JP2020007593A - Joint material, joint material paste containing the same, and joint method and semiconductor device using the same - Google Patents
Joint material, joint material paste containing the same, and joint method and semiconductor device using the same Download PDFInfo
- Publication number
- JP2020007593A JP2020007593A JP2018128347A JP2018128347A JP2020007593A JP 2020007593 A JP2020007593 A JP 2020007593A JP 2018128347 A JP2018128347 A JP 2018128347A JP 2018128347 A JP2018128347 A JP 2018128347A JP 2020007593 A JP2020007593 A JP 2020007593A
- Authority
- JP
- Japan
- Prior art keywords
- nanoparticles
- bonding
- bonding material
- coated
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Die Bonding (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、少なくとも銅ナノ粒子を含有する接合材料、それを含有する接合材料ペースト、並びにそれらを用いた接合方法及び半導体装置に関する。 The present invention relates to a bonding material containing at least copper nanoparticles, a bonding material paste containing the same, a bonding method using the same, and a semiconductor device.
半導体素子の電極接合などにおいては、従来、Sn−Pb系はんだが用いられていたが、近年、環境保全の観点から、鉛フリーはんだといった新規な接合材料が求められている。また、半導体素子の接合技術においては、半導体素子への負荷を低減するために、低温での接合が可能な材料が求められている。さらに、Ag、Cu、Niなどの金属微粒子は、粒径がナノメートルサイズまで小さくなると、その融点よりはるかに低い温度で焼結させることが可能となるため、半導体素子の低温接合などへの応用が期待されている。 Conventionally, Sn-Pb based solders have been used for electrode bonding of semiconductor elements, but in recent years, from the viewpoint of environmental protection, new bonding materials such as lead-free solders have been required. In addition, in the technology of joining semiconductor elements, a material that can be joined at a low temperature is required in order to reduce the load on the semiconductor element. Further, when the particle size of metal particles such as Ag, Cu, and Ni is reduced to a nanometer size, it can be sintered at a temperature much lower than its melting point. Is expected.
しかしながら、このような金属微粒子は、表面が高活性であり、凝集しやすいため、通常、界面活性剤やポリマーなどで被覆して分散安定性を確保している。このため、このような金属微粒子を用いて半導体素子の接合を行う際に加熱処理を施すと、金属微粒子が焼結するとともに界面活性剤やポリマーなどの被膜が分解され、ガスが発生し、金属微粒子間に空隙が生じる。その結果、無加圧や低温では焼結組織が密にならず、十分に高い接合強度が得られなかった。 However, such metal fine particles have a high surface activity and are easily aggregated, so that they are usually coated with a surfactant or a polymer to ensure dispersion stability. Therefore, if a heat treatment is performed when a semiconductor element is joined using such metal fine particles, the metal fine particles are sintered and a film of a surfactant or a polymer is decomposed, and gas is generated. Voids are generated between the fine particles. As a result, the sintered structure did not become dense under no pressure or low temperature, and a sufficiently high joining strength could not be obtained.
一方、特開2012−46779号公報(特許文献1)には、Cuナノ粒子の表面が炭素数8以上の脂肪酸と脂肪族アミンとを含有する有機被膜で被覆されている表面被覆Cuナノ粒子が記載されている。この表面被覆Cuナノ粒子を単独で接合材料として使用して金属部材を高い接合強度で接合するためには、大きな圧力を印加しながら接合する必要があった。 On the other hand, Japanese Patent Application Laid-Open No. 2012-46779 (Patent Document 1) discloses a surface-coated Cu nanoparticle in which the surface of the Cu nanoparticle is coated with an organic film containing a fatty acid having 8 or more carbon atoms and an aliphatic amine. Has been described. In order to bond metal members with high bonding strength using the surface-coated Cu nanoparticles alone as a bonding material, it was necessary to bond while applying a large pressure.
また、特開2017−147151号公報(特許文献2)には、表面が有機分子で被覆されたCu系ナノ粒子と、Ni系粗大粒子と、有機溶剤とを含有する導電性ペースト、並びに、表面が有機分子で被覆されたNi系ナノ粒子と、Cu粗大粒子と、有機溶剤とを含有する導電性ペーストが記載されており、Cu粗大粒子としてCuとZn等との合金からなるものが記載されている。この導電性ペーストは、表面にNi等の特定の金属元素を含む密着層が形成されている金属部材の接合には有効であるが、それ以外の金属部材を高い接合強度で接合するためには、大きな圧力を印加しながら接合する必要があった。 Japanese Patent Application Laid-Open No. 2017-147151 (Patent Document 2) discloses a conductive paste containing Cu-based nanoparticles whose surfaces are coated with organic molecules, Ni-based coarse particles, an organic solvent, and a surface. Describes a conductive paste containing Ni-based nanoparticles coated with organic molecules, coarse Cu particles, and an organic solvent, and those composed of an alloy of Cu and Zn or the like as the coarse Cu particles. ing. This conductive paste is effective for bonding a metal member having an adhesion layer containing a specific metal element such as Ni on the surface, but for bonding other metal members with high bonding strength. It was necessary to join while applying a large pressure.
さらに、特開2017−101313号公報(特許文献3)には、Cu微粒子の表面が加熱により脱離可能な有機被膜で被覆されている表面被覆Cu微粒子と、Bi−Sn合金粒子とを含有する接合材料が記載されており、前記表面被覆Cu微粒子及び前記Bi−Sn合金粒子以外にAg、Ni、Zn等からなる第3の金属粒子を含有することによって耐熱性に優れた接合層が形成されることが記載されている。この接合材料を用いることによって比較的低い圧力を印加しながら接合した場合であっても金属部材を接合することが可能となったが、接合強度は必ずしも十分なものではなく、また、印加する圧力を更に低くすると、接合強度が低くなる場合があった。 Further, JP-A-2017-101313 (Patent Document 3) contains Bi-Sn alloy particles and surface-coated Cu fine particles in which the surfaces of Cu fine particles are coated with an organic film detachable by heating. A bonding material is described, and a bonding layer excellent in heat resistance is formed by including third metal particles made of Ag, Ni, Zn, etc. in addition to the surface-coated Cu fine particles and the Bi-Sn alloy particles. Is described. By using this joining material, it was possible to join metal members even when joining while applying a relatively low pressure, but the joining strength is not always sufficient, and the applied pressure , The bonding strength was sometimes reduced.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、より低い圧力を印加しながら接合した場合であっても高い接合強度で半導体素子や基板等の金属部材を接合することが可能な接合材料、それを含有する接合材料ペースト、並びにそれらを用いた接合方法及び半導体装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the related art, and enables metal members such as semiconductor elements and substrates to be bonded with high bonding strength even when bonding is performed while applying lower pressure. An object of the present invention is to provide a bonding material that can be used, a bonding material paste containing the same, a bonding method using the same, and a semiconductor device.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、表面に有機被膜を備えるCuナノ粒子(表面被覆Cuナノ粒子)と、Zn系粒子とを特定の割合で含有する接合材料を使用し、この接合材料により形成された接合材料層を前記有機被膜の脱離開始温度以上の温度で加熱して前記表面被覆Cuナノ粒子から前記有機被膜を脱離させるとともに、Cuナノ粒子を構成するCuとZn系粒子を構成するZnとを反応させてCu−Zn固溶体及びCu−Zn金属間化合物のうちの少なくとも一方を形成させ、かつ、Cuナノ粒子を構成するCuを焼成させて接合層を形成することによって、より低い圧力を印加しながら接合した場合であっても高い接合強度で金属部材を接合できることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a bonding material containing Cu nanoparticles having an organic coating on the surface (surface-coated Cu nanoparticles) and Zn-based particles at a specific ratio. Using a bonding material layer formed by this bonding material is heated at a temperature equal to or higher than the desorption start temperature of the organic coating to release the organic coating from the surface-coated Cu nanoparticles, and to reduce the Cu nanoparticles. The constituent Cu and the constituent Zn are reacted with each other to form at least one of a Cu-Zn solid solution and a Cu-Zn intermetallic compound, and the Cu constituting the Cu nanoparticles is bonded by firing. The present inventors have found that by forming a layer, it is possible to join metal members with high joining strength even when joining while applying a lower pressure, and have completed the present invention.
すなわち、本発明の接合材料は、平均粒子径が10〜1000nmのCuナノ粒子と、該Cuナノ粒子の表面に配置され、カルボキシル基及びアミノ基のうちの少なくとも1種の基を含有し、加熱により前記表面から脱離することが可能な有機被膜とを備える表面被覆Cuナノ粒子、及び、亜鉛、亜鉛合金及び亜鉛酸化物からなる群から選択される1種からなり、平均粒子径が0.01〜100μmのZn系粒子を含有し、前記表面被覆Cuナノ粒子と前記Zn系粒子の合計量に対して前記Zn系粒子の含有量が2〜55質量%であることを特徴とするものである。このような本発明の接合材料においては、前記有機被膜が前記Zn系粒子の融点より低い脱離開始温度を有するものであることが好ましい。また、本発明の接合材料ペーストは、前記本発明の接合材料を含有することを特徴とするものである。 That is, the bonding material of the present invention contains Cu nanoparticles having an average particle diameter of 10 to 1000 nm, and is disposed on the surface of the Cu nanoparticles, and contains at least one group of a carboxyl group and an amino group. And a surface-coated Cu nanoparticle provided with an organic film capable of desorbing from the surface, and one selected from the group consisting of zinc, a zinc alloy and a zinc oxide, and having an average particle diameter of 0.1. It contains Zn-based particles of 01 to 100 µm, and the content of the Zn-based particles is 2 to 55% by mass based on the total amount of the surface-coated Cu nanoparticles and the Zn-based particles. is there. In such a bonding material of the present invention, it is preferable that the organic coating has a desorption start temperature lower than the melting point of the Zn-based particles. Further, the bonding material paste of the present invention contains the bonding material of the present invention.
本発明の接合方法は、表面が金属からなる第1部材及び第2部材と、該第1部材及び該第2部材の表面に接触している、前記本発明の接合材料又は前記本発明の接合材料ペーストを用いて形成された接合材料層とを備える積層体を形成する工程と、前記接合材料層を前記有機被膜の脱離開始温度以上の温度で加熱して、前記表面被覆Cuナノ粒子から前記有機被膜を脱離させるとともに、前記Cuナノ粒子を構成するCuと前記Zn系粒子を構成するZnとを反応させてCu−Zn固溶体及びCu−Zn金属間化合物のうちの少なくとも一方を形成せしめ、かつ、前記Cuナノ粒子を構成するCuを焼成せしめて、接合層を形成せしめる工程と、を含むことを特徴とする方法である。 The bonding method according to the present invention includes the first member and the second member whose surfaces are made of metal, and the bonding material according to the present invention or the bonding according to the present invention, which are in contact with the surfaces of the first member and the second member. A step of forming a laminate including a bonding material layer formed using a material paste, and heating the bonding material layer at a temperature equal to or higher than the desorption start temperature of the organic film, and from the surface-coated Cu nanoparticles The organic coating is removed, and Cu constituting the Cu nanoparticles is reacted with Zn constituting the Zn-based particles to form at least one of a Cu-Zn solid solution and a Cu-Zn intermetallic compound. And baking Cu constituting the Cu nanoparticles to form a bonding layer.
本発明の半導体装置は、半導体素子、半導体用基板、及び前記半導体素子と前記半導体用基板との間に配置されており、前記本発明の接合材料又は接合材料ペーストを用いて形成された接合層とを備えていることを特徴とするものである。 A semiconductor device of the present invention includes a semiconductor element, a semiconductor substrate, and a bonding layer disposed between the semiconductor element and the semiconductor substrate, and formed using the bonding material or the bonding material paste of the present invention. Are provided.
なお、本発明おける「有機被膜の脱離開始温度」は、前記表面被覆Cuナノ粒子について、ArやN2等の不活性ガス雰囲気下において熱重量分析を行い、有機被膜の脱離に起因する質量減少が認められる温度範囲のうちの最低温度、すなわち、昇温過程において質量減少が始まる温度で定義される。 The “desorption start temperature of the organic film” in the present invention is based on the desorption of the organic film by performing thermogravimetric analysis on the surface-coated Cu nanoparticles in an atmosphere of an inert gas such as Ar or N 2. It is defined as the lowest temperature in the temperature range in which mass loss is recognized, that is, the temperature at which mass loss starts in the heating process.
また、本発明の接合材料によって、より低い圧力を印加しながら接合した場合であっても高い接合強度で金属部材を接合することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の接合材料により形成された接合材料層を有機被膜の脱離開始温度以上の温度で加熱すると、表面被覆Cuナノ粒子から有機被膜が脱離するとともに、Cuナノ粒子を構成するCuとZn系粒子を構成するZnとが反応してCu−Zn固溶体及びCu−Zn金属間化合物のうちの少なくとも一方が形成され、かつ、Cuナノ粒子を構成するCuが焼結される。接合材料層にCu−Zn固溶体やCu−Zn金属間化合物が含まれると、接合材料の融点が低下するため、Cuの焼結が促進され、接合時に印加する圧力を低くしても、高い接合強度を有する接合層が形成されると推察される。 In addition, the reason why it is possible to join metal members with high joining strength even when joining by applying a lower pressure by the joining material of the present invention is not necessarily clear, but the present inventors have Infer as follows. That is, when the bonding material layer formed by the bonding material of the present invention is heated at a temperature equal to or higher than the desorption start temperature of the organic coating, the organic coating is released from the surface-coated Cu nanoparticles, and the Cu constituting the Cu nanoparticles is removed. Reacts with Zn constituting the Zn-based particles to form at least one of a Cu-Zn solid solution and a Cu-Zn intermetallic compound, and sinter Cu constituting the Cu nanoparticles. When the bonding material layer contains a Cu—Zn solid solution or a Cu—Zn intermetallic compound, the melting point of the bonding material is reduced, so that sintering of Cu is promoted and even if the pressure applied during bonding is reduced, high bonding is achieved. It is presumed that a bonding layer having strength is formed.
本発明によれば、より低い圧力を印加しながら接合した場合であっても高い接合強度で半導体素子や基板等の金属部材を接合することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, even if it joins, applying a lower pressure, it becomes possible to join metal members, such as a semiconductor element and a board | substrate, with high joining strength.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments.
<接合材料>
先ず、本発明の接合材料について説明する。本発明の接合材料は、平均粒子径が10〜1000nmのCuナノ粒子と、該Cuナノ粒子の表面に配置され、カルボキシル基及びアミノ基のうちの少なくとも1種の基を含有し、加熱により前記表面から脱離することが可能な有機被膜とを備える表面被覆Cuナノ粒子、及び、亜鉛、亜鉛合金及び亜鉛酸化物からなる群から選択される1種からなり、平均粒子径が0.01〜100μmのZn系粒子を含有し、前記表面被覆Cuナノ粒子と前記Zn系粒子の合計量に対して前記Zn系粒子の含有量が2〜55質量%である、接合材料である。
<Joining materials>
First, the bonding material of the present invention will be described. The bonding material of the present invention has Cu nanoparticles having an average particle diameter of 10 to 1000 nm, and is disposed on the surface of the Cu nanoparticles, and contains at least one group of a carboxyl group and an amino group. A surface-coated Cu nanoparticle comprising an organic film capable of desorbing from the surface, and one selected from the group consisting of zinc, zinc alloy and zinc oxide, having an average particle diameter of 0.01 to A bonding material containing 100 μm Zn-based particles, wherein the content of the Zn-based particles is 2 to 55% by mass based on the total amount of the surface-coated Cu nanoparticles and the Zn-based particles.
本発明に用いられる表面被覆Cuナノ粒子は、Cuナノ粒子と、このCuナノ粒子の表面に配置され、カルボキシル基及びアミノ基のうちの少なくとも1種の基を含有し、加熱により前記表面から脱離することが可能な有機被膜とを備えるものである。Cuナノ粒子が、このような有機被膜を表面に備えることによって、Cuナノ粒子の酸化と凝集を防止し、焼成時におけるCuの焼結を促進させることが可能となる。 The surface-coated Cu nanoparticles used in the present invention include Cu nanoparticles and at least one group of a carboxyl group and an amino group, which are arranged on the surface of the Cu nanoparticles and are removed from the surface by heating. An organic film that can be separated. By providing such organic coating on the surface of the Cu nanoparticles, oxidation and aggregation of the Cu nanoparticles can be prevented, and sintering of Cu during firing can be promoted.
このようなCuナノ粒子の平均粒子径は10〜1000nmである。Cuナノ粒子の平均粒子径が前記下限未満になると、Cuナノ粒子の表面が酸化されるため、Cuナノ粒子の焼結が阻害され、接合層の接合強度、導電性、熱伝導性が向上せず、他方、前記上限を超えると、Cuナノ粒子の表面エネルギーが小さくなるため、Cuナノ粒子の焼結が進行せず、接合層の接合強度、導電性、熱伝導性が向上しない。さらに、Cuナノ粒子の焼結が阻害されにくく、接合層の接合強度、導電性、熱伝導性が向上するという観点から、Cuナノ粒子の平均粒子径としては50〜300nmが好ましく、80〜200nmがより好ましい。なお、この平均粒子径は、透過型電子顕微鏡(TEM)観察において、無作為に抽出した200個のCuナノ粒子の直径を測定した算術平均値である。 The average particle size of such Cu nanoparticles is 10 to 1000 nm. When the average particle diameter of the Cu nanoparticles is less than the lower limit, the surface of the Cu nanoparticles is oxidized, so that sintering of the Cu nanoparticles is inhibited, and the bonding strength, conductivity, and thermal conductivity of the bonding layer are improved. On the other hand, if the upper limit is exceeded, the surface energy of the Cu nanoparticles becomes small, so that the sintering of the Cu nanoparticles does not proceed, and the bonding strength, electrical conductivity, and thermal conductivity of the bonding layer are not improved. Furthermore, from the viewpoint that sintering of the Cu nanoparticles is hardly inhibited and the bonding strength, electrical conductivity, and thermal conductivity of the bonding layer are improved, the average particle size of the Cu nanoparticles is preferably 50 to 300 nm, and 80 to 200 nm. Is more preferred. The average particle diameter is an arithmetic average value obtained by measuring diameters of 200 randomly extracted Cu nanoparticles in transmission electron microscope (TEM) observation.
本発明にかかる有機被膜としては、カルボキシル基及びアミノ基のうちの少なくとも1種の基を含有し、加熱によりCuナノ粒子の表面から脱離することが可能なものであれば特に制限はないが、Cuナノ粒子の表面からの脱離開始温度が後述するZn系粒子の融点より低い有機被膜が好ましい。有機被膜の脱離開始温度がZn系粒子の融点より高くなると、表面被覆Cuナノ粒子から有機被膜を脱離させるために、極めて高い温度(例えば、420℃以上)で加熱する必要があり、製造時のエネルギーコストが高くなる傾向にある。 The organic coating according to the present invention is not particularly limited as long as it contains at least one group of a carboxyl group and an amino group and can be released from the surface of the Cu nanoparticles by heating. In addition, an organic film having a desorption initiation temperature of Cu nanoparticles lower than the melting point of Zn-based particles described below is preferable. When the desorption start temperature of the organic film is higher than the melting point of the Zn-based particles, it is necessary to heat at an extremely high temperature (for example, 420 ° C. or higher) in order to desorb the organic film from the surface-coated Cu nanoparticles. Energy costs at times tend to be higher.
また、有機被膜の脱離開始温度としては200〜300℃が好ましい。有機被膜の脱離開始温度が前記下限未満になると、有機被膜が不安定となり、Cuナノ粒子の形態を保持することが困難となる傾向にあり、他方、前記上限を超えると、接合時の加熱温度が高くなり、半導体装置の信頼性が低下する傾向にある。また、前記脱離開始温度が前記範囲を満たす有機被膜としては、脂肪酸(好ましくは炭素数8〜18、より好ましくは炭素数8〜16、特に好ましくは炭素数8〜14)及び脂肪族アミン(好ましくは炭素数8〜18、より好ましくは炭素数8〜16、特に好ましくは炭素数8〜14)のうちの少なくとも一方(好ましくは両方)を含有する有機被膜が挙げられる。 Further, the desorption start temperature of the organic film is preferably from 200 to 300C. When the desorption start temperature of the organic film is lower than the lower limit, the organic film tends to be unstable, and it tends to be difficult to maintain the shape of Cu nanoparticles. The temperature tends to increase, and the reliability of the semiconductor device tends to decrease. The organic film having the desorption initiation temperature satisfying the above range includes fatty acids (preferably having 8 to 18 carbon atoms, more preferably having 8 to 16 carbon atoms, particularly preferably having 8 to 14 carbon atoms) and aliphatic amines ( An organic coating containing at least one (preferably both) of preferably 8 to 18 carbon atoms, more preferably 8 to 16 carbon atoms, and particularly preferably 8 to 14 carbon atoms.
また、このような有機被膜における脂肪族アミンと脂肪酸とのモル比(脂肪族アミン/脂肪酸)としては、0.001/1〜1/1が好ましく、0.001/1〜0.15/1がより好ましく、0.001/1〜0.1/1が特に好ましい。脂肪族アミンの割合が前記下限未満になると、Cuナノ粒子の表面に有機被膜が安定に存在せず、Cuナノ粒子が凝集しやすい傾向にあり、他方、前記上限を超えると、有機被膜の脱離開始温度が前記上限を超える傾向にある。 Further, the molar ratio between the aliphatic amine and the fatty acid (aliphatic amine / fatty acid) in such an organic coating is preferably from 0.001 / 1-1 / 1, more preferably from 0.001 / 1-1 / 15/1. Is more preferable, and 0.001 / 1 to 0.1 / 1 is particularly preferable. When the proportion of the aliphatic amine is less than the lower limit, the organic coating does not stably exist on the surface of the Cu nanoparticles, and the Cu nanoparticles tend to aggregate. The separation start temperature tends to exceed the upper limit.
このような本発明に用いられる表面被覆Cuナノ粒子は、例えば、特開2012−46779号公報に記載の方法、すなわち、Cuの塩であってアルコール系溶媒に不溶なものを、アルコール系溶媒中、脂肪酸及び脂肪族アミンのうちの少なくとも一方の共存下で還元せしめることによってCuナノ粒子を生成させ、かつ、このCuナノ粒子の表面に前記脂肪酸及び前記脂肪族アミンのうちの少なくとも一方を含有する有機被膜を形成させる方法によって製造することができる。 Such surface-coated Cu nanoparticles used in the present invention can be prepared, for example, by the method described in JP-A-2012-46779, that is, a Cu salt which is insoluble in an alcohol-based solvent in an alcohol-based solvent. Producing Cu nanoparticles by reduction in the presence of at least one of a fatty acid and an aliphatic amine, and containing at least one of the fatty acid and the aliphatic amine on the surface of the Cu nanoparticle. It can be manufactured by a method of forming an organic film.
本発明に用いられるZn系粒子は、亜鉛、亜鉛合金及び亜鉛酸化物からなる群から選択される1種からなるものである。このようなZn系粒子を用いることによって、このZn系粒子を構成するZnとCuナノ粒子を構成するCuとが反応してCu−Zn固溶体及びCu−Zn金属間化合物のうちの少なくとも一方が形成される。このようなCu−Zn固溶体やCu−Zn金属間化合物を含有する接合材料は、Cuのみを含有する接合材料に比べて融点が低いため、より低温でCuの焼結が促進され、接合時に印加する圧力を低くしても、高い接合強度を有する接合層が形成される。 The Zn-based particles used in the present invention are made of one selected from the group consisting of zinc, zinc alloy and zinc oxide. By using such Zn-based particles, Zn constituting the Zn-based particles reacts with Cu constituting Cu nanoparticles to form at least one of a Cu-Zn solid solution and a Cu-Zn intermetallic compound. Is done. Such a bonding material containing a Cu-Zn solid solution or a Cu-Zn intermetallic compound has a lower melting point than a bonding material containing only Cu, so that sintering of Cu is promoted at a lower temperature, and a Even if the applied pressure is reduced, a bonding layer having high bonding strength is formed.
また、本発明に用いられるZn系粒子としては、活性なZn原子によって焼結が促進されるという観点から、金属亜鉛からなる粒子(金属Zn粒子)が特に好ましいが、焼成によりCuと反応して容易に還元されて金属Zn状態となるため、表面の一部又は全部が酸化しているZn粒子(すなわち、表面部分酸化Zn粒子や表面酸化Zn粒子)であっても特に問題はない。また、前記Zn系粒子としては、亜鉛合金からなる粒子(Zn合金粒子)を用いることもできる。Zn合金粒子を構成する合金元素としては、鉄、チタン、ニッケル、アルミニウム等が挙げられる。また、Zn合金粒子中のZn含有量としては、Znの活性を有効活用するという観点から、80原子%以上が好ましく、90原子%以上がより好ましい。また、Zn系粒子としては、表面に有機被膜を備えるものでもよいが、不純物が少なく、高い接合強度を有する接合層が形成されるという観点から、有機被膜を備えていないものが好ましい。 Further, as the Zn-based particles used in the present invention, particles made of metal zinc (metal Zn particles) are particularly preferable from the viewpoint that sintering is promoted by active Zn atoms, but the particles react with Cu by firing. Since it is easily reduced to a metallic Zn state, there is no particular problem even with Zn particles whose surface is partially or entirely oxidized (that is, surface partially oxidized Zn particles or surface oxidized Zn particles). Further, as the Zn-based particles, particles made of a zinc alloy (Zn alloy particles) can also be used. Examples of alloying elements constituting the Zn alloy particles include iron, titanium, nickel, and aluminum. In addition, the Zn content in the Zn alloy particles is preferably 80 atomic% or more, and more preferably 90 atomic% or more, from the viewpoint of effectively utilizing the activity of Zn. As the Zn-based particles, those having an organic coating on the surface may be used, but those having no organic coating are preferable from the viewpoint that a bonding layer having a small amount of impurities and high bonding strength is formed.
このようなZn系粒子の平均粒子径は0.01〜100μmである。平均粒子径が前記下限未満のZn系粒子は調製が困難であり、他方、前記上限を超えると、接合材料やそのペーストの印刷性や塗工性が低下する。また、Zn系粒子の取扱性や接合材料やそのペーストの印刷性や塗工性の観点から、Zn系粒子の平均粒子径としては1〜50μmが好ましく、3〜20μmがより好ましい。なお、この平均粒子径は、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)による観察において、無作為に抽出した200個のZn系粒子の直径を測定した算術平均値である。 The average particle diameter of such Zn-based particles is 0.01 to 100 μm. It is difficult to prepare Zn-based particles having an average particle size less than the lower limit, while if the average particle size exceeds the upper limit, printability and coatability of the bonding material and its paste are reduced. Further, from the viewpoint of the handling properties of the Zn-based particles and the printability and coatability of the bonding material and the paste thereof, the average particle diameter of the Zn-based particles is preferably 1 to 50 μm, more preferably 3 to 20 μm. The average particle diameter is an arithmetic average value obtained by measuring the diameters of 200 randomly extracted Zn-based particles in a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
本発明の接合材料は、前記表面被覆Cuナノ粒子及びZn系粒子を含有するものである。このような接合材料においては、表面被覆Cuナノ粒子とZn系粒子の合計量に対してZn系粒子の含有量が2〜55質量%である。Zn系粒子の含有量が前記下限未満になると、Zn系粒子の添加効果(接合強度の向上)が得られず、他方、前記上限を超えると、接合層においてCuの焼結が進行せず、接合強度が低下する。また、接合層の接合強度が更に高くなるという観点から、Zn系粒子の含有量としては3〜50質量%が好ましく、20〜50質量%がより好ましく、25〜40質量%が更に好ましく、25〜35質量%が特に好ましい。 The bonding material of the present invention contains the surface-coated Cu nanoparticles and Zn-based particles. In such a bonding material, the content of the Zn-based particles is 2 to 55% by mass based on the total amount of the surface-coated Cu nanoparticles and the Zn-based particles. When the content of the Zn-based particles is less than the lower limit, the effect of adding the Zn-based particles (improvement of bonding strength) cannot be obtained. On the other hand, when the content exceeds the upper limit, sintering of Cu in the bonding layer does not proceed, Bonding strength decreases. In addition, from the viewpoint that the joining strength of the joining layer is further increased, the content of the Zn-based particles is preferably 3 to 50% by mass, more preferably 20 to 50% by mass, and still more preferably 25 to 40% by mass. -35% by mass is particularly preferred.
また、本発明の接合材料においては、本発明の効果を損なわない範囲において、銅、ニッケル等からなるものであって、平均粒子径が1〜100μmの他の金属粒子が含まれていてもよい。このような他の金属粒子を含むことによって、焼結収縮に由来するクラック等を軽減することが可能となる。このような他の金属粒子としては、表面に有機被膜を備えるものでもよいが、不純物が少なく、高い接合強度を有する接合層が形成されるという観点から、有機被膜を備えていないものが好ましい。 Further, in the bonding material of the present invention, other metal particles made of copper, nickel, or the like and having an average particle diameter of 1 to 100 μm may be included as long as the effects of the present invention are not impaired. . By including such other metal particles, it is possible to reduce cracks and the like due to sintering shrinkage. As such other metal particles, those having an organic coating on the surface may be used, but those having no organic coating are preferable from the viewpoint of forming a bonding layer having a small amount of impurities and a high bonding strength.
このような他の金属粒子の含有量としては全金属粒子(表面被覆Cuナノ粒子とZn系粒子と他の金属粒子との合計量)に対して20質量%以下が好ましく、10質量%以下がより好ましい。他の金属粒子の含有量が前記上限を超えると、接合強度が低下する傾向にある。 The content of such other metal particles is preferably 20% by mass or less, and more preferably 10% by mass or less, based on all the metal particles (the total amount of surface-coated Cu nanoparticles, Zn-based particles, and other metal particles). More preferred. If the content of the other metal particles exceeds the upper limit, the joining strength tends to decrease.
また、本発明の接合材料は、印刷性や塗工性の観点から、有機溶媒や油脂等を添加してペースト(本発明の接合材料ペースト)として使用してもよいし、圧粉してシート状に成形してもよい。ペーストに用いられる有機溶媒としては、α−テルピネオール等のモノテルペンアルコール、1−オクタノール、1−デカノール等の脂肪族アルコール、グリセリン等の高沸点有機溶媒が挙げられる。また、このような接合材料ペーストには、粘度調整のために、ポリエチレングリコール等の有機化合物を添加してもよい。 In addition, the bonding material of the present invention may be used as a paste (the bonding material paste of the present invention) by adding an organic solvent, fat or the like from the viewpoint of printability and coatability, or may be pressed and sheeted. It may be formed into a shape. Examples of the organic solvent used for the paste include monoterpene alcohols such as α-terpineol, aliphatic alcohols such as 1-octanol and 1-decanol, and high-boiling organic solvents such as glycerin. Further, an organic compound such as polyethylene glycol may be added to such a bonding material paste for viscosity adjustment.
<接合方法>
次に、本発明の接合方法について説明する。本発明の接合方法は、表面が金属からなる第1部材及び第2部材と、該第1部材及び該第2部材の表面に接触している、前記本発明の接合材料又は接合材料ペーストを用いて形成された接合材料層とを備える積層体を形成する工程と、前記接合材料層を前記有機被膜の脱離開始温度以上の温度で加熱して、前記表面被覆Cuナノ粒子から前記有機被膜を脱離させるとともに、前記Cuナノ粒子を構成するCuと前記Zn系粒子を構成するZnとを反応させてCu−Zn固溶体及びCu−Zn金属間化合物のうちの少なくとも一方を形成せしめ、かつ、前記Cuナノ粒子を構成するCuを焼成せしめて、接合層を形成せしめる工程と、を含む方法である。
<Joining method>
Next, the joining method of the present invention will be described. The bonding method of the present invention uses the first member and the second member whose surfaces are made of metal, and the bonding material or the bonding material paste of the present invention, which is in contact with the surfaces of the first member and the second member. Forming a laminate including a bonding material layer formed by heating, the bonding material layer is heated at a temperature equal to or higher than the desorption start temperature of the organic coating, and the organic coating is formed from the surface-coated Cu nanoparticles. While being desorbed, Cu constituting the Cu nanoparticles is reacted with Zn constituting the Zn-based particles to form at least one of a Cu-Zn solid solution and a Cu-Zn intermetallic compound, and Baking Cu constituting Cu nanoparticles to form a bonding layer.
本発明の接合方法においては、先ず、第1部材と、第2部材と、これら第1部材及び第2部材の表面に接触している、前記本発明の接合材料又は接合材料ペーストを用いて形成された接合材料層とを備える積層体を形成する。このような積層体を形成する方法としては特に制限はないが、例えば、第1部材の表面に本発明の接合材料ペーストを印刷又は塗工し、形成した接合材料ペースト層の表面に第2部材を配置する方法;第1部材の表面に本発明の接合材料を圧粉して成形したシート(以下、「接合材料シート」という。)を積層し、この接合材料シートの表面に第2部材を積層する方法;接合材料シートを第1部材及び第2部材で挟持する方法等が挙げられる。 In the joining method of the present invention, first, a first member and a second member are formed using the joining material or the joining material paste of the present invention, which is in contact with the surfaces of the first member and the second member. And a bonding material layer formed. The method for forming such a laminate is not particularly limited. For example, the bonding material paste of the present invention is printed or applied on the surface of the first member, and the second member is formed on the surface of the formed bonding material paste layer. A sheet (hereinafter, referred to as a “joining material sheet”) obtained by compacting the joining material of the present invention on the surface of the first member and laminating the second member on the surface of the joining material sheet. A method of laminating; a method of sandwiching the bonding material sheet between the first member and the second member, and the like.
第1部材としては、表面が金属のものであれば特に制限はないが、例えば、Cu板(例えば、半導体用基板)、表面に金属を貼り付けたセラミック板、Cu合金やNi合金等の合金板が挙げられる。また、第2部材としては、表面が金属のものであれば特に制限はないが、例えば、半導体素子(Siチップ、SiCチップ、GaNチップ)、金属板(Cu板、Ni板、Al板)が挙げられる。 The first member is not particularly limited as long as the surface is made of metal. For example, a Cu plate (for example, a substrate for semiconductor), a ceramic plate having a metal adhered to the surface, or an alloy such as a Cu alloy or a Ni alloy Plate. The second member is not particularly limited as long as it has a metal surface. For example, a semiconductor element (Si chip, SiC chip, GaN chip) or a metal plate (Cu plate, Ni plate, Al plate) may be used. No.
次に、このようにして形成した第1部材/接合材料層/第2部材からなる積層体を有機被膜の脱離開始温度以上の温度で加熱する。これにより、表面被覆Cuナノ粒子の表面から有機被膜が脱離するとともに、Cuナノ粒子を構成するCuとZn系粒子を構成するZnとが反応してCu−Zn固溶体及びCu−Zn金属間化合物のうちの少なくとも一方が形成される。これにより、前記接合材料層の融点が低下するため、Cuの焼結が促進され、接合時に印加する圧力を低くしても、高い接合強度を有する接合層が形成される。また、Zn粒子の表面の一部又は全部が酸化していても、CuとZnとの反応の際にZn酸化物が還元されて反応生成物は系外に放出されるため、接合層の緻密化を阻害し、脆化を進行させるZn酸化物は接合層内には、ほとんど残存していない。 Next, the thus-formed laminate composed of the first member / the bonding material layer / the second member is heated at a temperature equal to or higher than the desorption start temperature of the organic film. As a result, the organic film is detached from the surface of the surface-coated Cu nanoparticles, and Cu constituting the Cu nanoparticles reacts with Zn constituting the Zn-based particles to form a Cu-Zn solid solution and a Cu-Zn intermetallic compound. At least one of which is formed. This lowers the melting point of the bonding material layer, so that sintering of Cu is promoted and a bonding layer having high bonding strength is formed even when the pressure applied during bonding is reduced. Even if a part or the whole of the surface of the Zn particles is oxidized, the Zn oxide is reduced during the reaction between Cu and Zn, and the reaction product is released out of the system. Almost no Zn oxide remains in the bonding layer, which hinders embrittlement and promotes embrittlement.
また、本発明の接合方法においては、第1部材/接合材料層/第2部材からなる積層体を有機被膜の脱離開始温度以上の温度で加熱する前に、この積層体を前記有機被膜の脱離開始温度未満の温度で加熱してもよい。これにより、接合材料層中に残存する、有機溶剤等の前記有機被膜以外の有機成分を除去することができ、高い接合強度を有する接合層を得ることができる。 Further, in the bonding method of the present invention, before heating the laminate including the first member / the bonding material layer / the second member at a temperature equal to or higher than the desorption start temperature of the organic coating, the laminate is subjected to the organic coating. It may be heated at a temperature lower than the desorption start temperature. This makes it possible to remove organic components other than the organic film, such as an organic solvent, remaining in the bonding material layer, and to obtain a bonding layer having high bonding strength.
このような本発明の接合方法によって製造されるものとしては、図1に示すような半導体装置が挙げられる。具体的には、前記第1部材として半導体用基板1、前記第2部材として半導体素子2を使用し、本発明の接合方法を適用することによって、半導体用基板1、半導体素子2、及び半導体用基板1と半導体素子2との間に配置されており、前記本発明の接合材料を用いて形成された接合層3を備えている、半導体用基板1と半導体素子2との間の接合強度に優れた半導体装置を製造することができる。特に、半導体用基板1及び半導体素子2のうちの少なくとも一方(好ましくは、両方)として、表面の接合層3との接触領域に、Znと反応して金属間化合物を形成することが可能な金属を含むものを使用した場合には、半導体用基板1と半導体素子2との間の接合強度が更に向上した半導体装置を製造することができる。 A semiconductor device as shown in FIG. 1 is manufactured by such a bonding method of the present invention. Specifically, by using the semiconductor substrate 1 as the first member and the semiconductor element 2 as the second member, and applying the bonding method of the present invention, the semiconductor substrate 1, the semiconductor element 2, and the semiconductor element The bonding strength between the semiconductor substrate 1 and the semiconductor element 2, which is provided between the substrate 1 and the semiconductor element 2 and includes the bonding layer 3 formed using the bonding material of the present invention. An excellent semiconductor device can be manufactured. In particular, as at least one (preferably both) of the semiconductor substrate 1 and the semiconductor element 2, a metal capable of reacting with Zn to form an intermetallic compound in a contact region of the surface with the bonding layer 3. In the case of using a semiconductor device including a semiconductor device, a semiconductor device in which the bonding strength between the semiconductor substrate 1 and the semiconductor element 2 is further improved can be manufactured.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、有機被膜の脱離開始温度及び接合強度の測定方法、並びに、有機被膜を有するCuナノ粒子の調製方法を以下に示す。 Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The method for measuring the desorption start temperature and bonding strength of the organic film and the method for preparing Cu nanoparticles having the organic film are described below.
(1)脱離開始温度
熱重量分析装置(株式会社リガク製)を用いて、Ar又はN2の不活性ガス雰囲気下、室温から500℃まで20℃/分で昇温しながら表面被覆Cuナノ粒子の熱重量分析(TG分析)を行なった。得られたTG曲線に基づいて、有機被膜の脱離(分解)に起因する質量減少が認められた温度範囲を求め、その下限温度を有機被膜の脱離開始温度とした。
(1) elimination using starting temperature thermogravimetric analyzer (manufactured by Rigaku Corporation), Ar or an inert gas atmosphere of N 2, heating while surface-coated Cu nano at 20 ° C. / min up to 500 ° C. from room temperature The particles were subjected to thermogravimetric analysis (TG analysis). On the basis of the obtained TG curve, a temperature range in which the mass loss due to desorption (decomposition) of the organic film was recognized was determined, and the lower limit temperature was defined as the desorption start temperature of the organic film.
(2)接合強度
ツール高さ:Cu板表面から50μm、せん断速度:50μm/秒の条件で、Siチップにせん断ツールを当ててせん断試験を行い、Siチップの接合面積あたりのせん断強度を求め、これを接合強度とした。
(2) Bonding strength Tool height: 50 μm from the surface of the Cu plate, shear rate: 50 μm / second, a shearing test was performed by applying a shearing tool to the Si chip, and the shear strength per bonded area of the Si chip was determined. This was defined as the bonding strength.
(調製例1)
表面被覆Cuナノ粒子は、特開2012−46779号公報に記載の方法に従って調製した。すなわち、フラスコにエチレングリコール(HO(CH2)2OH)600mlを入れ、これに炭酸銅(CuCO3・Cu(OH)2・H2O)120mmolを添加した。なお、炭酸銅はエチレングリコールにほとんど溶解せずに沈殿した。これに、ドデカン酸(C11H23COOH)180mmol及び1−ドデシルアミン(C12H25NH2)60mmolを添加した後、窒素ガスを1L/minで流しながら、198℃で1時間加熱還流させ、Cuナノ粒子の表面にドデカン酸及び1−ドデシルアミンからなる有機被膜を備える表面被覆Cuナノ粒子を得た。この表面被覆Cuナノ粒子をヘキサン中に分散させて回収し、アセトン及びエタノールを順次添加して洗浄した後、遠心分離(3000rpm、20min)により回収し、真空乾燥(35℃、30min)を施した。
(Preparation Example 1)
The surface-coated Cu nanoparticles were prepared according to the method described in JP-A-2012-46779. That is, 600 ml of ethylene glycol (HO (CH 2 ) 2 OH) was placed in the flask, and 120 mmol of copper carbonate (CuCO 3 .Cu (OH) 2 .H 2 O) was added thereto. In addition, copper carbonate precipitated almost without dissolving in ethylene glycol. After adding 180 mmol of dodecanoic acid (C 11 H 23 COOH) and 60 mmol of 1-dodecylamine (C 12 H 25 NH 2 ), the mixture was heated and refluxed at 198 ° C. for 1 hour while flowing nitrogen gas at 1 L / min. Then, surface-coated Cu nanoparticles having an organic coating composed of dodecanoic acid and 1-dodecylamine on the surfaces of the Cu nanoparticles were obtained. The surface-coated Cu nanoparticles were recovered by dispersing in hexane, washed with acetone and ethanol sequentially added, recovered by centrifugation (3000 rpm, 20 min), and vacuum dried (35 ° C., 30 min). .
得られた表面被覆Cuナノ粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個の表面被覆Cuナノ粒子を抽出し、その直径を測定して算術平均したところ、Cuナノ粒子の平均粒子径は140nmであった。また、前記表面被覆Cuナノ粒子における有機被膜の脱離開始温度を前記方法により測定したところ、250℃であった。 The obtained surface-coated Cu nanoparticles are dispersed in toluene, and this dispersion is applied to a Cu microgrid with an elastic carbon support film (polymer material film (15 to 20 nm thick) + carbon film (20 to 25 nm thick)) (Oken Shoji) (Manufactured by K.K.) and dried naturally to prepare an observation sample. This observation sample was observed at an acceleration voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 surface-coated Cu nanoparticles were randomly extracted, and their diameters were measured and arithmetically averaged. As a result, the average particle diameter of the Cu nanoparticles was 140 nm. Further, the desorption start temperature of the organic film in the surface-coated Cu nanoparticles was measured by the above method, and was 250 ° C.
(実施例1)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないZn粒子(高純度化学研究所株式会社製、亜鉛純度:99質量%、平均粒子径:7μm、融点:419.5℃)とを質量比が70質量%:30質量%となるように混合し、得られた混合物に溶媒として1−デカノール(和光純薬工業株式会社製)を混合物1gに対して70μl滴下して混合物を分散させ、接合材料ペーストを調製した。
(Example 1)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Zn particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. (Zinc purity: 99% by mass, average particle size: 7 μm, melting point: 419.5 ° C.) so that the mass ratio becomes 70% by mass: 30% by mass, and 1-decanol (1-decanol) is used as a solvent in the obtained mixture. 70 μl of 1 g of the mixture was dropped into 1 g of the mixture to disperse the mixture to prepare a bonding material paste.
次に、この接合材料ペーストを用いて図2に示す接合体を作製した。すなわち、表面側からAg(厚さ:100nm)/Ni(厚さ:200nm)/Ti(厚さ:100nm)が積層された多層膜11を有する、Cu(厚さ:0.15mm)/SiN(厚さ:0.32mm)/Cu(厚さ:0.15mm)からなる積層板(デンカ株式会社製)12のAg表面の5mm×5mmの領域に前記接合材料ペーストを厚さ100μmとなるように塗布し、得られた接合材料層上に、表面側からAg(厚さ:100nm)/Ni(厚さ:200nm)/Ti(厚さ:100nm)が積層されている多層膜11を有するSiCウエハ(タンケブルー社製、4H構造SiC単結晶(0001)面)から切出したSiCチップ(5mm×5mm×厚さ0.35mm)13を、前記接合材料層と前記SiCチップ13の銀表面とが接するように積層した。 Next, a joined body shown in FIG. 2 was produced using this joining material paste. That is, Cu (thickness: 0.15 mm) / SiN () has a multilayer film 11 in which Ag (thickness: 100 nm) / Ni (thickness: 200 nm) / Ti (thickness: 100 nm) is laminated from the front side. The bonding material paste is formed to a thickness of 100 μm in a 5 mm × 5 mm region on the Ag surface of a laminate (made by Denka Corporation) 12 made of thickness: 0.32 mm) / Cu (thickness: 0.15 mm). SiC wafer having a multilayer film 11 in which Ag (thickness: 100 nm) / Ni (thickness: 200 nm) / Ti (thickness: 100 nm) is laminated from the surface side on the applied and obtained bonding material layer (5 mm × 5 mm × 0.35 mm thick) 13 cut out from (4H structure SiC single crystal (0001) plane, manufactured by Tanque Blue Co., Ltd.) was used to form the bonding material layer and the silver surface of the SiC chip 13. It was stacked so that.
得られた積層体の積層面に面圧が20kPaとなるように一軸荷重を印加しながら、H2雰囲気中、200℃で10分間の加熱処理と350℃で5分間の加熱処理とを前記積層体に施してCuを焼結させ、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表1及び表2に示す。 The heat treatment at 200 ° C. for 10 minutes and the heat treatment at 350 ° C. for 5 minutes in the H 2 atmosphere were performed while applying a uniaxial load to the laminate surface of the obtained laminate so that the surface pressure became 20 kPa. This was applied to the body and Cu was sintered to produce a semiconductor device (joined body) composed of the laminated plate 12 / the multilayer film 11 / the bonding layer 14 / the multilayer film 11 / the SiC chip 13. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. The results are shown in Tables 1 and 2.
(実施例2)
調製例1で得られた表面被覆Cuナノ粒子とZn粒子との質量比を97質量%:3質量%に変更した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表1及び表3に示す。
(Example 2)
A bonding material paste was prepared in the same manner as in Example 1 except that the mass ratio between the surface-coated Cu nanoparticles and the Zn particles obtained in Preparation Example 1 was changed to 97% by mass: 3% by mass. A semiconductor device (joined body) composed of / the multilayer film 11 / the bonding layer 14 / the multilayer film 11 / the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. The results are shown in Tables 1 and 3.
(実施例3)
調製例1で得られた表面被覆Cuナノ粒子とZn粒子との質量比を80質量%:20質量%に変更した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表1及び表4に示す。
(Example 3)
A bonding material paste was prepared in the same manner as in Example 1 except that the mass ratio between the surface-coated Cu nanoparticles and Zn particles obtained in Preparation Example 1 was changed to 80% by mass: 20% by mass. A semiconductor device (joined body) composed of / the multilayer film 11 / the bonding layer 14 / the multilayer film 11 / the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. The results are shown in Tables 1 and 4.
(実施例4)
調製例1で得られた表面被覆Cuナノ粒子とZn粒子との質量比を50質量%:50質量%に変更した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表1及び表5に示す。
(Example 4)
A bonding material paste was prepared in the same manner as in Example 1 except that the mass ratio between the surface-coated Cu nanoparticles and Zn particles obtained in Preparation Example 1 was changed to 50% by mass: 50% by mass. A semiconductor device (joined body) composed of / the multilayer film 11 / the bonding layer 14 / the multilayer film 11 / the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. The results are shown in Tables 1 and 5.
(比較例1)
Zn粒子を混合しなかった以外は実施例1と同様にして接合材料ペースト(表面被覆Cuナノ粒子:Zn粒子=100質量%:0質量%)を調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表1に示す。
(Comparative Example 1)
A bonding material paste (surface-coated Cu nanoparticles: Zn particles = 100% by mass: 0% by mass) was prepared in the same manner as in Example 1 except that Zn particles were not mixed, and the laminate 12 / the multilayer film 11 was prepared. A semiconductor device (joined body) composed of / the bonding layer 14 / the multilayer film 11 / the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 1 shows the results.
(比較例2)
調製例1で得られた表面被覆Cuナノ粒子とZn粒子との質量比を40質量%:60質量%に変更した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表1に示す。
(Comparative Example 2)
A bonding material paste was prepared in the same manner as in Example 1 except that the mass ratio between the surface-coated Cu nanoparticles and Zn particles obtained in Preparation Example 1 was changed to 40% by mass: 60% by mass. A semiconductor device (joined body) composed of / the multilayer film 11 / the bonding layer 14 / the multilayer film 11 / the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 1 shows the results.
(比較例3)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないNi粒子(高純度化学研究所株式会社製、ニッケル純度:99.9質量%、粒子径:2〜3μm、融点:1455℃)とを質量比が70質量%:30質量%となるように混合した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表2に示す。
(Comparative Example 3)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Ni particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. Nickel purity: 99.9% by mass, particle diameter: 2 to 3 μm, melting point: 1455 ° C.) in the same manner as in Example 1 except that the mass ratio was 70% by mass: 30% by mass. A paste was prepared, and a semiconductor device (joined body) including the laminated plate 12, the multilayer film 11, the bonding layer 14, the multilayer film 11, and the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 2 shows the results.
(比較例4)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないAg粒子(高純度化学研究所株式会社製、銀純度:99.9質量%、粒子径:約1μm、融点:961.8℃)とを質量比が70質量%:30質量%となるように混合した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表2に示す。
(Comparative Example 4)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Ag particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. (Silver purity: 99.9% by mass, particle size: about 1 μm, melting point: 961.8 ° C.) except that the mass ratio was 70% by mass: 30% by mass. A material paste was prepared, and a semiconductor device (joined body) including the laminated plate 12, the multilayer film 11, the bonding layer 14, the multilayer film 11, and the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 2 shows the results.
(比較例5)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないNi粒子(高純度化学研究所株式会社製、ニッケル純度:99.9質量%、粒子径:2〜3μm、融点:1455℃)とを質量比が97質量%:3質量%となるように混合した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表3に示す。
(Comparative Example 5)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Ni particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. Nickel purity: 99.9% by mass, particle diameter: 2-3 μm, melting point: 1455 ° C.) in the same manner as in Example 1 except that the mass ratio was 97% by mass: 3% by mass. A paste was prepared, and a semiconductor device (joined body) including the laminated plate 12, the multilayer film 11, the bonding layer 14, the multilayer film 11, and the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 3 shows the results.
(比較例6)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないAg粒子(高純度化学研究所株式会社製、銀純度:99.9質量%、粒子径:約1μm、融点:961.8℃)とを質量比が97質量%:3質量%となるように混合した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表3に示す。
(Comparative Example 6)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Ag particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. (Silver purity: 99.9% by mass, particle size: about 1 μm, melting point: 961.8 ° C.) except that the mass ratio was 97% by mass: 3% by mass. A material paste was prepared, and a semiconductor device (joined body) including the laminated plate 12, the multilayer film 11, the bonding layer 14, the multilayer film 11, and the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 3 shows the results.
(比較例7)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないNi粒子(高純度化学研究所株式会社製、ニッケル純度:99.9質量%、粒子径:2〜3μm、融点:1455℃)とを質量比が80質量%:20質量%となるように混合した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表4に示す。
(Comparative Example 7)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Ni particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. Nickel purity: 99.9% by mass, particle diameter: 2-3 μm, melting point: 1455 ° C.) in the same manner as in Example 1 except that the mass ratio was 80% by mass: 20% by mass. A paste was prepared, and a semiconductor device (joined body) including the laminated plate 12, the multilayer film 11, the bonding layer 14, the multilayer film 11, and the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 4 shows the results.
(比較例8)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないAg粒子(高純度化学研究所株式会社製、銀純度:99.9質量%、粒子径:約1μm、融点:961.8℃)とを質量比が80質量%:20質量%となるように混合した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表4に示す。
(Comparative Example 8)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Ag particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. (Silver purity: 99.9% by mass, particle diameter: about 1 μm, melting point: 961.8 ° C.) except that the mass ratio was 80% by mass: 20% by mass. A material paste was prepared, and a semiconductor device (joined body) including the laminated plate 12, the multilayer film 11, the bonding layer 14, the multilayer film 11, and the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 4 shows the results.
(比較例9)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないNi粒子(高純度化学研究所株式会社製、ニッケル純度:99.9質量%、粒子径:2〜3μm、融点:1455℃)とを質量比が50質量%:50質量%となるように混合した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表5に示す。
(Comparative Example 9)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Ni particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. Nickel purity: 99.9% by mass, particle diameter: 2-3 μm, melting point: 1455 ° C.) in the same manner as in Example 1 except that the mass ratio was 50% by mass: 50% by mass. A paste was prepared, and a semiconductor device (joined body) including the laminated plate 12, the multilayer film 11, the bonding layer 14, the multilayer film 11, and the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 5 shows the results.
(比較例10)
調製例1で得られた表面被覆Cuナノ粒子(平均粒子径:140nm、有機被膜の脱離開始温度:250℃)と、表面が被覆されてないAg粒子(高純度化学研究所株式会社製、銀純度:99.9質量%、粒子径:約1μm、融点:961.8℃)とを質量比が50質量%:50質量%となるように混合した以外は実施例1と同様にして接合材料ペーストを調製し、前記積層板12/前記多層膜11/接合層14/前記多層膜11/前記SiCチップ13からなる半導体装置(接合体)を作製した。得られた半導体装置における前記積層板と前記Siチップとの接合強度を前記方法により測定した。その結果を表5に示す。
(Comparative Example 10)
Surface-coated Cu nanoparticles obtained in Preparation Example 1 (average particle diameter: 140 nm, desorption start temperature of the organic film: 250 ° C.) and Ag particles whose surface is not coated (manufactured by Kojundo Chemical Laboratory Co., Ltd. (Silver purity: 99.9% by mass, particle size: about 1 μm, melting point: 961.8 ° C.) except that the mass ratio was 50% by mass: 50% by mass. A material paste was prepared, and a semiconductor device (joined body) including the laminated plate 12, the multilayer film 11, the bonding layer 14, the multilayer film 11, and the SiC chip 13 was manufactured. The bonding strength between the laminate and the Si chip in the obtained semiconductor device was measured by the above method. Table 5 shows the results.
表1に示したように、表面被覆Cuナノ粒子とZn系粒子とを所定の割合で含有する本発明の接合材料(実施例1〜4)を用いた場合には、Zn系粒子を含んでいない接合材料(比較例1)又はZn系粒子を所定の割合で含んでいない接合材料(比較例2)を用いた場合に比べて、接合強度が高くなることがわかった。また、Zn系粒子の含有量が20〜50質量%になると、接合強度が更に高くなることがわかった。 As shown in Table 1, when the bonding material (Examples 1 to 4) of the present invention containing the surface-coated Cu nanoparticles and the Zn-based particles at a predetermined ratio was used, the Zn-based particles were included. It was found that the bonding strength was higher than when a bonding material that did not contain (Comparative Example 1) or a bonding material that did not contain Zn-based particles at a predetermined ratio (Comparative Example 2) was used. Also, it was found that when the content of the Zn-based particles was 20 to 50% by mass, the bonding strength was further increased.
また、表2〜表5に示したように、表面被覆Cuナノ粒子の含有量が同じである、実施例1と比較例3〜4、実施例2と比較例5〜6、実施例3と比較例7〜8、実施例4と比較例9〜10とをそれぞれ対比すると明らかなように、表面被覆Cuナノ粒子とZn系粒子とを含有する本発明の接合材料を用いた場合には、表面被覆Cuナノ粒子とNi粒子又はAg粒子とを含有する接合材料に比べて、接合強度が高くなることがわかった。 In addition, as shown in Tables 2 to 5, the content of the surface-coated Cu nanoparticles is the same, and Example 1 and Comparative Examples 3 to 4, Example 2 and Comparative Examples 5 to 6, and Example 3 As is clear from comparison of Comparative Examples 7 to 8 and Example 4 with Comparative Examples 9 to 10, when the bonding material of the present invention containing surface-coated Cu nanoparticles and Zn-based particles was used, It was found that the bonding strength was higher than that of a bonding material containing surface-coated Cu nanoparticles and Ni particles or Ag particles.
以上説明したように、本発明によれば、より低い圧力を印加しながら接合した場合であっても高い接合強度で半導体素子や基板等の金属部材を接合することが可能となる。 As described above, according to the present invention, it is possible to join metal members such as semiconductor elements and substrates with high joining strength even when joining while applying lower pressure.
したがって、本発明の接合方法は、より低い圧力を印加しながら接合した場合であっても高い接合強度で金属部材を接合することが可能な接合材料を使用しているため、より低い圧力を印加しながら半導体装置を製造することが可能となり、基板上に半導体素子が強固に接合されるとともに、半導体素子や基板等におけるクラックの発生が抑制された半導体装置を製造する方法として有用である。 Therefore, the bonding method of the present invention uses a bonding material capable of bonding metal members with high bonding strength even when bonding is performed while applying a lower pressure, so that a lower pressure is applied. This makes it possible to manufacture a semiconductor device while the semiconductor element is firmly joined to the substrate and is useful as a method for manufacturing a semiconductor device in which cracks in the semiconductor element and the substrate are suppressed.
1:半導体用基板
2:半導体素子
3:接合層
4:リードフレーム
5:ボンディングワイヤ
11:多層膜
12:積層板
13:SiCチップ
14:接合層
1: semiconductor substrate 2: semiconductor element 3: bonding layer 4: lead frame 5: bonding wire 11: multilayer film 12: laminated plate 13: SiC chip 14: bonding layer
Claims (5)
亜鉛、亜鉛合金及び亜鉛酸化物からなる群から選択される1種からなり、平均粒子径が0.01〜100μmのZn系粒子を含有し、
前記表面被覆Cuナノ粒子と前記Zn系粒子の合計量に対して前記Zn系粒子の含有量が2〜55質量%であることを特徴とする接合材料。 Cu nanoparticles having an average particle diameter of 10 to 1000 nm, and are arranged on the surface of the Cu nanoparticles and contain at least one group of a carboxyl group and an amino group, and can be desorbed from the surface by heating. A surface-coated Cu nanoparticle provided with a possible organic coating, and one or more selected from the group consisting of zinc, zinc alloy and zinc oxide, and containing Zn-based particles having an average particle diameter of 0.01 to 100 μm. ,
A bonding material, wherein the content of the Zn-based particles is 2 to 55% by mass based on the total amount of the surface-coated Cu nanoparticles and the Zn-based particles.
前記接合材料層を前記有機被膜の脱離開始温度以上の温度で加熱して、前記表面被覆Cuナノ粒子から前記有機被膜を脱離させるとともに、前記Cuナノ粒子を構成するCuと前記Zn系粒子を構成するZnとを反応させてCu−Zn固溶体及びCu−Zn金属間化合物のうちの少なくとも一方を形成せしめ、かつ、前記Cuナノ粒子を構成するCuを焼成せしめて、接合層を形成せしめる工程と、
を含むことを特徴とする接合方法。 The joining material according to claim 1 or 2, wherein the joining material according to claim 1 or 2 is in contact with the first member and the second member whose surfaces are made of metal, and is in contact with the surfaces of the first member and the second member. A step of forming a laminate including a bonding material layer formed using a paste,
The bonding material layer is heated at a temperature equal to or higher than the desorption start temperature of the organic coating, and the organic coating is released from the surface-coated Cu nanoparticles, and the Cu and Zn-based particles constituting the Cu nanoparticles are removed. Reacting Zn to form at least one of a Cu-Zn solid solution and a Cu-Zn intermetallic compound, and baking Cu forming the Cu nanoparticles to form a bonding layer. When,
A joining method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018128347A JP2020007593A (en) | 2018-07-05 | 2018-07-05 | Joint material, joint material paste containing the same, and joint method and semiconductor device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018128347A JP2020007593A (en) | 2018-07-05 | 2018-07-05 | Joint material, joint material paste containing the same, and joint method and semiconductor device using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020007593A true JP2020007593A (en) | 2020-01-16 |
Family
ID=69150727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018128347A Pending JP2020007593A (en) | 2018-07-05 | 2018-07-05 | Joint material, joint material paste containing the same, and joint method and semiconductor device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020007593A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021127506A (en) * | 2020-02-14 | 2021-09-02 | 昭和電工マテリアルズ株式会社 | Metal paste for joining, joint body, semiconductor device, and method for producing joint body |
-
2018
- 2018-07-05 JP JP2018128347A patent/JP2020007593A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021127506A (en) * | 2020-02-14 | 2021-09-02 | 昭和電工マテリアルズ株式会社 | Metal paste for joining, joint body, semiconductor device, and method for producing joint body |
JP7508802B2 (en) | 2020-02-14 | 2024-07-02 | 株式会社レゾナック | Metal paste for bonding, bonded body, semiconductor device, and method for manufacturing bonded body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air | |
TWI490170B (en) | Adhesive material, adhesive method and adherend using the asme | |
JP4928639B2 (en) | Bonding material and bonding method using the same | |
JP6153077B2 (en) | Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same | |
JP5651113B2 (en) | Joining material and joining method using metal nanoparticles | |
JP5824201B2 (en) | Bonding material and bonding method using the same | |
JP2018140929A (en) | Copper-ceramic bonded body, insulating circuit board, method for manufacturing copper-ceramic bonded body, and method for manufacturing insulating circuit board | |
JP6460578B2 (en) | Bonding material, bonding method using the same, bonding material paste, and semiconductor device | |
TWI716639B (en) | Bonding material and bonding method using same | |
KR20180004853A (en) | Binding material, binding body, and binding method | |
EP3217424B1 (en) | Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly | |
WO2018159590A1 (en) | Copper/ceramic joined body insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board | |
JP6855539B2 (en) | Sintered paste composition for power semiconductor bonding | |
JP5990758B2 (en) | Solder material and manufacturing method thereof | |
JP6032110B2 (en) | Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same | |
JP6153076B2 (en) | Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same | |
JP2019070174A (en) | Bonding paste and semiconductor device using same | |
JP2014175372A (en) | Bonding material, semiconductor device arranged by use thereof, wiring material, and wiring line for electronic element arranged by use thereof | |
JP2020007593A (en) | Joint material, joint material paste containing the same, and joint method and semiconductor device using the same | |
JP4624222B2 (en) | Conductive part forming particles | |
JP2006120973A (en) | Circuit board and manufacturing method thereof | |
JP2021050412A (en) | Joint material, joint material paste containing the same, and joining method and semiconductor device using the same | |
JP5487301B2 (en) | Low-temperature sinterable bonding material and bonding method using the bonding material | |
JP7198479B2 (en) | Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent | |
CN111033703A (en) | Mounting structure and nanoparticle mounting material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180720 |