施形態では、主加熱器8を補助用加熱装置9の火炉22の鉛直方向下方に配置した。しかし、本発明の主加熱器は、補助用加熱装置よりも下方に配置されておればよい。ただし、主加熱器が補助用加熱装置の一部または全部の鉛直方向下方に配置されると、真空式温水機全体の設置面積が一層小形に済み、好ましい。例えば、図4に示す変形例1のように、補助用加熱装置9の水管23群の鉛直方向下方に主加熱器8を配置してもよく、あるいは、図5に示す変形例2のように、補助用加熱装置9の火炉22と煙管28の鉛直方向下方に主加熱器8を配置したものであってもよい。 Further, in each of the above embodiments, the main heater 8 is arranged vertically below the furnace 22 of the auxiliary heating device 9. However, the main heater of the present invention may be arranged below the auxiliary heating device. However, when the main heater is arranged below a part or all of the auxiliary heating device in the vertical direction, the installation area of the entire vacuum water heater can be further reduced, which is preferable. For example, as in the first modification shown in FIG. 4, the main heater 8 may be arranged vertically below the water pipe 23 group of the auxiliary heating device 9, or as in the second modification shown in FIG. The main heater 8 may be arranged vertically below the furnace 22 and the smoke tube 28 of the auxiliary heating device 9.

1…真空式温水機
2…缶体
3…熱媒液
4…熱媒液槽
5…減圧蒸気室
6…温水熱交換器
7…加熱手段
8…主加熱器
9…補助用加熱装置
10…第2主加熱器
11…ヒートポンプ
21…燃焼式バーナ
25…流動装置
26…循環ポンプ
27…熱媒液路
1 ... Vacuum type water heater 2 ... Can body 3 ... Heat medium liquid 4 ... Heat medium liquid tank 5 ... Decompression steam chamber 6 ... Hot water heat exchanger 7 ... Heating means 8 ... Main heater 9 ... Auxiliary heating device 10 ... No. 2 Main heater 11 ... Heat pump 21 ... Combustion burner 25 ... Flow device 26 ... Circulation pump 27 ... Heat medium liquid passage

Claims (9)

内部が大気圧以下に保持された密閉状の缶体と、缶体内の下部に形成されて熱媒液を貯留する熱媒液槽と、缶体内の上部に形成された減圧蒸気室と、減圧蒸気室に配置されて減圧蒸気室内に発生した蒸気を水との熱交換により凝縮して液化させる温水熱交換器と、熱媒液槽内の熱媒液中に配置されて熱媒液を加熱蒸発させる加熱手段とを備えた真空式温水機であって、
前記加熱手段は、主加熱器と、前記主加熱器よりも出力が大きい補助用加熱装置とを備え、
前記主加熱器は、前記補助用加熱装置よりも下方に配置されていることを特徴とする、真空式温水機。
A closed can body whose inside is kept below atmospheric pressure, a heat medium liquid tank formed in the lower part of the can body to store the heat medium liquid, a decompression steam chamber formed in the upper part of the can body, and decompression. A hot water heat exchanger that is placed in the steam chamber and condenses and liquefies the steam generated in the decompression steam chamber by heat exchange with water, and a hot water heat exchanger that is placed in the heat medium liquid in the heat medium liquid tank to heat the heat medium liquid. A vacuum water heater equipped with a heating means for evaporating.
The heating means includes a main heater and an auxiliary heating device having a larger output than the main heater.
The vacuum type water heater, wherein the main heater is arranged below the auxiliary heating device.
前記主加熱器は、熱媒液槽の底部に配置されている、請求項1に記載の真空式温水機。 The vacuum type water heater according to claim 1, wherein the main heater is arranged at the bottom of a heat medium liquid tank. 前記主加熱器は、前記缶体内の圧力下で熱媒液が沸騰する温度よりも高い温度の流体が内部を流通する配管を備えている、請求項1または請求項2に記載の真空式温水機。 The vacuum hot water according to claim 1 or 2, wherein the main heater includes a pipe through which a fluid having a temperature higher than the temperature at which the heat medium is boiled under the pressure inside the can flows. Machine. 前記高温の流体はヒートポンプの冷媒であり、前記主加熱器はヒートポンプの冷媒を冷却するための凝縮器である、請求項3に記載の真空式温水機。 The vacuum water heater according to claim 3, wherein the high-temperature fluid is a refrigerant of a heat pump, and the main heater is a condenser for cooling the refrigerant of the heat pump. 前記補助用加熱装置は、燃焼式バーナを備える、請求項1から4のいずれかに記載の真空式温水機。 The vacuum water heater according to any one of claims 1 to 4, wherein the auxiliary heating device includes a combustion burner. 前記加熱手段は、さらに第2の主加熱器を前記補助用加熱装置の鉛直方向上方の熱媒液中であって、前記温水熱交換器の鉛直方向下方に備えている、請求項1から5のいずれかに記載の真空式温水機。 The heating means further includes a second main heater in a heat medium solution vertically above the auxiliary heating device and below the hot water heat exchanger in the vertical direction, according to claims 1 to 5. The vacuum water heater described in any of. 前記主加熱器は、前記補助用加熱装置が駆動されている間は加熱を停止するとともに、前記補助用加熱装置の駆動が停止されている間は周囲の熱媒液を加熱し、
前記第2主加熱器は、前記補助用加熱装置が駆動されている間は周囲の熱媒液を加熱するとともに、前記補助用加熱装置の駆動が停止されている間は加熱を停止する、請求項6に記載の真空式温水機。
The main heater stops heating while the auxiliary heating device is being driven, and heats the surrounding heat medium while the auxiliary heating device is not being driven.
The second main heater heats the surrounding heat medium while the auxiliary heating device is being driven, and stops heating while the auxiliary heating device is stopped. Item 6. The vacuum water heater according to item 6.
前記熱媒液槽内の熱媒液を前記主加熱器の周囲と熱媒液槽の液面近傍との間で流動させる流動装置を備える、請求項1から7のいずれかに記載の真空式温水機。 The vacuum type according to any one of claims 1 to 7, further comprising a flow device for flowing the heat medium liquid in the heat medium liquid tank between the periphery of the main heater and the vicinity of the liquid level of the heat medium liquid tank. Water heater. 前記流動装置は、前記熱媒液槽内の主加熱器の周囲と熱媒液槽の液面近傍との間に設けた循環ポンプを備える熱媒液路である、請求項8に記載の真空式温水機。 The vacuum according to claim 8, wherein the flow device is a heat medium liquid passage provided with a circulation pump provided between the periphery of the main heater in the heat medium liquid tank and the vicinity of the liquid level of the heat medium liquid tank. Type water heater.
JP2019237450A 2019-12-26 2019-12-26 Vacuum water heater Active JP7390186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237450A JP7390186B2 (en) 2019-12-26 2019-12-26 Vacuum water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237450A JP7390186B2 (en) 2019-12-26 2019-12-26 Vacuum water heater

Publications (2)

Publication Number Publication Date
JP2021105490A true JP2021105490A (en) 2021-07-26
JP7390186B2 JP7390186B2 (en) 2023-12-01

Family

ID=76918714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237450A Active JP7390186B2 (en) 2019-12-26 2019-12-26 Vacuum water heater

Country Status (1)

Country Link
JP (1) JP7390186B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889761U (en) * 1981-12-11 1983-06-17 株式会社ノーリツ Heat pump type air conditioning/heating water heater
JPS59180226A (en) * 1983-03-30 1984-10-13 Matsushita Electric Ind Co Ltd Heat pump type air conditioner combined with hot water supply unit
JP2001174056A (en) * 1999-12-21 2001-06-29 Takuma Co Ltd Vacuum type water heating equipment
JP2015206484A (en) * 2014-04-17 2015-11-19 株式会社日本サーモエナー Vacuum type water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889761U (en) * 1981-12-11 1983-06-17 株式会社ノーリツ Heat pump type air conditioning/heating water heater
JPS59180226A (en) * 1983-03-30 1984-10-13 Matsushita Electric Ind Co Ltd Heat pump type air conditioner combined with hot water supply unit
JP2001174056A (en) * 1999-12-21 2001-06-29 Takuma Co Ltd Vacuum type water heating equipment
JP2015206484A (en) * 2014-04-17 2015-11-19 株式会社日本サーモエナー Vacuum type water heater

Also Published As

Publication number Publication date
JP7390186B2 (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP5441440B2 (en) Water heater
JP6359321B2 (en) Vacuum water heater
JP2008082601A (en) Heat pump hot water supply device
JP2021105490A (en) Vacuum type water heater
KR101516913B1 (en) Liquefied natural gas vaporizer
JP7390187B2 (en) Vacuum water heater
JP7390185B2 (en) Vacuum water heater
JP2009036103A (en) Exhaust heat recovery device
KR101660706B1 (en) Apparatus for Heat Recovery of Exhaust Gas in High Efficiency Absorption Chiller-Heater
JP7309589B2 (en) Vacuum water heater and operation method of vacuum water heater
JP2007278655A (en) Heat storage type hot water supplier
JP2007050324A (en) Heating/cooling device
JP5929464B2 (en) Heat pump and heat pump activation method
JP2005300057A (en) Heat pump hot water supply system
JP5653861B2 (en) Water heater
JP6913555B2 (en) Hot water heating system
JPH0787770B2 (en) Exhaust heat recovery system heat treatment equipment
JP3448682B2 (en) Absorption type cold heat generator
PL81166B1 (en) Heat transfer apparatus for the utilization of the heat content of exhaust gases[gb1293279a]
JP2023176252A (en) Absorption water cooling/heating machine
JP3559919B2 (en) Absorption type cold and hot heat generator
JP3663007B2 (en) Absorption chiller / heater
JPS5829424Y2 (en) absorption cold water machine
JP3663008B2 (en) Absorption chiller / heater
JP2019035562A (en) Hot water supply and heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7390186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150