JP6153076B2 - Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same - Google Patents
Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same Download PDFInfo
- Publication number
- JP6153076B2 JP6153076B2 JP2013177759A JP2013177759A JP6153076B2 JP 6153076 B2 JP6153076 B2 JP 6153076B2 JP 2013177759 A JP2013177759 A JP 2013177759A JP 2013177759 A JP2013177759 A JP 2013177759A JP 6153076 B2 JP6153076 B2 JP 6153076B2
- Authority
- JP
- Japan
- Prior art keywords
- nanoparticles
- bonding
- metal
- intermetallic compound
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 85
- 239000004065 semiconductor Substances 0.000 title claims description 85
- 239000002082 metal nanoparticle Substances 0.000 title claims description 67
- 239000002105 nanoparticle Substances 0.000 claims description 272
- 239000010410 layer Substances 0.000 claims description 176
- 229910000765 intermetallic Inorganic materials 0.000 claims description 125
- 239000002245 particle Substances 0.000 claims description 110
- 239000000758 substrate Substances 0.000 claims description 53
- 229910052723 transition metal Inorganic materials 0.000 claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 150000003624 transition metals Chemical class 0.000 claims description 28
- 229910052759 nickel Inorganic materials 0.000 claims description 23
- 229910052709 silver Inorganic materials 0.000 claims description 17
- 229910016347 CuSn Inorganic materials 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 229910052718 tin Inorganic materials 0.000 claims description 12
- 229910052697 platinum Inorganic materials 0.000 claims description 9
- 239000002923 metal particle Substances 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000012790 adhesive layer Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 description 193
- 239000011135 tin Substances 0.000 description 174
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 67
- 238000002360 preparation method Methods 0.000 description 60
- 239000010419 fine particle Substances 0.000 description 54
- 230000000052 comparative effect Effects 0.000 description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 38
- 239000006185 dispersion Substances 0.000 description 35
- 238000002441 X-ray diffraction Methods 0.000 description 31
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 24
- 238000001228 spectrum Methods 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 22
- 238000000034 method Methods 0.000 description 22
- 238000000576 coating method Methods 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 239000002904 solvent Substances 0.000 description 16
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 14
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 229910017482 Cu 6 Sn 5 Inorganic materials 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- -1 Aliphatic amines Chemical class 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- 239000002861 polymer material Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 7
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 7
- 238000000634 powder X-ray diffraction Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 5
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 5
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 5
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 5
- 229910005887 NiSn Inorganic materials 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 229940116318 copper carbonate Drugs 0.000 description 5
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229910002847 PtSn Inorganic materials 0.000 description 3
- 238000007605 air drying Methods 0.000 description 3
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 2
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229910019043 CoSn Inorganic materials 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 229910005382 FeSn Inorganic materials 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 2
- 229940088601 alpha-terpineol Drugs 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 2
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 150000004072 triols Chemical class 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- WDQNIWFZKXZFAY-UHFFFAOYSA-M fentin acetate Chemical compound CC([O-])=O.C1=CC=CC=C1[Sn+](C=1C=CC=CC=1)C1=CC=CC=C1 WDQNIWFZKXZFAY-UHFFFAOYSA-M 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- FAKFSJNVVCGEEI-UHFFFAOYSA-J tin(4+);disulfate Chemical compound [Sn+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O FAKFSJNVVCGEEI-UHFFFAOYSA-J 0.000 description 1
- LTSUHJWLSNQKIP-UHFFFAOYSA-J tin(iv) bromide Chemical compound Br[Sn](Br)(Br)Br LTSUHJWLSNQKIP-UHFFFAOYSA-J 0.000 description 1
- YUOWTJMRMWQJDA-UHFFFAOYSA-J tin(iv) fluoride Chemical compound [F-].[F-].[F-].[F-].[Sn+4] YUOWTJMRMWQJDA-UHFFFAOYSA-J 0.000 description 1
- QPBYLOWPSRZOFX-UHFFFAOYSA-J tin(iv) iodide Chemical compound I[Sn](I)(I)I QPBYLOWPSRZOFX-UHFFFAOYSA-J 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 1
- FPZZZGJWXOHLDJ-UHFFFAOYSA-N trihexylphosphane Chemical compound CCCCCCP(CCCCCC)CCCCCC FPZZZGJWXOHLDJ-UHFFFAOYSA-N 0.000 description 1
- YQMWDQQWGKVOSQ-UHFFFAOYSA-N trinitrooxystannyl nitrate Chemical compound [Sn+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YQMWDQQWGKVOSQ-UHFFFAOYSA-N 0.000 description 1
- KCTAHLRCZMOTKM-UHFFFAOYSA-N tripropylphosphane Chemical compound CCCP(CCC)CCC KCTAHLRCZMOTKM-UHFFFAOYSA-N 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/29294—Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29301—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29311—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29344—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29347—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29355—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29357—Cobalt [Co] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/2936—Iron [Fe] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29363—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29364—Palladium [Pd] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29363—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29369—Platinum [Pt] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/83053—Bonding environment
- H01L2224/83054—Composition of the atmosphere
- H01L2224/83065—Composition of the atmosphere being reducing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/832—Applying energy for connecting
- H01L2224/83201—Compression bonding
- H01L2224/83203—Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8384—Sintering
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Conductive Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Die Bonding (AREA)
Description
本発明は、Cuナノ粒子を含有する金属ナノ粒子ペースト、それを含有する接合材料、及び前記接合材料を用いた半導体装置に関する。 The present invention relates to a metal nanoparticle paste containing Cu nanoparticles, a bonding material containing the same, and a semiconductor device using the bonding material.
半導体素子の電極接合などにおいては、従来、Sn−Pb系はんだが用いられていたが、近年、環境保全の観点から、鉛フリーはんだといった新規な接合材料が求められている。また、半導体素子の接合技術においては、半導体素子への負荷を低減するために、低温での接合や無加圧での接合が可能な材料が求められている。 Conventionally, Sn—Pb-based solder has been used for electrode bonding of semiconductor elements, but recently, a new bonding material such as lead-free solder has been demanded from the viewpoint of environmental protection. Also, in semiconductor element bonding technology, materials that can be bonded at a low temperature or without pressure are required to reduce the load on the semiconductor element.
Ag、Cuなどの金属ナノ粒子は、粒径が、例えば1000nm以下のようにナノメートルサイズまで小さくなると、その融点よりはるかに低い温度(焼結温度200℃以下)で焼結させることが可能となるため、半導体素子の低温接合などへの応用が期待されている。 Metal nanoparticles such as Ag and Cu can be sintered at a temperature much lower than their melting point (sintering temperature 200 ° C. or less) when the particle size is reduced to a nanometer size such as 1000 nm or less. Therefore, application to low-temperature bonding of semiconductor elements is expected.
しかしながら、このような金属ナノ粒子は、表面が高活性であり、凝集しやすいため、通常、界面活性剤やポリマーなどで被覆して分散安定性を確保している。このため、このような金属ナノ粒子を用いて半導体素子の接合を行う際に加熱処理を施すと、金属ナノ粒子が焼結するとともに界面活性剤やポリマーなどの被膜が分解され、ガスが発生し、金属ナノ粒子間に空隙(ボイド)が生じる。その結果、無加圧や低温では焼結組織が密にならず、十分に高い接合強度が得られなかった。 However, such metal nanoparticles have a highly active surface and are likely to aggregate, so that they are usually coated with a surfactant or a polymer to ensure dispersion stability. For this reason, when heat treatment is performed when joining semiconductor elements using such metal nanoparticles, the metal nanoparticles are sintered and the coating of surfactant, polymer, etc. is decomposed and gas is generated. , Voids are generated between the metal nanoparticles. As a result, the sintered structure did not become dense at no pressure or low temperature, and a sufficiently high bonding strength could not be obtained.
11th Symposium on ”Microjoining and Assembly Technology in Electronics”、2005年2月3〜4日、229〜232頁(非特許文献1)には、平均粒子径が10μm又は30μmのCu粉10〜50質量%と平均粒子径が10μm又は25μmのSn粉90〜50質量%とを含有する複合ペーストが開示されている。しかしながら、このような平均粒子径が10μm以上のマイクロメートルサイズの粉末を含有する複合ペーストを用いて半導体装置の低温接合を行うと、十分に高い接合強度が得られなかった。 11th Symposium on “Microjoining and Assembly Technology in Electronics”, February 3-4, 2005, pp. 229-232 (Non-Patent Document 1) includes 10-50 mass% Cu powder with an average particle size of 10 μm or 30 μm. The composite paste containing Sn powder 90-50 mass% whose average particle diameter is 10 micrometers or 25 micrometers is disclosed. However, when a low temperature bonding of a semiconductor device is performed using a composite paste containing a micrometer-sized powder having an average particle diameter of 10 μm or more, a sufficiently high bonding strength cannot be obtained.
また、特開2012−46779号公報(特許文献1)には、炭素数8以上の脂肪酸と脂肪族アミンとを含有する有機被膜を表面に備える金属ナノ粒子が開示されており、前記有機被膜が低温で熱分解されることも記載されている。 Japanese Patent Laid-Open No. 2012-46779 (Patent Document 1) discloses metal nanoparticles having an organic coating containing a fatty acid having 8 or more carbon atoms and an aliphatic amine on the surface. It is also described that it is pyrolyzed at low temperatures.
一方、金属ナノ粒子を用いた半導体素子の実装技術においては、従来、半導体素子と基板との接合を加圧下で行なっていたが、チップの破壊による歩留まりの低下や生産工程の追加によるコストアップといった問題があり、無加圧接合による実装技術の開発が強く求められていた。 On the other hand, in the semiconductor device mounting technology using metal nanoparticles, conventionally, the bonding between the semiconductor device and the substrate has been performed under pressure, but the yield is reduced due to chip destruction and the cost is increased due to the addition of production processes. There was a problem, and there was a strong demand for the development of mounting technology by pressureless bonding.
しかしながら、特許文献1に記載の表面被覆Cuナノ粒子を用いると、低温での焼結は可能であるが、接合層内部でのボイドは必ずしも十分に抑制されておらず、接合強度は必ずしも十分に高いものではなかった。 However, when the surface-coated Cu nanoparticles described in Patent Document 1 are used, sintering at a low temperature is possible, but voids in the bonding layer are not necessarily sufficiently suppressed, and the bonding strength is not always sufficient. It was not expensive.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、接合強度が十分に高い接合層を低温(具体的には400℃以下)で形成することが可能な金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and a metal nanoparticle paste capable of forming a bonding layer having sufficiently high bonding strength at a low temperature (specifically, 400 ° C. or lower), It is an object of the present invention to provide a bonding material containing the same and a semiconductor device using the same.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、Cuナノ粒子と、Snと遷移金属との金属間化合物ナノ粒子とを特定の割合で含有する金属ナノ粒子ペーストを用いることによって、接合強度が十分に高い接合層を低温(具体的には400℃以下)で形成することが可能であることを見出し、本発明を完成するに至った。 The present inventors have made intensive studies to achieve the above object, the use of a metal nanoparticle paste containing a Cu nanoparticle, a intermetallic compound nanoparticles of Sn and a transition metal in a specific ratio Thus, it has been found that a bonding layer having a sufficiently high bonding strength can be formed at a low temperature (specifically, 400 ° C. or lower), and the present invention has been completed.
すなわち、本発明の金属ナノ粒子ペーストは、全金属ナノ粒子に対して、Cuナノ粒子を99.9〜70質量%且つSnと遷移金属との金属間化合物ナノ粒子を0.1〜30質量%含有することを特徴とするものである。 That is, the metal nanoparticle paste of the present invention comprises 99.9 to 70% by mass of Cu nanoparticles and 0.1 to 30% by mass of intermetallic compound nanoparticles of Sn and transition metal with respect to all metal nanoparticles. It is characterized by containing.
このような金属ナノ粒子ペーストにおいて、直径が1〜1000nmの範囲にある金属ナノ粒子が、個数基準で全金属粒子の99%以上であることが好ましい。 In such a metal nanoparticle paste, the metal nanoparticles having a diameter in the range of 1 to 1000 nm are preferably 99% or more of the total metal particles on a number basis.
また、このような金属ナノ粒子ペーストにおいて、前記Snと遷移金属との金属間化合物ナノ粒子の遷移金属が、960℃以上の融点を有し、且つ−0.45V以上のイオン標準電極電位を有する金属であることが好ましい。 In such a metal nanoparticle paste, the transition metal of the intermetallic compound nanoparticles of Sn and transition metal has a melting point of 960 ° C. or higher and an ion standard electrode potential of −0.45 V or higher. A metal is preferred.
さらに、このような金属ナノ粒子ペーストにおいては、前記Snと遷移金属との金属間化合物ナノ粒子の遷移金属が、Au、Pt、Pd、Ag、Cu、Ni、Co及びFeからなる群から選択される少なくとも1種の金属であることが好ましい。 Furthermore, in such a metal nanoparticle paste, the transition metal of the intermetallic compound nanoparticles of Sn and transition metal is selected from the group consisting of Au, Pt, Pd, Ag, Cu, Ni, Co and Fe. Preferably, the at least one metal.
本発明の接合材料はこのような本発明の金属ナノ粒子ペーストを含有するものである。 The bonding material of the present invention contains such a metal nanoparticle paste of the present invention.
本発明の半導体装置は、半導体素子、基板、及び前記半導体素子と前記基板とを接合する接合層を備えており、前記接合層が前記本発明の接合材料により形成されたCuとSnと遷移金属との混合物層であることを特徴とするものである。 The semiconductor device of the present invention includes a semiconductor element, a substrate, and a bonding layer that bonds the semiconductor element and the substrate, and the bonding layer is formed of Cu, Sn, and a transition metal formed of the bonding material of the present invention. And a mixture layer.
このような本発明の半導体装置において、前記混合物層は平均粒子径1〜1000nmの金属ナノ粒子により形成されていることが好ましい。また、前記混合物層にはCuとCuSn金属間化合物及びSnと遷移金属との金属間化合物が含まれていることが好ましく、前記CuSn金属間化合物がCu3Snであることが好ましい。 In such a semiconductor device of the present invention, the mixture layer is preferably formed of metal nanoparticles having an average particle diameter of 1 to 1000 nm. The mixture layer preferably contains an intermetallic compound of Cu and CuSn and an Sn and transition metal, and the CuSn intermetallic compound is preferably Cu 3 Sn.
さらに、本発明の半導体装置においては、前記接合層の両面にNi、Co及びAgからなる群から選択される少なくとも1種の金属からなる密着層を更に備えており、一方の密着層が前記半導体素子の接合部に接するように配置され、他方の密着層が前記基板の接合部に接するように配置されていることが好ましい。 Furthermore, in the semiconductor device of the present invention, an adhesive layer made of at least one metal selected from the group consisting of Ni, Co, and Ag is further provided on both surfaces of the bonding layer, and one adhesive layer is the semiconductor layer. It is preferable that it is disposed so as to be in contact with the joint portion of the element, and the other adhesion layer is disposed so as to be in contact with the joint portion of the substrate.
なお、本発明の金属ナノ粒子ペーストによって接合強度が高い接合層を低温で形成することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。 The reason why the metal nanoparticle paste of the present invention makes it possible to form a bonding layer having high bonding strength at a low temperature is not necessarily clear, but the present inventors speculate as follows.
すなわち、本発明の金属ナノ粒子ペーストは焼結温度が150〜400℃のSnと遷移金属との金属間化合物(以下、「Sn−遷移金属間化合物」という)のナノ粒子を含んでいるため、400℃以下の温度で焼結したSn−遷移金属間化合物が、Cuナノ粒子間に浸透することによってボイドが埋められ、焼結密度が向上し、接合層の接合強度が高くなると推察される。 That is, since the metal nanoparticle paste of the present invention contains nanoparticles of an intermetallic compound of Sn and a transition metal (hereinafter referred to as “ Sn- transition intermetallic compound”) having a sintering temperature of 150 to 400 ° C., It is presumed that the Sn-transition intermetallic compound sintered at a temperature of 400 ° C. or lower penetrates between Cu nanoparticles, thereby filling voids, improving the sintered density, and increasing the bonding strength of the bonding layer.
また、Cuナノ粒子とSn−遷移金属間化合物ナノ粒子は、活性な表面原子同士が低温、短時間で反応しやすく、Snと高融点金属である遷移金属との金属間化合物のナノ粒子を含有することにより、Snの拡散が抑制されるとともにCuSn金属間化合物としてCuリッチの強度が高い化合物である安定で高耐熱性のCu3Snが優先的に形成されやすい。このため、Cuナノ粒子間に浸透したSn−遷移金属間化合物ナノ粒子は、その界面近傍で、強度が高く安定で高耐熱性のCu3Sn金属間化合物を形成しやすく、強固で高強度の接合層が形成されると推察される。さらに、Sn−遷移金属間化合物ナノ粒子の還元効果によりCuナノ粒子表面の酸化物層が還元されやすいため、Cuナノ粒子が焼結しやすく、焼結密度が向上し、接合強度が高い接合層が形成されると推察される。また、Snと高融点の遷移金属とのナノ粒子が焼結層を強化する働きを持つことから、接合強度が十分に向上するものと推察される。 Moreover, Cu nanoparticle and Sn-transition intermetallic compound nanoparticle easily react with active surface atoms at a low temperature in a short time, and contains nanoparticles of an intermetallic compound of Sn and a transition metal that is a refractory metal. By doing so, the diffusion of Sn is suppressed, and a stable and high heat-resistant Cu 3 Sn that is a compound having a high Cu-rich strength as a CuSn intermetallic compound is likely to be preferentially formed. For this reason, Sn-transition intermetallic compound nanoparticles that have penetrated between Cu nanoparticles easily form a strong, stable, and high heat-resistant Cu 3 Sn intermetallic compound in the vicinity of the interface. It is assumed that a bonding layer is formed. Furthermore, since the oxide layer on the surface of the Cu nanoparticles is easily reduced by the reduction effect of the Sn-transition intermetallic compound nanoparticles, the Cu nanoparticles are easily sintered, the sintered density is improved, and the bonding layer has a high bonding strength. Is presumed to be formed. Moreover, since the nanoparticles of Sn and a high melting point transition metal have a function of strengthening the sintered layer, it is assumed that the bonding strength is sufficiently improved.
一方、マイクロメートルサイズのSn粒子を用いると、Cu粒子間にSn粒子が浸透せず、Cu粒子間のボイドが十分に埋まらないため、十分な接合強度が得られないと推察される。また、マイクロメートルサイズのCu粒子やSn粒子は、表面の活性が高いものではないため、低温では焼結しにくく、また、CuSn金属間化合物が形成されにくく、接合強度が十分に高くならないと推察される。 On the other hand, when Sn particles having a micrometer size are used, the Sn particles do not permeate between the Cu particles, and the voids between the Cu particles are not sufficiently filled. Therefore, it is assumed that sufficient bonding strength cannot be obtained. In addition, Cu particles and Sn particles of micrometer size are not highly active on the surface, so it is difficult to sinter at low temperatures, CuSn intermetallic compounds are not easily formed, and it is assumed that the bonding strength is not sufficiently high. Is done.
また、有機被膜を表面に備えるCuナノ粒子のみを用いて比較的低温での熱処理や無加圧での熱処理により接合層を形成すると、有機被膜の分解時に生成するガスやCuナノ粒子同士の点での結合状態(リンキング状態)によりボイドが形成しやすく、焼結密度が低い組織構造が形成されると推察される。このため、有機被膜を表面に備えるCuナノ粒子のみを用いた場合には、接合強度は低下すると推察される。 In addition, when the bonding layer is formed by heat treatment at a relatively low temperature or heat treatment without pressure using only Cu nanoparticles having an organic coating on the surface, gas generated during decomposition of the organic coating or points between Cu nanoparticles It is presumed that voids are easy to be formed due to the bonding state (linking state) in, and a structure having a low sintered density is formed. For this reason, it is speculated that the bonding strength decreases when only Cu nanoparticles having an organic coating on the surface are used.
本発明によれば、接合強度が十分に高い接合層を低温(具体的には400℃以下)で形成することが可能な金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置を提供することが可能となる。 According to the present invention, a metal nanoparticle paste capable of forming a bonding layer having a sufficiently high bonding strength at a low temperature (specifically, 400 ° C. or lower), a bonding material containing the same, and a semiconductor using the same An apparatus can be provided.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
先ず、本発明の金属ナノ粒子ペースト及びそれを含有する本発明の接合材料について説明する。本発明の金属ナノ粒子ペーストは、Cuナノ粒子とSn−遷移金属間化合物ナノ粒子とを所定の割合で含有するものである。本発明の金属ナノ粒子ペーストは、低温(具体的には400℃以下)での熱処理により焼結し、接合強度が十分に高い接合層を形成することができる。また、本発明の金属ナノ粒子ペーストを用いると、熱処理時に無加圧でも、接合強度が十分に高い接合層を形成することができる。 First, the metal nanoparticle paste of the present invention and the bonding material of the present invention containing the metal nanoparticle paste will be described. The metal nanoparticle paste of the present invention contains Cu nanoparticles and Sn-transition intermetallic compound nanoparticles at a predetermined ratio. The metal nanoparticle paste of the present invention can be sintered by heat treatment at a low temperature (specifically, 400 ° C. or lower) to form a bonding layer having a sufficiently high bonding strength. In addition, when the metal nanoparticle paste of the present invention is used, a bonding layer having a sufficiently high bonding strength can be formed even without pressure during heat treatment.
(Cuナノ粒子)
本発明においては、直径が1〜1000nmの範囲にあるCu粒子を「Cuナノ粒子」という。Cu粒子の直径は、透過型電子顕微鏡(TEM)観察において測定することができ、本発明においては、以下に示す全Cu粒子に対するCuナノ粒子の割合及びCu粒子(Cuナノ粒子を含む)の平均粒子径を、前記TEM観察において、無作為に200個のCu粒子を抽出し、これらの直径を測定することによって求められる値とする。
(Cu nanoparticles)
In the present invention, Cu particles having a diameter in the range of 1 to 1000 nm are referred to as “Cu nanoparticles”. The diameter of Cu particles can be measured by transmission electron microscope (TEM) observation. In the present invention, the ratio of Cu nanoparticles to the total Cu particles shown below and the average of Cu particles (including Cu nanoparticles) are as follows. The particle diameter is a value obtained by randomly extracting 200 Cu particles and measuring their diameters in the TEM observation.
本発明の金属ナノ粒子ペーストにおいては、このようなCuナノ粒子(直径が1〜1000nmの範囲にあるもの)が個数基準で全Cu粒子の99%以上であることが好ましく、全てのCu粒子が前記Cuナノ粒子であることが特に好ましい。Cuナノ粒子の割合が前記下限未満になると、Cu粒子の焼結温度が高くなるため、低温(具体的には400℃以下)での加熱によるCu粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。 In the metal nanoparticle paste of the present invention, such Cu nanoparticles (those having a diameter in the range of 1 to 1000 nm) are preferably 99% or more of all Cu particles on a number basis, and all Cu particles are The Cu nanoparticles are particularly preferable. When the ratio of Cu nanoparticles is less than the lower limit, the sintering temperature of Cu particles becomes high, so that bonding of Cu particles due to heating at a low temperature (specifically, 400 ° C. or less) hardly occurs. The strength tends to decrease.
また、本発明の金属ナノ粒子ペーストに含まれるCu粒子(Cuナノ粒子を含む)の平均粒子径としては、10〜1000nmが好ましく、30〜500nmがより好ましく、50〜400nmが特に好ましい。Cu粒子の平均粒子径が前記下限未満になると、バルクに対する表面比率が大きくなるため、Cuナノ粒子の表面が大気中で酸化されやすく、その結果、金属ナノ粒子ペースト中でCuナノ粒子同士の凝集が起こったり、接合時の熱処理で十分に酸化成分を除去できず、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。ただし、Cuナノ粒子を不活性ガス又は還元性ガス雰囲気下で取り扱えば、Cuナノ粒子表面の酸化が起こりにくく、上記の不具合が起こりにくくなるため、平均粒子径が前記下限未満のCuナノ粒子も本発明の金属ナノ粒子ペーストに使用することが可能である。また、有機被膜を備えるCuナノ粒子を使用する場合には、有機被膜の割合がCuナノ粒子に比べて多くなるため、有機被膜が接合時の熱処理で十分に分解されずに残存し、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。他方、Cu粒子の平均粒子径が前記上限を超えると、粒子サイズ効果が小さいため、Cu粒子の焼結温度が高くなり、低温(具体的には400℃以下)での加熱によるCu粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。 Moreover, as an average particle diameter of Cu particle | grains (a Cu nanoparticle is included) contained in the metal nanoparticle paste of this invention, 10-1000 nm is preferable, 30-500 nm is more preferable, 50-400 nm is especially preferable. When the average particle diameter of the Cu particles is less than the lower limit, the surface ratio to the bulk is increased, so that the surface of the Cu nanoparticles is easily oxidized in the atmosphere. As a result, the Cu nanoparticles are aggregated in the metal nanoparticle paste. Or the oxidation component cannot be sufficiently removed by heat treatment at the time of bonding, and the characteristics of the bonding material such as bonding strength, conductivity, and thermal conductivity tend to be deteriorated. However, if Cu nanoparticles are handled in an inert gas or a reducing gas atmosphere, the surface of the Cu nanoparticles is less likely to be oxidized, and the above problems are less likely to occur. Therefore, Cu nanoparticles having an average particle diameter of less than the lower limit are also included. It can be used for the metal nanoparticle paste of the present invention. In addition, when using Cu nanoparticles with an organic coating, the organic coating remains higher than the Cu nanoparticles in proportion to the organic coating. There is a tendency that characteristics of the bonding material such as conductivity, thermal conductivity and the like are deteriorated. On the other hand, if the average particle diameter of the Cu particles exceeds the upper limit, the particle size effect is small, so the sintering temperature of the Cu particles increases, and the Cu particles are heated by heating at a low temperature (specifically, 400 ° C. or less). Bonding is difficult to occur, and as a result, the bonding strength tends to decrease.
このようなCuナノ粒子としては、例えば、Cuナノ粒子と、このCuナノ粒子の表面に配置された、脂肪酸及び脂肪族アミンを含有する有機被膜とを備える表面被覆Cuナノ粒子が挙げられる。前記有機被膜は低温(具体的には400℃以下)で熱分解させることができるものである。この表面被覆Cuナノ粒子は、特開2012−46779号公報に記載された方法に準じて製造することができる。すなわち、アルコール系溶媒中、脂肪酸及び脂肪族アミンの共存下で、前記アルコール系溶媒に不溶なCu塩を還元せしめることによってCuナノ粒子を形成させ、且つ、このCuナノ粒子の表面に前記脂肪酸及び脂肪族アミンを含有する有機被膜を形成させることによって前記表面被覆Cuナノ粒子を製造することができる。ここで、Cu塩としては炭酸銅、水酸化銅が挙げられる。また、脂肪酸としてはオクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸などの飽和脂肪酸やオレイン酸などの不飽和脂肪酸が挙げられ、脂肪族アミンとしてはオクチルアミン、デシルアミン、ドデシルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミンなどの飽和脂肪族アミンやオレイルアミンなどの不飽和脂肪族アミンが挙げられ、脂肪酸及び脂肪族アミンの炭化水素鎖の炭素数を変更することによってCuナノ粒子の粒子径を調整することができる。 Examples of such Cu nanoparticles include surface-coated Cu nanoparticles including Cu nanoparticles and an organic coating containing a fatty acid and an aliphatic amine disposed on the surface of the Cu nanoparticles. The organic coating can be thermally decomposed at a low temperature (specifically, 400 ° C. or lower). The surface-coated Cu nanoparticles can be produced according to the method described in JP 2012-46779 A. That is, Cu nanoparticles are formed by reducing a Cu salt insoluble in the alcohol solvent in the coexistence of a fatty acid and an aliphatic amine in an alcohol solvent, and the fatty acid and the surface of the Cu nanoparticles are formed. The surface-coated Cu nanoparticles can be produced by forming an organic coating containing an aliphatic amine. Here, examples of the Cu salt include copper carbonate and copper hydroxide. Examples of fatty acids include saturated fatty acids such as octanoic acid, decanoic acid, dodecanoic acid, myristic acid, palmitic acid and stearic acid, and unsaturated fatty acids such as oleic acid. Aliphatic amines include octylamine, decylamine and dodecylamine. , Saturated aliphatic amines such as myristylamine, palmitylamine, stearylamine, and unsaturated aliphatic amines such as oleylamine, and by changing the carbon number of the hydrocarbon chain of fatty acids and aliphatic amines, The particle size can be adjusted.
また、本発明においては、(株)イオックス製のCuナノ粒子「Cu60−BtTP」、(株)テックサイエンス製の銅ナノ粒子粉末などの市販のCuナノ粒子を使用することもできる。さらに、溶媒中に分散されたCuナノ粒子を使用することもできる。このようなCuナノ粒子分散液としては、立山科学工業(株)製の銅ナノ粒子分散液、大研化学工業(株)製「NCU−09」、ハリマ化成グループ(株)製の銅ナノ粒子分散液などの市販品が挙げられる。 In the present invention, commercially available Cu nanoparticles such as Cu nanoparticles “Cu60-BtTP” manufactured by IOX Co., Ltd. and copper nanoparticle powders manufactured by Tech Science Co., Ltd. can also be used. Furthermore, Cu nanoparticles dispersed in a solvent can also be used. As such Cu nanoparticle dispersion liquid, copper nanoparticle dispersion liquid manufactured by Tateyama Scientific Industry Co., Ltd., “NCU-09” manufactured by Daiken Chemical Industry Co., Ltd., copper nanoparticle manufactured by Harima Chemical Group Co., Ltd. Commercial products such as dispersions can be mentioned.
(Sn−遷移金属間化合物ナノ粒子)
本発明においては、直径が1〜1000nmの範囲にあるSn−遷移金属間化合物ナノ粒子を「Sn−遷移金属間化合物ナノ粒子」という。Sn−遷移金属間化合物ナノ粒子の直径は、透過型電子顕微鏡(TEM)観察において測定することができ、本発明においては、以下に示す全Sn−遷移金属間化合物ナノ粒子に対するSn−遷移金属間化合物ナノ粒子の割合及びSn−遷移金属間化合物粒子(Sn−遷移金属間化合物ナノ粒子を含む)の平均粒子径は、前記TEM観察において、無作為に200個のSn−遷移金属間化合物粒子を抽出し、これらの直径を測定することによって求められる値とする。
(Sn-transition intermetallic compound nanoparticles)
In the present invention, Sn-transition intermetallic compound nanoparticles having a diameter in the range of 1 to 1000 nm are referred to as “Sn-transition intermetallic compound nanoparticles”. The diameter of the Sn-transition intermetallic compound nanoparticles can be measured by observation with a transmission electron microscope (TEM). In the present invention, the Sn-transition metal interparticles with respect to all the Sn-transition intermetallic compounds shown below are used. The ratio of compound nanoparticles and the average particle diameter of Sn-transition intermetallic compound particles (including Sn-transition intermetallic compound nanoparticles) were determined by randomly selecting 200 Sn-transition intermetallic compound particles in the TEM observation. It is set as the value calculated | required by extracting and measuring these diameters.
本発明の金属ナノ粒子ペーストにおいては、このようなSn−遷移金属間化合物ナノ粒子(直径が1〜1000nmの範囲にあるもの)が個数基準で全Sn−遷移金属間化合物粒子の99%以上であることが好ましく、全てのSn−遷移金属間化合物粒子が前記Sn−遷移金属間化合物ナノ粒子であることが特に好ましい。Sn−遷移金属間化合物ナノ粒子の割合が前記下限未満になると、Cuナノ粒子間に入り込むSn−遷移金属間化合物ナノ粒子の量が少なくなり、Cuナノ粒子間の空隙が十分に埋まらないため、ボイドが生成し、接合強度が十分に向上しない傾向にある。 In the metal nanoparticle paste of the present invention, such Sn-transition intermetallic compound nanoparticles (having a diameter in the range of 1 to 1000 nm) account for 99% or more of all Sn-transition intermetallic compound particles on a number basis. It is preferable that all of the Sn-transition intermetallic compound particles are the Sn-transition intermetallic compound nanoparticles. When the ratio of Sn-transition intermetallic compound nanoparticles is less than the lower limit, the amount of Sn-transition intermetallic compound nanoparticles entering between the Cu nanoparticles decreases, and the voids between the Cu nanoparticles are not sufficiently filled. Voids are generated and the bonding strength tends not to be sufficiently improved.
また、本発明の金属ナノ粒子ペーストに含まれるSn−遷移金属間化合物粒子(Sn−遷移金属間化合物ナノ粒子を含む)の平均粒子径としては、5〜1000nmが好ましく、10〜500nmがより好ましく、20〜250nmが特に好ましい。Sn−遷移金属間化合物粒子の平均粒子径が前記下限未満になると、バルクに対する表面比率が大きくなるため、Snナノ粒子の表面が大気中で酸化されやすく、その結果、金属ナノ粒子ペースト中でSn−遷移金属間化合ナノ粒子同士の凝集が起こったり、接合時の熱処理で十分に酸化成分を除去できず、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。ただし、Sn−遷移金属間化合物ナノ粒子を不活性ガス又は還元性ガス雰囲気下で取り扱えば、Sn−遷移金属間化合物ナノ粒子表面の酸化が起こりにくく、上記の不具合が起こりにくくなるため、平均粒子径が前記下限未満のSn−遷移金属間化合物ナノ粒子も本発明の金属ナノ粒子ペーストに使用することが可能である。また、有機被膜を備えるSn−遷移金属間化合物ナノ粒子を使用する場合には、有機被膜の割合がSn−遷移金属間化合物ナノ粒子に比べて多くなるため、有機被膜が接合時の熱処理で十分に分解されずに残存し、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。他方、Sn−遷移金属間化合物粒子の平均粒子径が前記上限を超えると、Cuナノ粒子間にSn−遷移金属間化合物ナノ粒子が入り込めず、Cuナノ粒子間の空隙が十分に埋まらないため、ボイドが生成し、接合強度が十分に向上しない傾向にある。 Moreover, as an average particle diameter of Sn-transition intermetallic compound particle | grains (including Sn-transition intermetallic compound nanoparticle) contained in the metal nanoparticle paste of this invention, 5-1000 nm is preferable and 10-500 nm is more preferable. 20 to 250 nm is particularly preferable. When the average particle diameter of the Sn-transition intermetallic compound particles is less than the lower limit, the surface ratio to the bulk increases, so that the surface of the Sn nanoparticles is easily oxidized in the atmosphere. As a result, Sn in the metal nanoparticle paste -Aggregation between transition metal intermetallic nanoparticles occurs, or the oxidation component cannot be sufficiently removed by heat treatment at the time of bonding, and the characteristics of the bonding material such as bonding strength, conductivity, and thermal conductivity tend to be deteriorated. However, if the Sn-transition intermetallic compound nanoparticles are handled in an inert gas or reducing gas atmosphere, the surface of the Sn-transition intermetallic compound nanoparticles is unlikely to oxidize and the above-mentioned problems are unlikely to occur. Sn-transition intermetallic compound nanoparticles having a diameter less than the lower limit can also be used in the metal nanoparticle paste of the present invention. In addition, when using Sn-transition intermetallic compound nanoparticles provided with an organic coating, the organic coating is more than the Sn-transition intermetallic compound nanoparticles. It remains without being decomposed, and the properties of the bonding material such as bonding strength, conductivity, and thermal conductivity tend to deteriorate. On the other hand, when the average particle diameter of the Sn-transition intermetallic compound particles exceeds the upper limit, the Sn-transition intermetallic compound nanoparticles cannot enter between the Cu nanoparticles, and the voids between the Cu nanoparticles are not sufficiently filled. , Voids are formed, and the bonding strength tends not to be sufficiently improved.
また、本発明の金属ナノ粒子ペーストにおいては、このようなSn−遷移金属間化合物ナノ粒子の遷移金属が、960℃以上の融点を有し、且つ−0.45V以上のイオン標準電極電位を有する金属であることが好ましい。上記遷移金属として、960℃以上の融点を有する金属を用いることにより、Snの拡散が抑制され、Cuリッチの強度が高い化合物である安定で高耐熱性のCu3Snが形成されやすく、またSn−遷移金属間化合物自身も強度が高いという効果が得られるようになる傾向にある。なお、1000℃以上の融点を有する金属であることがより好ましい。また、上記遷移金属として、−0.45V以上のイオン標準電極電位を有する金属を用いることにより、Sn−遷移金属間化合物の耐酸化性が良くなり、酸化を抑えて高強度化が達成できるという効果が得られるようになる傾向にある。なお、−0.3V以上のイオン標準電極電位を有する金属を用いることがより好ましい。 In the metal nanoparticle paste of the present invention, the transition metal of such Sn-transition intermetallic compound nanoparticles has a melting point of 960 ° C. or higher and an ion standard electrode potential of −0.45 V or higher. A metal is preferred. By using a metal having a melting point of 960 ° C. or higher as the transition metal, the diffusion of Sn is suppressed, and a stable and high heat-resistant Cu 3 Sn that is a compound having a high Cu-rich strength is easily formed. -The transition intermetallic compound itself tends to have the effect of high strength. A metal having a melting point of 1000 ° C. or higher is more preferable. In addition, by using a metal having an ion standard electrode potential of −0.45 V or more as the transition metal, the oxidation resistance of the Sn-transition intermetallic compound is improved, and high strength can be achieved by suppressing oxidation. It tends to be effective. It is more preferable to use a metal having an ion standard electrode potential of −0.3 V or higher.
また、本発明の金属ナノ粒子ペーストにおいては、このようなSn−遷移金属間化合物ナノ粒子の遷移金属が、Au、Pt、Pd、Ag、Cu、Ni、Co及びFeからなる群から選択される少なくとも1種の金属であることが好ましく、Pt、Ag、Cu、Niであることがより好ましい。上記遷移金属としてAu、Pt、Pd、Ag、Cu、Ni、Co及びFeからなる群から選択される少なくとも1種の金属を用いることにより、Snの拡散が抑制され、Cuリッチの強度が高い化合物である安定で高耐熱性のCu3Snが形成されやすく、またSn−遷移金属間化合物自身も強度が高いという効果が十分に得られるようになる傾向にある。 In the metal nanoparticle paste of the present invention, the transition metal of such Sn-transition intermetallic compound nanoparticles is selected from the group consisting of Au, Pt, Pd, Ag, Cu, Ni, Co and Fe. It is preferably at least one metal, and more preferably Pt, Ag, Cu, or Ni. By using at least one metal selected from the group consisting of Au, Pt, Pd, Ag, Cu, Ni, Co and Fe as the transition metal, Sn diffusion is suppressed, and a compound having high Cu-rich strength The stable and highly heat-resistant Cu 3 Sn is easily formed, and the Sn-transition intermetallic compound itself tends to have a sufficient effect of high strength.
また、このようなSn−遷移金属間化合物ナノ粒子としては、特に制限されず、公知のSn−遷移金属間化合物ナノ粒子を適宜用いることができる。例えば、Sn粒子と遷移金属元素のイオンとを溶液中で反応させ、遷移金属元素のイオンを還元させてSn−遷移金属間化合物ナノ粒子を合成する。遷移金属元素のイオンは、Snよりも貴な金属(例えば、Pb、Bi、Cu、Ag、Pd、Pt、Au、など)であれば還元剤を使わずにSnのイオン化と金属イオンの還元時の標準電極電位差で還元できるが、還元に時間がかかるため、還元を促進するために還元性溶剤中で反応させることが好ましい。 In addition, the Sn-transition intermetallic compound nanoparticles are not particularly limited, and known Sn-transition intermetallic compound nanoparticles can be appropriately used. For example, Sn particles and transition metal element ions are reacted in a solution, and transition metal element ions are reduced to synthesize Sn-transition intermetallic compound nanoparticles. If the transition metal element ion is a noble metal than Sn (for example, Pb, Bi, Cu, Ag, Pd, Pt, Au, etc.), the ionization of Sn and the reduction of metal ions without using a reducing agent However, since the reduction takes time, it is preferable to react in a reducing solvent in order to promote the reduction.
このような還元性溶剤としては、メタノール、エタノール、プロピルアルコール、ブタノール、ヘキサノール、オクタノール、デカノール、オレイルアルコールなどの1級モノアルコール類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオールなどのジオール類、グリセリンなどのトリオール、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、オレイルアミンなどの1級アミン類などを使用することができる。1級アルコールに代えて2級アルコールや、1級アミンに代えて2級又は3級アミンを用いても良い。これらの還元性溶剤に混和可能な溶剤を適宜混合してもよい。混和可能な溶剤としては、ヘキサン、ベンゼン、トルエン、ジメチルエーテル、ジエチルエーテル、ジフェニルエーテル、クロロホルム、酢酸エチル、ジクロロメタン、THF、アセトン、アセトニトリル、DMF、水などがあげられる。また、これらの還元性溶剤、混和可能な溶剤に加えて、ナノ粒子の形状制御のために修飾剤を加えることもできる。このような修飾剤としては、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィンなどのホスフィン類、プロピオン酸、酪酸、ヘキサン酸、オクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸などの脂肪酸類を使用することができる。また、還元剤として添加したアミン類も修飾剤としても使用することができる。 Such reducing solvents include primary monoalcohols such as methanol, ethanol, propyl alcohol, butanol, hexanol, octanol, decanol, oleyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, Diols such as butanediol, pentanediol and hexanediol, triols such as glycerin, primary amines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, and oleylamine can be used. . A secondary alcohol may be used in place of the primary alcohol, and a secondary or tertiary amine may be used in place of the primary amine. A solvent miscible with these reducing solvents may be appropriately mixed. Examples of miscible solvents include hexane, benzene, toluene, dimethyl ether, diethyl ether, diphenyl ether, chloroform, ethyl acetate, dichloromethane, THF, acetone, acetonitrile, DMF, water, and the like. In addition to these reducing solvents and miscible solvents, a modifier may be added for shape control of the nanoparticles. Such modifiers include phosphines such as tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, tricyclohexylphosphine, triphenylphosphine, propionic acid, butyric acid, hexanoic acid, octanoic acid, decanoic acid, dodecane. Fatty acids such as acid, myristic acid, palmitic acid, stearic acid and oleic acid can be used. In addition, amines added as reducing agents can also be used as modifiers.
このようなSn−遷移金属間化合物ナノ粒子の原料となるSn粒子としては、粒径1000nm以下のSnナノ粒子を用いることが好ましい。なお、Snよりも貴な金属とのSn−遷移金属間化合物を得る場合は、粒径1〜100μmのサイズのサブミクロン粒子を用いてもよい。貴な金属イオンの存在により、標準電極電位差によりSnの溶出が加速されるため、ナノサイズの粒子を使わなくてもSn−遷移金属間化合物ナノ粒子が得られるからである。また、Sn−遷移金属間化合物ナノ粒子の原料としてSnナノ粒子を用いる場合は、平均粒径としては、5〜500nmが好ましく、10〜300nmがより好ましい。Sn粒子の平均粒子径が前記下限未満になると、Snナノ粒子の活性作用が強すぎて粒子の酸化や粒子同士の凝集が起こりやすくなる傾向がある。他方、Sn粒子の平均粒子径が前記上限を超えると、遷移金属元素とSnとの反応が十分に中まで進行しにくくなり、金属間化合物が出来にくくなる傾向にある。 As the Sn particles used as a raw material for such Sn-transition intermetallic compound nanoparticles, it is preferable to use Sn nanoparticles having a particle size of 1000 nm or less. In addition, when obtaining a Sn-transition intermetallic compound with a metal nobler than Sn, submicron particles having a particle size of 1 to 100 μm may be used. This is because, due to the presence of noble metal ions, Sn elution is accelerated by the standard electrode potential difference, so that Sn-transition intermetallic compound nanoparticles can be obtained without using nano-sized particles. Moreover, when using Sn nanoparticle as a raw material of Sn-transition intermetallic compound nanoparticle, as an average particle diameter, 5-500 nm is preferable and 10-300 nm is more preferable. When the average particle diameter of the Sn particles is less than the lower limit, the active action of the Sn nanoparticles is too strong, and there is a tendency that the oxidation of the particles and the aggregation of the particles easily occur. On the other hand, if the average particle diameter of the Sn particles exceeds the upper limit, the reaction between the transition metal element and Sn does not proceed sufficiently to the inside, and an intermetallic compound tends to be hardly formed.
なお、このようなSn粒子としては、例えば、Snナノ粒子と、このSnナノ粒子の表面に配置された、脂肪族アミンを含有する有機被膜とを備える表面被覆Snナノ粒子が挙げられる。前記有機被膜は低温(具体的には400℃以下)で熱分解させることができるものである。この表面被覆Snナノ粒子は、特願2012−130888号の明細書に記載された方法に準じて製造することができる。すなわち、有機溶媒中、脂肪族アミンと第4級アンモニウムボロハイドライドとの共存下で、Snイオンを還元せしめることによってSnナノ粒子を形成させ、且つ、このSnナノ粒子の表面に前記脂肪族アミンを含有する有機被膜を形成させることによって前記表面被覆Snナノ粒子を製造することができる。ここで、Snイオン源としては、有機溶媒に可溶であり、Snイオンを生成するSn化合物であれば特に制限はなく、例えば、塩化スズ、フッ化スズ、臭化スズ、ヨウ化スズ、酢酸スズ、硫酸スズ、硝酸スズ、アセチルアセトナートスズなどが挙げられる。また、脂肪族アミンとしてはオクチルアミン、デシルアミン、ドデシルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミンなどの飽和脂肪族アミンやオレイルアミンなどの不飽和脂肪族アミンが挙げられ、脂肪族アミンの炭化水素鎖の炭素数を変更することによってSnナノ粒子の粒子径を調整することができる。 Examples of such Sn particles include surface-coated Sn nanoparticles including Sn nanoparticles and an organic coating containing an aliphatic amine disposed on the surface of the Sn nanoparticles. The organic coating can be thermally decomposed at a low temperature (specifically, 400 ° C. or lower). The surface-coated Sn nanoparticles can be produced according to the method described in the specification of Japanese Patent Application No. 2012-130888. That is, Sn nanoparticles are formed by reducing Sn ions in the presence of an aliphatic amine and a quaternary ammonium borohydride in an organic solvent, and the aliphatic amine is formed on the surface of the Sn nanoparticles. The surface-coated Sn nanoparticles can be produced by forming an organic film to be contained. Here, the Sn ion source is not particularly limited as long as it is an Sn compound that is soluble in an organic solvent and generates Sn ions. For example, tin chloride, tin fluoride, tin bromide, tin iodide, acetic acid Examples thereof include tin, tin sulfate, tin nitrate, and acetylacetonatotin. Examples of aliphatic amines include saturated aliphatic amines such as octylamine, decylamine, dodecylamine, myristylamine, palmitylamine, stearylamine, and unsaturated aliphatic amines such as oleylamine. The particle diameter of Sn nanoparticles can be adjusted by changing the number of carbon atoms.
また、本発明においては、日本イオン(株)製のSnナノパウダーなどの市販のSnナノ粒子や和光純薬工業(株)製のSn粉末、(株)高純度化学研究所製のSn粉末などのSnサブミクロン粒子を使用することもできる。さらに、溶媒中に分散されたSnナノ粒子を使用することもできる。このようなSnナノ粒子分散液としては、立山科学工業(株)製のSnナノ粒子分散液などの市販品が挙げられる。 In addition, in the present invention, commercially available Sn nanoparticles such as Sn nano powder manufactured by Nippon Ion Co., Ltd., Sn powder manufactured by Wako Pure Chemical Industries, Ltd., Sn powder manufactured by Kojundo Chemical Laboratory Co., Ltd., etc. Sn submicron particles can also be used. Furthermore, Sn nanoparticles dispersed in a solvent can also be used. Examples of such Sn nanoparticle dispersion include commercially available products such as Sn nanoparticle dispersion manufactured by Tateyama Kagaku Kogyo Co., Ltd.
このような本発明のSn−遷移金属間化合物ナノ粒子の形状は、特に制限されないが、球状、長方体形状、立方体形状、多面体形状などが挙げられる。なお、粒子同士が密につまって焼結密度を向上できるという観点から長方体形状、立方体形状、多面体形状であることが好ましい。 The shape of the Sn-transition intermetallic compound nanoparticles of the present invention is not particularly limited, and examples thereof include a spherical shape, a rectangular shape, a cubic shape, and a polyhedral shape. In addition, it is preferable that it is a rectangular shape, a cube shape, and a polyhedron shape from a viewpoint that particles are closely packed and a sintered density can be improved.
なお、本発明のSn−遷移金属間化合物ナノ粒子においては、Sn−遷移金属間化合物は、Snと遷移金属によって構成される化合物で、このようなSn−遷移金属間化合物としては、Pt3Sn、Ag3Sn、Cu6Sn5、Ni3Sn2、Ni3Sn、Ni3Sn4、Cu3Sn、PtSn、Pt2Sn3、PtSn2、PtSn4、AuSn、AuSn2、AuSn4、Pd3Sn、Pd2Sn、PdSn、PdSn2、PdSn3、PdSn4、Co3Sn2、CoSn、CoSn2、FeSn、FeSn2、(Ni,Cu)6Sn5、(Ni,Cu)3Sn、(Ni,Cu)Sn6、(Pt,Ni)3Sn、(Ag,Ni)3Sn、(Pt,Cu)3Sn、(Ag,Cu)3Snからなる群から選択される少なくとも1種の金属間化合物がより好ましく、Pt3Sn、Ag3Sn、Cu6Sn5、Ni3Sn2、(Ni,Cu)6Sn5、(Ni,Cu)3Sn、(Ni,Cu)Sn6であることが特に好ましい。Sn−遷移金属間化合物ナノ粒子として上記から選択される少なくとも1種の金属間化合物を用いることにより、Snの拡散が抑制され、Cuリッチの強度が高い化合物である安定で高耐熱のCu3Snが形成されやすく、またSn−遷移金属間化合物自身も強度が高いという効果が十分に得られるようになる傾向にある。 In the Sn-transition intermetallic compound nanoparticles of the present invention, the Sn-transition intermetallic compound is a compound composed of Sn and a transition metal, and as such an Sn-transition intermetallic compound, Pt 3 Sn , Ag 3 Sn, Cu 6 Sn 5, Ni 3 Sn 2, Ni 3 Sn, Ni 3 Sn 4, Cu 3 Sn, PtSn, Pt 2 Sn 3, PtSn 2, PtSn 4, AuSn, AuSn 2, AuSn 4, Pd 3 Sn, Pd 2 Sn, PdSn, PdSn 2 , PdSn 3 , PdSn 4 , Co 3 Sn 2 , CoSn, CoSn 2 , FeSn, FeSn 2 , (Ni, Cu) 6 Sn 5 , (Ni, Cu) 3 Sn, (Ni, Cu) Sn 6, or (Pt, Ni) 3 Sn, (Ag, Ni) 3 Sn, (Pt, Cu) 3 Sn, (Ag, Cu) 3 Sn At least one more preferred intermetallic compound selected from the group consisting of, Pt 3 Sn, Ag 3 Sn , Cu 6 Sn 5, Ni 3 Sn 2, (Ni, Cu) 6 Sn 5, (Ni, Cu) 3 Particularly preferred is Sn, (Ni, Cu) Sn 6 . By using at least one intermetallic compound selected from the above as Sn-transition intermetallic compound nanoparticles, the diffusion of Sn is suppressed, and a stable and high heat-resistant Cu 3 Sn that is a compound with high Cu-rich strength. Tends to be formed, and the Sn-transition intermetallic compound itself tends to be sufficiently effective.
(金属ナノ粒子ペースト)
本発明の金属ナノ粒子ペーストは、このようなCuナノ粒子とSn−遷移金属間化合物ナノ粒子とを所定の割合で含有するものである。本発明の金属ナノ粒子ペーストにおけるCuナノ粒子とSn−遷移金属間化合物ナノ粒子の割合は、全金属ナノ粒子に対して、Cuナノ粒子が99.9〜70質量%であり且つSn−遷移金属間化合物ナノ粒子が0.1〜30質量%である。Sn−遷移金属間化合物ナノ粒子の含有量が前記下限未満になる(すなわち、Cuナノ粒子の含有量が前記上限を超える)と、Cuナノ粒子間に入り込むSnナノ粒子の量が少なくなり、Cuナノ粒子間の空隙が十分に埋まらないため、ボイドが生成し、接合強度が低下する。また、CuSn金属間化合物も生成しないため、接合強度が低下する。他方、Sn−遷移金属間化合物ナノ粒子の含有量が前記上限を超える(すなわち、Cuナノ粒子の含有量が前記下限未満になる)と、接合強度や導電性、熱伝導性などの接合材料の特性が低下する。また、接合強度がより高くなるという観点から、Cuナノ粒子の含有量が98〜80質量%であり且つSn−遷移金属間化合物ナノ粒子の含有量が2〜20質量%であることが好ましく、Cuナノ粒子の含有量が97〜85質量%であり且つSn−遷移金属間化合物ナノ粒子の含有量が3〜15質量%であることがより好ましい。なお、Cuナノ粒子とSn−遷移金属間化合物ナノ粒子の割合において、これらの合計量は全金属ナノ粒子に対して100質量%である。
(Metal nanoparticle paste)
The metal nanoparticle paste of the present invention contains such Cu nanoparticles and Sn-transition intermetallic compound nanoparticles at a predetermined ratio. The ratio of Cu nanoparticles and Sn-transition intermetallic compound nanoparticles in the metal nanoparticle paste of the present invention is 99.9 to 70% by mass of Cu nanoparticles with respect to all metal nanoparticles, and Sn-transition metal Intermetallic nanoparticles are 0.1-30 mass%. When the content of the Sn-transition intermetallic compound nanoparticles is less than the lower limit (that is, the content of the Cu nanoparticles exceeds the upper limit), the amount of Sn nanoparticles that enter between the Cu nanoparticles decreases, and Cu Since voids between the nanoparticles are not sufficiently filled, voids are generated and the bonding strength is reduced. Moreover, since the CuSn intermetallic compound is not generated, the bonding strength is reduced. On the other hand, when the content of the Sn-transition intermetallic compound nanoparticles exceeds the upper limit (that is, the content of the Cu nanoparticles is less than the lower limit), the bonding material such as bonding strength, conductivity, thermal conductivity, etc. Characteristics are degraded. Further, from the viewpoint of higher bonding strength, it is preferable that the content of Cu nanoparticles is 98 to 80% by mass and the content of Sn-transition intermetallic compound nanoparticles is 2 to 20% by mass, It is more preferable that the content of Cu nanoparticles is 97 to 85% by mass and the content of Sn-transition intermetallic compound nanoparticles is 3 to 15% by mass. In addition, in the ratio of Cu nanoparticle and Sn-transition intermetallic compound nanoparticle, these total amount is 100 mass% with respect to all the metal nanoparticles.
また、本発明の金属ナノ粒子ペーストにおいては、金属ナノ粒子(直径が1〜1000nmの範囲にあるもの、Cuナノ粒子+Sn−遷移金属間化合物ナノ粒子)が個数基準で全金属粒子(Cu粒子+Sn−遷移金属間化合物粒子)の99%以上であることが好ましく、全ての金属粒子が前記金属ナノ粒子であることが特に好ましい。金属ナノ粒子の割合が前記下限未満になると、金属粒子の焼結温度が高くなるため、低温(具体的には400℃以下)での加熱による金属粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。 In the metal nanoparticle paste of the present invention, metal nanoparticles (thickness in the range of 1 to 1000 nm, Cu nanoparticles + Sn—transition intermetallic compound nanoparticles) are all metal particles (Cu particles + Sn) on a number basis. -99% or more of the transition intermetallic compound particles), and it is particularly preferable that all the metal particles are the metal nanoparticles. When the ratio of the metal nanoparticles is less than the lower limit, the sintering temperature of the metal particles becomes high, so that the metal particles are hardly bonded by heating at a low temperature (specifically, 400 ° C. or less). The strength tends to decrease.
このような本発明の金属ナノ粒子ペーストは、例えば、Cuナノ粒子とSn−遷移金属間化合物ナノ粒子とが所定の割合となるように、両者を混合し、得られた混合ナノ粒子がペースト状となるように有機溶媒などの溶剤と混合したり、Cuナノ粒子ペースト及びSn−遷移金属間化合物ナノ粒子ペーストを調製した後、Cuナノ粒子とSn−遷移金属間化合物ナノ粒子とが所定の割合となるように、両者を混合したり、Cuナノ粒子分散液とSn−遷移金属間化合物ナノ粒子分散液とを調製した後、Cuナノ粒子とSn−遷移金属間化合物ナノ粒子とが所定の割合となるように、両者を混合し、得られた混合ナノ粒子の分散液をペースト状になるまでエバポレータなどを用いて濃縮することによって製造することができる。 In such a metal nanoparticle paste of the present invention, for example, both of the Cu nanoparticles and Sn-transition intermetallic compound nanoparticles are mixed so that a predetermined ratio is obtained, and the obtained mixed nanoparticles are pasty. After mixing with a solvent such as an organic solvent or preparing a Cu nanoparticle paste and Sn-transition intermetallic compound nanoparticle paste, Cu nanoparticles and Sn-transition intermetallic compound nanoparticles are in a predetermined ratio. After mixing both or preparing a Cu nanoparticle dispersion and a Sn-transition intermetallic compound nanoparticle dispersion, the Cu nanoparticles and the Sn-transition intermetallic compound nanoparticles are in a predetermined ratio. Thus, both can be mixed, and the resulting dispersion of mixed nanoparticles can be concentrated by using an evaporator or the like until a paste is formed.
これらのナノ粒子のペーストや分散液は、Cuナノ粒子及びSn−遷移金属間化合物ナノ粒子をそれぞれ有機溶媒などの溶剤と混合して調製してもよいし、前述したような市販のナノ粒子のペーストや分散液を使用してもよい。 These nanoparticle pastes and dispersions may be prepared by mixing Cu nanoparticles and Sn-transition intermetallic compound nanoparticles with a solvent such as an organic solvent, respectively. A paste or dispersion may be used.
本発明の金属ナノ粒子ペーストに用いられる有機溶媒としては特に制限はないが、例えば、テトラデカンなどの炭素数5〜18のアルカン類;1−ブタノール、デカノール、イソプロピルアルコールなどの炭素数1〜20のモノアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのグリコール類;グリセリンなどのトリオール類;α−テルピネオールなどの環状アルコール類;アセトン、メチルエチルケトン、ジエチルケトンなどのケトン類;テトラヒドロフラン、ジエチルエーテル、ブチルカルビトールなどのエーテル類;酢酸エチル、ブチルカルビトールアセテートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族化合物などが挙げられる。また、本発明の金属ナノ粒子ペーストには、必要に応じて、セルロース誘導体(例えば、エチルセルロース、ヒドロキシエチルセルロース)やグリセリド(例えば、ヒマシ油)といった粘度調整剤、などの添加剤を添加してもよい。 Although there is no restriction | limiting in particular as an organic solvent used for the metal nanoparticle paste of this invention, For example, C5-C18 alkanes, such as tetradecane; C1-C20, such as 1-butanol, decanol, and isopropyl alcohol Monoalcohols; glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; triols such as glycerin; cyclic alcohols such as α-terpineol; ketones such as acetone, methyl ethyl ketone, and diethyl ketone; tetrahydrofuran, diethyl Examples include ethers such as ether and butyl carbitol; esters such as ethyl acetate and butyl carbitol acetate; and aromatic compounds such as benzene, toluene and xylene. Moreover, you may add additives, such as viscosity modifiers, such as a cellulose derivative (for example, ethyl cellulose, hydroxyethyl cellulose) and a glyceride (for example, castor oil) to the metal nanoparticle paste of this invention. .
ナノ粒子と溶剤との混合方法としては特に制限はないが、例えば、自転・公転ミキサー、ボールミル、スターラーなどの公知の撹拌装置を用いる方法が挙げられる。 The mixing method of the nanoparticles and the solvent is not particularly limited, and examples thereof include a method using a known stirring device such as a rotation / revolution mixer, a ball mill, or a stirrer.
<半導体装置>
次に、本発明の半導体装置について説明する。本発明の半導体装置は、半導体素子、基板、及び前記半導体素子と前記基板とを接合する接合層を備えており、前記接合層が本発明の金属ナノ粒子ペーストを含有する接合材料(以下、「本発明の接合材料」という)により形成されたCuとSnと遷移金属との混合物層である。また、本発明の半導体装置において、前記混合物層は平均粒子径1〜1000nmの金属ナノ粒子により形成されていることが好ましい。さらに、前記混合物層には、接合強度が十分に高くなるという観点から、CuとCuSn金属間化合物及びSn−遷移金属間化合物が含まれていることが好ましい。このようなCuSn金属間化合物としては、Cu3Snが挙げられる。また、このようなSn−遷移金属間化合物の遷移金属としては、Au、Pt、Pd、Ag、Cu、Ni、Co及びFeからなる群から選択される少なくとも1種の金属が挙げられる。さらに、本発明の半導体装置においては、前記混合物層の両面に、Ni、Co及びAgのうちの少なくとも1種の金属からなる密着層を更に備えていることが好ましい。この場合、一方の密着層は前記半導体素子の接合部に接するように配置され、他方の密着層は前記基板の接合部に接するように配置されている。
<Semiconductor device>
Next, the semiconductor device of the present invention will be described. The semiconductor device of the present invention includes a semiconductor element, a substrate, and a bonding layer for bonding the semiconductor element and the substrate, and the bonding layer includes a bonding material containing the metal nanoparticle paste of the present invention (hereinafter, “ It is a mixture layer of Cu, Sn, and a transition metal formed by the “joining material of the present invention”. Moreover, the semiconductor device of this invention WHEREIN: It is preferable that the said mixture layer is formed with the metal nanoparticle with an average particle diameter of 1-1000 nm. Furthermore, it is preferable that the mixture layer contains Cu, a CuSn intermetallic compound, and a Sn-transition intermetallic compound from the viewpoint of sufficiently increasing the bonding strength. An example of such a CuSn intermetallic compound is Cu 3 Sn. Examples of the transition metal of such an Sn-transition intermetallic compound include at least one metal selected from the group consisting of Au, Pt, Pd, Ag, Cu, Ni, Co, and Fe. Furthermore, in the semiconductor device of the present invention, it is preferable that an adhesive layer made of at least one of Ni, Co, and Ag is further provided on both surfaces of the mixture layer. In this case, one adhesion layer is disposed so as to contact the bonding portion of the semiconductor element, and the other adhesion layer is disposed so as to contact the bonding portion of the substrate.
本発明の半導体装置を構成する半導体素子としては特に制限はなく、例えば、パワー素子、LSI、抵抗、コンデンサなどが挙げられる。また、基板としては特に制限はなく、例えば、リードフレーム、電極が形成されたセラミック基板、実装基板などが挙げられる。リードフレームとしては、例えば、銅合金リードフレームが挙げられる。また、電極が形成されたセラミックス基板としては、例えば、DBC(Direct Bond Copper:登録商標)基板、活性金属接合(AMC:Active Metal Copper)基板が挙げられる。また、実装基板としては、例えば、電極が形成されたアルミナ基板、低温同時焼成セラミックス(LTCC:Low Temperature Co−fired Ceramics)基板、ガラスエポキシ基板などが挙げられる。 There is no restriction | limiting in particular as a semiconductor element which comprises the semiconductor device of this invention, For example, a power element, LSI, resistance, a capacitor | condenser etc. are mentioned. Moreover, there is no restriction | limiting in particular as a board | substrate, For example, a lead frame, the ceramic substrate in which the electrode was formed, a mounting substrate, etc. are mentioned. An example of the lead frame is a copper alloy lead frame. Examples of the ceramic substrate on which the electrode is formed include a DBC (Direct Bond Copper: registered trademark) substrate and an active metal bonded (AMC: Active Metal Copper) substrate. Examples of the mounting substrate include an alumina substrate on which electrodes are formed, a low temperature co-fired ceramics (LTCC) substrate, a glass epoxy substrate, and the like.
以下、図面を参照しながら本発明の半導体装置の好適な実施形態について詳細に説明するが、本発明の半導体装置は前記図面に限定されるものではない。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the semiconductor device of the present invention will be described in detail with reference to the drawings. However, the semiconductor device of the present invention is not limited to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.
図1は、本発明の半導体装置の一実施形態を示す模式図である。この半導体装置は、半導体素子1、上部基板2a、下部基板2b、接合層3a及び3b、信号端子5、ボンディングワイヤ6、ならびにモールド樹脂7を備えるものである。半導体素子1の上表面には、接合層3aを介して上部基板2aが接合されている。半導体素子1の下表面には、接合層3bを介して下部基板2bが接合されている。また、半導体素子1の上表面の一部と信号素子5とは、ボンディングワイヤ6によって電気的に接続されている。半導体素子1、上部基板2aの一部、下部基板2bの一部、接合層3a及び3b、信号端子5の一部、ならびにボンディングワイヤ6は、モールド樹脂7に覆われている。また、上部基板2aの突出部2c、下部基板2bの突出部2d、及び信号端子5の一部は、モールド樹脂7の外部に突出している。 FIG. 1 is a schematic view showing an embodiment of a semiconductor device of the present invention. This semiconductor device includes a semiconductor element 1, an upper substrate 2a, a lower substrate 2b, bonding layers 3a and 3b, a signal terminal 5, a bonding wire 6, and a molding resin 7. An upper substrate 2a is bonded to the upper surface of the semiconductor element 1 via a bonding layer 3a. A lower substrate 2b is bonded to the lower surface of the semiconductor element 1 through a bonding layer 3b. A part of the upper surface of the semiconductor element 1 and the signal element 5 are electrically connected by a bonding wire 6. The semiconductor element 1, a part of the upper substrate 2 a, a part of the lower substrate 2 b, the bonding layers 3 a and 3 b, a part of the signal terminal 5, and the bonding wire 6 are covered with a mold resin 7. Further, the protruding portion 2 c of the upper substrate 2 a, the protruding portion 2 d of the lower substrate 2 b, and a part of the signal terminal 5 protrude outside the mold resin 7.
このような半導体装置は、以下のようにして製造することができる。すなわち、先ず、半導体素子1の上表面及び上部基板2aの下表面のいずれか一方に本発明の接合材料を塗布して接合材料層を形成する。また、半導体素子1の下表面及び下部基板2bの上表面のいずれか一方に本発明の接合材料を塗布し接合材料層を形成する。これらの接合材料層の厚さとしては特に制限はないが、生産性や接合抵抗を考慮すると、1〜500μmが好ましく、50〜400μmがより好ましく、100〜300μmが特に好ましい。接合材料の塗布方法としては、例えば、スクリーン印刷法、インクジェット法、ディップ法、フレキソ印刷法などが挙げられる。また、このような塗布は、大気中もしくは不活性ガス雰囲気中で行うことができる。 Such a semiconductor device can be manufactured as follows. That is, first, the bonding material of the present invention is applied to one of the upper surface of the semiconductor element 1 and the lower surface of the upper substrate 2a to form a bonding material layer. Also, the bonding material of the present invention is applied to either the lower surface of the semiconductor element 1 or the upper surface of the lower substrate 2b to form a bonding material layer. Although there is no restriction | limiting in particular as thickness of these joining material layers, When productivity and joining resistance are considered, 1-500 micrometers is preferable, 50-400 micrometers is more preferable, 100-300 micrometers is especially preferable. Examples of the method for applying the bonding material include a screen printing method, an ink jet method, a dip method, and a flexographic printing method. Moreover, such application | coating can be performed in air | atmosphere or inert gas atmosphere.
次に、半導体素子1の上表面と上部基板2aの下表面との間に接合材料層が配置されるように、半導体素子1と上部基板2aとを貼り合わせ、また、半導体素子1の下表面と下部基板2bの上表面との間に接合材料層が配置されるように、半導体素子1と下部基板2bとを貼り合わせる。このとき、接合材料層に気泡が入り込まないように、加圧してもよい。また、貼り合わせは真空中で行なってもよいが、本発明の接合材料は大気中でのCuナノ粒子の酸化が抑制されているため、大気中で貼り合わせを行うことができる。 Next, the semiconductor element 1 and the upper substrate 2a are bonded together so that the bonding material layer is disposed between the upper surface of the semiconductor element 1 and the lower surface of the upper substrate 2a. The semiconductor element 1 and the lower substrate 2b are bonded together so that the bonding material layer is disposed between the upper surface of the lower substrate 2b. At this time, pressure may be applied so that bubbles do not enter the bonding material layer. The bonding may be performed in a vacuum, but the bonding material of the present invention can be bonded in the air because the oxidation of Cu nanoparticles in the air is suppressed.
このようにして半導体素子1と上部基板2a及び半導体素子1と下部基板2bとを貼り合わせた接合体に加熱処理を施して接合材料を焼結させ、接合層3a及び3bを形成する。これにより、半導体素子1と上部基板2aとが接合層3aを介して接合され、半導体素子1と下部基板2bとが接合層3bを介して接合される。本発明の接合材料により形成された前記接合層3a及び3bは、CuとSnと遷移金属との混合物層であるため、接合強度に十分に優れている。前記接合層3a及び3bは、Snが含まれていることにより、応力緩和層として作用する傾向にある。これに対して、Cuのみからなる接合層は、高硬度であるため、応力が緩和されず、例えば、冷熱サイクル時に半導体素子が破壊されるという不具合が生じる。 In this way, the bonded body in which the semiconductor element 1 and the upper substrate 2a and the semiconductor element 1 and the lower substrate 2b are bonded together is subjected to heat treatment to sinter the bonding material, thereby forming the bonding layers 3a and 3b. Thereby, the semiconductor element 1 and the upper substrate 2a are bonded via the bonding layer 3a, and the semiconductor element 1 and the lower substrate 2b are bonded via the bonding layer 3b. Since the bonding layers 3a and 3b formed of the bonding material of the present invention are a mixture layer of Cu, Sn, and a transition metal, the bonding strength is sufficiently excellent. Since the bonding layers 3a and 3b contain Sn, they tend to act as stress relaxation layers. On the other hand, since the bonding layer made of only Cu has high hardness, the stress is not relieved, and, for example, there is a problem that the semiconductor element is destroyed during the cooling and heating cycle.
さらに、本発明にかかる接合層においては、CuSn金属間化合物が含まれていることが好ましく、前記CuSn金属間化合物としてはCu3Snであることが好ましい。このようなCuSn金属間化合物が含まれることによって、前記接合層の接合強度が十分に向上する傾向にある。また、本発明にかかる接合層においては、焼結時にCuSn金属間化合物が形成されることによって、Cuナノ粒子は完全には焼結されず、本発明の接合材料中での粒子径を維持しながら焼結される傾向にある。その結果、得られる接合層(混合物層)は、平均粒子径1〜1000nm(より好ましくは10〜1000nm)の金属ナノ粒子により形成されたものとなる傾向にある。このような金属ナノ粒子により形成された接合層は、走査型電子顕微鏡観察などにより確認することができる。 Furthermore, the bonding layer according to the present invention preferably contains a CuSn intermetallic compound, and the CuSn intermetallic compound is preferably Cu 3 Sn. By including such a CuSn intermetallic compound, the bonding strength of the bonding layer tends to be sufficiently improved. In the bonding layer according to the present invention, CuSn intermetallic compounds are formed during sintering, so that the Cu nanoparticles are not completely sintered, and the particle diameter in the bonding material of the present invention is maintained. However, it tends to be sintered. As a result, the obtained bonding layer (mixture layer) tends to be formed of metal nanoparticles having an average particle diameter of 1 to 1000 nm (more preferably 10 to 1000 nm). The bonding layer formed of such metal nanoparticles can be confirmed by observation with a scanning electron microscope or the like.
加熱処理の温度としては特に制限はないが、150〜450℃が好ましく、250〜400℃がより好ましい。加熱処理温度が前記下限未満になると、接合材料に含まれていた溶剤が接合層3a及び3b中に残存しやすく、十分な接合強度が得られない傾向にあり、他方、前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にあり、また、接合層が酸化される場合もある。 Although there is no restriction | limiting in particular as temperature of heat processing, 150-450 degreeC is preferable and 250-400 degreeC is more preferable. When the heat treatment temperature is less than the lower limit, the solvent contained in the bonding material tends to remain in the bonding layers 3a and 3b, and sufficient bonding strength tends not to be obtained. In some cases, the temperature exceeds the heat-resistant temperature of the semiconductor element, the thermal stress increases, the warp or peeling tends to occur, and the bonding layer may be oxidized.
また、このような加熱処理は、不活性ガス又は還元性ガス雰囲気中で行うことが好ましい。さらに、本発明の接合材料を用いると、無加圧で接合することができるが、加圧しながら接合することによって接合強度が向上する傾向にある。 Such heat treatment is preferably performed in an inert gas or reducing gas atmosphere. Furthermore, when the bonding material of the present invention is used, bonding can be performed without applying pressure, but bonding strength tends to be improved by bonding while applying pressure.
また、本発明の半導体装置においては、図2に示すように、半導体素子1と接合層3aとの間、上部基板2aと接合層3aとの間、半導体素子1と接合層3bとの間、下部基板2bと接合層3aとの間に、Ni、Co及びAgのうちの少なくとも1種の金属からなる密着層4a及び4bが配置されていることが好ましい。このような密着層を形成することによって、接合強度がさらに向上する傾向にある。 In the semiconductor device of the present invention, as shown in FIG. 2, between the semiconductor element 1 and the bonding layer 3a, between the upper substrate 2a and the bonding layer 3a, between the semiconductor element 1 and the bonding layer 3b, It is preferable that adhesion layers 4a and 4b made of at least one of Ni, Co, and Ag are disposed between the lower substrate 2b and the bonding layer 3a. By forming such an adhesion layer, the bonding strength tends to be further improved.
このような密着層の厚さについては、1nm以上であれば高い接合強度が得られるため特に制限はないが、半導体装置の生産コストや密着層の電気抵抗などを考慮すると10μm以下が好ましい。また、生産コストをより低減するという観点から200nm以下がより好ましい。 The thickness of such an adhesion layer is not particularly limited because high bonding strength can be obtained if it is 1 nm or more, but it is preferably 10 μm or less in consideration of the production cost of the semiconductor device, the electric resistance of the adhesion layer, and the like. Moreover, 200 nm or less is more preferable from a viewpoint of reducing production cost more.
このような半導体装置は、以下のようにして製造することができる。すなわち、先ず、半導体素子1の両面、上部基板2aの下表面、及び下部基板2bの上表面に前記密着層を形成する。密着層の形成方法としては、スパッタ法、メッキ法、塗布法などが挙げられる。 Such a semiconductor device can be manufactured as follows. That is, first, the adhesion layer is formed on both surfaces of the semiconductor element 1, the lower surface of the upper substrate 2a, and the upper surface of the lower substrate 2b. Examples of the method for forming the adhesion layer include a sputtering method, a plating method, and a coating method.
スパッタ法により密着層を形成する場合には、先ず、半導体素子や基板などの被塗布物を真空チャンバーに挿入し、チャンバー内を減圧する。チャンバー内が真空状態になった後、アルゴンガスを導入し、被塗布物側にRFプラズマを生成して被塗布物表面の不純物の除去を行う。その後、形成する密着層の材料(例えば、Ni、Co、又はAg)のターゲットを用いてRFスパッタ法を行う。これにより、被塗布物表面に密着層を形成することができる。密着層を形成する際の被塗布物の温度としては特に制限はないが、例えば、室温(25℃程度)〜450℃が好ましい。被塗布物の温度が前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。 In the case of forming an adhesion layer by sputtering, first, an object to be coated such as a semiconductor element or a substrate is inserted into a vacuum chamber, and the inside of the chamber is decompressed. After the inside of the chamber is in a vacuum state, argon gas is introduced, and RF plasma is generated on the object to be coated to remove impurities on the surface of the object to be coated. Thereafter, RF sputtering is performed using a target of the material of the adhesion layer to be formed (for example, Ni, Co, or Ag). Thereby, an adhesion layer can be formed on the surface of an object to be coated. Although there is no restriction | limiting in particular as a temperature of the to-be-coated object at the time of forming a contact | glue layer, For example, room temperature (about 25 degreeC)-450 degreeC are preferable. If the temperature of the object to be coated exceeds the upper limit, the heat resistance temperature of the semiconductor element may be exceeded, the thermal stress increases, and warping or peeling tends to occur.
また、塗布法により密着層を形成する場合には、先ず、半導体素子や基板などの被塗布物に、大気中もしくは不活性ガス雰囲気中でメタルマスク法、インクジェット法、スピンコート法、ディップ法、スクリーン印刷法などの手法によって、形成する密着層の材料(例えば、Ni、Co、又はAg)を含むペースト又はインクを塗布する。ペーストやインクとしては、金属粒子と溶剤などを混合して調製したものを使用してもよいし、金属粒子を含む市販のペーストを使用してもよい。ニッケル粒子を含む市販のペーストとしては、例えば、立山科学工業(株)製のニッケルナノ粒子分散液、大研化学工業(株)製「MM12−800TO」などが挙げられる。コバルト粒子を含む市販のペーストとしては、例えば、立山科学工業(株)製のコバルトナノ粒子分散液などが挙げられる。銀粒子を含む市販のペーストとしては、例えば、住友電気工業(株)製「AGIN−W4A」、ハリマ化成(株)製「NPS−J−HTB」などが挙げられる。このようにペーストを塗布した被塗布物を不活性ガス又は還元性ガス雰囲気中で加熱処理することにより前記密着層が形成される。なお、不活性ガス又は還元性ガス雰囲気中での加熱処理の前に酸化雰囲気中で加熱処理を行なってもよい。加熱処理における雰囲気温度としては特に制限はないが、150〜450℃が好ましい。雰囲気温度が前記下限未満になると、ペースト中の有機成分(例えば、有機溶媒、有機修飾剤)の揮発除去が不十分となり、密着層中の有機成分の含有量が多くなる傾向にある。他方、前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。 In the case of forming an adhesion layer by a coating method, first, a metal mask method, an ink jet method, a spin coating method, a dip method, an object to be coated such as a semiconductor element or a substrate in the air or an inert gas atmosphere, A paste or ink containing a material (for example, Ni, Co, or Ag) of the adhesion layer to be formed is applied by a method such as a screen printing method. As the paste or ink, a paste prepared by mixing metal particles and a solvent may be used, or a commercially available paste containing metal particles may be used. Examples of commercially available pastes containing nickel particles include nickel nanoparticle dispersions manufactured by Tateyama Kagaku Kogyo Co., Ltd., “MM12-800TO” manufactured by Daiken Chemical Industries, Ltd., and the like. Examples of commercially available pastes containing cobalt particles include cobalt nanoparticle dispersions manufactured by Tateyama Science Co., Ltd. Examples of commercially available pastes containing silver particles include “AGIN-W4A” manufactured by Sumitomo Electric Industries, Ltd. and “NPS-J-HTB” manufactured by Harima Chemical Co., Ltd. Thus, the said adhesion layer is formed by heat-processing the to-be-coated object which apply | coated the paste in inert gas or reducing gas atmosphere. Note that heat treatment may be performed in an oxidizing atmosphere before heat treatment in an inert gas or reducing gas atmosphere. Although there is no restriction | limiting in particular as atmospheric temperature in heat processing, 150-450 degreeC is preferable. When the atmospheric temperature is lower than the lower limit, the organic components (for example, organic solvent and organic modifier) in the paste are not sufficiently volatilized and removed, and the content of the organic components in the adhesion layer tends to increase. On the other hand, when the upper limit is exceeded, the heat resistance temperature of the semiconductor element may be exceeded, the thermal stress increases, and warping and peeling tend to occur.
次に、このようにして形成した密着層の表面に、図1に示した半導体装置の場合と同様に、本発明の接合材料を用いて接合材料層を形成し、半導体素子1と上部基板2a、半導体素子1と下部基板2bとを貼り合わせ、得られた接合体に加熱処理を施して接合材料を焼結させ、接合層3a及び3bを形成する。これにより、半導体素子1と上部基板2aとが接合層3a及び密着層4a及び4bを介して接合され、半導体素子1と下部基板2bとが接合層3b及び密着層4a及び4bを介して接合される。このようにNi、Co及びAgのうちの少なくとも1種の金属からなる密着層を形成することによって、接合強度がさらに向上する傾向にある。 Next, as in the case of the semiconductor device shown in FIG. 1, a bonding material layer is formed on the surface of the adhesion layer thus formed using the bonding material of the present invention, and the semiconductor element 1 and the upper substrate 2a. The semiconductor element 1 and the lower substrate 2b are bonded together, and the obtained bonded body is subjected to heat treatment to sinter the bonding material, thereby forming the bonding layers 3a and 3b. Thus, the semiconductor element 1 and the upper substrate 2a are bonded via the bonding layer 3a and the adhesion layers 4a and 4b, and the semiconductor element 1 and the lower substrate 2b are bonded via the bonding layer 3b and the adhesion layers 4a and 4b. The Thus, by forming the adhesion layer made of at least one metal of Ni, Co, and Ag, the bonding strength tends to be further improved.
なお、前記密着層を形成することによって、接合強度がさらに向上する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、Niなどの金属表面に形成されている不働態の酸化物層は薄く、容易に還元されるとともに、Niなどの金属層にはCuナノ粒子表面の酸化物層を還元する作用もある。また、Niなどの金属層は焼結時のCuナノ粒子との濡れ性が非常に大きいため、無加圧でも高い接合強度を有する密着層を形成することができる、と推察される。 The reason why the bonding strength is further improved by forming the adhesion layer is not necessarily clear, but the present inventors infer as follows. That is, the passive oxide layer formed on the metal surface such as Ni is thin and easily reduced, and the metal layer such as Ni also has an action of reducing the oxide layer on the surface of the Cu nanoparticles. In addition, since a metal layer such as Ni has very high wettability with Cu nanoparticles during sintering, it is presumed that an adhesion layer having high bonding strength can be formed even without pressure.
以上、半導体素子を上部電極と下部電極とで挟持する場合(図1及び図2)を例に本発明の半導体装置を説明したが、本発明の半導体装置はこれらに限定されるものではなく、例えば、図3及び図4に示すように、半導体素子の一方の面のみを接合層を介して基板と接合した半導体装置などが挙げられる。 As described above, the semiconductor device of the present invention has been described by taking the case where the semiconductor element is sandwiched between the upper electrode and the lower electrode (FIGS. 1 and 2) as an example, but the semiconductor device of the present invention is not limited to these, For example, as shown in FIGS. 3 and 4, a semiconductor device in which only one surface of a semiconductor element is bonded to a substrate through a bonding layer can be given.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で使用した各種金属ナノ粒子は以下の方法により調製した。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. Various metal nanoparticles used in the examples and comparative examples were prepared by the following method.
(調製例1)
<Cuナノ粒子の調製>
Cuナノ粒子は、特開2012−46779号公報に記載の方法に従って調製した。すなわち、フラスコにエチレングリコール(HO(CH2)2OH)300mlを入れ、これに炭酸銅(CuCO3・Cu(OH)2・H2O)60mmolを添加したところ、炭酸銅はエチレングリコールにほとんど溶解せずに沈殿した。これに、デカン酸(C9H19COOH)90mmol及びデシルアミン(C10H21NH2)30mmolを添加した後、窒素ガスを1L/minで流しながら、エチレングリコールの沸点で1時間加熱還流させたところ、微粒子が生成した。得られた微粒子をヘキサン中に分散させて回収し、アセトン及びエタノールを順次添加して洗浄した後、遠心分離(3000rpm、20min)により回収し、真空乾燥(35℃、30min)を施した。
(Preparation Example 1)
<Preparation of Cu nanoparticles>
Cu nanoparticles were prepared according to the method described in JP 2012-46779 A. That is, when 300 ml of ethylene glycol (HO (CH 2 ) 2 OH) was put into a flask and 60 mmol of copper carbonate (CuCO 3 · Cu (OH) 2 · H 2 O) was added thereto, the copper carbonate was hardly added to ethylene glycol. It precipitated without dissolving. To this was added 90 mmol of decanoic acid (C 9 H 19 COOH) and 30 mmol of decylamine (C 10 H 21 NH 2 ), and then the mixture was heated to reflux for 1 hour at the boiling point of ethylene glycol while flowing nitrogen gas at 1 L / min. However, fine particles were generated. The obtained fine particles were dispersed in hexane and collected, and acetone and ethanol were sequentially added and washed, and then collected by centrifugation (3000 rpm, 20 min), followed by vacuum drying (35 ° C., 30 min).
得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Cuが主成分であることを確認した。 About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Cu was the main component.
また、得られたCu微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のCu微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるCuナノ粒子は全Cu微粒子の100%(個数基準)であった。また、これらの平均粒子径は200nmであった。 In addition, the obtained Cu fine particles are dispersed in toluene, and this dispersion is dispersed in a Cu microgrid (Aken Shoji Co., Ltd.) with an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)). The sample for observation was produced by dripping on the product) and air-drying. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 Cu fine particles were randomly extracted and the diameter thereof was measured. As a result, the Cu nanoparticles having a diameter in the range of 1 to 1000 nm were 100% (number basis) of the total Cu fine particles. Moreover, these average particle diameters were 200 nm.
(調製例2)
<Snナノ粒子の調製>
フラスコにテトラヒドロフラン(THF)10mlを入れ、これに塩化スズ(SnCl2)1.7mmol、オレイルアミン(C18H35NH2)32mmol及びテトラブチルアンモニウムボロハイドライド(TBABH)3.6mmolを添加した後、窒素ガスを0.1L/minで流しながら、60℃で1時間撹拌して合成反応を行い、微粒子を含むTHF分散液を得た。
(Preparation Example 2)
<Preparation of Sn nanoparticles>
After adding 10 ml of tetrahydrofuran (THF) to the flask, 1.7 mmol of tin chloride (SnCl 2 ), 32 mmol of oleylamine (C 18 H 35 NH 2 ) and 3.6 mmol of tetrabutylammonium borohydride (TBABH) were added, and then nitrogen was added. While flowing gas at 0.1 L / min, the mixture was stirred at 60 ° C. for 1 hour to carry out a synthesis reaction to obtain a THF dispersion containing fine particles.
このTHF分散液に遠心分離(3000rpm、10min)を施し、得られた沈殿物をエタノールに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施して、Sn微粒子を得た。 The THF dispersion is subjected to centrifugation (3000 rpm, 10 min), and the resulting precipitate is dispersed in ethanol, and then centrifuged again (3000 rpm, 20 min) to collect fine particles, followed by vacuum drying (35 ° C. , 30 min) to obtain Sn fine particles.
得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Snが主成分であることを確認した。 About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Sn was the main component.
また、得られたSn微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のSn微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるSnナノ粒子は全Sn微粒子の100%(個数基準)であった。また、これらの平均粒子径は25nmであった。 In addition, the obtained Sn fine particles were dispersed in toluene, and this dispersion was dispersed into a Cu microgrid (Aken Shoji Co., Ltd.) with an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)). The sample for observation was produced by dripping on the product) and air-drying. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 Sn fine particles were randomly extracted and the diameter thereof was measured. As a result, the Sn nanoparticles having a diameter in the range of 1 to 1000 nm accounted for 100% of all Sn fine particles (number basis). Moreover, these average particle diameters were 25 nm.
(調製例3)
<Sn−遷移金属間化合物ナノ粒子の調製(Pt3Snナノ粒子)>
フラスコにエタノール12.6mLを入れ、これにSn粒子(和光純薬工業製「すず,粉末」、粒径10〜50μm)0.10g(0.86mmol)、H2PtCl60.44g(0.86mmol)を添加した後、窒素ガスを0.1L/minで流しながら、70℃で5時間撹拌して合成反応を行い、微粒子を含むエタノール分散液を得た。なお、上記で用いたSn粒子の走査型電子顕微鏡(SEM)写真を、図5に示す。
(Preparation Example 3)
<Preparation of Sn-transition intermetallic compound nanoparticles (Pt 3 Sn nanoparticles)>
12.6 mL of ethanol was put in a flask, and Sn particles (“Suzu, powder” manufactured by Wako Pure Chemical Industries, Ltd., particle size 10 to 50 μm) 0.10 g (0.86 mmol), H 2 PtCl 6 0.44 g (0. 86 mmol) was added, and a synthesis reaction was performed by stirring at 70 ° C. for 5 hours while flowing nitrogen gas at 0.1 L / min to obtain an ethanol dispersion containing fine particles. In addition, the scanning electron microscope (SEM) photograph of Sn particle | grains used above is shown in FIG.
このエタノール分散液に遠心分離(3000rpm、10min)を施して洗浄し、得られた沈殿物をエタノールに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。 The ethanol dispersion is subjected to centrifugation (3000 rpm, 10 min) and washed. The resulting precipitate is dispersed in ethanol, and then centrifuged (3000 rpm, 20 min) again to collect fine particles and vacuum dried. (35 ° C., 30 min).
得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Pt3Snが主成分であることを確認した。なお、得られたXRDスペクトルを、図6Aに示す。 About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. A metal component was identified from the obtained XRD spectrum, and it was confirmed that Pt 3 Sn was a main component. The obtained XRD spectrum is shown in FIG. 6A.
また、得られたPt3Sn微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のPt3Sn微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるPt3Snナノ粒子は全Pt3Sn微粒子の100%(個数基準)であった。また、これらの平均粒子径は2.6nmで、球状粒子であった。なお、得られた透過型電子顕微鏡(TEM)写真を、図6Bに示す。 Further, the obtained Pt 3 Sn fine particles were dispersed in toluene, and this dispersion was dispersed into a Cu microgrid with an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)) (Oken). After being dropped on a trading company), it was naturally dried to prepare an observation sample. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, where randomly extracting 200 Pt 3 Sn particles, to measure the diameter, the Pt 3 Sn nanoparticles ranging in diameter 1 to 1,000 nm 100% of the total Pt 3 Sn particles (number Standard). Moreover, these average particle diameters were 2.6 nm and were spherical particles. In addition, the obtained transmission electron microscope (TEM) photograph is shown in FIG. 6B.
(調製例4)
<Sn−遷移金属間化合物ナノ粒子の調製(Ag3Snナノ粒子)>
フラスコにエタノール25mLを入れ、これに調製例2で調製したSnナノ粒子0.17g(1.4mmol)を添加し、AgNO3を0.58g(3.4mmol)添加した後、超音波処理(出力:100W)を施してSnナノ粒子を分散させた。次に、窒素ガスを0.1L/minで流しながら、70℃で3時間撹拌して合成反応を行い、微粒子を含むエタノール分散液を得た。
(Preparation Example 4)
<Preparation of Sn-transition intermetallic compound nanoparticles (Ag 3 Sn nanoparticles)>
25 mL of ethanol was put into a flask, 0.17 g (1.4 mmol) of Sn nanoparticles prepared in Preparation Example 2 was added thereto, 0.58 g (3.4 mmol) of AgNO 3 was added, and then sonication (output) : 100W) to disperse Sn nanoparticles. Next, a synthesis reaction was performed by stirring at 70 ° C. for 3 hours while flowing nitrogen gas at 0.1 L / min to obtain an ethanol dispersion liquid containing fine particles.
このエタノール分散液に遠心分離(3000rpm、10min)を施して洗浄し、得られた沈殿物をエタノールに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。 The ethanol dispersion is subjected to centrifugation (3000 rpm, 10 min) and washed. The resulting precipitate is dispersed in ethanol, and then centrifuged (3000 rpm, 20 min) again to collect fine particles and vacuum dried. (35 ° C., 30 min).
得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Ag3Snが主成分であることを確認した。なお、得られたXRDスペクトルを、図7Aに示す。 About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Ag 3 Sn was the main component. The obtained XRD spectrum is shown in FIG. 7A.
また、得られたAg3Sn微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のAg3Sn微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるAg3Snナノ粒子は全Ag3Sn微粒子の100%(個数基準)であった。また、これらの平均粒子径は8nmで、球状粒子であった。なお、得られた透過型電子顕微鏡(TEM)写真を、図7Bに示す。 In addition, the obtained Ag 3 Sn fine particles are dispersed in toluene, and this dispersion is dispersed into an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)) Cu microgrid (Oken). After being dropped on a trading company), it was naturally dried to prepare an observation sample. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, where randomly extracting 200 Ag 3 Sn particles, to measure the diameter, the Ag 3 Sn nanoparticles ranging in diameter 1 to 1,000 nm 100% of the total Ag 3 Sn particles (number Standard). Moreover, these average particle diameters were 8 nm and were spherical particles. In addition, the obtained transmission electron microscope (TEM) photograph is shown in FIG. 7B.
(調製例5)
<Sn−遷移金属間化合物ナノ粒子の調製(Cu6Sn5ナノ粒子)>
フラスコにエチレングリコール18mLを入れ、これに調製例2で調製したSnナノ粒子0.17g(1.4mmol)を添加し、2(アセチルアセトン)・銅(II)(Cu(C5H8O2)2)を0.32g(1.2mmol)添加した後、超音波処理(出力:100W)を施してSnナノ粒子を分散させた。次に、窒素ガスを0.1L/minで流しながら、100℃で1時間撹拌して合成反応を行い、微粒子を含むエチレングリコール分散液を得た。
(Preparation Example 5)
<Preparation of Sn-transition intermetallic compound nanoparticles (Cu 6 Sn 5 nanoparticles)>
18 mL of ethylene glycol was added to the flask, and 0.17 g (1.4 mmol) of Sn nanoparticles prepared in Preparation Example 2 was added thereto, and 2 (acetylacetone) · copper (II) (Cu (C 5 H 8 O 2 ) was added. 2 ) 0.32 g (1.2 mmol) was added, followed by sonication (output: 100 W) to disperse Sn nanoparticles. Next, a synthesis reaction was carried out by stirring at 100 ° C. for 1 hour while flowing nitrogen gas at 0.1 L / min to obtain an ethylene glycol dispersion containing fine particles.
このエチレングリコール分散液に遠心分離(3000rpm、10min)を施して洗浄し、得られた沈殿物をエタノールに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。 This ethylene glycol dispersion is subjected to centrifugation (3000 rpm, 10 min) and washed, and the resulting precipitate is dispersed in ethanol, and then centrifuged again (3000 rpm, 20 min) to collect fine particles, and vacuum Drying (35 ° C., 30 min) was performed.
得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Cu6Sn5が主成分であることを確認した。なお、得られたXRDスペクトルを、図8Aに示す。 About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Cu 6 Sn 5 was the main component. The obtained XRD spectrum is shown in FIG. 8A.
また、得られたCu6Sn5微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のCu6Sn5微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるCu6Sn5ナノ粒子は全Cu6Sn5微粒子の100%(個数基準)であった。また、これらの平均粒子径は8nmで、球状粒子であった。なお、得られた透過型電子顕微鏡(TEM)写真を、図8Bに示す。 Further, the obtained Cu 6 Sn 5 fine particles were dispersed in toluene, and this dispersion was used as a Cu microgrid with an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)). After being dropped onto Oken Shoji Co., Ltd.), it was naturally dried to prepare an observation sample. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 Cu 6 Sn 5 fine particles were randomly extracted and the diameter thereof was measured. As a result, the Cu 6 Sn 5 nanoparticles in the range of 1 to 1000 nm in diameter were 100 of all the Cu 6 Sn 5 fine particles. % (Number basis). Moreover, these average particle diameters were 8 nm and were spherical particles. In addition, the obtained transmission electron microscope (TEM) photograph is shown in FIG. 8B.
(調製例6)
<Sn−遷移金属間化合物ナノ粒子の調製(Ni3Sn2ナノ粒子1)>
フラスコにオレイルアミン8.03g(30mmol)を入れ、これに調製例2で調製したSnナノ粒子0.17g(1.4mmol)を添加し、NiCl2を0.156g(1.2mmol)添加した後、超音波処理(出力:100W)を施してSnナノ粒子を分散させた。次に、窒素ガスを0.1L/minで流しながら、200℃で1時間撹拌して合成反応を行い、微粒子を含むオレイルアミン分散液を得た。
(Preparation Example 6)
<Preparation of Sn-transition intermetallic compound nanoparticles (Ni 3 Sn 2 nanoparticles 1)>
After adding 8.03 g (30 mmol) of oleylamine to the flask, 0.17 g (1.4 mmol) of Sn nanoparticles prepared in Preparation Example 2 was added, and 0.156 g (1.2 mmol) of NiCl 2 was added. Ultrasonic treatment (output: 100 W) was applied to disperse Sn nanoparticles. Next, a synthesis reaction was carried out by stirring at 200 ° C. for 1 hour while flowing nitrogen gas at 0.1 L / min to obtain an oleylamine dispersion containing fine particles.
このオレイルアミン分散液に遠心分離(3000rpm、10min)を施して洗浄し、得られた沈殿物をヘキサンに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。 This oleylamine dispersion is subjected to centrifugation (3000 rpm, 10 min) and washed, and the resulting precipitate is dispersed in hexane, and then centrifuged (3000 rpm, 20 min) again to collect fine particles and vacuum dried. (35 ° C., 30 min).
得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Ni3Sn2が主成分であることを確認した。なお、得られたXRDスペクトルを、図9Aに示す。 About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Ni 3 Sn 2 was the main component. The obtained XRD spectrum is shown in FIG. 9A.
また、得られたNi3Sn2微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のNi3Sn2微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるNi3Sn2ナノ粒子は全Ni3Sn2微粒子の100%(個数基準)であった。また、これらの平均粒子径は18nmで、多面体形状粒子であった。なお、得られた透過型電子顕微鏡(TEM)写真を、図9Bに示す。 Further, the obtained Ni 3 Sn 2 fine particles were dispersed in toluene, and this dispersion was dispersed into an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)) Cu microgrid ( After being dropped onto Oken Shoji Co., Ltd.), it was naturally dried to prepare an observation sample. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 Ni 3 Sn 2 fine particles were randomly extracted and the diameter thereof was measured. As a result, Ni 3 Sn 2 nanoparticles having a diameter in the range of 1 to 1000 nm were 100% of all Ni 3 Sn 2 fine particles. % (Number basis). Moreover, these average particle diameters were 18 nm and were polyhedral shape particle | grains. In addition, the obtained transmission electron microscope (TEM) photograph is shown in FIG. 9B.
(調製例7)
<Sn−遷移金属間化合物ナノ粒子の調製(Ni3Sn2ナノ粒子2)>
フラスコにオレイルアミン8.03g(30mmol)及びトリオクチルホスフィン0.89g(2.4mmol)を入れ、これに調製例2で調製したSnナノ粒子0.17g(1.4mmol)を添加し、NiCl2を0.156g(1.2mmol)添加した後、超音波処理(出力:100W)を施してSnナノ粒子を分散させた。次に、窒素ガスを0.1L/minで流しながら、200℃で1時間撹拌して合成反応を行い、微粒子を含むオレイルアミン分散液を得た。
(Preparation Example 7)
<Preparation of Sn-transition intermetallic compound nanoparticles (Ni 3 Sn 2 nanoparticles 2)>
The flask was charged with 8.03 g (30 mmol) of oleylamine and 0.89 g (2.4 mmol) of trioctylphosphine, to which 0.17 g (1.4 mmol) of Sn nanoparticles prepared in Preparation Example 2 was added, and NiCl 2 was added. After adding 0.156 g (1.2 mmol), ultrasonic treatment (output: 100 W) was applied to disperse Sn nanoparticles. Next, a synthesis reaction was carried out by stirring at 200 ° C. for 1 hour while flowing nitrogen gas at 0.1 L / min to obtain an oleylamine dispersion containing fine particles.
このオレイルアミン分散液に遠心分離(3000rpm、10min)を施して洗浄し、得られた沈殿物をヘキサンに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。 This oleylamine dispersion is subjected to centrifugation (3000 rpm, 10 min) and washed, and the resulting precipitate is dispersed in hexane, and then centrifuged (3000 rpm, 20 min) again to collect fine particles and vacuum dried. (35 ° C., 30 min).
得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Ni3Sn2が主成分であることを確認した。なお、得られたXRDスペクトルを、図10Aに示す。 About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Ni 3 Sn 2 was the main component. The obtained XRD spectrum is shown in FIG. 10A.
また、得られたNi3Sn2微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のNi3Sn2微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるNi3Sn2ナノ粒子は全Ni3Sn2微粒子の100%(個数基準)であった。また、これらの平均粒子径は15nmで、直方体形状粒子であった。なお、得られた透過型電子顕微鏡(TEM)写真を、図10Bに示す。 Further, the obtained Ni 3 Sn 2 fine particles were dispersed in toluene, and this dispersion was dispersed into an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)) Cu microgrid ( After being dropped onto Oken Shoji Co., Ltd.), it was naturally dried to prepare an observation sample. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 Ni 3 Sn 2 fine particles were randomly extracted and the diameter thereof was measured. As a result, Ni 3 Sn 2 nanoparticles having a diameter in the range of 1 to 1000 nm were 100% of all Ni 3 Sn 2 fine particles. % (Number basis). Moreover, these average particle diameters were 15 nm and were rectangular parallelepiped shaped particles. In addition, the obtained transmission electron microscope (TEM) photograph is shown to FIG. 10B.
(調製例8)
<Sn−遷移金属間化合物ナノ粒子の調製(NiSnCuナノ粒子)>
フラスコにオレイルアミン8.03g(30mmol)及びトリオクチルホスフィン0.89g(2.4mmol)を入れ、これに調製例2で調製したSnナノ粒子0.17g(1.4mmol)を添加し、NiCl2を0.156g(1.2mmol)添加した後、超音波処理(出力:100W)を施してSnナノ粒子を分散させた。次に、窒素ガスを0.1L/minで流しながら、200℃で1時間撹拌して合成反応を行い、微粒子を含むオレイルアミン分散液を得た。
(Preparation Example 8)
<Preparation of Sn-transition intermetallic compound nanoparticles (NiSnCu nanoparticles)>
The flask was charged with 8.03 g (30 mmol) of oleylamine and 0.89 g (2.4 mmol) of trioctylphosphine, to which 0.17 g (1.4 mmol) of Sn nanoparticles prepared in Preparation Example 2 was added, and NiCl 2 was added. After adding 0.156 g (1.2 mmol), ultrasonic treatment (output: 100 W) was applied to disperse Sn nanoparticles. Next, a synthesis reaction was carried out by stirring at 200 ° C. for 1 hour while flowing nitrogen gas at 0.1 L / min to obtain an oleylamine dispersion containing fine particles.
得られたオレイルアミン分散液を水冷した後、酢酸銅(Cu(OAc)2)を0.272g(1.5mmol)を添加し、200℃で1時間撹拌して合成反応を行い生成物を得た。得られた生成物をヘキサンで洗浄後、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。 The obtained oleylamine dispersion was cooled with water, 0.272 g (1.5 mmol) of copper acetate (Cu (OAc) 2 ) was added, and the mixture was stirred at 200 ° C. for 1 hour to carry out a synthesis reaction to obtain a product. . The obtained product was washed with hexane, and then centrifuged (3000 rpm, 20 min) to collect fine particles, followed by vacuum drying (35 ° C., 30 min).
得られた微粒子のミクロンサイズ凝集体について、走査型電子顕微鏡SEM−EDS(日立製作所製「S−3600N」)を用い、加速電圧15kV、ワーキングディスタンス15mmの条件でSEM―EDS分析を行なった。その結果、粒子中にはNi、Sn、Cuが含まれることが確認され、NiSnCuが主成分であることを確認した。なお、得られた走査型電子顕微鏡(SEM)写真を図19Aに示す。また、微粒子凝集体のSEM像のEDS分析により得られたEDSスペクトルのグラフを図19Bに示す。 The micron-sized aggregates of the obtained fine particles were subjected to SEM-EDS analysis using a scanning electron microscope SEM-EDS (“S-3600N” manufactured by Hitachi, Ltd.) under the conditions of an acceleration voltage of 15 kV and a working distance of 15 mm. As a result, it was confirmed that the particles contained Ni, Sn, and Cu, and NiSnCu was confirmed to be the main component. In addition, the obtained scanning electron microscope (SEM) photograph is shown to FIG. 19A. Further, FIG. 19B shows a graph of an EDS spectrum obtained by EDS analysis of the SEM image of the fine particle aggregate.
また、得られたNiSnCu微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のNiSnCu微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるNiSnCuナノ粒子は全NiSnCu微粒子の100%(個数基準)であった。また、これらの平均粒子径は16nmで、多面体形状粒子であった。なお、得られた透過型電子顕微鏡(TEM)写真を図19Cに示す。 Further, the obtained NiSnCu fine particles are dispersed in toluene, and this dispersion is dispersed into an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)) Cu microgrid (Oken Corporation ( The sample for observation was produced by dripping on the product) and air-drying. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 NiSnCu fine particles were randomly extracted and the diameter thereof was measured. As a result, the NiSnCu nanoparticles in the range of 1 to 1000 nm in diameter were 100% (based on the number) of all NiSnCu fine particles. Moreover, these average particle diameters were 16 nm and were polyhedral shape particle | grains. In addition, the obtained transmission electron microscope (TEM) photograph is shown in FIG. 19C.
(調製例9)
<Cuナノ粒子の調製>
炭酸銅(CuCO3・Cu(OH)2・H2O)を30mmol、デカン酸及びデシルアミンの代わりにドデカン酸(C11H23COOH)30mmol及びドデシルアミン(C12H25NH2)30mmolを用いた以外は調製例1と同様にしてCu微粒子を調製した。得られたCu微粒子を調製例1と同様にして観察した。TEM観察において、無作為に200個のCu微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるCuナノ粒子は全Cu微粒子の100%(個数基準)であった。また、これらの平均粒子径は60nmであった。
(Preparation Example 9)
<Preparation of Cu nanoparticles>
30 mmol of copper carbonate (CuCO 3 · Cu (OH) 2 · H 2 O), 30 mmol of dodecanoic acid (C 11 H 23 COOH) and 30 mmol of dodecylamine (C 12 H 25 NH 2 ) instead of decanoic acid and decylamine Cu fine particles were prepared in the same manner as in Preparation Example 1 except for the above. The obtained Cu fine particles were observed in the same manner as in Preparation Example 1. In TEM observation, 200 Cu fine particles were randomly extracted and the diameters thereof were measured. As a result, Cu nanoparticles in the range of 1 to 1000 nm in diameter were 100% of all Cu fine particles (number basis). Moreover, these average particle diameters were 60 nm.
(調製例10)
<Cuナノ粒子の調製>
炭酸銅(CuCO3・Cu(OH)2・H2O)を30mmol、デカン酸およびデシルアミンの代わりにオクタン酸(C7H15COOH)30mmolおよびオクチルアミン(C8H17NH2)30mmolを用いた以外は調製例1と同様にしてCu微粒子を調製した。得られたCu微粒子を調製例1と同様にして観察した。TEM観察において、無作為に200個のCu微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるCuナノ粒子は全Cu微粒子の100%(個数基準)であった。また、これらの平均粒子径は300nmであった。
(Preparation Example 10)
<Preparation of Cu nanoparticles>
30 mmol of copper carbonate (CuCO 3 · Cu (OH) 2 · H 2 O), 30 mmol of octanoic acid (C 7 H 15 COOH) and 30 mmol of octylamine (C 8 H 17 NH 2 ) instead of decanoic acid and decylamine Cu fine particles were prepared in the same manner as in Preparation Example 1 except for the above. The obtained Cu fine particles were observed in the same manner as in Preparation Example 1. In TEM observation, 200 Cu fine particles were randomly extracted and the diameters thereof were measured. As a result, Cu nanoparticles in the range of 1 to 1000 nm in diameter were 100% of all Cu fine particles (number basis). Moreover, these average particle diameters were 300 nm.
(実施例1−1)
調製例1で調製したCuナノ粒子と調製例3で調製したPt3Snナノ粒子とを乳鉢ですりつぶして混合し、全金属ナノ粒子に対して95質量%のCuナノ粒子と5質量%のPt3Snナノ粒子を含有する混合粉末を調製した。この混合粉末1gにデカノール50μl及びα−テルピネオール50μlを添加し、自転・公転ミキサーにより撹拌して接合材料ペーストを調製した。
(Example 1-1)
The Cu nanoparticles prepared in Preparation Example 1 and the Pt 3 Sn nanoparticles prepared in Preparation Example 3 were ground and mixed in a mortar, and 95% by mass of Cu nanoparticles and 5% by mass of Pt with respect to all metal nanoparticles. A mixed powder containing 3 Sn nanoparticles was prepared. To 1 g of this mixed powder, 50 μl of decanol and 50 μl of α-terpineol were added and stirred by a rotating / revolving mixer to prepare a bonding material paste.
<接合強度測定>
リードフレームや半導体素子などにより構成される半導体装置において、接合層の接合強度を直接測定することは困難である。従って、得られた接合材料により形成される接合層の接合強度は、図11に示すせん断強度測定用接合体を用いて、以下の方法により測定した。
<Bonding strength measurement>
In a semiconductor device composed of a lead frame, a semiconductor element, etc., it is difficult to directly measure the bonding strength of the bonding layer. Therefore, the bonding strength of the bonding layer formed from the obtained bonding material was measured by the following method using the bonded body for shear strength measurement shown in FIG.
先ず、無酸素銅(C1020)からなる試験片8a(直径5mmφ×高さ2mm)の一方の面及び無酸素銅(C1020)からなる試験片8b(10mm×22mm×3mm)の一方の面にそれぞれRFスパッタリング法により厚さ40nmのNi密着層10a及び10bを形成した。 First, on one surface of a test piece 8a (diameter 5 mmφ × height 2 mm) made of oxygen-free copper (C1020) and on one surface of a test piece 8b (10 mm × 22 mm × 3 mm) made of oxygen-free copper (C1020), respectively. Ni adhesion layers 10a and 10b having a thickness of 40 nm were formed by RF sputtering.
次に、試験片8b上のNi密着層10bの表面に、メタルマスク(直径5mmφ×厚さ0.15mm)を用いてスクリーン印刷法により接合材料ペーストを塗布し、接合材料層(直径5mmφ×厚さ150μm)を形成した。この接合材料層と試験片8a上のNi密着層10aとが接するように試験片8aと試験片8bとを貼り合わせ、水素雰囲気中、無加圧の条件下、200℃で10分間予備加熱した後、接合温度400℃で5分間の加熱処理を施し、試験片8aと試験片8bが接合層9により接合された、せん断強度測定用接合体(図11)を作製した。 Next, a bonding material paste is applied to the surface of the Ni adhesion layer 10b on the test piece 8b by a screen printing method using a metal mask (diameter 5 mmφ × thickness 0.15 mm), and the bonding material layer (diameter 5 mmφ × thickness). 150 μm) was formed. The test piece 8a and the test piece 8b were bonded so that the bonding material layer and the Ni adhesion layer 10a on the test piece 8a were in contact with each other, and preheated at 200 ° C. for 10 minutes in a hydrogen atmosphere under no pressure. Then, the heat processing for 5 minutes were performed at the joining temperature of 400 degreeC, and the joined body for shear strength measurement (FIG. 11) with which the test piece 8a and the test piece 8b were joined by the joining layer 9 was produced.
このようにして3個のせん断強度測定用接合体を作製し、これらのせん断強度を、インストロン型万能試験機(インストロン社製)を用いて、室温(20℃)、剪断速度1mm/分でそれぞれ測定し、これらの平均値を接合材料により形成された接合層の接合強度とした。その結果を表1に示す。 In this way, three joined bodies for measuring shear strength were prepared, and these shear strengths were measured at room temperature (20 ° C.) and shear rate of 1 mm / min using an Instron universal testing machine (Instron). The average value of these values was taken as the bonding strength of the bonding layer formed of the bonding material. The results are shown in Table 1.
(実施例1−2〜1−11)
Sn−遷移金属間化合物ナノ粒子として、調製例3で調製したPt3Snナノ粒子(実施例1−2)、調製例4で調製したAg3Snナノ粒子(実施例1−3及び1−4)、調製例5で調製したCu6Sn5ナノ粒子(実施例1−5及び1−6)、調製例6で調製したNi3Sn2ナノ粒子(実施例1−7及び1−8)、調製例7で調製したNi3Sn2ナノ粒子(実施例1−9及び1−10)、調製例8で調製したNiSnCuナノ粒子(実施例1−11)を用い、Cuナノ粒子及びSn−遷移金属間化合物ナノ粒子の含有量を表1に変更した以外は実施例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1に示す。
(Examples 1-2 to 1-11)
As Sn-transition intermetallic compound nanoparticles, Pt 3 Sn nanoparticles prepared in Preparation Example 3 (Example 1-2), Ag 3 Sn nanoparticles prepared in Preparation Example 4 (Examples 1-3 and 1-4) ), Cu 6 Sn 5 nanoparticles prepared in Preparation Example 5 (Examples 1-5 and 1-6), Ni 3 Sn 2 nanoparticles prepared in Preparation Example 6 (Examples 1-7 and 1-8), Using the Ni 3 Sn 2 nanoparticles prepared in Preparation Example 7 (Examples 1-9 and 1-10) and the NiSnCu nanoparticles prepared in Preparation Example 8 (Example 1-11), Cu nanoparticles and Sn-transitions A bonding material paste was prepared in the same manner as in Example 1-1 except that the content of the intermetallic compound nanoparticles was changed to Table 1. Further, a bonded body for measuring shear strength was prepared to increase the bonding strength of the bonding layer. Asked. The results are shown in Table 1.
また、実施例1−2で形成した接合層(Pt3Sn:10質量%)、実施例1−4で形成した接合層(Ag3Sn:10質量%)、実施例1−6で形成した接合層(Cu6Sn5:10質量%)、実施例1−8で形成した接合層(Ni3Sn2:10質量%)、及び実施例1−10で形成した接合層(Ni3Sn2:10質量%)の上側の密着層10a付近のXRDスペクトルを測定したところ、それぞれ図12〜図15に示すように、Cuに由来する回折ピークに加えて、Cu3Snに由来する回折ピークが観察され、CuSn金属間化合物(Cu3Sn)が生成していることが確認された。 In addition, the bonding layer formed in Example 1-2 (Pt 3 Sn: 10% by mass), the bonding layer formed in Example 1-4 (Ag 3 Sn: 10% by mass), and formed in Example 1-6. Bonding layer (Cu 6 Sn 5 : 10% by mass), bonding layer formed in Example 1-8 (Ni 3 Sn 2 : 10% by mass), and bonding layer formed in Example 1-10 (Ni 3 Sn 2) : 10 mass%) when the XRD spectrum in the vicinity of the upper adhesive layer 10a was measured, as shown in FIGS. 12 to 15, in addition to the diffraction peak derived from Cu, the diffraction peak derived from Cu 3 Sn was observed. It was observed and it was confirmed that a CuSn intermetallic compound (Cu 3 Sn) was generated.
さらに、実施例1−9で形成した接合層(Ni3Sn2:5質量%)の上側の密着層10a付近及び下側の密着層10b付近の断面を走査型電子顕微鏡(SEM)により観察したところ、図16A及び図16Bに示したように、いずれの部分においても平均粒子径は1000nm以下であることが確認された。また、実施例1−10で形成した接合層(Ni3Sn2:10質量%)の上側の密着層10a付近及び下側の密着層10b付近の断面を走査型電子顕微鏡(SEM)により観察したところ、図17A及び図17Bに示したように、いずれの部分においても平均粒子径は1000nm以下であることが確認された。これらは、前記接合材料ペーストを用いて形成した接合層においては、CuSn金属間化合物(Cu3Sn)が形成したことによってCuナノ粒子が完全には焼結せず(焼結が抑制され)、前記接合材料ペースト中での粒子径を維持しながらCuナノ粒子が焼結したためと考えられる。 Furthermore, the cross section near the upper adhesion layer 10a and the lower adhesion layer 10b of the bonding layer (Ni 3 Sn 2 : 5% by mass) formed in Example 1-9 was observed with a scanning electron microscope (SEM). However, as shown in FIG. 16A and FIG. 16B, it was confirmed that the average particle diameter was 1000 nm or less in any part. In addition, the cross section of the bonding layer (Ni 3 Sn 2 : 10% by mass) formed in Example 1-10 near the upper adhesion layer 10a and the lower adhesion layer 10b was observed with a scanning electron microscope (SEM). However, as shown in FIGS. 17A and 17B, it was confirmed that the average particle diameter was 1000 nm or less in any part. In the bonding layer formed using the bonding material paste, the Cu nanoparticles are not completely sintered (sintering is suppressed) due to the formation of the CuSn intermetallic compound (Cu 3 Sn), This is probably because the Cu nanoparticles were sintered while maintaining the particle diameter in the bonding material paste.
(比較例1−1)
Pt3Snナノ粒子を混合しなかった以外は実施例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1に示す。
(Comparative Example 1-1)
A bonding material paste was prepared in the same manner as in Example 1-1 except that Pt 3 Sn nanoparticles were not mixed, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 1.
(比較例1−2〜1−4)
Pt3Snナノ粒子に代えてSnナノ粒子(比較例1−2〜1−3)又はNi3Sn2ナノ粒子(比較例1−4)を用い、表1に示す割合とした以外は実施例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1に示す。
(Comparative Examples 1-2 to 1-4)
Example except that Sn nanoparticles (Comparative Examples 1-2 to 1-3) or Ni 3 Sn 2 nanoparticles (Comparative Example 1-4) were used instead of Pt 3 Sn nanoparticles and the ratios shown in Table 1 were used. A bonding material paste was prepared in the same manner as in 1-1, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 1.
表1に示した結果から明らかなように、全金属ナノ粒子に対して95又は90質量%のCuナノ粒子と5又は10質量%のSn−遷移金属間化合物ナノ粒子を含有する接合材料により形成された接合層(実施例1−1〜1−11)の接合強度は、Cuナノ粒子のみの接合材料により形成された接合層(比較例1−1)、Cuナノ粒子とSnナノ粒子を含む接合材料により形成された接合層(比較例1−2〜1−3)、及びCuナノ粒子と50質量%のSn−遷移金属間化合物ナノ粒子を含む接合材料により形成された接合層(比較例1−4)の接合強度に比べて、高くなることが確認された。なお、Cuナノ粒子に対してNi3Sn2多面体ナノ粒子を50質量%添加した混合ペースト(比較例1−4)では、接合することができず、強度が全く出なかった。 As is apparent from the results shown in Table 1, formed by a bonding material containing 95 or 90% by mass of Cu nanoparticles and 5 or 10% by mass of Sn-transition intermetallic compound nanoparticles with respect to the total metal nanoparticles. The bonding strength of the formed bonding layers (Examples 1-1 to 1-11) includes a bonding layer (Comparative Example 1-1) formed of a bonding material only of Cu nanoparticles, Cu nanoparticles, and Sn nanoparticles. Bonding layer formed by bonding material (Comparative Examples 1-2 to 1-3), and bonding layer formed by bonding material including Cu nanoparticles and 50 mass% Sn-transition intermetallic compound nanoparticles (Comparative example) It was confirmed that it was higher than the bonding strength of 1-4). In Ni 3 Sn 2 polyhedral nanoparticles 50% by mass added was mixed paste (Comparative Example 1-4) with respect to Cu nanoparticles, can not be joined, strength did not appear at all.
(実施例2−1〜2−11)
Sn−遷移金属間化合物ナノ粒子として、調製例7で調製したNi3Sn2ナノ粒子(実施例2−1〜2−10)、調製例8で調製したNiSnCuナノ粒子(実施例2−11)を用い、Sn−遷移金属間化合物ナノ粒子の含有量を表2とした以外は実施例1−1と同様にして接合材料ペーストを調製し(実施例2−1〜2−11)、さらに、接合温度を350℃に変更した以外は実施例1−1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表2に示す。
(Examples 2-1 to 2-11)
As Sn-transition intermetallic compound nanoparticles, Ni 3 Sn 2 nanoparticles prepared in Preparation Example 7 (Examples 2-1 to 2-10), NiSnCu nanoparticles prepared in Preparation Example 8 (Example 2-11) And a bonding material paste was prepared in the same manner as in Example 1-1 except that the content of Sn-transition intermetallic compound nanoparticles was changed to Table 2 (Examples 2-1 to 2-11). A bonded body for shear strength measurement was prepared in the same manner as in Example 1-1 except that the bonding temperature was changed to 350 ° C., and the bonding strength of the bonding layer was determined. The results are shown in Table 2.
(比較例2−1〜2−2)
比較例1−1及び1−3と同様にして接合材料ペーストを調製し(比較例2−1及び2−2)、さらに、接合温度を350℃に変更した以外は比較例1−1及び1−3と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表2に示す。
(Comparative Examples 2-1 to 2-2)
A bonding material paste was prepared in the same manner as in Comparative Examples 1-1 and 1-3 (Comparative Examples 2-1 and 2-2), and Comparative Examples 1-1 and 1 except that the bonding temperature was changed to 350 ° C. The joint for shear strength measurement was produced in the same manner as in -3 to determine the joint strength of the joint layer. The results are shown in Table 2.
(比較例2−3)
Pt3Snナノ粒子に代えてNi3Sn2ナノ粒子(比較例2−3)を用い、表2に示す割合とした以外は実施例1−1と同様にして接合材料ペーストを調製し、さらに、接合温度を350℃に変更した以外は実施例1−1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表2に示す。
(Comparative Example 2-3)
A joining material paste was prepared in the same manner as in Example 1-1 except that Ni 3 Sn 2 nanoparticles (Comparative Example 2-3) were used instead of Pt 3 Sn nanoparticles, and the ratios shown in Table 2 were used. A bonded body for shear strength measurement was prepared in the same manner as in Example 1-1 except that the bonding temperature was changed to 350 ° C., and the bonding strength of the bonding layer was determined. The results are shown in Table 2.
表2に示した結果から明らかなように、全金属ナノ粒子に対して70〜99.5質量%のCuナノ粒子と30〜0.5質量%のNi3Sn2ナノ粒子を含有する接合材料により形成された接合層(実施例2−1〜2−10)の接合強度は、Cuナノ粒子のみの接合材料により形成された接合層(比較例2−1)、Cuナノ粒子とSnナノ粒子を含む接合材料により形成された接合層(比較例2−2)、及びNi3Sn2ナノ粒子の含有量が30質量%を超える接合材料により形成された接合層(比較例2−3)の接合強度に比べて、高くなることが確認された。また、接合温度を350℃に変更した場合であっても、上記本実施例の接合材料により形成された接合層(実施例2−1〜2−10)が、比較例の接合材料により形成された接合層(比較例2−1〜2−3)の接合強度に比べて、高くなることが確認された。更に、全金属ナノ粒子に対して95質量%のCuナノ粒子と5質量%の3元系のSn−遷移金属間化合物ナノ粒子(NiSnCuナノ粒子)を含有する接合材料により形成された接合層(実施例2−11)の接合強度は、比較例の接合材料により形成された接合層(比較例2−1〜2−3)の接合強度に比べて、高くなることが確認された。 As is apparent from the results shown in Table 2, a bonding material containing 70 to 99.5% by mass of Cu nanoparticles and 30 to 0.5% by mass of Ni 3 Sn 2 nanoparticles with respect to all metal nanoparticles. The bonding strength of the bonding layers (Examples 2-1 to 2-10) formed by the bonding layers was a bonding layer (Comparative Example 2-1) formed of a bonding material composed only of Cu nanoparticles, Cu nanoparticles, and Sn nanoparticles. Of a bonding layer (Comparative Example 2-2) formed of a bonding material containing Ni, and a bonding layer (Comparative Example 2-3) formed of a bonding material in which the content of Ni 3 Sn 2 nanoparticles exceeds 30% by mass It was confirmed that it was higher than the bonding strength. Even when the bonding temperature is changed to 350 ° C., the bonding layers (Examples 2-1 to 2-10) formed of the bonding material of the present example are formed of the bonding material of the comparative example. It was confirmed that it was higher than the bonding strength of the bonding layers (Comparative Examples 2-1 to 2-3). Further, a bonding layer formed of a bonding material containing 95 mass% Cu nanoparticles and 5 mass% ternary Sn-transition intermetallic compound nanoparticles (NiSnCu nanoparticles) with respect to all metal nanoparticles ( It was confirmed that the bonding strength of Example 2-11) was higher than the bonding strength of the bonding layers (Comparative Examples 2-1 to 2-3) formed of the bonding material of the comparative example.
(実施例3−1)
調製例1で調製したCuナノ粒子に対して調製例3で調製したPt3Snナノ粒子を5質量%添加し(混合ナノ粒子)、さらに平均粒子径が1.2μmのCuミクロン粒子(全Cu粒子に対する直径1〜1000nmの範囲にあるCuナノ粒子の割合(個数基準):20%)を混合し、混合ナノ粒子を個数基準で99%、Cuミクロン粒子を個数基準で1%含有する複合材料粉末を調製した。この混合粉末1g用いた以外は実施例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表3に示す。
(Example 3-1)
5 mass% of Pt 3 Sn nanoparticles prepared in Preparation Example 3 are added to the Cu nanoparticles prepared in Preparation Example 1 (mixed nanoparticles), and Cu micron particles having an average particle diameter of 1.2 μm (total Cu The ratio of Cu nanoparticles in the range of 1 to 1000 nm in diameter (number basis): 20%) is mixed, and a composite material containing 99% of mixed nanoparticles and 1% of Cu micron particles on the basis of number A powder was prepared. A bonding material paste was prepared in the same manner as in Example 1-1 except that 1 g of this mixed powder was used. Further, a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 3.
(実施例3−2)
Sn−遷移金属間化合物ナノ粒子として、調製例7で調製したNi3Sn2ナノ粒子を用いた以外は実施例3−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表3に示す。
(Example 3-2)
A bonding material paste was prepared in the same manner as in Example 3-1, except that the Ni 3 Sn 2 nanoparticles prepared in Preparation Example 7 were used as Sn-transition intermetallic compound nanoparticles. The body was prepared and the bonding strength of the bonding layer was determined. The results are shown in Table 3.
表3に示した結果から明らかなように、混合ナノ粒子にCuミクロン粒子を個数基準で1%含有する複合材料粉末を含有する接合材料により形成された接合層(実施例3−1〜3−2)の接合強度は、上記比較例2−1〜2−3の接合強度に比べて、高くなることが確認された。 As is apparent from the results shown in Table 3, bonding layers formed of a bonding material containing composite powder containing 1% of Cu micron particles on the basis of the number of mixed nanoparticles (Examples 3-1 to 3- It was confirmed that the bonding strength of 2) was higher than the bonding strengths of Comparative Examples 2-1 to 2-3.
(比較例3−1)
Cuナノ粒子に代えて福田金属箔粉工業(株)製のCuミクロン粒子(平均粒子径24μm)を用いた以外は実施例1−9と同様にして接合材料ペーストを調製し(比較例3−1)、実施例1−9と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表4に示す。
(Comparative Example 3-1)
A bonding material paste was prepared in the same manner as in Example 1-9 except that Cu micron particles (average particle size 24 μm) manufactured by Fukuda Metal Foil Powder Co., Ltd. were used instead of Cu nanoparticles (Comparative Example 3- 1) A bonded body for measuring shear strength was prepared in the same manner as in Example 1-9, and the bonding strength of the bonding layer was determined. The results are shown in Table 4.
(比較例3−2)
Ni3Sn2ナノ粒子に代えてNiSnミクロン粒子(平均粒子径5μm)を用いた以外は実施例1−10と同様にして接合材料ペーストを調製し(比較例3−2)、実施例1−10と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表4に示す。
(Comparative Example 3-2)
A bonding material paste was prepared in the same manner as in Example 1-10 except that NiSn micron particles (average particle diameter of 5 μm) were used instead of Ni 3 Sn 2 nanoparticles (Comparative Example 3-2). In the same manner as in Example 10, a bonded body for measuring shear strength was prepared, and the bonding strength of the bonding layer was determined. The results are shown in Table 4.
(比較例3−3)
Ni3Sn2ナノ粒子に代えてNiSnミクロン粒子(平均粒子径5μm)を用いた以外は実施例2−7と同様にして接合材料ペーストを調製し(比較例3−3)、実施例2−7と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表4に示す。
(Comparative Example 3-3)
A bonding material paste was prepared in the same manner as in Example 2-7 except that NiSn micron particles (average particle size of 5 μm) were used instead of Ni 3 Sn 2 nanoparticles (Comparative Example 3-3). In the same manner as in Example 7, a bonded body for measuring shear strength was prepared, and the bonding strength of the bonding layer was determined. The results are shown in Table 4.
なお、比較例3−1〜3−2で用いたNiSnミクロン粒子のXRDスペクトル図を図18に示す。図18より、成分としてNi3Sn2及びNi3Sn4が確認された。 In addition, the XRD spectrum figure of the NiSn micron particle used in Comparative Examples 3-1 to 3-2 is shown in FIG. From FIG. 18, Ni 3 Sn 2 and Ni 3 Sn 4 were confirmed as components.
表4に示した結果から明らかなように、Cuナノ粒子に代えてCuミクロン粒子を用いた接合材料により形成された接合層(比較例3−1)は、接合強度が0.1MPaと極めて低くなることが確認された。また、Ni3Sn2ナノ粒子に代えてNiSnミクロン粒子を用いた接合材料により形成された接合層(比較例3−2〜3−3)は、上記実施例1及び実施例2に比べて低くなることが確認された。 As is clear from the results shown in Table 4, the bonding layer (Comparative Example 3-1) formed of a bonding material using Cu micron particles instead of Cu nanoparticles has an extremely low bonding strength of 0.1 MPa. It was confirmed that In addition, the bonding layer (Comparative Examples 3-2 to 3-3) formed of a bonding material using NiSn micron particles instead of Ni 3 Sn 2 nanoparticles is lower than those in Examples 1 and 2 above. It was confirmed that
(実施例4−1)
Cuナノ粒子を調製例9で調製したCuナノ粒子に、Sn−遷移金属間化合物ナノ粒子を調製例6で調製したNi3Sn2ナノ粒子に変更した以外は実施例1−1と同様にして接合材料ペーストを調製し、実施例1−1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表5に示す。
(Example 4-1)
Except that the Cu nanoparticles were changed to the Cu nanoparticles prepared in Preparation Example 9 and the Sn-transition intermetallic compound nanoparticles were changed to the Ni 3 Sn 2 nanoparticles prepared in Preparation Example 6, the same as in Example 1-1. A bonding material paste was prepared, and a bonded body for shear strength measurement was prepared in the same manner as in Example 1-1 to determine the bonding strength of the bonding layer. The results are shown in Table 5.
(比較例4−1)
Sn−遷移金属間化合物ナノ粒子を混合しなかった以外は実施例4−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表5に示す。
(Comparative Example 4-1)
A bonding material paste was prepared in the same manner as in Example 4-1, except that the Sn-transition intermetallic compound nanoparticles were not mixed, and a bonded body for shear strength measurement was prepared to determine the bonding strength of the bonding layer. It was. The results are shown in Table 5.
表5に示した結果から明らかなように、平均粒子径60nmのCuナノ粒子に変更した場合であっても、実施例4−1の接合材料により形成された接合層(実施例4−1)は、Snナノ粒子を含まない接合材料により形成された接合層(比較例4−1)の接合材料により形成された接合層(比較例4−1)の接合強度に比べて、高くなることが確認された。 As is clear from the results shown in Table 5, the bonding layer formed of the bonding material of Example 4-1 (Example 4-1) even when the Cu nanoparticles were changed to an average particle diameter of 60 nm. Is higher than the bonding strength of the bonding layer (Comparative Example 4-1) formed of the bonding material of the bonding layer (Comparative Example 4-1) formed of the bonding material not containing Sn nanoparticles. confirmed.
(実施例5−1)
Cuナノ粒子を調製例10で調製したCuナノ粒子に、Sn−遷移金属間化合物ナノ粒子を調製例6で調製したNi3Sn2ナノ粒子に変更した以外は実施例1−1と同様にして接合材料ペーストを調製し、実施例1−1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表6に示す。
(Example 5-1)
Except that the Cu nanoparticles were changed to the Cu nanoparticles prepared in Preparation Example 10 and the Sn-transition intermetallic compound nanoparticles were changed to the Ni 3 Sn 2 nanoparticles prepared in Preparation Example 6, the same as in Example 1-1. A bonding material paste was prepared, and a bonded body for shear strength measurement was prepared in the same manner as in Example 1-1 to determine the bonding strength of the bonding layer. The results are shown in Table 6.
(比較例5−1)
Sn−遷移金属間化合物ナノ粒子を混合しなかった以外は実施例5−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表6に示す。
(Comparative Example 5-1)
A bonding material paste was prepared in the same manner as in Example 5-1, except that the Sn-transition intermetallic compound nanoparticles were not mixed, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. It was. The results are shown in Table 6.
表6に示した結果から明らかなように、平均粒子径300nmのCuナノ粒子に変更した場合であっても、実施例5−1の接合材料により形成された接合層(実施例5−1)は、Snナノ粒子を含まない接合材料により形成された接合層(比較例5−1)の接合材料により形成された接合層(比較例5−1)の接合強度に比べて、高くなることが確認された。 As is clear from the results shown in Table 6, the bonding layer formed of the bonding material of Example 5-1 (Example 5-1) even when the Cu nanoparticles were changed to an average particle diameter of 300 nm. Is higher than the bonding strength of the bonding layer (Comparative Example 5-1) formed of the bonding material of the bonding layer (Comparative Example 5-1) formed of the bonding material not containing Sn nanoparticles. confirmed.
以上説明したように、本発明によれば、接合強度が十分に高い接合層を無加圧、低温(具体的には400℃以下)で形成することが可能な接合材料を得ることができる。したがって、本発明の金属ナノ粒子ペーストは、低温や無加圧での半導体素子の接合技術において接合材料として有用である。 As described above, according to the present invention, a bonding material capable of forming a bonding layer having a sufficiently high bonding strength at no pressure and at a low temperature (specifically, 400 ° C. or less) can be obtained. Therefore, the metal nanoparticle paste of the present invention is useful as a bonding material in a bonding technique for semiconductor elements at a low temperature or no pressure.
1:半導体素子、2:基板、2a:上部基板、2b:下部基板、2c,2d:各基板の突出部、3,3a,3b:接合層、4a,4b:密着層、5:信号端子、6:ボンディングワイヤ、7:モールド樹脂、8a,8b:試験片、9:接合層、10a,10b:密着層。 1: semiconductor element, 2: substrate, 2a: upper substrate, 2b: lower substrate, 2c, 2d: protruding portion of each substrate, 3, 3a, 3b: bonding layer, 4a, 4b: adhesion layer, 5: signal terminal, 6: bonding wire, 7: mold resin, 8a, 8b: test piece, 9: bonding layer, 10a, 10b: adhesion layer.
Claims (10)
前記接合層が請求項5に記載の接合材料により形成されたCuとSnと遷移金属との混合物層であることを特徴とする半導体装置。 Comprising a semiconductor element, a substrate, and a bonding layer disposed between the semiconductor element and the substrate;
A semiconductor device, wherein the bonding layer is a mixture layer of Cu, Sn, and a transition metal formed of the bonding material according to claim 5 .
一方の密着層が前記半導体素子の接合部に接するように配置され、他方の密着層が前記基板の接合部に接するように配置されていることを特徴とする請求項6〜9のうちのいずれか一項に記載の半導体装置。 The adhesive layer further includes an adhesion layer made of at least one metal selected from the group consisting of Ni, Co, and Ag on both surfaces of the bonding layer,
Is one of the adhesion layer is disposed in contact with the junction of the semiconductor device, any other adhesion layer of the claims 6-9, characterized in that it is arranged in contact with the joint portion of the substrate The semiconductor device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013177759A JP6153076B2 (en) | 2013-05-22 | 2013-08-29 | Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013108174 | 2013-05-22 | ||
JP2013108174 | 2013-05-22 | ||
JP2013177759A JP6153076B2 (en) | 2013-05-22 | 2013-08-29 | Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015004121A JP2015004121A (en) | 2015-01-08 |
JP6153076B2 true JP6153076B2 (en) | 2017-06-28 |
Family
ID=52300245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013177759A Expired - Fee Related JP6153076B2 (en) | 2013-05-22 | 2013-08-29 | Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6153076B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018105127A1 (en) * | 2016-12-09 | 2018-06-14 | 日立化成株式会社 | Method for producing joined body, transient liquid phase sintering composition, sintered body, and joined body |
WO2018231612A2 (en) * | 2017-06-12 | 2018-12-20 | Ormet Circuits, Inc. | Metallic adhesive compositions having good work lives and thermal conductivity, methods of making same and uses thereof |
JP7198479B2 (en) * | 2018-08-31 | 2023-01-04 | 学校法人早稲田大学 | Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent |
US11908822B2 (en) | 2019-04-09 | 2024-02-20 | Mitsubishi Electric Corporation | Power semiconductor module and power conversion apparatus |
JP7624613B2 (en) | 2020-08-04 | 2025-01-31 | パナソニックIpマネジメント株式会社 | Semiconductor device and its manufacturing method |
WO2022127776A1 (en) * | 2020-12-16 | 2022-06-23 | The University Of Hong Kong | Cu-cu direct welding for packaging application in semiconductor industry |
KR20240042606A (en) * | 2021-08-03 | 2024-04-02 | 미쓰비시 마테리알 가부시키가이샤 | Metal ink, method for producing metal ink, and method for producing metal layer |
KR20240136948A (en) * | 2022-01-19 | 2024-09-19 | 미쓰비시 마테리알 가부시키가이샤 | Metal ink, method for producing metal ink, method for producing metal layer, and metal layer |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202938A (en) * | 2005-01-20 | 2006-08-03 | Kojiro Kobayashi | Semiconductor device and manufacturing method thereof |
JP4638825B2 (en) * | 2006-02-01 | 2011-02-23 | 三井金属鉱業株式会社 | Multi-component metal particle slurry and conductive ink or conductive paste using the slurry |
JP5050440B2 (en) * | 2006-08-01 | 2012-10-17 | 日産自動車株式会社 | Semiconductor device and manufacturing method thereof |
KR101007326B1 (en) * | 2008-08-11 | 2011-01-13 | 삼성전기주식회사 | Tin-copper-silver alloy nanoparticles, preparation method thereof and ink or paste using the alloy nanoparticles |
JP5502434B2 (en) * | 2008-11-26 | 2014-05-28 | 三ツ星ベルト株式会社 | Bonding agent for inorganic material and bonded body of inorganic material |
US8221518B2 (en) * | 2009-04-02 | 2012-07-17 | Ormet Circuits, Inc. | Conductive compositions containing blended alloy fillers |
JP4563506B1 (en) * | 2010-01-13 | 2010-10-13 | 有限会社ナプラ | Electrode material |
JP5811314B2 (en) * | 2010-06-16 | 2015-11-11 | 国立研究開発法人物質・材料研究機構 | METAL NANOPARTICLE PASTE, ELECTRONIC COMPONENT BODY USING METAL NANOPARTICLE PASTE, LED MODULE, AND METHOD FOR FORMING CIRCUIT FOR PRINTED WIRING BOARD |
JP5311147B2 (en) * | 2010-08-25 | 2013-10-09 | 株式会社豊田中央研究所 | Surface-coated metal nanoparticles, production method thereof, and metal nanoparticle paste including the same |
JP2012115861A (en) * | 2010-11-30 | 2012-06-21 | Mitsubishi Materials Corp | Method for manufacturing solder powder and solder powder obtained by the same |
JP5887086B2 (en) * | 2011-08-11 | 2016-03-16 | 株式会社タムラ製作所 | Conductive material |
US20140312285A1 (en) * | 2011-10-24 | 2014-10-23 | Bando Chemical Industries, Ltd. | Composition for bonding |
JP6153077B2 (en) * | 2013-02-28 | 2017-06-28 | 株式会社豊田中央研究所 | Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same |
-
2013
- 2013-08-29 JP JP2013177759A patent/JP6153076B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015004121A (en) | 2015-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6153076B2 (en) | Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same | |
JP6153077B2 (en) | Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same | |
US11699632B2 (en) | Methods for attachment and devices produced using the methods | |
KR101709302B1 (en) | Low-temperature-sinterable bonding material, and bonding method using the bonding material | |
JP4973830B2 (en) | Conductive composition, conductive paste and conductive film | |
Krishnan et al. | Preparation and low-temperature sintering of Cu nanoparticles for high-power devices | |
JP6032110B2 (en) | Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same | |
KR20180004853A (en) | Binding material, binding body, and binding method | |
JP2011240406A (en) | Bonding material and bonding method using the same | |
EP3217424A1 (en) | Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly | |
JP2022046765A (en) | Copper paste, joining method and manufacturing method of joined body | |
US20170278589A1 (en) | Metal oxide particles for bonding, sintering binder including same, process for producing metal oxide particles for bonding, and method for bonding electronic components | |
JP2016525495A (en) | Sintered paste with silver oxide coated on precious and non-precious metal surfaces that are difficult to sinter | |
JP6270241B2 (en) | Bonding material and semiconductor device using the same | |
Choi et al. | Characterization of the die-attach process via low-temperature reduction of Cu formate in air | |
JP6659026B2 (en) | Low temperature joining method using copper particles | |
Kim et al. | Pressure-assisted sinter-bonding characteristics at 250° C in air using bimodal Ag-coated Cu particles | |
JP5733638B2 (en) | Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same | |
Zhang et al. | Development of silver paste with high sintering driving force for reliable packaging of power electronics | |
WO2019021637A1 (en) | Method for producing metal bonded laminate | |
Esa et al. | The evolutions of microstructure in pressureless sintered silver die attach material | |
TWI677488B (en) | Manufacturing method of low-temperature sinterable surface-treated copper fine particles | |
Li et al. | Low temperature sintering of dendritic cu based pastes for power semiconductor device interconnection | |
JP2007136503A (en) | Clad solder for joining | |
Shen et al. | Preparation and low temperature sintering of silver nanoparticles based pastes for power semiconductor device interaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6153076 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170521 |
|
LAPS | Cancellation because of no payment of annual fees |