JP2020099981A - Method for evaluating grindability of grinding wheel containing abrasive grain - Google Patents
Method for evaluating grindability of grinding wheel containing abrasive grain Download PDFInfo
- Publication number
- JP2020099981A JP2020099981A JP2018241438A JP2018241438A JP2020099981A JP 2020099981 A JP2020099981 A JP 2020099981A JP 2018241438 A JP2018241438 A JP 2018241438A JP 2018241438 A JP2018241438 A JP 2018241438A JP 2020099981 A JP2020099981 A JP 2020099981A
- Authority
- JP
- Japan
- Prior art keywords
- abrasive grains
- grinding
- grindability
- grinding wheel
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
本発明は、砥粒を含む研削砥石の研削性の評価方法に関する。 The present invention relates to a method for evaluating the grindability of a grinding wheel containing abrasive grains.
アルミナ焼結体、アルミナジルコニア、立方晶窒化ホウ素等は、高硬度、高強度、高耐熱性、高耐摩耗性及び高耐薬品性等に優れるという特徴を生かして、様々な産業分野で使用されている。特に、アルミナ焼結体、アルミナジルコニアは、鉄鋼産業における重研削(研削荷重及び研削速度を高く設定し行われる研削)砥石の原料である砥粒として使用されている。 Alumina sinter, alumina zirconia, cubic boron nitride, etc. are used in various industrial fields by taking advantage of their characteristics such as high hardness, high strength, high heat resistance, high abrasion resistance and high chemical resistance. ing. In particular, an alumina sintered body and alumina zirconia are used as abrasive grains which are a raw material of a heavy grinding (grinding performed by setting a high grinding load and a high grinding speed) grindstone in the steel industry.
また、最近では、従来よりもさらに「研削比」が大きい重研削砥石が市場で求められてきている。ここで、「研削比」とは砥石の性能を示す指標であり、下記式(A)によって示され、研削比が大きいほど、砥石の性能は良いといえる。
研削比=被削材が削られた量(研削量)/砥石の摩耗量 ・・・(A)
Further, recently, a heavy grinding wheel having a larger “grinding ratio” than ever has been demanded in the market. Here, the "grinding ratio" is an index indicating the performance of the grindstone, and is represented by the following formula (A). It can be said that the larger the grind ratio, the better the performance of the grindstone.
Grinding ratio = amount of work material cut (grinding amount)/abrasion amount of grindstone (A)
一般的に、摩耗量が少ない砥石で多くの量の被削材を削ることができれば、性能が良いと判断されるが、研削比を求めるには、従来は、少なくとも研削用の砥石を実際に作製する必要があった。また、砥石を実際に作製できない場合、又は、砥石を作製できても、評価するための研削装置が無い場合は、通常研削比を求めることが出来ない。 Generally, it is judged that the performance is good if it is possible to grind a large amount of work material with a grindstone with a small amount of wear, but in order to obtain the grinding ratio, conventionally, at least the grinding wheel is actually used. It had to be made. Further, if the grindstone cannot be actually manufactured, or if the grindstone can be manufactured but there is no grinding apparatus for evaluation, the normal grinding ratio cannot be obtained.
特許文献1には、重研削作業で用いられる、破砕性の異なる複数種類の、例えば、焼結アルミナ質砥粒と焼結高純度アルミナ質砥粒との混合物を配合成分として有する砥石について記載されている。また、特許文献2には、複合砥石の評価方法として、実際の砥石と同等の砥石体を作製し、その研磨比(研削比に対応)をピンオンディスク型摩擦摩耗評価装置を用いて評価が行われることが記載されている。 Patent Document 1 describes a grindstone that is used in heavy grinding work and that has a mixture of a plurality of types of different friability, for example, sintered alumina abrasive grains and sintered high-purity alumina abrasive grains, as a compounding component. ing. Further, in Patent Document 2, as an evaluation method of a composite grindstone, a grindstone body equivalent to an actual grindstone is manufactured, and its polishing ratio (corresponding to the grinding ratio) is evaluated by using a pin-on-disk type friction/wear evaluation device. It is described that it is done.
しかしながら、特許文献1のように、重研削作業で用いられる砥石は、例えば、直径500mmから1000mmと大型であるため、作製には数十kgの大量の砥石原料の砥粒、また、それに見合う合成樹脂等の結合剤、フィラー等が必要となる。さらに、大型のホットプレス及び電気炉、並びに高負荷に耐えうる研削装置が必要となる。このように、砥石の研削比を求めるには、砥石の作製にあたり、大がかりな設備導入、原料コストの増大、さらには多くの作製日数を必要とする等の問題がある。
特許文献2では、砥石の研削比の評価をピンオンディスク型摩擦摩耗評価装置で行うが、評価にあたり砥石体を作製する必要が有るため作業工程等が煩雑となりコスト高に繋がる。
However, as in Patent Document 1, since the grindstone used in the heavy grinding work is large, for example, with a diameter of 500 mm to 1000 mm, a large number of abrasive grains of grindstone raw material of several tens of kg and a synthetic material suitable for it. A binder such as a resin and a filler are required. Further, a large hot press and electric furnace and a grinding machine capable of withstanding high loads are required. As described above, in order to obtain the grinding ratio of the grindstone, there are problems such as large-scale installation of equipment, increase of raw material cost, and a large number of manufacturing days when manufacturing the grindstone.
In Patent Document 2, the grinding ratio of the grindstone is evaluated by a pin-on-disc type friction and wear evaluation apparatus, but since it is necessary to prepare a grindstone body for the evaluation, the work process is complicated and the cost is increased.
本発明は、上記を鑑み、作業工程が煩雑で、作製コストが高く、及び多くの作製日数を必要とする砥粒を含む研削砥石の作製を行うことなく、砥粒又は砥粒の成形体の形態で、砥粒を含む研削砥石の研削性を評価する方法を提供することを課題とする。 In view of the above, the present invention is complicated in the working process, high in manufacturing cost, and without performing preparation of a grinding wheel containing abrasive grains that requires a large number of manufacturing days, an abrasive grain or a formed body of abrasive grains. An object of the present invention is to provide a method for evaluating the grindability of a grinding wheel containing abrasive grains.
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、ピンオンディスク型摩擦摩耗評価装置を用い、砥粒又は砥粒の成形体の形態で研削を行い、該砥粒の摩耗量、及び被削材の研削量を測定し、前記砥粒の摩耗量に対する前記被削材の研削量の比で定義される研削比により、砥粒を含む研削砥石の研削性を、砥粒を含む研削砥石の作製を実際に行うことなく簡易に評価できる方法を見出し、本発明を完成した。
すなわち、本発明は、以下の(1)〜(3)を提供するものである。
(1)ピンオンディスク型摩擦摩耗評価装置を用いた、砥粒を含む研削砥石の研削性の評価方法であって、前記砥粒を含む研削砥石の代わりに、前記砥粒で被削材を研削し、該砥粒の摩耗量、及び前記被削材の研削量を測定し、前記砥粒の摩耗量に対する前記被削材の研削量の比で定義される砥粒の研削比から、前記砥粒を含む研削砥石の研削性を評価する、砥粒を含む研削砥石の研削性の評価方法。
(2)前記砥粒が、アルミナ焼結体砥粒、アルミナジルコニア砥粒、アルミナ砥粒、又は立方晶窒化ホウ素砥粒を含む、上記(1)に記載の砥粒を含む研削砥石の研削性の評価方法。
(3)前記被削材が、炭素鋼、特殊鋼、チタン、樹脂板、セラミック、又は木材である、上記(1)又は(2)に記載の砥粒を含む研削砥石の研削性の評価方法。
As a result of repeated intensive studies to solve the above problems, the present inventors have used a pin-on-disc type friction and wear evaluation device to perform grinding in the form of abrasive grains or a molded body of abrasive grains, and wear of the abrasive grains. Amount, and the grinding amount of the work material is measured, and the grindability of the grinding wheel including the abrasive grains is defined by the grinding ratio defined by the ratio of the grinding amount of the work material to the wear amount of the abrasive grains. The present invention has been completed by finding a method that can be easily evaluated without actually producing a grinding wheel containing
That is, the present invention provides the following (1) to (3).
(1) A method of evaluating the grindability of a grinding wheel containing abrasive grains, using a pin-on-disc type friction and wear evaluation apparatus, wherein a work material is replaced with the abrasive grains instead of the grinding wheel containing abrasive grains. Grinding, measuring the wear amount of the abrasive grains, and the grinding amount of the work material, from the grinding ratio of the abrasive grains defined by the ratio of the grinding amount of the work material to the wear amount of the abrasive grains, the A method for evaluating the grindability of a grinding wheel containing abrasive grains for evaluating the grindability of a grinding wheel containing abrasive grains.
(2) The grindability of a grinding wheel containing the abrasive grains according to (1), wherein the abrasive grains include alumina sintered body abrasive grains, alumina zirconia abrasive grains, alumina abrasive grains, or cubic boron nitride abrasive grains. Evaluation method.
(3) The method for evaluating the grindability of a grinding wheel containing abrasive grains according to (1) or (2), wherein the work material is carbon steel, special steel, titanium, resin plate, ceramics, or wood. ..
本発明によれば、作業工程が煩雑で、作製コストが高く、及び多くの作製日数を必要とする砥粒を含む研削砥石の作製を行うことなく、砥粒又は砥粒の成形体の形態で、砥粒を含む研削砥石の研削性を評価する方法を提供することができる。 According to the present invention, the work process is complicated, the production cost is high, and the production of a grinding wheel containing abrasive grains that requires a large number of production days is performed, and in the form of abrasive grains or a molded body of abrasive grains. A method for evaluating the grindability of a grinding wheel containing abrasive grains can be provided.
本発明に従う研削砥石の研削性の評価方法の実施形態について、以下で詳細に説明するが、本発明は下記の実施形態に限定されるものではない。 An embodiment of the method for evaluating the grindability of the grinding wheel according to the present invention will be described in detail below, but the present invention is not limited to the following embodiment.
<研削砥石の研削性の評価方法>
本発明は、ピンオンディスク型摩擦摩耗評価装置を用いた、砥粒を含む研削砥石の研削性の評価方法であって、前記砥粒を含む研削砥石の代わりに、前記砥粒で被削材を研削し、該砥粒の摩耗量、及び前記被削材の研削量を測定し、前記砥粒の摩耗量に対する前記被削材の研削量の比で定義される砥粒の研削比から、前記砥粒を含む研削砥石の研削性を評価する、砥粒を含む研削砥石の研削性の評価方法である。
研削砥石の研削性の評価は、通常、砥粒を、結合剤としての樹脂やフィラー等で固めた実際の砥石について、実際の研削装置を用いて金属塊を削り、砥石の摩耗量を算出し、前述したように、下記式(A)により算出するのが一般的である。
研削比=被削材が削られた量(研削量)/砥石の摩耗量 ・・・(A)
しかし、本発明では、実際の研削砥石の研削性を、実際の砥石、実際の研削装置及び被削材を用いることなく、ピンオンディスク型摩擦摩耗評価装置により砥粒又は砥粒の成形体の形態で被削材に対する摩擦摩耗試験を行うことにより研削比を求め、研削性を評価するものである。
具体的には、砥粒の摩耗量を算出し、該摩耗量を前記式(A)中の砥石の摩耗量として用いる。すなわち、下記式(B)により研削比を算出し、後述する通常品としての砥粒の研削比を基準として、研削性を評価する。
研削比=被削材が削られた量(研削量)/砥粒の摩耗量 ・・・(B)
上記の評価方法により、作業工程が煩雑で、作製コストが高く、及び多くの作製日数を必要とする砥石の作製を行うことなく、研削砥石の研削性の評価ができる。
<Evaluation method of grindability of grinding wheel>
The present invention is a method for evaluating the grindability of a grinding wheel containing abrasive grains, using a pin-on-disc type friction and wear evaluation apparatus, wherein the abrasive grains are used as a work material instead of the grinding wheel containing the abrasive grains. Grinding, measuring the amount of wear of the abrasive grains, and the amount of grinding of the work material, from the grinding ratio of the abrasive grains defined by the ratio of the amount of grinding of the work material to the amount of wear of the abrasive grains, It is a method of evaluating the grindability of a grinding wheel containing abrasive grains for evaluating the grindability of a grinding wheel containing abrasive grains.
To evaluate the grindability of a grinding wheel, usually, for an actual grinding stone in which the abrasive grains are hardened with a resin such as a binder or a filler, a metal lump is ground using an actual grinding device, and the wear amount of the grinding stone is calculated. As described above, it is generally calculated by the following formula (A).
Grinding ratio = amount of work material cut (grinding amount)/abrasion amount of grindstone (A)
However, in the present invention, the grindability of the actual grinding wheel, the actual grinding wheel, without using the actual grinding device and the work material, of the abrasive grains or a molded body of abrasive grains by the pin-on-disc type friction wear evaluation device The grinding ratio is obtained by performing a friction wear test on a work material in a form to evaluate the grindability.
Specifically, the wear amount of the abrasive grains is calculated, and the wear amount is used as the wear amount of the grindstone in the formula (A). That is, the grinding ratio is calculated by the following formula (B), and the grindability is evaluated based on the grinding ratio of abrasive grains as a normal product described later.
Grinding ratio = amount of work material cut (grinding amount)/abrasive wear amount (B)
By the above-described evaluation method, the grindability of the grinding wheel can be evaluated without complicated manufacturing steps, high manufacturing cost, and without manufacturing a grindstone that requires many manufacturing days.
図1は、本発明の、研削砥石の研削性の評価方法に用いたピンオンディスク型摩擦摩耗評価装置の一例を示す概略図である。ピンオンディスク型摩擦摩耗評価装置1は(JIS R 1613−1993)に準拠するものであり、円盤状の被削材4を回転保持する、回転用モーター2を備えた回転ステージ3、並びに、試験体保持治具5で被削材4の表面に対し所定の位置に保持された砥粒又は砥粒の成形体である試験体(図示せず)に一定の荷重を付与し摩擦摩耗評価中の試験体及び被削材4に係る摩耗長さや摩耗深さ等の変位等を測定する、荷重制御・変位測定ユニット6(詳細は図示せず)、荷重負荷部7(詳細は図示せず)を備える。 FIG. 1 is a schematic diagram showing an example of a pin-on-disk type friction and wear evaluation apparatus used in the method for evaluating the grindability of a grinding wheel of the present invention. The pin-on-disc type friction and wear evaluation apparatus 1 complies with (JIS R 1613-1993), and holds the disc-shaped work material 4 in rotation, and includes a rotary stage 3 provided with a rotation motor 2 and a test. A constant load is applied to a test body (not shown), which is an abrasive grain or a molded body of the abrasive grain, which is held at a predetermined position with respect to the surface of the work material 4 by the body holding jig 5, and the friction wear is being evaluated. A load control/displacement measuring unit 6 (not shown in detail) and a load applying section 7 (not shown in detail) for measuring displacement such as wear length and wear depth of the test piece and the work material 4. Prepare
本発明に用いるピンオンディスク型摩擦摩耗評価装置は、(JIS R 1613−1993)に準拠するものであれば、特に制限されることはなく、例えば、以下の仕様を有する装置である。
・試験体荷重範囲:1〜500N
・被削材回転数:250〜13000rpm
・被削材回転速度:1〜80m/s
・試験体荷重測定と、被削材回転方向の接線荷重を測定するロードセルを有し、前記2つの荷重より摩擦力が算出できる。
The pin-on-disc type friction and wear evaluation device used in the present invention is not particularly limited as long as it conforms to (JIS R 1613-1993), and is, for example, a device having the following specifications.
・Test body load range: 1 to 500N
・Workpiece material rotation speed: 250 to 13000 rpm
・Work material rotation speed: 1-80 m/s
A test cell load measurement and a load cell for measuring a tangential load in the rotating direction of the work material are provided, and the frictional force can be calculated from the two loads.
以下、ピンオンディスク型摩擦摩耗評価装置を用いた、砥粒の研削比の算出法を、図1を用い説明する。 Hereinafter, a method of calculating the grinding ratio of the abrasive grains using the pin-on-disk type friction and wear evaluation device will be described with reference to FIG.
摩擦摩耗試験は、例えば、前記ピンオンディスク型摩擦摩耗評価装置1において、周速度、押付け荷重(荷重制御ユニット6及び荷重負荷部7により荷重を付与)、及び研削時間等を所定の値に設定した後、回転用モーター2を備えた回転ステージ3により回転する円盤状の被削材4の表面に、試験体保持治具5で保持された試験体を押付けることにより行われる。
前記式(B)における、被削材が削られた量及び砥粒の摩耗量(砥石の摩耗量に対応)は、例えば、以下の方法で求めることができる。
In the friction and wear test, for example, in the pin-on-disc type friction and wear evaluation device 1, the peripheral speed, the pressing load (load is applied by the load control unit 6 and the load applying section 7), the grinding time, etc. are set to predetermined values. After that, the test piece held by the test piece holding jig 5 is pressed against the surface of the disk-shaped work material 4 which is rotated by the rotary stage 3 equipped with the rotation motor 2.
The amount of abraded material and the amount of wear of abrasive grains (corresponding to the amount of wear of a grindstone) in the formula (B) can be obtained, for example, by the following method.
〈試験後の被削材の摩耗量の評価〉
被削材が削られた量に相当する、試験後の被削材(ディスク体)の摩耗量は、摩耗痕の断面積及び摩耗部位直径、並びに被削材密度から下記式(i)により算出する。
被削材摩耗量(g)=πρ1rA ・・・(i)
上記式(i)中、ρ1は被削材密度(g/cm3)、rは試験体摩耗部位直径(cm)、Aは摩耗痕の断面積(cm2)である。
なお、摩耗痕の断面積及び摩耗部位直径の測定は、例えば、デジタルマイクロスコープ(株式会社キーエンス製、型式:VHX−6000)等により測定することができる。また、摩耗部位直径は、摩耗痕の幅中心を通る円の直径として測定する。被削材密度は、被削材の見かけ比重として、JIS Z8807:2012に定められた液中ひょう量法で測定することができる。
<Evaluation of wear amount of work material after test>
The wear amount of the work material (disk body) after the test, which corresponds to the amount of the work material scraped, is calculated by the following formula (i) from the cross-sectional area of the wear mark, the wear portion diameter, and the work material density. To do.
Work material wear amount (g)=πρ 1 rA (i)
In the above formula (i), ρ 1 is the density of the work material (g/cm 3 ), r is the diameter of the worn portion of the test body (cm), and A is the cross-sectional area of the wear mark (cm 2 ).
The cross-sectional area of the wear scar and the diameter of the worn portion can be measured by, for example, a digital microscope (manufactured by KEYENCE CORPORATION, model: VHX-6000). The diameter of the worn portion is measured as the diameter of a circle passing through the width center of the wear mark. The work material density can be measured as an apparent specific gravity of the work material by a liquid weighing method defined in JIS Z8807:2012.
〈試験後の砥粒の摩耗量の評価〉
試験後の砥粒の摩耗量は、摩耗体積を算出し、該摩耗体積を砥粒の密度から重量に換算して、砥粒の摩耗量を算出する。
まず、砥粒の摩耗体積は、試験前後における摩耗長さと砥粒の直径から下記式(ii)により算出する。
砥粒の摩耗体積(cm3)=摩耗長さ×(砥粒の直径/2)2π・・・(ii)
次に、砥粒の摩耗量を、砥粒の密度ρ2を用い、下記式(iii)により算出する。
砥粒の摩耗量(g)=砥粒の摩耗体積×砥粒の密度ρ2・・・(iii)
なお、摩耗長さ(cm)は、試験前と試験後の砥粒の長さの差である。砥粒の長さ(cm)及び直径(cm)は、例えば、デジタルマイクロスコープ(同上)等により測定することができる。
また、砥粒の密度は、砥粒の見かけ比重として、JIS Z8807:2012に定められた液中ひょう量法で測定することができる。
砥粒によっては不定形のため、前述したように、長さから摩耗した体積を算出できるとは限らないことがある。その場合は、必要に応じて、レーザー顕微鏡等を用い、試験前後の体積差を解析し算出してもよく、直接、秤等で試験前後の砥粒の重さを測定し摩耗量(重量)を算出してもよい。
<Evaluation of abrasion amount of abrasive grains after test>
The wear amount of the abrasive grains after the test is calculated by calculating the wear volume, converting the wear volume from the density of the abrasive grains to the weight, and calculating the wear amount of the abrasive grains.
First, the wear volume of the abrasive grains is calculated from the wear length before and after the test and the diameter of the abrasive grains by the following formula (ii).
Abrasive grain wear volume (cm 3 )=wear length×(abrasive grain diameter/2) 2 π... (ii)
Next, the wear amount of the abrasive grains is calculated by the following equation (iii) using the density ρ 2 of the abrasive grains.
Abrasive grain wear amount (g)=abrasive grain wear volume×abrasive grain density ρ 2 (iii)
The wear length (cm) is the difference in the length of the abrasive grains before and after the test. The length (cm) and diameter (cm) of the abrasive grains can be measured with, for example, a digital microscope (same as above).
The density of the abrasive grains can be measured as the apparent specific gravity of the abrasive grains by the weighing method in liquid defined in JIS Z8807:2012.
Since the abrasive grains have an irregular shape, it may not always be possible to calculate the worn volume from the length, as described above. In that case, if necessary, you may use a laser microscope or the like to analyze and calculate the volume difference before and after the test, directly measure the weight of the abrasive grains before and after the test with a scale etc. and wear amount (weight) May be calculated.
上記で算出した被削材の摩耗量を「被削材が削られた量」とし、砥粒の摩耗量とから、前記式(B)により砥粒の研削比を算出することができる。測定は、試験体毎に任意に選択した砥粒3個について同様に行い、さらに、試験体毎に得られた測定値(N=3)を単純平均して、その値をそれぞれの試験体の研削比とする。 The abrasion amount of the work material calculated above is defined as "amount of the work material scraped", and the grinding ratio of the abrasive grains can be calculated from the wear amount of the abrasive grains by the formula (B). The measurement is similarly performed for three abrasive grains arbitrarily selected for each test body, and the measured values (N=3) obtained for each test body are simply averaged to obtain the value of each test body. Grinding ratio.
なお、砥粒、及び被削材の摩耗量は、前記重量での評価に限定されず、それぞれの体積での比較もできる。 The amount of wear of the abrasive grains and the work material is not limited to the evaluation by the weight, and comparison in each volume is also possible.
(研削砥石の研削性の評価)
本発明の評価方法で得られる、砥粒の研削比の結果から、砥粒を用いて実際に研削砥石とした時の研削砥石の研削性を、例えば、以下のように評価することができる。
なお、以下、通常品とは、被削材を一定にした際の、研削比の比較対象とする砥粒を意味し、該砥粒の研削比をRsとし、また評価対象とする砥粒の研削比をRとしている。
(a)砥粒の研削比Rを通常品の研削比Rsと比較した場合、それらの相対的な大小関係により、研削砥石とした時の研削性の優劣が推測できる。
(b)砥粒の研削比Rを通常品の研削比Rsと比較した場合、砥粒の研削比Rが相対的に大きければ大きいほど、研削砥石とした時の研削性がより優れていることが推測できる。
また、砥粒の研削比の結果から、砥粒を用いて実際に研削砥石とした時の研削砥石の研削性を、例えば、性能及び製造コストの観点から、R/Rsの値により、以下の基準に従い評価(推測)することができる。
B1:特に優れる(R/Rsの値が1.50以上)
B2:優れる(R/Rsの値が1.20以上1.50未満)
B3:良好(R/Rsの値が1.0以上1.20未満)
B4:やや劣る(R/Rsの値が0.80以上1.0未満)
B5:劣る(R/Rsの値が0.80未満)
(砥粒の研削比の値は式(B)から算出した値であり、式(B)において、研削量及び摩耗量の単位をgとした場合である。)
(Evaluation of grindability of grinding wheel)
From the result of the grinding ratio of the abrasive grains obtained by the evaluation method of the present invention, the grindability of the grinding stone when the abrasive grains are actually used as the grinding stone can be evaluated as follows, for example.
In addition, hereinafter, a normal product means an abrasive grain as a comparison target of the grinding ratio when the work material is constant, a grinding ratio of the abrasive grain is Rs, and the abrasive grain of the evaluation target is The grinding ratio is R.
(A) When the grinding ratio R of the abrasive grains is compared with the grinding ratio Rs of the normal product, it is possible to estimate the superiority or inferiority of the grindability when the grinding wheel is used due to their relative size relationship.
(B) When the grinding ratio R of the abrasive grains is compared with the grinding ratio Rs of the normal product, the larger the grinding ratio R of the abrasive grains is, the better the grindability of the grinding wheel is. Can be guessed.
In addition, from the result of the grinding ratio of the abrasive grains, the grindability of the grinding stone when actually using the abrasive grains as a grinding stone, for example, from the viewpoint of performance and manufacturing cost, by the value of R/Rs, It can be evaluated (estimated) according to criteria.
B1: Particularly excellent (R/Rs value of 1.50 or more)
B2: Excellent (R/Rs value of 1.20 or more and less than 1.50)
B3: Good (R/Rs value is 1.0 or more and less than 1.20)
B4: Somewhat inferior (R/Rs value is 0.80 or more and less than 1.0)
B5: Inferior (R/Rs value is less than 0.80)
(The value of the grinding ratio of the abrasive grains is the value calculated from the formula (B), and the case where the unit of the grinding amount and the wear amount is g in the formula (B).)
<砥粒>
本発明に用いる摩擦摩耗試験の評価対象となる試験体は、砥粒、又は、樹脂等で砥粒を固めた成形体(以下、「砥粒等」ということがある。)の形態で、研削可能で研削比が算出できるものであればよく、特に制限されるものではない。但し、当該成形体は、後述するアルミナ焼結体砥粒の製造方法における工程(2)の成形により得られる成形体とは異なる。
砥粒としては、特に制限されないが、アルミナ焼結体砥粒、アルミナジルコニア砥粒、アルミナ砥粒、又は立方晶窒化ホウ素砥粒であることが好ましい。形状は、被削材を摩擦出来る形状であれば、特に限定されない。前記砥粒、又は、砥粒等の固定は、金属製ピン等の治具への接着、ネジでの固定、電着での固定等種々の方法がある。
<Abrasive grain>
The test body to be evaluated by the friction and wear test used in the present invention is ground in the form of abrasive grains or a molded body in which the abrasive grains are hardened with resin or the like (hereinafter, sometimes referred to as “abrasive grains”). There is no particular limitation as long as it is possible and the grinding ratio can be calculated. However, the molded body is different from the molded body obtained by the molding in the step (2) in the method for manufacturing the alumina sintered body abrasive grains described later.
The abrasive grains are not particularly limited, but are preferably alumina sintered body abrasive grains, alumina zirconia abrasive grains, alumina abrasive grains, or cubic boron nitride abrasive grains. The shape is not particularly limited as long as it can rub the work material. There are various methods for fixing the abrasive grains, or the abrasive grains, etc., such as adhesion to a jig such as a metal pin, fixation with screws, and fixation by electrodeposition.
(アルミナ焼結体砥粒)
本発明で用いるアルミナ焼結体砥粒は、特に制限されず、公知のアルミナ原料を用い形成することができる。具体的には、一態様として、アルミニウムと、イットリウム、鉄、亜鉛、コバルト、マンガン、銅、ニオブ、アンチモン、タングステン、銀及びガリウムからなる群から選択される少なくとも1種の金属と、を含むことが好ましい。
(Alumina sintered body abrasive grain)
The alumina sintered body abrasive grain used in the present invention is not particularly limited and can be formed using a known alumina raw material. Specifically, as one aspect, it contains aluminum and at least one metal selected from the group consisting of yttrium, iron, zinc, cobalt, manganese, copper, niobium, antimony, tungsten, silver, and gallium. Is preferred.
アルミナ焼結体砥粒の製造方法は、特に限定されないが、例えば、下記工程(1)〜(3)を有することが好ましい。
工程(1):公知のアルミナ原料を配合した混合物を調製する工程
工程(2):工程(1)で得られた混合物を成形する工程
工程(3):工程(2)により得られた成形体を焼成しアルミナ焼結体砥粒を得る工程
上記製造方法は、粉末状のアルミナ焼結体砥粒を得るために、必要に応じて下記工程(4)を有していてもよい。
工程(4):工程(3)により得られたアルミナ焼結体砥粒を粉砕する工程
The method for producing the alumina sintered body abrasive grains is not particularly limited, but preferably includes, for example, the following steps (1) to (3).
Step (1): Step of preparing a mixture containing a known alumina raw material Step (2): Step of molding the mixture obtained in step (1) Step (3): Molded body obtained by step (2) Step of firing to obtain alumina sintered body abrasive grains The above-mentioned manufacturing method may have the following step (4), if necessary, in order to obtain powdery alumina sintered body abrasive grains.
Step (4): A step of crushing the alumina sintered body abrasive grains obtained in the step (3)
また、アルミナ焼結体砥粒の製造方法は、例えば、下記工程(1)(2)(3)’(4)’を有することが好ましい。
工程(1):公知のアルミナ原料を配合した混合物を調製する工程
工程(2):工程(1)で得られた混合物を成形する工程
工程(3)’:工程(2)で得られたアルミナの成形体を乾燥させた後に、粉砕する工程
工程(4)’:工程(3)’で得られた粉砕物を焼成しアルミナ焼結体砥粒を得る工程
Further, the method for producing the alumina sintered body abrasive grains preferably includes, for example, the following steps (1), (2), (3)', and (4)'.
Step (1): Step of preparing a mixture in which a known alumina raw material is mixed Step (2): Step of molding the mixture obtained in Step (1) Step (3)′: Alumina obtained in Step (2) Step of drying and then crushing the molded body of step (4)': step of firing the crushed material obtained in step (3)' to obtain alumina sintered body abrasive grains
工程(1)の原料の混合に際しては、公知の混合手段が用いられ、例えば容器回転式、機械撹拌式、流動撹拌式、無撹拌式、高速せん断・衝撃式等により混合する。
工程(2)の成形に際しては、公知の成形手段が用いられ、例えば、金型プレス、冷間静水圧プレス、鋳込成形、射出成形、押出し成形等により任意の形状に成形することができる。
工程(3)では、工程(2)で得られた成形体を焼結する。また、焼結に際しては、公知の焼結法が用いられ、例えば、ホットプレス法、常圧焼成法、ガス加圧焼成法、マイクロ波加熱焼成法等、種々の焼結手法によって焼結する。
焼結温度は、好ましくは1400℃以上1800℃以下であり、より好ましくは1600℃越え1800℃以下である。
また、工程(4)では、工程(3)により得られたアルミナ焼結体を粉砕する。粉砕に際しては公知の粉砕手段が用いられ、例えば、ボールミル、ロッドミル、振動ミル、高圧
粉砕ロール等により任意の大きさに粉砕する。
In mixing the raw materials in the step (1), a known mixing means is used, for example, a container rotation type, a mechanical stirring type, a fluid stirring type, a non-stirring type, a high speed shearing/impact type and the like.
In the molding of the step (2), a known molding means is used, and it can be molded into an arbitrary shape by, for example, a die press, a cold isostatic press, a cast molding, an injection molding, an extrusion molding and the like.
In the step (3), the molded body obtained in the step (2) is sintered. Further, upon sintering, a known sintering method is used, and for example, various sintering methods such as a hot pressing method, an atmospheric pressure sintering method, a gas pressure sintering method, a microwave heating sintering method, and the like are used.
The sintering temperature is preferably 1400° C. or higher and 1800° C. or lower, more preferably 1600° C. or higher and 1800° C. or lower.
In step (4), the alumina sintered body obtained in step (3) is crushed. A known crushing means is used for crushing, and for example, a ball mill, a rod mill, a vibration mill, a high-pressure crushing roll, or the like is used to crush to an arbitrary size.
工程(3)’では、工程(2)で得られたアルミナの成形体を乾燥させた後に、粉砕する。粉砕方法は、上記工程(4)と同様の粉砕方法を用いることができる。また、乾燥は、例えば、大気雰囲気下、常圧で、約100℃にて、2時間以上で行なうことができる。
工程(4)’では、工程(3)’で得られた粉砕物を焼成しアルミナ焼結体砥粒を得る。焼結は、上記工程(3)と同様の方法で行うことができる。
In step (3)', the alumina compact obtained in step (2) is dried and then pulverized. As the crushing method, the same crushing method as in the above step (4) can be used. In addition, the drying can be performed, for example, at atmospheric pressure and atmospheric pressure at about 100° C. for 2 hours or more.
In the step (4)', the pulverized product obtained in the step (3)' is fired to obtain alumina sintered body abrasive grains. Sintering can be performed by the same method as in the above step (3).
(アルミナジルコニア砥粒)
本発明で用いるアルミナジルコニア砥粒は、特に制限されないが、例えば、バイヤー法(湿式アルカリ法)で精製したアルミナにジルコニア質原料を加え、電気炉で溶融し、凝固させた塊を粉砕整粒したものを用いることができる。主としてコランダム結晶とアルミナジルコニア共晶部分とから成り、例えば、ジルコニア含有率の異なるAZ(25)(アルミナジルコニア;ジルコニア25質量%)、AZ(40)(アルミナジルコニア;ジルコニア40質量%)等が挙げられる。
(Alumina zirconia abrasive grain)
The alumina zirconia abrasive grain used in the present invention is not particularly limited, but, for example, a zirconia-based raw material is added to alumina purified by the Bayer method (wet alkaline method), the mixture is melted in an electric furnace, and the solidified mass is crushed and sized. One can be used. It mainly consists of corundum crystals and an alumina-zirconia eutectic portion, and examples thereof include AZ(25) (alumina zirconia; zirconia 25 mass%) and AZ(40) (alumina zirconia; zirconia 40 mass%) having different zirconia contents. To be
(立方晶窒化ホウ素砥粒)
立方晶窒化ホウ素(Cubic Boron Nitride、CBN)は、ダイヤモンドに次ぐ硬さとそれを凌ぐ化学的安定性を持ち、立方晶窒化ホウ素砥粒として研削用に用いることができる。立方晶窒化ホウ素の製造方法は、特に制限されないが、例えば、六方晶窒化ホウ素(hexagonal boron nitride;hBN)を、触媒物質等の存在下で、約4〜6GPa、約1400〜1600℃程度の立方晶窒化ホウ素の熱力学的安定領域内に保持し、六方晶窒化ホウ素を立方晶窒化ホウ素に変換する方法で製造できる。
(Cubic boron nitride abrasive)
Cubic Boron Nitride (CBN) has hardness second only to diamond and higher chemical stability than diamond, and can be used as a cubic boron nitride abrasive grain for grinding. The method for producing cubic boron nitride is not particularly limited, but, for example, hexagonal boron nitride (hBN) is added in the presence of a catalyst substance or the like to a cubic temperature of about 4 to 6 GPa and about 1400 to 1600° C. It can be produced by a method of holding hexagonal boron nitride in the thermodynamically stable region of cubic boron nitride and converting hexagonal boron nitride into cubic boron nitride.
(被削材)
被削材の材質は、特に制限されないが、評価の目的に適合するものを使用すれば良く、炭素鋼、特殊鋼、チタン、樹脂板、セラミック、又は木材等が挙げられる。
炭素鋼としては、JIS G 4051:2016に定めるS40C〜S58C、SAE規格に定めるSAE1040〜SAE1095等が挙げられる。
特殊鋼としては、ステンレス鋼、耐熱鋼、構造用鋼、超合金、工具鋼等が挙げられる。
例えば、重研削砥粒評価では、JIS G 4051:2016(機械構造用炭素鋼鋼材)に定めるS45Cを焼入れ等の調質をせず使用することがある。
評価に用いる被削材の寸法は、特に制限されないが、例えば、φ160mm、厚さ10mmであり、また、試験体と接触する摩擦面の算術平均粗さRaは、例えば、0.1〜10nmである。
(Work material)
The material of the work material is not particularly limited, but any material suitable for the purpose of evaluation may be used, and examples thereof include carbon steel, special steel, titanium, resin plate, ceramic, and wood.
Examples of carbon steel include S40C to S58C defined in JIS G 4051:2016, SAE1040 to SAE1095 defined in SAE standards, and the like.
Examples of the special steel include stainless steel, heat resistant steel, structural steel, superalloy, tool steel and the like.
For example, in heavy grinding abrasive grain evaluation, S45C defined in JIS G 4051:2016 (carbon steel material for machine structure) may be used without tempering such as quenching.
The dimensions of the work material used for evaluation are not particularly limited, but are, for example, φ160 mm and thickness 10 mm, and the arithmetic mean roughness Ra of the friction surface contacting the test body is, for example, 0.1 to 10 nm. is there.
<砥石>
本発明において砥石とは、砥粒に加え、結合剤、フィラー等を含むものであり、通常、台金と、該台金の作用面に本発明に用いた砥粒を含む層とを有してなるものを意味する。
砥石における砥粒の作用面への固定方法としては、レジンボンド、ビトリファイドボンド、メタルボンド、電着等が挙げられる。
また、台金の材質としては、スチール、ステンレス合金、アルミニウム合金等が挙げられる。
レジンボンドは、切れ味は良好であるが、耐久性が低い。ビトリファイドボンドは、切れ味がよく、耐摩耗性も良好であるが、砥粒に内部応力が発生し、砥粒が割れたり、欠けたりしやすくなる。電着は、形状の自由度が大きく、切れ味も良好である。
以上に鑑み、砥石においては、その用途に応じて砥粒の固定方法が選択される。
例えば、レジンボンド砥石の場合、フェノール樹脂、ポリイミド樹脂等の結合剤の粉末と砥粒とを混合し、又は、結合剤を砥粒にコーティングし、金型に充填してプレス成形する方法(i)、あるいは、エポキシ樹脂、不飽和ポリエステル樹脂等の液状の結合剤と砥粒を混合し、型に流し込んで硬化させる方法(ii)により、台金の作用面に砥粒層を固定することで、本発明でいう砥石が得られる。
砥石の形状については特に制限はなく、砥石の用途に応じて、ストレート型やカップ型等の形状等が挙げられる。
<Grinding stone>
In the present invention, the grindstone, in addition to the abrasive grains, contains a binder, a filler, etc., and usually has a base metal and a layer containing the abrasive grains used in the present invention on the working surface of the base metal. Meaning
Examples of the method for fixing the abrasive grains on the working surface of the grindstone include resin bond, vitrified bond, metal bond, and electrodeposition.
Examples of the material of the base metal include steel, stainless alloy, aluminum alloy and the like.
The resin bond has good sharpness but low durability. The vitrified bond has good sharpness and good wear resistance, but internal stress is generated in the abrasive grains, and the abrasive grains are easily cracked or chipped. Electrodeposition has a large degree of freedom in shape and good sharpness.
In view of the above, in the grindstone, the method of fixing the abrasive grains is selected according to the application.
For example, in the case of a resin-bonded grindstone, a method of mixing powder of a binder such as phenol resin or polyimide resin and abrasive grains, or coating the binder with abrasive grains, filling the die with a die, and press-molding (i ), or a method in which a liquid binder such as an epoxy resin or an unsaturated polyester resin is mixed with abrasive grains, and the mixture is poured into a mold and cured (ii) to fix the abrasive layer to the working surface of the base metal. The grindstone referred to in the present invention can be obtained.
The shape of the grindstone is not particularly limited, and may be a straight type, a cup type, or the like depending on the application of the grindstone.
ここで、例えば、直径500〜1000mmの重研削砥石を作製する場合について説明する。まず、このような大きな重研削砥石を作製する場合は、大量の資材を必要とする。具体的には、例えば、砥粒40kg、砥粒以外のフィラー25kg、樹脂15kg、所定の補強用ガラス繊維等が使用される。また、サイズに応じた大型の材料混合装置、金型、プレス、焼成(ベーク)のためのオーブン、及び搬送手段が必要である。成型は数分〜数時間、焼成(ベーク)は数十時間必要であり、総じて砥石完成までは数日間を要する。
さらに、研削比を取得するためには、前記砥石を高速回転(例えば、280km/hr)させることが出来る研削装置と、被削材としてスラブと呼ばれる大型の鋼材(例えば、厚み120〜600mm、幅700mm〜)とが必要となる。
上記からわかるように、前述したように、砥石の作製にあっては、作業工程が煩雑で、作製コストが高く、しかも多くの作製日数を必要とする。
Here, for example, a case of producing a heavy grinding wheel having a diameter of 500 to 1000 mm will be described. First of all, a large amount of material is required when manufacturing such a large heavy grinding wheel. Specifically, for example, 40 kg of abrasive grains, 25 kg of fillers other than abrasive grains, 15 kg of resin, predetermined reinforcing glass fiber and the like are used. Further, a large-sized material mixing device according to the size, a mold, a press, an oven for baking (baking), and a conveying means are required. Molding requires several minutes to several hours, baking (baking) several tens of hours, and generally requires several days to complete the whetstone.
Further, in order to obtain the grinding ratio, a grinding device capable of rotating the grindstone at a high speed (for example, 280 km/hr) and a large steel material called a slab as a work material (for example, thickness 120 to 600 mm, width 700 mm-) is required.
As can be seen from the above, as described above, the manufacturing process of the grindstone is complicated, the manufacturing cost is high, and many manufacturing days are required.
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes all aspects included in the concept of the present invention and the scope of the claims, and is various within the scope of the present invention. Can be modified to
以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
(実施例1)
アルミナ原料粉末(酸化アルミニウム(Al2O3)の含有量:99.75質量%、酸化アルミニウムのα結晶化率:99%以上、d50:0.62μm)1,000gに、酸化鉄(関東化学株式会社製、d50:0.52μm)2.5g及び顆粒状のポリビニルアルコール(クラレ株式会社製、型番PVA−205)3.4gを、卓上型ニーダー(株式会社入江商会製「PNV−5」)を用いて10分間混合した。その後、蒸留水300gに2.5gの酢酸イットリウム(III)四水和物(関東化学株式会社製)を溶かした酢酸イットリウム(III)四水和物水溶液を調製し、該水溶液を上記混合物中に加えて、30分間混練し、アルミナ焼結体の前駆体を作製した。表1に上記仕込み組成に基づく、配合組成を示す。
ここで、アルミナ焼結体の前駆体(以下、単に「前駆体」ということがある。)とは、熱処理前の原料混合物を指す。また、アルミナ焼結体(以下、単に「焼結体」ということがある。)とは、前駆体を熱処理して焼結した焼結体を指す。
(Example 1)
Alumina raw material powder (aluminum oxide (Al 2 O 3 ) content: 99.75 mass %, α crystallization rate of aluminum oxide: 99% or more, d 50 : 0.62 μm) was added to 1,000 g of iron oxide (Kanto). Kagaku Co., Ltd., d 50 : 0.52 μm) 2.5 g and granular polyvinyl alcohol (Kuraray Co., Ltd., model number PVA-205) 3.4 g were placed on a tabletop kneader (manufactured by Irie Shokai “PNV-5”. ]) for 10 minutes. Then, an yttrium (III) acetate tetrahydrate aqueous solution was prepared by dissolving 2.5 g of yttrium (III) acetate tetrahydrate (manufactured by Kanto Chemical Co., Inc.) in 300 g of distilled water, and the aqueous solution was added to the above mixture. In addition, the mixture was kneaded for 30 minutes to prepare a precursor of an alumina sintered body. Table 1 shows the compounding composition based on the above composition.
Here, the precursor of the alumina sintered body (hereinafter, may be simply referred to as “precursor”) refers to a raw material mixture before heat treatment. Further, the alumina sintered body (hereinafter, sometimes simply referred to as “sintered body”) refers to a sintered body obtained by heat-treating and sintering the precursor.
なお、上記アルミナ原料粉末については、蛍光X線元素分析法により予め組成確認を行った。蛍光X線元素分析の測定機器としては、株式会社リガク製の走査型蛍光X線分析装置「ZSX Primus」を用いた。プレス成形したペレットを用いる粉末プレス法で測定試料を調製し、ファンダメンタルパラメータ法(FP法)により定量分析した。
また、アルミナ焼結体の前駆体の組成についても、アルミナ原料粉末の場合と同様に、上記走査型蛍光X線分析装置によるFP法により定量分析を行って、仕込み組成と一致していることを確認した。
The composition of the alumina raw material powder was confirmed in advance by a fluorescent X-ray elemental analysis method. As a measuring instrument for the fluorescent X-ray elemental analysis, a scanning type fluorescent X-ray analyzer "ZSX Primus" manufactured by Rigaku Corporation was used. A measurement sample was prepared by a powder pressing method using press-formed pellets, and quantitatively analyzed by a fundamental parameter method (FP method).
Also, regarding the composition of the precursor of the alumina sintered body, as in the case of the alumina raw material powder, quantitative analysis was performed by the FP method using the above-mentioned scanning fluorescent X-ray analysis device, and it was confirmed that it was in agreement with the charged composition. confirmed.
また、アルミナ原料粉末及び酸化鉄のd50は、マイクロトラック粒度分布測定装置(「マイクロトラック(登録商標)HRA」、日機装株式会社製)を用いて測定した。 The d 50 of the alumina raw material powder and iron oxide was measured using a Microtrac particle size distribution analyzer (“Microtrac (registered trademark) HRA”, manufactured by Nikkiso Co., Ltd.).
また、アルミナ原料粉末中の酸化アルミニウムのα結晶化率は、粉末X線回折装置(Panalytical社製、機種名「X'pert PRO」)を用い、特性X線:CuKα線、管電圧40kV、管電流40mAの条件にて得た回折スペクトルから、アルミナα相(300)に由来する2θ=68.1°のピーク高さ(I68.1)と、δ相、θ相、χ相、γ相、θ相およびε相に由来する2θ=67.2°のピーク高さ(I67.2)とから、下記式(1)により算出した。
α結晶化率=I68.1/(I68.1+I67.2)×100(%) ・・・(1)
The α crystallization rate of aluminum oxide in the alumina raw material powder was measured using a powder X-ray diffractometer (manufactured by Panalytical, model name “X'pert PRO”), characteristic X-ray: CuKα ray, tube voltage 40 kV, tube From the diffraction spectrum obtained under the condition of a current of 40 mA, the peak height (I 68.1 ) of 2θ=68.1° derived from the alumina α phase (300), and the δ phase, θ phase, χ phase, γ phase , Θ phase and ε phase derived 2θ=67.2° peak height (I 67.2 ) and calculated from the following formula (1).
α crystallization rate=I 68.1 /(I 68.1 +I 67.2 )×100(%) (1)
(実施例2)
実施例2では、酢酸イットリウム(III)四水和物水溶液を添加しなかった以外は、実施例1と同様の方法でアルミナ焼結体の前駆体を得た。
(Example 2)
In Example 2, a precursor of an alumina sintered body was obtained in the same manner as in Example 1 except that the yttrium (III) acetate tetrahydrate aqueous solution was not added.
(実施例3)
実施例3では、酸化鉄の配合量を変更した以外は、実施例1と同様の方法でアルミナ焼結体の前駆体を得た。
(Example 3)
In Example 3, a precursor of an alumina sintered body was obtained in the same manner as in Example 1, except that the amount of iron oxide added was changed.
[評価I]
実施例1〜3に係るアルミナ焼結体の前駆体を用いて、以下の方法でアルミナ焼結体(以下、「試験体」ということがある。)を作製し、該アルミナ焼結体に対し、以下のような試験(評価)を行った。
[Evaluation I]
Using the precursor of the alumina sintered body according to Examples 1 to 3, an alumina sintered body (hereinafter, also referred to as “test body”) was produced by the following method, and the alumina sintered body was prepared. The following test (evaluation) was performed.
(アルミナ焼結体の作製)
アルミナ焼結体の前駆体を押出成形機を用いて成形し、アルミナ成形体を作製した。その後、この成形体を、電気炉(大気雰囲気)にて、表1に示す焼成温度で1時間保持し焼結させることにより、アルミナ焼結体砥粒(φ1.6mm、長さ3.5mmの円柱状)を得た。
アルミナ焼結体砥粒の固定は、金属製ピンの治具に接着することにより行った。
なお、実施例1で得られたアルミナ焼結体の前駆体を焼結したアルミナ焼結体砥粒を砥粒A、実施例2で得られたアルミナ焼結体の前駆体を焼結したアルミナ焼結体砥粒を砥粒B、また、実施例3で得られたアルミナ焼結体の前駆体を焼結したアルミナ焼結体砥粒を砥粒Cとし、これらの中で、砥粒Bを研削性の通常品(比較対象)とし、砥粒A及び砥粒Cを研削性の評価対象とした。
(Preparation of alumina sintered body)
The precursor of the alumina sintered body was molded using an extrusion molding machine to prepare an alumina molded body. Then, this compact was held in an electric furnace (atmosphere atmosphere) at the firing temperature shown in Table 1 for 1 hour to sinter the alumina sintered body abrasive grains (φ1.6 mm, length 3.5 mm). Columnar) was obtained.
The alumina sintered body abrasive grains were fixed by adhering them to a jig made of a metal pin.
In addition, the alumina sintered body abrasive grains obtained by sintering the alumina sintered body precursor obtained in Example 1 were abrasive grains A, and the alumina sintered body precursor obtained in Example 2 was sintered alumina. The sintered abrasive grains were abrasive grains B, and the alumina sintered abrasive grains obtained by sintering the precursor of the alumina sintered body obtained in Example 3 were abrasive grains C. Among these, the abrasive grains B were used. Was used as a normal grindability product (comparison target), and the abrasive grains A and C were used as grindability evaluation targets.
[1]研削比
回転摺動型(ピンオンディスク型)摩擦摩耗試験機を用いて、アルミナ焼結体砥粒の摩擦摩耗試験を行った。摩擦摩耗試験は、回転する円盤状被削材に、実施例1〜3で得られたアルミナ焼結体砥粒を押付け、被削材周速度10m/sec、押付け荷重50Nで、3分間行った。被削材は、JIS G 4051:2016(機械構造用炭素鋼鋼材)に定める炭素鋼であるS45C(φ160mm、厚さ10mm)を焼入れ等の調質をせず使用した。
被削材摩耗量及びアルミナ焼結体砥粒の摩耗量は、デジタルマイクロスコープ(株式会社キーエンス社製、型式:VHX−6000)を用い、被削材の摩耗量は摩耗痕の断面積と周長と被削材密度から算出し、アルミナ焼結体砥粒の摩耗量は試験前後における摩耗長さと試験体の密度から算出した。得られた被削材の摩耗量及びアルミナ焼結体砥粒の摩耗量から下記式(B)により研削比を算出した。
研削比=被削材が削られた量(研削量)/砥粒の摩耗量 ・・・(B)
[1] Grinding ratio A frictional wear test of alumina sintered body abrasive grains was performed using a rotary sliding type (pin-on-disc type) frictional wear tester. The frictional wear test was performed by pressing the alumina sintered body abrasive grains obtained in Examples 1 to 3 against a rotating disc-shaped work material, and using the work material peripheral speed of 10 m/sec and a pressing load of 50 N for 3 minutes. .. As the work material, S45C (φ160 mm, thickness 10 mm), which is carbon steel defined in JIS G 4051:2016 (carbon steel material for machine structure), was used without tempering or the like.
The wear amount of the work material and the wear amount of the alumina sintered body abrasive grains are measured by using a digital microscope (manufactured by KEYENCE CORPORATION, model: VHX-6000). It was calculated from the length and the density of the work material, and the wear amount of the alumina sintered body abrasive grains was calculated from the wear length before and after the test and the density of the test body. The grinding ratio was calculated by the following formula (B) from the wear amount of the obtained work material and the wear amount of the alumina sintered body abrasive grains.
Grinding ratio = amount of work material cut (grinding amount)/abrasive wear amount (B)
[2]研削性
実施例で得られたアルミナ焼結体砥粒の研削比の結果から、アルミナ焼結体砥粒を用いて実際に研削砥石とした時の研削砥石の研削性を、性能及び製造コストの観点から、R/Rsの値により、以下の基準に従い評価(推測)した。
B1:特に優れる(R/Rsの値が1.50以上)
B2:優れる(R/Rsの値が1.20以上1.50未満)
B3:良好(R/Rsの値が1.0以上1.20未満)
B4:やや劣る(R/Rsの値が0.80以上1.0未満)
B5:劣る(R/Rsの値が0.80未満)
〈Rは評価対象とする砥粒(実施例1のアルミナ焼結体の前駆体を焼結したアルミナ焼結体砥粒である砥粒A、実施例3のアルミナ焼結体の前駆体を焼結したアルミナ焼結体砥粒である砥粒C)の研削比、Rsは通常品(比較対象)の砥粒(実施例2のアルミナ焼結体の前駆体を焼結したアルミナ焼結体砥粒である砥粒B)の研削比である。〉
[2] Grindability From the results of the grinding ratio of the alumina sintered body abrasive grains obtained in the examples, the grinding performance of the grinding stone when the alumina sintered body abrasive grains were actually used as a grinding stone was evaluated. From the viewpoint of manufacturing cost, the value of R/Rs was evaluated (estimated) according to the following criteria.
B1: Particularly excellent (R/Rs value of 1.50 or more)
B2: Excellent (R/Rs value of 1.20 or more and less than 1.50)
B3: Good (R/Rs value is 1.0 or more and less than 1.20)
B4: Somewhat inferior (R/Rs value is 0.80 or more and less than 1.0)
B5: Inferior (R/Rs value is less than 0.80)
<R is an abrasive grain to be evaluated (abrasive grain A which is an alumina sintered body abrasive grain obtained by sintering the precursor of the alumina sintered body of Example 1, and the precursor of the alumina sintered body of Example 3 is burned). The grinding ratio of the bonded alumina sintered body abrasive grains C), Rs, is a normal product (comparison target) abrasive grain (alumina sintered body abrasive obtained by sintering a precursor of the alumina sintered body of Example 2). It is a grinding ratio of abrasive grains B) which are grains. 〉
[3]相対密度
相対密度はJIS Z 8807:2012の液中ひょう量法で測定したみかけ密度を、真密度で除して求めた。この際、添加した化合物等は全て酸化物の状態で存在していると仮定し、その上で、真密度が、アルミナは3.95、酸化イットリウムは5.01、酸化鉄は5.24、酸化ケイ素は2.20、酸化ナトリウムは2.27、酸化マグネシウムは3.65、酸化カルシウムは3.34、酸化亜鉛は5.61、酸化コバルトは6.11、酸化マンガンは5.03、酸化銅は6.31、酸化ニオブは4.47、酸化アンチモンは5.20、酸化タングステンは7.16、酸化銀は7.14、酸化ガリウムは6.44であるとして、算出した。
[3] Relative Density The relative density was obtained by dividing the apparent density measured by the in-liquid weighing method of JIS Z 8807:2012 by the true density. At this time, it is assumed that the added compounds and the like all exist in an oxide state, and the true density is 3.95 for alumina, 5.01 for yttrium oxide, and 5.24 for iron oxide. Silicon oxide 2.20, sodium oxide 2.27, magnesium oxide 3.65, calcium oxide 3.34, zinc oxide 5.61, cobalt oxide 6.11, manganese oxide 5.03, oxidation Calculations were made assuming that copper was 6.31, niobium oxide was 4.47, antimony oxide was 5.20, tungsten oxide was 7.16, silver oxide was 7.14, and gallium oxide was 6.44.
[4]結晶粒子径
得られたアルミナ焼結体砥粒を切断し、該切断面を鏡面仕上げし、焼成温度よりも100℃低い温度で5分間、サーマルエッチングした。そのサンプルを、走査型電子顕微鏡(日本電子株式会社製、機種名「JSM−6510V」)を用いて観察し、任意の点5箇所で5000倍の断面写真を撮影した。各断面写真について、画像解析ソフト(株式会社マウンテック製、ソフト名「Mac−View ver.4」)を用いて画像解析を行い、5枚の断面写真から、任意に選択した500個の結晶粒子について体積球相当径を測定し、得られた測定値(N=500)を平均して、その平均値を結晶粒子径とした。
[4] Crystal Particle Diameter The obtained alumina sintered body abrasive grains were cut, the cut surface was mirror-finished, and thermal etching was performed at a temperature 100° C. lower than the firing temperature for 5 minutes. The sample was observed using a scanning electron microscope (manufactured by JEOL Ltd., model name "JSM-6510V"), and cross-sectional photographs at 5000 times were taken at 5 arbitrary points. For each cross-section photograph, image analysis was performed using image analysis software (manufactured by Mountech Co., Ltd., software name "Mac-View ver. 4"), and about 500 crystal particles arbitrarily selected from 5 cross-section photographs. The volume sphere equivalent diameter was measured, the obtained measurement values (N=500) were averaged, and the average value was taken as the crystal particle diameter.
[5]ビッカース硬度
装置としては、株式会社アカシ(現、株式会社ミツトヨ)製、機種名「MVK−VL、Hardness Tester」を用いた。測定は、荷重0.98N、圧子の打ち込み時間10秒の条件で行い、試料毎に任意に選択したアルミナ焼結体砥粒15個について同様に行った。さらに、得られた測定値(N=15)を平均して、その平均値をビッカース硬度とした。
[5] Vickers hardness As a device, a model name "MVK-VL, Hardness Tester" manufactured by Akashi Co., Ltd. (currently Mitutoyo Co., Ltd.) was used. The measurement was performed under the conditions of a load of 0.98 N and an indenter driving time of 10 seconds, and was similarly performed for 15 alumina sintered body abrasive grains arbitrarily selected for each sample. Further, the obtained measured values (N=15) were averaged, and the average value was defined as Vickers hardness.
[6]破壊靭性値
破壊靭性値JIS R 1607:2015 ファインセラミックスの室温破壊靭性試験方法に基づき、IF法(圧子圧入法)によって求めた。装置としては、松沢精機株式会社(現、株式会社松沢)製、機種名「DVK−1」を用い、測定は、最大荷重49N、圧子の打ち込み速度50μm/sec、圧子の打ち込み時間15秒の条件で行い、試料毎に任意に選択したアルミナ焼結体砥粒10個について同様に行った。さらに、得られた測定値(N=10)を平均して、その平均値を破壊靱性値とした。計算式は以下の通りである。
KIC =0.026×E1/2×P1/2×a/c3/2
KIC : 破壊靱性値(MPa・m1/2)
E : ヤング率(Pa)
P : 最大荷重(N)
a : 圧痕寸法(m)
c : クラックの寸法(m)
なお、本発明において上記ヤング率Eは、アルミナの値(3.9×1011Pa)を用いた。
[6] Fracture toughness value Fracture toughness value JIS R 1607:2015 Based on the room temperature fracture toughness test method of fine ceramics, it was determined by the IF method (indentation method). As the device, a model name “DVK-1” manufactured by Matsuzawa Seiki Co., Ltd. (currently Matsuzawa Co., Ltd.) was used, and the measurement was performed under conditions of a maximum load of 49 N, an indenter driving speed of 50 μm/sec, and an indenter driving time of 15 seconds. The same procedure was performed for 10 alumina sintered body abrasive grains arbitrarily selected for each sample. Further, the obtained measured values (N=10) were averaged, and the average value was taken as the fracture toughness value. The calculation formula is as follows.
K IC =0.026×E 1/2 ×P 1/2 ×a/c 3/2
K IC : Fracture toughness value (MPa·m 1/2 )
E: Young's modulus (Pa)
P: Maximum load (N)
a: Indentation size (m)
c: Crack size (m)
In the present invention, the Young's modulus E used the value of alumina (3.9×10 11 Pa).
表1に示すように、アルミナ焼結体の前駆体の組成又は配合比が異なる砥粒A、B、Cを用いた場合、3者間で研削比に有意な差がでることがわかる。また、例えば、通常品とした砥粒Bを用いた実施例2の研削比に比べ、評価対象とした砥粒Aを用いた実施例1の研削比が相対的に高いことから、該砥粒Aを含む研削砥石とした時の研削性が優れる(B1)ことを評価(推測)できることがわかる。これに対し、通常品とした砥粒Bを用いた実施例2の研削比に比べ、評価対象とした砥粒Cを用いた実施例3の研削比が相対的に低いことから、該砥粒Cを含む研削砥石とした時の研削性が劣る(B5)ことを評価(推測)できることがわかる。
すなわち、本発明の簡易な評価方法により、砥石の作製をせずに、砥粒又は砥粒の成形体を用いるだけで、簡便に高い研削比を有する砥石を見出すことができる。
As shown in Table 1, when the abrasive grains A, B, and C having different compositions or compounding ratios of the precursors of the alumina sintered body were used, it was found that there was a significant difference in the grinding ratio among the three. Further, for example, since the grinding ratio of Example 1 using the abrasive grain A used as the evaluation target is relatively higher than the grinding ratio of Example 2 using the abrasive grain B used as a normal product, It can be seen that it is possible to evaluate (estimate) that the grindability of the grinding wheel containing A is excellent (B1). On the other hand, since the grinding ratio of Example 3 using the abrasive grain C to be evaluated is relatively lower than the grinding ratio of Example 2 using the abrasive grain B to be a normal product, It can be seen that it is possible to evaluate (estimate) that the grindability of a grinding wheel containing C is poor (B5).
That is, according to the simple evaluation method of the present invention, a grindstone having a high grinding ratio can be easily found simply by using the abrasive grains or a molded body of the abrasive grains without producing the grindstone.
本発明の砥粒を含む研削砥石の研削性の評価方法によれば、砥粒又は砥粒の成形体の形態で、砥粒、結合剤、フィラー等から構成される研削砥石の研削性の評価が可能となるため、通常、作業工程が煩雑で、作製コストが高く、及び多くの作製日数を必要とする砥石の作製を行うことなく、要求される研削砥石を効率的に選択できるようになる。 According to the method for evaluating the grindability of a grinding wheel containing abrasive grains of the present invention, in the form of an abrasive grain or a molded body of the abrasive grain, an evaluation of the grindability of the grinding wheel composed of abrasive grains, a binder, a filler, As a result, it is possible to efficiently select the required grinding wheel without the need for manufacturing the wheel, which usually requires complicated work steps, high manufacturing cost, and many manufacturing days. ..
1:ピンオンディスク型摩擦摩耗評価装置
2:回転用モーター
3:回転ステージ
4:被削材
5:試験体保持治具
6:荷重制御・変位測定ユニット
7.荷重負荷部
1: Pin-on-disc type friction/wear evaluation device 2: Rotating motor 3: Rotating stage 4: Work material 5: Specimen holding jig 6: Load control/displacement measuring unit 7. Load part
Claims (3)
前記砥粒を含む研削砥石の代わりに、前記砥粒で被削材を研削し、該砥粒の摩耗量、及び前記被削材の研削量を測定し、前記砥粒の摩耗量に対する前記被削材の研削量の比で定義される砥粒の研削比から、前記砥粒を含む研削砥石の研削性を評価する、砥粒を含む研削砥石の研削性の評価方法。 Using a pin-on-disk type friction and wear evaluation device, a method of evaluating the grindability of a grinding wheel containing abrasive grains,
Instead of a grinding wheel containing the abrasive grains, the work piece is ground with the abrasive grains, the wear amount of the abrasive grains, and the grinding amount of the work material are measured, and the work amount relative to the wear amount of the abrasive grains is measured. A method of evaluating the grindability of a grinding wheel containing abrasive grains, wherein the grindability of a grinding wheel containing the abrasive grains is evaluated from the grinding ratio of the abrasive grains defined by the ratio of the grinding amount of the cutting material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018241438A JP2020099981A (en) | 2018-12-25 | 2018-12-25 | Method for evaluating grindability of grinding wheel containing abrasive grain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018241438A JP2020099981A (en) | 2018-12-25 | 2018-12-25 | Method for evaluating grindability of grinding wheel containing abrasive grain |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020099981A true JP2020099981A (en) | 2020-07-02 |
Family
ID=71140682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018241438A Pending JP2020099981A (en) | 2018-12-25 | 2018-12-25 | Method for evaluating grindability of grinding wheel containing abrasive grain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020099981A (en) |
-
2018
- 2018-12-25 JP JP2018241438A patent/JP2020099981A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101395479B1 (en) | Cubic boron nitride compact | |
CN101434827B (en) | Grinding medium containing ceramic particle, preparation and use thereof | |
JP4854482B2 (en) | Boron carbide sintered body and manufacturing method thereof | |
JP4989792B2 (en) | Method for producing alumina sintered body, alumina sintered body, abrasive grains, and grindstone | |
JP4976601B2 (en) | Alumina sintered body, abrasive grains, and grindstone | |
TW200418614A (en) | Metal bond grinding wheel | |
Zhu et al. | Synthesis, microstructure and mechanical properties of Cr2AlC/Al2O3 in situ composites by reactive hot pressing | |
JP6240177B2 (en) | Silicon carbide shielding products | |
WO2011105490A1 (en) | Silicon carbide sintered body and sliding component using the same, and protective body | |
KR102184303B1 (en) | Electro-melted alumina particles, manufacturing method of electro-melted alumina particles, grinding stone and polishing paper | |
WO2012060212A1 (en) | Alumina sintered body, abrasive grains, and grindstone | |
JP2020099981A (en) | Method for evaluating grindability of grinding wheel containing abrasive grain | |
JP2010524840A (en) | Boron oxide composite material | |
US20230339815A1 (en) | Precursor of alumina sintered body, method for producing alumina sintered body, method for producing abrasive grains, and alumina sintered body | |
JP6367122B2 (en) | Alumina sintered body, abrasive grains, grindstone, polishing cloth, and method for producing alumina sintered body | |
JP2004026513A (en) | Aluminum oxide wear resistant member and its production process | |
CN104907564B (en) | Preparation method for Ti3SiC2-Co based diamond ultra-thin saw blade materials | |
JPWO2014003150A1 (en) | Sialon sintered body and wear-resistant parts using the same | |
KR102179722B1 (en) | All-melted alumina grain, method of manufacturing all-melted alumina grain, grinding stone and polishing paper | |
JP7020013B2 (en) | Method for manufacturing composite sintered body, abrasive grains, grindstone, composite sintered body | |
JPH02282443A (en) | Tool sintered material | |
CN115135622B (en) | Mold for glass forming and method of forming glass using the same | |
Wittig et al. | Mechanical properties of three-dimensional interconnected alumina/steel metal matrix composites | |
RU2534713C2 (en) | Composite diamond-containing material of instrument purpose | |
PL239832B1 (en) | Polymer matrix for superhard abrasive tools for stone and concrete surfaces processing, and method of its production |