Nothing Special   »   [go: up one dir, main page]

TW200418614A - Metal bond grinding wheel - Google Patents

Metal bond grinding wheel Download PDF

Info

Publication number
TW200418614A
TW200418614A TW093105589A TW93105589A TW200418614A TW 200418614 A TW200418614 A TW 200418614A TW 093105589 A TW093105589 A TW 093105589A TW 93105589 A TW93105589 A TW 93105589A TW 200418614 A TW200418614 A TW 200418614A
Authority
TW
Taiwan
Prior art keywords
grinding wheel
metal
bonded grinding
metal bonded
grains
Prior art date
Application number
TW093105589A
Other languages
Chinese (zh)
Inventor
Kiyoyuki Aoki
Tatsushi Chayama
Original Assignee
Kure Norton Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kure Norton Co Ltd filed Critical Kure Norton Co Ltd
Publication of TW200418614A publication Critical patent/TW200418614A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • B24D3/10Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for porous or cellular structure, e.g. for use with diamonds as abrasives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

The objective of the present invention is to provide a Ni-Cu-Sn metal bond grinding wheel that is sharp, hard and long lifespan, rust-resistant, and does not deform when experiencing high pressure, and its production method. The present invention relates to a metal bond grinding wheel which is formed by bonding diamond abrasive grains and/or CBN abrasive grains with metal bond. The chemical composition of the aforementioned metal bond consists of 40 to 70wt% of Ni, 19 to 30wt% of Sn, 1 to 7wt% of Ag and at least 5wt% Cu as the remainder. In particular, the aforementioned diamond abrasive grains and/or the CBN abrasive grains are preferably coated with titanium.

Description

200418614 (1) 玖、發明說明 【發明所屬之技術領域】 本發明’是有關將鑽石砥粒及/或是CBN砥粒金屬黏 結結合所構成的金屬黏結磨輪及其製造方法。 【先前技術】200418614 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention is related to a metal bonded grinding wheel formed by bonding diamond diamond particles and / or CBN diamond particles to each other and a method for manufacturing the same. [Prior art]

金屬黏結磨輪’是使用於玻璃的表面或端面的硏削及 /或是硏磨、陶瓷材料等的脆性材料的硏削及/或是硏磨(以 下S及這些用途的情況時,統一爲「玻璃硏削」的用 語)。 供構成玻璃硏削用的金屬黏結磨輪用的金屬黏結的組 成,是已揭示有Cu-Sn系(專利文獻1〜3)、Fe-Cu-Sn系 (專利文獻1)。進一步,也已揭示有Co-Cu-Sll系(專利文 獻1及3 )或N i - C u · S η系(專利文獻4 )的金屬黏結。The metal bonded grinding wheel is used for the honing and / or honing of the surface or end surface of glass, honing and / or honing of brittle materials such as ceramic materials (the following S and these applications will be unified as " Glass cutting ". As a component for forming a metal bond for forming a metal bonded grinding wheel for glass cutting, Cu-Sn system (Patent Documents 1 to 3) and Fe-Cu-Sn system (Patent Document 1) have been disclosed. Furthermore, metal adhesion of Co-Cu-Sll system (Patent Documents 1 and 3) or Ni-Cu · Sη system (Patent Document 4) has also been disclosed.

[專利文獻]日本特開昭5 8 - 2 1 7 2 7 1號公報 [專利文獻2]日本特開平2-76680號公報 [專利文獻3]日本特開2001-246566號公報 [專利文獻]日本特開平10-230464號公報 【發明內容】 (本發明所欲解決的課題) 使用於玻璃硏削的金屬黏結磨輪所要求的性質,是不 會減少鋒利度(即硏削時的發燒或硏削破裂的發生頻度 小’加工能率高)、長壽命、不生鏽等、加壓時不變形的 -5- (2) (2)200418614 高強度(即彎曲強度等高)等的多方面。可完全滿足這些的 要求的金屬黏結磨輪是最理想。 但是,在上述習知的金屬黏結磨輪中,如以下所言 及’那些的要求是無法充分地滿足。 在C u - S η系金屬黏結中,多C u成分的話鋒利度差, 多s η成分的話鋒利度雖改善,但是黏結的強度下降,其 結果短壽命。結局是,Cu-Sn系的黏結一般短壽命。Fe-Cu-Sn系金屬黏結,是隨著增加Fe的添加量可使cU-Sn 系金屬黏結磨輪壽命變長,但是對於玻璃硏削,當一般的 濕式硏削時,硏削後在磨輪的黏結面容易生鏽。在黏結面 有生鏽成分的話,下次硏削開始隨後會複寫在切削材上而 弄髒。Co-Cu-Sn系金屬黏結,雖不生鏽,但是隨著增加 Co的添加量,一般會變成硬黏結,會降低鋒利度。 對於此,Ni-Cu-Sn系金屬黏結,是藉由使用Ni,可 以加強黏結來延伸磨輪的壽命。從此觀點,將Ni量設定 較高較佳。 且,爲了製造硬且壽命長的金屬黏結磨輪,需要可製 造成高密度的加壓煅燒體。 但是,因爲Ni量愈高,煅燒溫度也愈高,在Ni-Cu-Sn系金屬黏結磨輪的製造中,一般使用不會因加熱變形 的碳製的煅燒用模。因此製法的限制,而無法提供不會增 加生産成本的硬且壽命長的金屬黏結磨輪。 即,在N i - C u - S η系金屬黏結磨輪的製造過程’爲了 獲得高密度的加壓煅燒體而施加高壓的話,碳模的摩耗激 -6 - (3) 200418614 烈需要經常更新模,而增加生産成本,一方面,適合 壓煅燒且模交換的頻度少的耐熱合金或是耐熱鋼材中 爲有锻燒溫度上限,需制限N i使用量,無法兩全。 在本發明人所檢討的製造例中,Ni成分是 4 0wt%的話,無法獲得磨輪壽命的改善效果,相反地 成分是40wt%以上的話,一般需要8 00°C以上的煅 度。 本發明’爲了解決上述的問題等,其課題爲提供 鋒利度佳、硬且長壽命、不生鏽、且加壓時不變形的 度的Ni-Cu-Sn系金屬黏結磨輪及其製造方法。 進一步本發明的課題,是提供一種即使上述組成 屬黏結、砥粒及/或是CBN砥粒也可良好結合保持的 Cu-Sn系金屬黏結磨輪及其製造方法。 (用以解決課題的手段) 本發明人,爲了解決上述課題熱心硏究的結果 現:對於Ni量40wt%以上的Ni-Cu-Sn系金屬黏結藉 有預定量的 Ag就可有效率地生産適合玻璃硏削用 Ni-Cu-Sn系金屬黏結磨輪,且發現:對於其金屬黏 成若使用由鈦被覆的砥粒及/或是CBN砥粒更佳,而 本發明。 即,本發明,提供一種金屬黏結磨輪,是將鑽石 及/或是 CBN砥粒由金屬黏結結合所構成的金屬黏 輪,其特徵爲:前述金屬黏結的化學組成,是由Ni ί 於高 ,因 低於 ,Ni 燒溫 一種 筒強 的金 Ni- ,發 由含 途的 結組 完成 砥粒 結磨 I 40 -7- (4) (4)200418614 〜70wt°/〇、Sn爲 19〜30wt%、Ag爲 1〜7wt%、及至少佔 有5wt%殘部的Cu所組成。 前述砥粒及/或是CBN砥粒是由鈦被覆較佳。且,前 述金屬黏結磨輪,是使用於玻璃的硏削及/或是硏磨。 且,本發明,提供一種金屬黏結磨輪的製造方法,是 將鑽石砥粒及/或是C B N砥粒由金屬黏結結合所構成的金 屬黏結磨輪的製造方法,其特徵爲,包含:(a)以爲了獲 得由 Ni是 40〜70wt%、Sn是 19〜30wt%、Ag是 1〜 7wt%、及至少佔有5wt%殘部的cu組成的金屬黏劑所需 要的量來準備那些金屬的粉末混合物,將該金屬粉末與鑽 石磁粒及/或是CBN胝粒混合;及(b)將前述金屬粉末及砥 粒的混合物,使用利用耐熱合金或是耐熱鋼材的模具,由 溫度65 0〜8 5 0°C熘燒;的金屬黏結磨輪的製造方法。 對於上述製造方法,使用由鈦被覆的砥粒及/或是 C B N磁粒較佳。 【實施方式】 以下,對於本發明的實施例詳細說明。 本發明的金屬黏結磨輪,是由具有下述的化學組成的 Ni-Cu-Sn-Ag系金屬所構成。[Patent Document] Japanese Patent Laid-Open No. 5 8-2 1 7 2 7 1 [Patent Document 2] Japanese Patent Laid-Open No. 2-76680 [Patent Document 3] Japanese Patent Laid-Open No. 2001-246566 [Patent Document] Japan Japanese Patent Application Laid-Open No. 10-230464 [Summary of the Invention] (Problems to be Solved by the Invention) The properties required for a metal bonded grinding wheel used for glass cutting do not reduce sharpness (ie, fever or cutting during cutting). The frequency of cracking is low, the processing rate is high), long life, no rust, etc., -5- (2) (2) 200418614 high strength (that is, high bending strength) and so on. A metal bonded grinding wheel that fully meets these requirements is ideal. However, in the conventional metal-bonded grinding wheel described above, the requirements such as those mentioned below cannot be fully satisfied. In Cu-S η-based metal bonding, sharpness is poor when there is more Cu component, and sharpness is improved when there is more s η component, but the strength of the bond is reduced, resulting in short life. As a result, the Cu-Sn-based bond generally has a short life. The bonding of Fe-Cu-Sn series metal is to increase the service life of cU-Sn series metal bonding grinding wheel with increasing Fe addition, but for glass cutting, when general wet cutting, the grinding wheel is placed on the grinding wheel. The adhesive surface is easy to rust. If there is a rusty component on the bonding surface, it will be overwritten on the cutting material and stained after the next cutting. Co-Cu-Sn series metal bonds, although not rusty, but with increasing Co addition, they will generally become hard-bonded, which will reduce sharpness. In this regard, Ni-Cu-Sn-based metal bonding, by using Ni, can strengthen the bonding and extend the life of the grinding wheel. From this point of view, it is better to set the amount of Ni higher. In addition, in order to manufacture a hard and long-life metal bonded grinding wheel, a pressurized calcined body capable of producing a high density is required. However, because the higher the amount of Ni, the higher the calcination temperature. In the manufacture of Ni-Cu-Sn-based metal bonded grinding wheels, a calcination mold made of carbon that does not deform by heat is generally used. Due to the limitation of the manufacturing method, it is impossible to provide a hard and long-life metal bonded grinding wheel which does not increase the production cost. That is, in the manufacturing process of the N i-Cu-S η-based metal bonded grinding wheel, if a high pressure is applied in order to obtain a high-density pressurized calcined body, the friction of the carbon mold is stimulated -6-(3) 200418614 On the one hand, on the one hand, heat-resistant alloys or heat-resistant steels that are suitable for pressure calcination and have less frequency of die exchange have upper limits for the calcination temperature, which requires limiting the amount of Ni used, which cannot be both. In the production examples reviewed by the present inventors, if the Ni component is 40 wt%, the effect of improving the life of the grinding wheel cannot be obtained. Conversely, if the composition is 40 wt% or more, a calcination degree of 800 ° C or more is generally required. In order to solve the above-mentioned problems, the present invention is to provide a Ni-Cu-Sn-based metal bonded grinding wheel having excellent sharpness, hardness, long life, non-rust, and no deformation when pressed, and a method for manufacturing the same. A further object of the present invention is to provide a Cu-Sn-based metal bonded grinding wheel capable of being well bonded and retained even if the composition is bonded, cemented, and / or CBN cemented, and a method for manufacturing the same. (Means to Solve the Problem) As a result of earnest research to solve the above problem, the present inventors have found that Ni-Cu-Sn-based metal bonds with a Ni content of 40 wt% or more can be efficiently produced by using a predetermined amount of Ag. It is suitable for Ni-Cu-Sn-based metal bonded grinding wheels for glass cutting, and it has been found that it is better to use titanium-coated particles and / or CBN particles for the metal bonding, and the present invention. That is, the present invention provides a metal bonded grinding wheel, which is a metal bonded wheel composed of diamond and / or CBN particles by metal bonding, characterized in that the chemical composition of the aforementioned metal bonding is composed of Ni ί Yu Gao, Because it is lower than Ni, the burning temperature is a kind of strong gold Ni-, which will be finished by the knot group. I 40 -7- (4) (4) 200418614 ~ 70wt ° / 〇, Sn is 19 ~ 30wt %, Ag is 1 to 7 wt%, and Cu occupies at least 5 wt% of the residue. The aforementioned particles and / or CBN particles are preferably coated with titanium. Moreover, the aforementioned metal bonded grinding wheel is used for honing and / or honing of glass. Moreover, the present invention provides a method for manufacturing a metal bonded grinding wheel, which is a method for manufacturing a diamond bonded grinding wheel composed of diamond grains and / or CBN grains by metal bonding, which comprises: (a) a In order to obtain the required amount of metal adhesive consisting of 40 to 70 wt% of Ni, 19 to 30 wt% of Sn, 1 to 7 wt% of Ag, and at least 5 wt% of cu to prepare the powder mixture of those metals, The metal powder is mixed with diamond magnetic particles and / or CBN particles; and (b) the mixture of the foregoing metal powder and particles is made of a heat-resistant alloy or a heat-resistant steel, and the temperature is 65 0 ~ 8 5 0 ° C sintering; manufacturing method of metal bonded grinding wheel. For the above manufacturing method, it is preferable to use titanium-coated particles and / or C B N magnetic particles. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail. The metal bonded grinding wheel of the present invention is composed of a Ni-Cu-Sn-Ag-based metal having the following chemical composition.

Ni元素,是在金屬黏結組成中含有40〜70wt%的範 圍。40wt%以下的話磨輪壽命減少,超過7〇wt%的話煅燒 溫度上昇過度,無法有效率地生産。Ni元素的量是50〜 7 0 w t %較佳〇 (5) 200418614The Ni element has a range of 40 to 70% by weight in the metal bonding composition. If the weight is less than 40% by weight, the life of the grinding wheel is reduced, and if it exceeds 70% by weight, the calcination temperature is excessively increased, and efficient production cannot be achieved. The amount of the Ni element is preferably 50 to 70 wt%. (5) 200418614

Sn元素,在金屬黏結組成中含有19〜3〇”%的 圍。Cu-Sn系中的sn元素,是有助於黏結的熔融。 1 9wt%少的話,煅燒溫度上昇過度,無法有效率地生産 比3 Owt%多的話因爲強度下降,所以磨輪壽命減少。 元素的量是 1 9〜2 5 w t %較佳。 本發明的Ag的使用,可給與供獲得金屬黏結的較 物性。即,有燒結促進的效果。 進一步Ag的使用,是將Ag添加於Cu-Sn系的金 的話’因爲其熔融時的低溫液層域會增大,其添加量即 比較少’黏結融點也可下降。因此,可由比習知需要超 800°C的高溫煅燒的Ni-Cu_Sn系金屬黏結低溫度地 燒。即,對於Nil-Cu-Sn系金屬黏結磨輪的製造,Ag 使用因爲是可適用6 5 0〜8 5 0。C的煅燒條件,所以在那 的比較低的溫域使用具耐用性的耐熱合金或是耐熱鋼材 模具,在煅燒時可給與高加壓力,如此可以將金屬黏結 輪製造成高密度的煅燒體。且,耐熱合金或是耐熱鋼材 模具即使被施加高壓,因爲模交換的頻度減少,所以不 導致成本上昇,如上述可以提供硬且壽命長的良好的金 黏結磨輪。 爲了獲得上述效果所需要的Ag的量’在金屬黏結 成中是 1〜7wt%的範圍。1 wt%以下的話無法使上述融 降下,超過7wt%的話銀有偏析傾向,即使超過7wt% ’ 的燒結促進效果也少。Ag的量,是2〜5wt%較佳。The Sn element contains 19 to 30 "% of the metal bonding composition. The Sn element in the Cu-Sn system contributes to the melting of the bonding. If it is less than 9 wt%, the calcination temperature will increase excessively and it will not be efficient. If the production is more than 3 Owt%, the strength will reduce the life of the grinding wheel. The amount of the element is preferably 19 ~ 25wt%. The use of Ag of the present invention can give more physical properties for obtaining metal bonding. That is, It has the effect of promoting sintering. Further use of Ag is to add Ag to Cu-Sn-based gold. 'Because the low-temperature liquid layer domain increases when it is melted, the amount of addition is relatively small.' The melting point can also be reduced. Therefore, it can be burned at a lower temperature than the conventional Ni-Cu_Sn-based metal bonding that requires a high-temperature calcination of over 800 ° C. That is, for the manufacture of Nil-Cu-Sn-based metal bonded grinding wheels, the use of Ag is applicable 6 5 0 ~ 8 5 0 ° C firing conditions, so in the relatively low temperature range using a durable heat-resistant alloy or heat-resistant steel mold, high pressure can be given during firing, so that the metal bonding wheel can be manufactured Into a high-density calcined body. Or even if a high-temperature steel mold is applied with high pressure, the frequency of mold exchange is reduced, so it does not cause cost increase. As mentioned above, it can provide a hard and long-life good gold-bonded grinding wheel. The metal bond is in the range of 1 to 7 wt%. If the weight is less than 1 wt%, the above melting cannot be reduced. If it exceeds 7 wt%, silver tends to segregate, and even if it exceeds 7 wt%, the sintering promotion effect is small. The amount of Ag is 2 ~ 5wt% is preferred.

Cu元素,是構成上述金屬黏結組成的殘部。其Cu 範 比 〇 S η 佳 屬 使 過 煅 的 樣 的 磨 的 會 屬 組 點 Ag 的 -9- (6) 200418614 里是至少5wt%,Ni及Cu的重量和是60wt%以上較佳 本發明的金屬黏結磨輪,混合上述金屬黏結材料 粒及/或是CBN砥粒(以下稱「超砥粒」),藉由加壓 製造。特別是砥粒,是由鈦被覆的砥粒及/或是CBN 較佳。 上述超砥粒,使用前述由鈦被覆的砥粒及/或是 石氏粒的話,可以提高金屬黏結及那些砥粒之間的結合 更可以提供硬且長壽命的Ni-Cu-Sn系金屬黏結磨輪。 依據本發明人的理解,上述的效果,是因爲將金 結爲主成分的Ni元素溶入煅燒時的昇溫中所生成的 Sn-Ag系的液層內,如此產生的Cu-Sn-Ag-Ni的液層 對於那些被覆超砥粒的Ti金屬或是TiC的沾染性良好 可使用於本發明的金屬黏結磨輪的鈦被覆砥粒或 被覆CBN砥粒,是本行業者習知,可使用市售品的 以,製造使用也可以。其製造方法,可舉例如CVD 被覆法。 本發明的金屬黏結磨輪,是如以下製造。即,金 結材料,依據對應上述各金屬的組成的量各別準備的 粉末,將這些預定量的超砥粒均一地混合。金屬黏結 及超砥粒的配合比,通常,體積比爲5: 95〜25: 75 其材料混合物在溫度65 0〜8 5 0°C下以至少的30MPa 終加壓力約1小時進行加壓煅燒。 以下,雖說明本發明的實施例及比較例,但是這 本發明的實施可能性及有用性的例証,非限定本發明 及砥 煅燒 砥粒 CBN 力, 屬黏 Cu- ,是 〇 是鈦 也可 法的 屬黏 金屬 材料 。將 的最 些是 的結 -10- (7) (7)200418614 構。 [實施例] [實施例1]:黏結物性的測試 調查將Ag添加於含有Ni、Cu、Sn的金屬黏結時的 物性的變化,確認Ag添加的效果。 將各原料粉末以下述預定量計量,在攪拌壓潰機2 〇 分鐘混合,作成金屬黏結。 (金屬黏結的組成) 測試黏結 Ni/Cu/Sn/Ag = 45/3 1/1 9/5(wt%) 對照黏結 Ni/Cix/Sn/Ag = 45/3 6/ 1 9/0(wt%) 接著,將所獲得的金屬黏結均一地充塡5 0 X 5 m m的耐 熱鋼模具,由熱間燒結。在此,測試黏結及對照黏結的雙 方的最終壓力全部爲98MPa,最終加熱溫度是適用400。 C、500。C、600° C、650° C、700。C、或是 750C。燒結 體,是冷卻後從模具取出,進行各邊精整完成加工,最終 作成50x5x5 mm的角狀的測試塊。 [黏結的物性測試] 如上述對於所獲得的各測試塊,測試洛式硬度 (HRA)、及彎曲強度。測量方法是分別如以下。 [洛式硬度(HRA)] 金屬黏結的物性將評價用的洛式硬度,是依據JIS規 格(鎖定洛式硬度試驗 B 7 7 2 6、1 9 9 8 ),加上基準負荷 lOkgf,接著加上固定的試驗負荷後再度回復時,從前後 -11 - (8) 200418614 2次的基準負荷的壓件的侵入深度h求得。在本測試中使 用鑽石壓件,由試驗負荷60kgf及l〇〇- 5 00h的算出式求 得。鑽石壓件的性能是如以下。 a) 先端,是圓錐部及球面部平滑連接的曲面。 b) 先端的圓錐角度是120° ± 30’。 〇先端的圓錐部的母線及揷入部的負荷受面的角度, 是 30。士20,。 d)先端的球面部的曲率半徑,是〇.2± 0.02mm。 [彎曲強度] 依據JIS規格(精密陶瓷的彎曲強度試驗方法R1 601、 1 9 86),將各測試砥石以間距間距離設成30mm、負荷降下 速度3mm/min進行3點彎曲強度試驗。對於各測試塊取 得3個平均値。 (測試結果) 在表1顯示洛式硬度的測試結果,在表2顯示彎曲強度的 測試結果。 [表1] 渔式硬度 400 °C 5 00 °C 6 00 °C 65 0〇C 700 °C 75 0 〇C 測試黏結 50.7 60.0 6 1.2 6 1.0 61.1 60.5 里照黏結 52.1 61.3 62.2 6 1.6 6 1.8 60.7 -12- 200418614 Ο) [表2] 彎曲強度(Μ P a) 4〇〇°〇 5 00 °C 600 °C 65 0〇C 700 °C 75 0〇C 測試黏結 3 0 〇 590 8 10 970 950 980 對照黏結 ----"***一" 260 480 750 880 990 10 10 從上述表1的結果可了解’與對照黏結相比’測試黏 結的硬度較高° 從上述表2明顯可知,含有Ag5wt%的測試黏結,當 高溫煅燒的情況時’燒結體的硬度會上昇’彎曲強度會稍 下降。對照黏結的彎曲強度雖於7 0 0〜7 5 0 ° C以上會成爲 最大値,但是測試黏結是在65 0〜700 °C將幾乎到達最大 値。特別是低溫度5 0 0〜6 0 0 ° C的彎曲強度値的差很顯 著。 從以上的結果’是顯示由Ag添加所產生的燒結促進 效果。因此可結論,使用Ag添加的Ni-Cu-Sn系金屬黏結 的話,可提供一種鋒利度佳,硬且長壽命的磨輪。 [實施例2]:金屬黏結磨輪製造例1 使用鈦被覆的鑽石砥粒# 5 00 (從GE購入,商品名: MBM3 0/40Ti),製作金屬黏結磨輪的測試塊。 [混合比] 砥粒:1 〇 〇 〇重量比 金屬粉末:4200重量比 -13- (10) (10)200418614 [金屬黏結的組成]The Cu element is a remainder constituting the above-mentioned metal bonding composition. Its Cu range ratio θ η is preferably -9- (6) 200418614 where the calcined sample is milled. The weight of Ni and Cu is 60% by weight or more. The present invention is preferred. The metal bonded grinding wheel is manufactured by mixing the above-mentioned metal bonding material particles and / or CBN particles (hereinafter referred to as "super particles"), by pressurization. In particular, it is preferable that the particles are coated with titanium and / or CBN. The above-mentioned ultra-fine particles, using the titanium-covered particles and / or stone particles, can improve metal bonding and the bonding between those particles, and can also provide a hard and long-life Ni-Cu-Sn-based metal bond. Grinding wheel. According to the understanding of the present inventors, the above-mentioned effect is due to the dissolution of the Ni element containing gold as the main component into the Sn-Ag-based liquid layer generated during the temperature rise during calcination, and the Cu-Sn-Ag- The liquid layer of Ni has good contamination properties to those Ti metal or TiC coated superfine particles, and the titanium-coated particles or CBN particles used in the metal bonded grinding wheel of the present invention are well known to those skilled in the industry. It can also be manufactured and used. The manufacturing method may be, for example, a CVD coating method. The metal bonded grinding wheel of the present invention is manufactured as follows. That is, the agglomerated material uniformly mixes these predetermined amounts of ultrafine particles in accordance with powders prepared separately in accordance with the amounts of the respective metal compositions. The mixing ratio of metal bonding and ultra-fine particles is usually 5: 95 ~ 25: 75. The material mixture is calcined at a temperature of 65 0 ~ 8 50 ° C at a final pressure of at least 30 MPa for about 1 hour. . In the following, although the examples and comparative examples of the present invention are described, this illustration of the possibility and usefulness of the present invention is not a limitation of the CBN force of the present invention and the sintered sintered sintered particles, which are viscous Cu-, and 0 is titanium. French metal material. The most will be the structure of -10- (7) (7) 200418614. [Examples] [Examples 1]: Tests of physical properties of adhesion The change in physical properties when Ag was added to a metal containing Ni, Cu, and Sn was examined to confirm the effect of Ag addition. Each raw material powder was measured in the following predetermined amounts, and mixed in a stirrer for 20 minutes to form a metal bond. (Composition of metal bonding) Test bonding Ni / Cu / Sn / Ag = 45/3 1/1 9/5 (wt%) Control bonding Ni / Cix / Sn / Ag = 45/3 6/1 9/0 (wt %) Next, the obtained metal bond was uniformly filled with a 50 X 5 mm heat-resistant steel mold, and sintered by heat. Here, the final pressure of both the test adhesion and the control adhesion is 98 MPa, and the final heating temperature is 400. C, 500. C, 600 ° C, 650 ° C, 700. C, or 750C. The sintered body was taken out of the mold after cooling, and then finished by finishing on each side. Finally, an angular test block of 50x5x5 mm was made. [Bonding physical property test] As described above, each of the obtained test pieces was tested for Rockwell hardness (HRA) and flexural strength. The measurement methods are as follows. [Rockwell hardness (HRA)] The physical properties of the metal bond are evaluated according to the JIS standard (Locked Rockwell hardness test B 7 7 2 6, 1 9 9 8), plus a reference load of 10 kgf, and then When returning after a fixed test load, the penetration depth h of the pressure piece with a reference load of 2 times before and after -11-(8) 200418614 was obtained. In this test, a diamond compact was used, and it was obtained from a calculation formula of a test load of 60 kgf and 100-500 h. The performance of diamond pressed parts is as follows. a) The apex is a curved surface where the cone and spherical surface are smoothly connected. b) The cone angle at the tip is 120 ° ± 30 '. 〇 The angle of the load-receiving surface of the generatrix of the tapered portion at the tip and the entry portion is 30. 20 ,. d) The radius of curvature of the spherical surface at the apex is 0.2 ± 0.02 mm. [Bending strength] According to the JIS standard (bending strength test methods for precision ceramics R1 601, 1 9 86), each test vermiculite was subjected to a three-point bending strength test at a pitch distance of 30 mm and a load drop speed of 3 mm / min. Three average values were obtained for each test block. (Test results) Table 1 shows the Rockwell hardness test results, and Table 2 shows the flexural strength test results. [Table 1] Fishing type hardness 400 ° C 5 00 ° C 6 00 ° C 65 0〇C 700 ° C 75 0 〇C Test adhesion 50.7 60.0 6 1.2 6 1.0 61.1 60.5 Lizhao adhesion 52.1 61.3 62.2 6 1.6 6 1.8 60.7 -12- 200418614 〇) [Table 2] Flexural strength (Μ P a) 4〇 ° 〇5 00 ° C 600 ° C 65 0〇C 700 ° C 75 0〇C Test adhesion 3 0 〇590 8 10 970 950 980 Control adhesion ---- " *** 一 " 260 480 750 880 990 990 10 10 It can be understood from the results in Table 1 above that the hardness of the test adhesion is higher than that of the control adhesion. When the test bond containing Ag5wt% is used, the hardness of the sintered body will increase when bending at high temperature, and the bending strength will decrease slightly. Although the flexural strength of the control bond will be the maximum 値 above 7 0 ~ 750 ° C, the test bond will almost reach the maximum 値 at 65 0 ~ 700 ° C. In particular, the difference in flexural strength 低 between low temperatures of 5 0 to 6 0 ° C is significant. From the above results, 'the effect of promoting sintering by the addition of Ag was shown. Therefore, it can be concluded that the use of Ag-added Ni-Cu-Sn-based metal bonding can provide a grinding wheel with good sharpness, hardness and long life. [Example 2]: Metal Bonded Grinding Wheel Manufacturing Example 1 Using titanium-coated diamond particles # 500 (purchased from GE, trade name: MBM3 0 / 40Ti), a test block of a metal bonded grinding wheel was produced. [Mixing ratio] Granules: 100% by weight Metal powder: 4200% by weight -13- (10) (10) 200418614 [Composition of metal bonding]

Ni/Cu/Sn/Ag = 45/28/25/2(wt%) 計量上述各原材料,在攪拌壓潰機2 0分鐘混合,調 製材料混合物,均勻地充塡至50x5mm的耐熱鋼模具。加 壓煅燒,對於以相同條件複數調製的材料混合物,分別適 用不同最終加熱溫度6 5 0。C、7 0 0。C、或是7 5 0。C。最終 壓力全部是1 OOMPa。將所獲得的燒結體冷卻後從模具取 出,進行各邊精整完成加工,最終製作成50x5x5 mm的角 狀的測試塊。 [實施例3]:金屬黏結磨輪製造例2 使用無鈦被覆的鑽石砥粒#500以外,與上述實施例2 同樣製作測試塊。 (實施例2及3的測試塊的物性測試) 對於上述製作的實施例2及3的各測試塊,測量洛式 硬度(HRB)及彎曲強度。各測量方法,分別如以下。 [洛式硬度] 評價金屬黏結磨輪的物性用的洛式硬度,是依據JIS 規格(洛式硬度試驗 B 7726、1 99 8 ),加上基準負荷 98.07N(10kgf),接著加上固定的試驗負荷後再度回復 時,從前後2次的基準負荷的壓件的侵入深度h求得。在 本測試中使用直徑1.5 8 7 5 mm(l/16英吋)的鋼球,由試驗 負荷9 80.7N(100kgf)及1 3 0-5 00h的算出式求得。 [彎曲強度] -14- (11) 200418614 依據Π S規格(精密陶瓷的彎曲強度試驗方t 1 9 8 6 ),將各測試砥石以間距間距離設成3 0 mm、 速度3mm/min進行3點彎曲強度試驗。對於名 得3個平均値。 在表3顯示洛式硬度的測量結果’在表4簾 度(MPa)的測量結果。 [表3] 洛式硬度 65 0。。 7 00 °C 75 0 〇C 實施例2 1 12 112 111 實施例3 107 106 106 [表4] 彎曲強度(MPa) 65 0 〇C 700 °C 75 0〇C 實施例2 590 600 6 10 實施例3 490 5 10 5 10 從上述的結果明顯可知,實施例2及3的雙 用Ni量超過4 Owt%的金屬黏結的組成,由比較 燒結,硬度及強度的物性値皆是在較佳的高層級 施例2及3的雙方,皆顯示可以製造優秀的硏削 且,由實施例2及實施例3的比較,對於上 結組成是顯示使用由鈦被覆的鑽石砥粒的優點。 R1601 、 負荷降下 測試塊取 示彎曲強 方,是採 低溫進行 。如此實 磨輪。 述金屬黏 即,實施 -15- (12) (12)200418614 例2的結果,對於洛式硬度及彎曲強度的任一,皆超過實 施例3的結果’由此可知’對於含有超過40wt%的多量的 N i且含有少量的A g的該金屬黏結組成,認定具有提高鈦 被覆的鑽石1砥粒的結合力,即該磁粒的保持力的效果。 [實施例4及5 ] 使用鈦被覆的鑽石砥粒#5 00,製作實施例4及5的玻 璃硏削用金屬黏結磨輪。比較例,是準備依據日本特開昭 5 8 - 2 1 7 2 7 1號公報所揭示的使用F e - C u - S η系金屬黏結形成 的磨輪。磨輪規格是分別如下述。 [混合比] 石氏粒:1 0 0 0重量比 金屬粉末:4200重量比 [金屬黏結的組成] 實施例 4:Ni/Cu/Sn/Ag = 45/28/25/2(wt%) 實施例 5:Ni/Cu/Sn/Ag = 65/8/25/2(wt0/〇) 比較例 :Fe/Cu/Sn = 60/28/ 1 2(wt%) 計量上述各原料料,在攪拌壓潰機20分鐘混合,調 製金屬黏結磨輪用材料混合物。在合金中使用鐵製合金, 對於其合金,準備外周203mm、高度12.5mm、磨輪層厚 度3 .5mm的圓形狀的磨輪外形的成模用的耐熱合金模。 將前述金屬黏結磨輪用材料混合物均一地充塡至此耐熱合 &模’最終壓力全部爲l〇〇MPa,最終加熱溫度全部爲 7 5 0,進行加壓煅燒。所獲得的燒結體,冷卻後從模具取 -16 - (13) (13)200418614 出,進行精整完成加工’最終製作成外周202mm、厚度 12mm、孔徑50.8mm的1 A1的磨輪。進一步,在各磨輪 的外周使用面(硏削面)形成5條溝,完成各測試用磨輪。 在下述硏削測試中,各磨輪皆使用中央的溝部。 (硏削測試) 在硏削測試硏削測試中,由下述條件硏削玻璃端面 部。 磨輪尺寸:外周202、厚度12mm、孔徑50.8mm 外周使用面有5條溝 被切削材:材質液晶用玻璃基板 尺寸長度150mm 高度 10 0mm 厚度 0.7mm 將0.7mm的厚度部硏削。 硏削盤:種類岡本工作橫軸平面硏削盤 型式 CNC-52B(7.5kw) 硏削液:種類水系硏削液 流量 30升/分Ni / Cu / Sn / Ag = 45/28/25/2 (wt%) Measure the above raw materials, mix them in a stirrer for 20 minutes, adjust the material mixture, and evenly fill a 50x5mm heat-resistant steel mold. Pressurized calcination. For material mixtures prepared under the same conditions, different final heating temperatures of 650 are applicable. C, 7 0 0. C, or 7 5 0. C. The final pressure is all 100 MPa. The obtained sintered body was taken out of the mold after cooling, and was finished by finishing on each side, and finally an angular test block of 50x5x5 mm was produced. [Example 3]: Metal Bonded Grinding Wheel Manufacturing Example 2 A test block was produced in the same manner as in Example 2 above except that the diamond frit # 500 was not coated with titanium. (Physical property test of test blocks of Examples 2 and 3) For each test block of Examples 2 and 3 prepared as described above, Rockwell hardness (HRB) and flexural strength were measured. Each measurement method is as follows. [Rockwell hardness] The Rockwell hardness for evaluating the physical properties of the metal bonded grinding wheel is based on JIS standards (Rockwell hardness test B 7726, 1 99 8), plus a reference load of 98.07N (10kgf), followed by a fixed test. When restoring again after a load, it is calculated | required from the penetration depth h of the presser of the reference load twice before and after. In this test, a steel ball with a diameter of 1.5 8 7 5 mm (l / 16 inch) was used, and it was obtained from the calculation formula of test load 9 80.7N (100kgf) and 1 3 0-5 00h. [Bending strength] -14- (11) 200418614 According to the ΠS standard (bend strength test method for precision ceramics t 1 9 8 6), set each test vermiculite at a distance of 30 mm and a speed of 3 mm / min. 3 Point bending strength test. For the name get 3 averages. Table 3 shows the measurement results of Rockwell hardness' and the measurement results of the curtain (MPa) in Table 4. [Table 3] Rockwell hardness 65 0. . 7 00 ° C 75 0 ° C Example 2 1 12 112 111 Example 3 107 106 106 [Table 4] Flexural strength (MPa) 65 0 ° C 700 ° C 75 0 ° C Example 2 590 600 6 10 Example 3 490 5 10 5 10 From the above results, it is clear that the composition of the metal bonding of the dual-use Ni content exceeding 4 Owt% in Examples 2 and 3 is based on the comparison of sintering, hardness and strength properties. Both the level examples 2 and 3 show that it is possible to produce excellent cutting, and the comparison of the example 2 and the example 3 shows the advantage of using titanium diamond-coated diamond particles for the upper knot composition. R1601 The load reduction test block shows the bending strength, which is performed at low temperature. Such a real grinding wheel. The metal stickiness is the result of implementing -15- (12) (12) 200418614 Example 2. For any of the Rockwell hardness and flexural strength, the result of Example 3 exceeds the result of Example 3. This metal bonding composition with a large amount of Ni and a small amount of Ag is believed to have the effect of improving the binding force of the 1 grain of titanium-coated diamond, that is, the holding force of the magnetic grains. [Examples 4 and 5] Using titanium-coated diamond particles # 500, the metal bonded abrasive wheels for glass cutting of Examples 4 and 5 were produced. A comparative example was prepared in accordance with Japanese Patent Application Laid-Open No. 5 8-2 1 7 2 7 1 and a grinding wheel formed using a Fe-Cu-Sη-type metal bond. The grinding wheel specifications are as follows. [Mixing ratio] Stone particles: 1 0 0 0 Weight ratio Metal powder: 4200 Weight ratio [Metal bonding composition] Example 4: Ni / Cu / Sn / Ag = 45/28/25/2 (wt%) Implementation Example 5: Ni / Cu / Sn / Ag = 65/8/25/2 (wt0 / 〇) Comparative example: Fe / Cu / Sn = 60/28/1 2 (wt%) The above raw materials are measured and stirred The crusher was mixed for 20 minutes to prepare a material mixture for a metal bonded grinding wheel. An alloy made of iron is used for the alloy, and a heat-resistant alloy mold for molding the shape of a circular grinding wheel having an outer circumference of 203 mm, a height of 12.5 mm, and a thickness of the grinding wheel layer of 3.5 mm is prepared for the alloy. The material mixture for the aforementioned metal bonded grinding wheel was uniformly charged until the heat-resistant composite mold's final pressure was all 100 MPa, and the final heating temperature was all 750, followed by calcination under pressure. The obtained sintered body was taken out of the mold after cooling, and was finished by finishing. The final sintered body was made into a 1 A1 grinding wheel with an outer circumference of 202 mm, a thickness of 12 mm, and a hole diameter of 50.8 mm. Further, five grooves were formed on the outer surface of the grinding wheel (the chamfered surface) to complete each grinding wheel for testing. In the following honing test, each grinding wheel uses a central groove. (Cutting test) In the rolling test, the glass end surface was cut under the following conditions. Grinding wheel size: outer circumference 202, thickness 12mm, hole diameter 50.8mm. There are 5 grooves on the outer use surface. Material to be cut: glass substrate for liquid crystal. Dimension length 150mm height 100mm thickness 0.7mm. The thickness of 0.7mm is chamfered.硏 Cutting disc: Type Okamoto work horizontal axis plane 硏 Cutting disc type CNC-52B (7.5kw) 硏 Cutting fluid: Kind of water-based 硏 Cutting fluid Flow rate 30L / min

整修條件:整修棒 WA#800G 磨輪周速度 25m/s 整修缺口 1 m m X 1次 整修送出 500m/min 整修方向 上切整修 硏削條件:濕式切入硏削 -17- (14)200418614 磨輪周速度 載置台速度 缺口 硏削方向 硏削量 3 0m/s 6m/min 0.2mm/pass 只有上切 40mm/每1枚χ20枚 硏削長度 6UUm 評價項目,對於使用於硏削測試的各磨輪’調查:磨輪半 徑消耗(mmR)、硏削動、精整完成面粗度(Ra // m)、磨輪 使用面的生鏽狀態。各測量方法,是分別如下述。 [磨輪消耗] 藉由碳複製法比較使用前後的形狀。 [硏削動力] 磨輪軸馬達的消耗電力爲W,由612xW/周速(60/1 00) 求得。然而,使用前述磨輪周速度作爲周速。 [精整完成面粗度Ra] 中心線平均粗度(Ra),從粗度的曲線朝其中心線的方 向拔取測量長度1的部分,由此拔取部分的中心線爲x 軸、縱倍率的方向爲Y軸、粗度曲線y = f(x)表示時’藉由 下式所求得的値由微米(a m)表示。 [數式1]Renovation conditions: refurbishment bar WA # 800G peripheral speed of grinding wheel 25m / s refitting gap 1 mm X 500m / min for one refurbishment cutting condition for refurbishing direction: wet cutting-in cutting-17- (14) 200418614 grinding wheel peripheral speed Mounting table speed notch cutting direction cutting amount 30m / s 6m / min 0.2mm / pass Only upcut 40mm / 20 pieces per 1 × 20 cutting length 6UUm Evaluation item, for each grinding wheel used for cutting test 'investigation: Consumption of grinding wheel radius (mmR), honing motion, roughness of finished surface (Ra // m), rust state of grinding wheel use surface. Each measurement method is as follows. [Wheel Consumption] The shapes before and after use were compared by the carbon copy method. [Cutting power] The power consumption of the grinding wheel shaft motor is W, which is obtained from 612xW / circle speed (60/1 00). However, the aforementioned peripheral speed of the grinding wheel is used as the peripheral speed. [Roughness of finishing surface Ra] The average thickness of the center line (Ra). From the thickness curve, pull out the part with a length of 1 from the direction of the center line. The center line of the extracted part is the x-axis and vertical magnification. When the direction is the Y axis and the thickness curve y = f (x) is expressed, 値 obtained by the following formula is expressed in micrometers (am). [Equation 1]

Ra= l- £ I f(x ) |dx -18- (15) 200418614 [磨輪使用面的生鏽發生狀態] 硏削完成後放置一晚後,由目視觀察磨輪使用面的生 鏽狀態。 在表5顯示上述硏削測試結果。 [表5] 磨輪半徑 硏削動力 精整完成 生鏽發生 消耗 面粗度 實施例4 0.012 86 0.6 Μ J \ ΝΝ 實施例5 0.0 10 80 0.6 Μ 比較例 0.014 100 0.6 有Ra = l- £ I f (x) | dx -18- (15) 200418614 [State of rust occurrence on the grinding wheel use surface] After standing for one night after cutting, visually observe the state of rust on the grinding wheel use surface. Table 5 shows the results of the above-mentioned cutting test. [Table 5] Grinding wheel radius Cutting power Finishing Finishing Rust generation Consumption Surface roughness Example 4 0.012 86 0.6 Μ J \ Ν Example 5 0.0 10 80 0.6 Μ Comparative example 0.014 100 0.6 Yes

從上述測試結果,顯示如以下。 對於磨輪半徑消耗,實施例4及實施例5的雙方,皆 顯示比比較例的磨輪的摩耗少的結果。 對於硏削動力,實施例4及實施例5的雙方,皆顯示 比比較例低的値。這是表示磨輪的鋒利度佳,使作爲被切 削材的玻璃的硏削發燒及硏削破裂的發生頻度減少。 對於面粗度,實施例4、實施例5、比較例的任一皆 顯示同樣的値。此事,是顯示那些實施例的製品,是具有 與習知硏削用磨輪的製品同等的品質。 對於生鏽發生,確認實施例4及實施例5的任一皆未 發生,只有比較例有發生。包含於比較例的金屬黏結的 F e是其原因。因此,依據本實施例的磨輪,被切削材是 -19- (16) 200418614 不會由生鏽所污染,可提高被切削材的生産效率 (發明之效果) 如以上詳細的說明,本發明,可提供一種鋒 硬且長壽命、不生鏽、且加壓時不變形的高強 Cu-Sn系金屬黏結磨輪及其製造方法。特別是提 使上述組成的金屬黏結、砥粒及/或是C B N磁粒 結合保持的Ni-Cu-Sn系金屬黏結磨輪及其製造方 利度佳、 度的 Ni- 供一種即 也可良好 法。 -20-The above test results are shown below. Regarding the grinding wheel radius consumption, both Example 4 and Example 5 showed results of less wear than the grinding wheel of the comparative example. Regarding the cutting power, both Example 4 and Example 5 showed that the cutting power was lower than that of the comparative example. This indicates that the sharpness of the grinding wheel is good, and the frequency of occurrence of cutting fever and cutting cracks of the glass as the material to be cut is reduced. Regarding the surface roughness, each of Example 4, Example 5, and Comparative Example showed the same value. This is to show that the products of those examples have the same quality as the products of conventional grinding wheels. Regarding the occurrence of rust, it was confirmed that neither of Example 4 and Example 5 occurred, and only the comparative example occurred. The reason for the metal adhesion F e included in the comparative example is the cause. Therefore, according to the grinding wheel of this embodiment, the material to be cut is -19- (16) 200418614 and will not be contaminated by rust, which can improve the production efficiency of the material to be cut (effect of the invention). As described in detail above, the present invention, The invention provides a high-strength Cu-Sn series metal bonded grinding wheel which is hard, has a long life, does not rust, and does not deform when pressed, and a manufacturing method thereof. In particular, the Ni-Cu-Sn-based metal bonded grinding wheel which holds the metal bond, slag particles, and / or CBN magnetic particles of the above composition in combination, and the Ni-Cu-Sn-based metal bonded grinding wheel with good manufacturing method, which can be used as a good method . -20-

Claims (1)

(1) (1)200418614 拾、申請專利範圍 1· 一種金屬黏結磨輪,是將鑽石砥粒及/或是CBN 砥粒由金屬黏結結合所構成的金屬黏結磨輪,其特徵爲: 前述金屬黏結的化學組成,是由N i爲4 0〜7 0 wt %、S η爲 1 9〜3 0 w t %、A g爲1〜7 w t %、及至少佔有5 w t %殘部的C u 所組成。 2 .如申請專利範圍第1項的金屬黏結磨輪,其中, 前述鑽石砥粒及/或是CBN砥粒,是由鈦被覆。 3 ·如申請專利範圍第1或2項的金屬黏結磨輪,其 中,前述金屬黏結磨輪,是使用於玻璃的硏削及/或是硏 磨。 4 . 一種金屬黏結磨輪的製造方法,是將鑽石砥粒及/ 或是CBN砥粒由金屬黏結結合所構成的金屬黏結磨輪的 製造方法,其特徵爲,包含: (a) 以爲了獲得由 Ni是 40〜70wt%、Sn是 19〜 30wt%、Ag是 1〜7wt%、及至少佔有5wt%殘部的Cu組 成的金屬黏劑所需要的量,來準備那些金屬的粉末混合 物,將該金屬粉末與鑽石砥粒及/或是CBN砥粒混合;及 (b) 將前述金屬粉末及砥粒的混合物,使用利用耐熱 合金或是耐熱鋼材的模具,由溫度6 5 0〜8 5 0。C煅燒; 的金屬黏結磨輪的製造方法。 5 ·如申請專利範圍第4項的金屬黏結磨輪的製造方 法,其中,使用由鈦被覆的鑽石砥粒及/或是C B N砥粒。 200418614 柒、(一) (二) 、本案指定代表圖為:無 、本代表圖之元件代表符號簡單說明:無 捌、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:(1) (1) 200418614 Scope of patent application 1. A metal bonded grinding wheel is a metal bonded grinding wheel formed by combining diamond grains and / or CBN grains with a metal bond, which is characterized in that: The chemical composition is composed of Ni of 40 to 70 wt%, S η of 19 to 30 wt%, Ag of 1 to 7 wt%, and Cu that occupies at least 5 wt% of the residue. 2. The metal bonded grinding wheel according to item 1 of the scope of patent application, wherein the diamond grains and / or CBN grains are coated with titanium. 3. The metal bonded grinding wheel according to item 1 or 2 of the patent application scope, wherein the aforementioned metal bonded grinding wheel is used for the honing and / or honing of glass. 4. A method for manufacturing a metal bonded grinding wheel, which is a method for manufacturing a metal bonded grinding wheel formed by bonding diamond diamond particles and / or CBN particles with a metal bond, comprising: (a) In order to obtain Ni The amount of metal adhesive is 40 to 70 wt%, Sn is 19 to 30 wt%, Ag is 1 to 7 wt%, and at least 5 wt% of Cu is used to prepare a powder mixture of those metals. Mixed with diamond grains and / or CBN grains; and (b) mixing the aforementioned metal powder and grains with a mold using a heat-resistant alloy or a heat-resistant steel at a temperature of 650 to 850. C. Calcination; manufacturing method of metal bonded grinding wheel. 5. The method of manufacturing a metal bonded grinding wheel according to item 4 of the patent application, wherein diamond grains and / or C B N grains coated with titanium are used. 200418614 柒, (a) (two), the designated representative figure in this case is: None, the component representative symbols of this representative figure are simply explained: None. If there is a chemical formula in this case, please reveal the chemical formula that can best show the characteristics of the invention:
TW093105589A 2003-03-28 2004-03-03 Metal bond grinding wheel TW200418614A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091026A JP2004291218A (en) 2003-03-28 2003-03-28 Metal bond wheel

Publications (1)

Publication Number Publication Date
TW200418614A true TW200418614A (en) 2004-10-01

Family

ID=33404501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093105589A TW200418614A (en) 2003-03-28 2004-03-03 Metal bond grinding wheel

Country Status (4)

Country Link
JP (1) JP2004291218A (en)
KR (1) KR20040085004A (en)
CN (1) CN1541808A (en)
TW (1) TW200418614A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813385A1 (en) * 2006-01-27 2007-08-01 Comadur S.A. Method of burnishing a hard material and decorated workpiece made from a hard, burnished material
US8894731B2 (en) 2007-10-01 2014-11-25 Saint-Gobain Abrasives, Inc. Abrasive processing of hard and /or brittle materials
KR101269498B1 (en) 2008-07-02 2013-06-07 생-고벵 아브라시프 Abrasive slicing tool for electronics industry
CN102009393B (en) * 2009-09-04 2012-07-18 沈阳中科超硬磨具磨削研究所 Preparation technology of high-speed grinding CBN (Cubic Boron Nitride) ceramic grinding wheel
CN103038025B (en) * 2010-03-01 2014-10-15 俄罗斯联邦政府预算机构《联邦军事、特殊及双用途智力活动成果权利保护机构》 Copper based binder for the fabrication of diamond tools
TWI613285B (en) 2010-09-03 2018-02-01 聖高拜磨料有限公司 Bonded abrasive article and method of forming
CN102814749A (en) * 2012-08-24 2012-12-12 深圳市常兴技术股份有限公司 Metallic bond diamond grinding wheel with good self-sharpening performance
JP6064058B2 (en) 2012-12-31 2017-01-18 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive article and grinding method
WO2014106159A1 (en) 2012-12-31 2014-07-03 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
CN104994996B (en) 2012-12-31 2017-12-05 圣戈班磨料磨具有限公司 Bonded abrasive articles and method for grinding
US9833877B2 (en) 2013-03-31 2017-12-05 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
CN104669129B (en) * 2015-02-11 2018-06-22 河南富莱特超硬磨具有限公司 A kind of ceramics titanizing CBN grinding wheels and preparation method thereof
CN105349868B (en) * 2015-11-03 2017-07-21 白鸽磨料磨具有限公司 A kind of cermet bonding agent and preparation method thereof, CBN emery wheels and preparation method thereof
CN105773448B (en) * 2016-05-24 2019-01-15 广东工业大学 A kind of metallic bond grinding tool and preparation method thereof
CN107598782B (en) * 2016-07-11 2019-11-22 上海淳和投资中心(有限合伙) A kind of metallic bond, preparation method and skive
CN107598787B (en) * 2016-07-11 2019-11-26 上海淳和投资中心(有限合伙) A kind of skive and its manufacturing method
CN107053022B (en) * 2017-05-27 2019-05-10 江苏赛扬精工科技有限责任公司 A kind of high-intensity and high-tenacity wheel ceramic bonding agent and the preparation method and application thereof
CN109227410B (en) * 2018-09-27 2020-12-15 河南工业大学 cBN composite abrasive and manufacturing method thereof
CN110052974A (en) * 2019-05-09 2019-07-26 华侨大学 A kind of alusil alloy bonding agent cubic boron nitride emery wheel and its manufacturing method
MX2022004618A (en) * 2019-10-16 2022-05-06 Saint Gobain Abrasives Inc Abrasive articles and methods of forming.

Also Published As

Publication number Publication date
JP2004291218A (en) 2004-10-21
KR20040085004A (en) 2004-10-07
CN1541808A (en) 2004-11-03

Similar Documents

Publication Publication Date Title
TW200418614A (en) Metal bond grinding wheel
US8882868B2 (en) Abrasive slicing tool for electronics industry
JP5462922B2 (en) Cubic boron nitride compact
Artini et al. Diamond–metal interfaces in cutting tools: a review
JP5226522B2 (en) Cubic boron nitride compact
US7435276B2 (en) Abrasive particles having coatings with tortuous surface topography
TWI227183B (en) Porous abrasive tool and method for making the same
JP5905721B2 (en) Cubic boron nitride compact
TW200927386A (en) Abrasive processing of hard and/or brittle materials
WO2012060211A1 (en) Alumina sintered body, abrasive grains, and grindstone
Xiao et al. Microstructure and mechanical properties of vacuum brazed CBN abrasive segments with tungsten carbide reinforced Cu–Sn–Ti alloys
CN101121252A (en) Novel metal binding agent diamond tool and its preparation method
CN101121253A (en) Novel aluminium based metal binding agent diamond tool and its preparation method
CN101121255A (en) Aluminium based metal binding agent diamond tool and its preparation method
Miao et al. Influence of graphite addition on bonding properties of abrasive layer of metal-bonded CBN wheel
JP2002066928A (en) Hybrid grinding wheel and manufacturing method therefor
CN101121254A (en) Metal binding agent diamond tool and its preparation method
TW201446428A (en) Abrasive tools and methods of forming the same
RU2594923C2 (en) Grinding tool for processing fragile materials and method of its manufacturing
Wu et al. Development of a novel bulk metallic glass bonded single-layer diamond wheel
JP3513547B2 (en) Grinding stone for polishing single crystal diamond or diamond sintered body and polishing method thereof
JPH08229826A (en) Super-abrasive grain grinding wheel, and manufacture thereof
JP3751160B2 (en) Hard material abrasive grain densification structure
CN105473284B (en) Abrasive tool and method of forming the same
JPS6240340A (en) Diamond-type sintered material for cutting tool