Nothing Special   »   [go: up one dir, main page]

JP2020049420A - ニッケル酸化鉱石のオートクレーブ装置 - Google Patents

ニッケル酸化鉱石のオートクレーブ装置 Download PDF

Info

Publication number
JP2020049420A
JP2020049420A JP2018180267A JP2018180267A JP2020049420A JP 2020049420 A JP2020049420 A JP 2020049420A JP 2018180267 A JP2018180267 A JP 2018180267A JP 2018180267 A JP2018180267 A JP 2018180267A JP 2020049420 A JP2020049420 A JP 2020049420A
Authority
JP
Japan
Prior art keywords
autoclave
slurry
weir
weirs
leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018180267A
Other languages
English (en)
Other versions
JP7298126B2 (ja
Inventor
大祐 齋藤
Daisuke Saito
大祐 齋藤
二郎 早田
Jiro Hayata
二郎 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018180267A priority Critical patent/JP7298126B2/ja
Priority to PH12019000357A priority patent/PH12019000357A1/en
Publication of JP2020049420A publication Critical patent/JP2020049420A/ja
Application granted granted Critical
Publication of JP7298126B2 publication Critical patent/JP7298126B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】 保有液量を減らすことなく底部の残渣を良好に下流側に移送させることが可能なオートクレーブ装置を提供する。【解決手段】 横向きにした略円筒形の圧力容器の内部がその中心軸に垂直な壁面を有する1以上の堰(隔壁)11によって複数のスラリー貯留室(第1室、第2室、・・・、最終室)13a〜13fに区画されたニッケル酸化鉱石の高温加圧酸浸出処理用のオートクレーブ装置10であって、該1以上の堰(隔壁)11の各々はその下部に通液口11aを有しており、該通液口11aの開口面積は最低負荷時において当該堰11でオーバーフローが生じ得る条件で算出された開口面積の1.5〜2.0倍の広さを有しており、好適には最も上流側に位置する堰(隔壁)11の高さがオートクレーブ装置10の内径の90%以上である。【選択図】 図2

Description

本発明は、ニッケル酸化鉱石の高圧酸浸出処理を行うオートクレーブ装置に関する。
ニッケル酸化鉱石の湿式製錬方法として、硫酸を用いて高温加圧下で浸出処理を行う高温加圧酸浸出法(HPAL:High Pressure Acid Leach)が知られている。この方法は、従来の一般的なニッケル酸化鉱石の製錬方法である乾式製錬法とは異なり還元及び乾燥工程等の乾式工程を含んでおらず、一貫した湿式工程によって低ニッケル品位の酸化鉱石から効率よくニッケルとコバルトの混合硫化物を生成できるので、エネルギー及びコストに有利なプロセスである。
また、上記高温加圧酸浸出法の浸出処理では、加圧浸出反応用の圧力容器であるオートクレーブ装置(以下、単にオートクレーブとも称する)内において浸出液の酸化還元電位及び温度を調整することにより、主たる不純物である鉄をヘマタイトとして浸出残渣に固定できるので、回収対象物であるニッケル及びコバルトを鉄に対して選択的に浸出できるという大きな利点も有している。
上記のニッケル酸化鉱石の湿式製錬方法として、例えば特許文献1には、鉱石準備工程、HPAL工程、予備中和工程、向流型水洗工程、中和工程、脱亜鉛工程、硫化工程、及び最終中和工程からなる一連の湿式工程によりニッケルコバルト混合硫化物を生成するプロセスが開示されており、該HPAL工程の高圧酸浸出処理を行う圧力容器にオートクレーブを利用することが示されている。
また、特許文献2には、略円筒形の圧力容器を横向きにした形状のオートクレーブの内部を上部が開口した隔壁で複数室に区画し、HPAL工程の前段部において加熱及び加圧された原料スラリー及び硫酸をこれら複数室のうち最も上流側に位置する第1室に供給して攪拌機によって攪拌しながら浸出処理を行った後、得られた浸出スラリーを、下流側の第2室以降にオーバーフローにより順次移送して同様に浸出処理を行うことで浸出を進行させる技術が開示されている。
上記のように略円筒形の容器を横向きにした形状のオートクレーブの内部を、その中心軸方向に並ぶ複数室に区画して上流側から下流側に向けて浸出スラリーを順次オーバーフローさせる場合は、例えば特許文献3に示すように最も下流側に位置する最終室にレベル計を設置し、これにより測定された浸出スラリーのレベルに応じて該最終室から外部に延出する抜出しラインに設けた排出弁の開度又は開閉を制御することが行われている。また、ニッケル酸化鉱石のように鉄成分を多く含む原料鉱石を処理する場合は、オートクレーブ内で生成される浸出スラリーに残渣が多く含まれるため、例えば特許文献4に記載のように隔壁の下部にマンウェイ用の開口部のほか、スラリー移送用の通液口を設置する技術が開示されている。
特開2005−350766号公報 特開2018−040047号公報 特開2017−146221号公報 特開2014−025143号公報
上記特許文献4に示すように、オーバーフローが行われる隔壁の下部にスラリー移送用の通液口を設けることにより、残渣の堆積によるオートクレーブの有効容量の減少などの問題をある程度防ぐことができると考えられる。しかしながら、残渣の堆積やスケールの蓄積による該通液口の閉塞を考慮して該通液口の開口面積を大きめにしたところ、オートクレーブの開放点検時の内部の目視確認では残渣の堆積や通液口のスケールの蓄積は特に認められず、また、オートクレーブの隔壁のスケールの付着状況から判断して浸出スラリーが隔壁をオーバーフローしない場合が生じ得ることが判った。
すなわち、オートクレーブの隔壁に設ける通液口の開口面積の設計余裕を大きくしすぎると、該隔壁の上部を浸出スラリーがオーバーフローしなくなるので各室において設計通りの保有液量が達成されなくなり、浸出反応が不十分のままオートクレーブから浸出スラリーが抜き出されることになる。本発明は、上記した実情に鑑みてなされたものであり、ニッケル酸化鉱石の高圧酸浸出工程において、保有液量を減らすことなく底部の残渣を良好に下流側に移送させることが可能なオートクレーブ装置を提供することを目的にしている。
上記目的を達成するため、本発明に係るオートクレーブ装置は、横向きにした略円筒形の圧力容器の内部がその中心軸に垂直な壁面を有する1以上の堰によって複数のスラリー貯留室に区画されたニッケル酸化鉱石の高温加圧酸浸出処理用のオートクレーブ装置であって、前記1以上の堰の各々はその下部に通液口を有しており、該通液口の開口面積は最低負荷時において当該堰でオーバーフローが生じ得る条件下で求めた開口面積の1.5〜2.0倍の広さを有していることを特徴としている。
本発明によれば、ニッケル酸化鉱石の高圧酸浸出工程において使用するオートクレーブの保有液量を減少させることなく残渣が底面に蓄積する問題を防ぐことができる。
本発明の実施形態のオートクレーブ装置が好適に用いられるニッケル酸化鉱石の湿式製錬プロセスのプロセスフロー図である。 本発明の実施形態のオートクレーブ装置をその中心軸を通る面で切断した縦断面図である。 図2のオートクレーブ装置に設けられている隔壁の正面図である。
先ず、本発明の実施形態のオートクレーブ装置が好適に使用されるニッケル酸化鉱石の湿式製錬プロセスについて図1を参照しながら説明する。この図1に示す湿式製錬プロセスは、原料としてのニッケル酸化鉱石に対して粉砕及び篩別等の前処理を行って所定の粒度にすると共に水を加えてスラリーの形態に調製する鉱石準備工程S1と、該鉱石準備工程S1で調製された鉱石スラリーに硫酸を添加して高温加圧下で浸出処理を施すHPAL(高圧硫酸浸出)工程S2と、該HPAL工程S2で得た浸出スラリーに中和剤を添加してpHの調整を行う予備中和工程S3と、該予備中和工程S3でpH調整された浸出スラリーを向流多段洗浄しながらニッケル及びコバルトと共に不純物元素を含む貴液を浸出残渣スラリーから分離する向流型水洗工程S4と、該貴液にpH調整剤を添加することで不純物元素を含む中和澱物を生成し、これを分離除去してニッケル及びコバルトと共に亜鉛を含む中和終液を得る中和工程S5と、該中和終液に硫化剤を添加することで亜鉛硫化物を生成し、これを分離除去してニッケル及びコバルトを含むニッケル回収用母液を得る脱亜鉛工程S6と、該ニッケル回収用母液に硫化剤を添加することでニッケル及びコバルトを含むNiCo混合硫化物を生成した後、固液分離により該NiCo混合硫化物を回収する硫化工程S7と、該硫化工程S7の固液分離の際に排出される貧液及び上記向流型水洗工程S4から排出される浸出残渣スラリーに溶存する金属を除去(無害化とも称する)する最終中和工程S8とを有している。以下、これら工程の各々について説明する。
(1)鉱石準備工程
鉱石準備工程S1では、原料としてのニッケル酸化鉱石を必要に応じてジョークラッシャーなどの粉砕機に投入して粉砕した後、所定の目開きを有するスクリーンで篩別して例えば粒径2mm程度以下の鉱石を作製する。上記篩別は湿式で行ってもよく、この場合は粉砕した鉱石を適量の水と共に湿式スクリーンに導入することで、所定の粒度の鉱石を含んだ鉱石スラリーを原料スラリーとして篩下側に回収することができる。
この鉱石準備工程S1で処理されるニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱である。ラテライト鉱のニッケル含有量は、一般に0.8〜2.5質量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含まれている。このニッケル酸化鉱石は、鉄の含有量が10〜50質量%であり、これは主として3価の水酸化物(ゲーサイト)の形態を有しており、一部2価の鉄がケイ苦土鉱物に含まれている。鉱石調合工程S1の原料には、上記のラテライト鉱のほか、ニッケル、コバルト、マンガン、銅等の有価金属を含有する例えば深海底に賦存するマンガン瘤等の酸化鉱石が用いられることがある。
(2)HPAL工程
HPAL工程S2では、上記鉱石準備工程S1で調製された鉱石スラリーをポンプ及びプレヒーターで主に構成される昇温昇圧設備で所定の温度及び圧力まで好適には段階的に昇温昇圧した後、同様に昇温昇圧された硫酸と共にオートクレーブに装入し、更に高圧蒸気を吹き込んで該鉱石スラリーに対して攪拌しながら3〜4.5MPaG、220〜280℃程度の高温高圧条件下で高圧酸浸出処理を施すことによって、浸出液と浸出残渣とからなる浸出スラリーを生成する。このHPAL工程S2では、上記の高温加圧下で浸出液の酸化還元電位を調整することで浸出反応及び高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。
(3)予備中和工程
上記HPAL工程S2は、浸出率を向上させる観点から浸出液のpHが0.1〜1.0程度になるように過剰の硫酸が添加されるため、オートクレーブから抜き出される浸出スラリーには浸出反応に関与しなかった余剰の硫酸が遊離硫酸(フリー硫酸とも称する)として存在している。そこで、予備中和工程S3では、次工程の向流型水洗工程S4における多段洗浄の際に効率よく洗浄が行われるように、例えば炭酸カルシウム等の中和剤をスラリーの形態で添加することによって浸出スラリーのpHを好ましくは2.0〜3.0程度の範囲内に調整する。このpHが2.0より低いと装置が腐食されやすくなるので好ましくなく、逆にpHが3.0より高いと、浸出スラリー中に浸出したニッケルが析出しやすくなり、後段の向流型水洗工程S4において洗浄効率が低下するので好ましくない。
(4)向流型水洗工程
向流型水洗工程S4では、直列に連結した複数基のシックナーに上記予備中和工程S3にてpH調整された浸出スラリーと、洗浄液として好適には後工程の硫化工程S7から排出される低pHの貧液とを互いに向流になるように導入し、更に好適にはアニオン系の凝集剤を添加することで、浸出スラリーを多段洗浄しながら重力沈降分離により浸出残渣の除去を行う。これによりニッケル及びコバルトのほか亜鉛等の不純物元素を含む粗硫酸ニッケル水溶液からなる貴液が得られる。シックナーから抜き出された浸出残渣を含むスラリーは後述する最終中和工程S8で中和処理を施すことで重金属の除去処理を行った後、テーリングダムに移送される。
(5)中和工程
中和工程S5では、上記向流型水洗工程S4において浸出残渣から分離された粗硫酸ニッケル水溶液からなる貴液に炭酸カルシウム等のpH調整剤を添加してpH調整することで該貴液の酸化を抑制しながら不純物元素を含む中和澱物を生成する。この中和澱物を固液分離により除去することで、ニッケル及びコバルトのほか、主に亜鉛からなる不純物元素を含むニッケル回収用母液の元となる中和終液が得られる。この中和工程S5では、中和終液のpHが4.0以下、好ましくは3.0〜3.5、より好ましくは3.1〜3.2になるように上記pH調整を行うのが好ましく、これにより貴液中に残留する主に3価の鉄イオンやアルミニウムイオンを中和澱物として除去できる。
(6)脱亜鉛工程
脱亜鉛工程S6では、例えば加圧された容器内に上記中和工程S5で得た中和終液を導入し、該容器の気相中への硫化水素ガスの吹き込みなどによる硫化剤の添加により硫化処理が施され、これによりニッケル及びコバルトに対して亜鉛を選択的に硫化して亜鉛硫化物を生成させる。この亜鉛硫化物を分離除去することで、ニッケル及びコバルトを含む硫酸溶液からなるニッケル回収用母液(脱亜鉛終液)が得られる。なお、このニッケル回収用母液は、通常は不純物成分として鉄、アルミニウム、マンガン等の金属イオンを各々数g/L程度含んでいる。
(7)硫化工程
硫化工程S7では、上記ニッケル回収用母液に対して硫化水素ガス等の硫化剤を吹き込み、これにより硫化反応を生じさせてニッケル及びコバルトを含む硫化物(NiCo混合硫化物)を生成する。生成したNiCo混合硫化物はろ過などの固液分離により回収することができ、その際、液相側に貧液が排出される。なお、この硫化工程S7で処理されるニッケル回収用母液には前述したようにFe、Al、Mn等の不純物金属イオンが含まれている場合があるが、これら不純物成分はニッケル及びコバルトに比べて硫化物としての安定性が低く、よって上記NiCo混合硫化物にはほとんど含有されない。
(8)最終中和工程
最終中和工程S8では、上記硫化工程S7から排出される鉄、アルミニウム、マンガン等の不純物金属イオン及び未反応のNiイオンを含む貧液と、上記向流型水洗工程S4から排出される浸出残渣スラリーとに対して、好適には石灰石を中和剤として用いた第1の中和処理と、消石灰を中和剤として用いた第2の中和処理とからなる2段階の処理で中和処理を施すことで、これら金属イオンをその濃度が排出基準を満たすまで除去する無害化処理を行う。これにより、処理後のスラリーを系外のテーリングダムに移送することができる。
次に、上記一連の湿式処理プロセスのうち、HPAL工程S2で使用される本発明の実施形態のオートクレーブ装置の構造について、図2を参照しながら詳細に説明する。この図2に示す本発明の実施形態のオートクレーブ装置10は、略円筒部材をその中心軸が水平方向を向くように横向きにし、両端部に略半球状の鏡板を設けた圧力容器からなり、その内部には上部が開口した複数の板状の堰(隔壁)11が、それらの壁面を上記中心軸に対して垂直にして略均等な間隔をあけて該中心軸方向に並べられている。これにより、オートクレーブ装置10の内部は複数のスラリー貯留室(第1室、第2室、・・・、最終室)13a〜13fに区画されている。なお、図2にはオートクレーブ装置10の内部を5枚の堰(隔壁)11で6室のスラリー貯留室に区画した例が示されているが、堰(隔壁)11の数及びスラリー貯留室の室数はこれに限定されるものではない。
各スラリー貯留室には攪拌機12が備えられており、前述した昇温昇圧設備で加熱及び加圧された原料スラリーは、最も上流側に位置する第1室13aに供給され、攪拌されながら浸出処理が行われ、浸出スラリーが生成される。生成された浸出スラリーは堰(隔壁)11の上端部をオーバーフローすることにより隣接する第2室13bに移送され、同様に攪拌されながら浸出処理が行われる。以降、同様にしてオーバーフローにより隣接する下流側のスラリー貯留室に順次移送され、段階的に浸出処理が進行していく。
このようにして最も下流側に位置する最終室13fまで移送された浸出スラリーは、オートクレーブ装置10の上方から該最終室13f内に垂下する抜出管15を介して抜き出される。オートクレーブ装置10から抜き出された浸出スラリーは、図示しないフラッシュベッセルに導入されて所定の圧力まで減圧された後、後工程の予備中和工程S3で処理される。上記の最終室13fには好適には放射線式のレベル計14が設けられており、このレベル計14により計測した最終室13f内のスラリーレベルに基づいて抜出管15に設けた排出弁16の開度又は開閉が制御される。これにより、最終室13fの液位がほぼ一定に維持される。
ところで、ニッケル酸化鉱石のように鉄成分を多く含む鉱石の浸出処理では、上記オートクレーブ装置10内で生成される浸出スラリー中に浸出残渣が多く含まれるため、上記堰(隔壁)11の下部にメンテナンス用のマンウェイMWのほか、図2の白矢印で示すような該浸出残渣の流通用の通液口11aが設けられている。この通液口11aは、その下端部が攪拌機12のインペラの下端部よりも下側に位置するように開口しているのが好ましい。これにより、攪拌機12による流体の攪拌でも上昇できない重い粒子やスケールが浸出残渣に含まれていても、これらがオートクレーブ装置10の底部に堆積するのを防ぐことができる。上記のオートクレーブ装置10内のスケールは主にヘマタイトであり、それ以外に石膏も生成しうるが、スラリー液のカルシウム濃度を管理することで石膏生成は抑えることができる。
上記の堰(隔壁)11の通液口11aを通過する流体の流速V[単位m/s]は、該堰(隔壁)11によって区分されている前後の両スラリー貯留室の液面レベルの差をΔh[単位m]、重力加速度をg[単位m/s]としたとき、ベルヌーイの定理から下記式1で表わすことができる。
[式1]
V=(2gΔh)0.5
従って、通液口11aの開口面積をA[単位m]としたとき、該通液口11aを通過する流体の単位時間当たりの流量F[単位m/h]は下記式2となる。
[式2]
F=V×A
従来、上記通液口11aの開口面積Aを求める場合は、該オートクレーブ装置10に装入する原料スラリーの流量が設計流量の例えば60%の最低負荷時においても全ての堰(隔壁)11においてオーバーフローが生じ得るものとして求めた最低負荷時開口面積A’を基準とし、通液口11aにおけるスケール等による閉塞を考慮して上記最低負荷時開口面積A’に1以上の係数αをかけたαA’を開口面積Aとして採用することが行われていた。
例えば、設計流量100m/hで最低負荷が設計流量の60%の場合、オートクレーブ装置10への原料スラリーの装入流量は60m/hとなる。この値を上記式1及び式2に代入すると60=(2gΔh)0.5×A’となり、Δhは互いに隣接する堰(隔壁)11同士の高さの差とすることができるので、最低負荷時開口面積A’を求めることができる。
このようにして求めた最低負荷時開口面積A’にかける係数αの値は、スケールによる閉塞を考慮して経験則から4.6が採用されることがあった。この場合、スケール等による閉塞がなければ、通液口11aの開口面積は最低負荷時の装入流量条件においてオーバーフローが生じ得る条件下で求めた最低負荷時開口面積A’に対して4.6倍の広さを有していることになる。従って、設計流量の100%程度の最大負荷時の装入流量条件であっても通液口11aの開口面積が広すぎるおそれがあり、現にオートクレーブ装置10の開放点検時に目視にて内部を確認したところ、底部の残渣の堆積や通液口11aの閉塞はほぼ認められず、また、各堰(隔壁)11の壁面上のスケールの付着範囲から判断して浸出スラリーは堰(隔壁)11をオーバーフローしていないことが判った。
このように、通液口11aの開口面積の設計の際、係数αに上記値を採用すると開口面積が過大になるため、オートクレーブ装置10内において浸出スラリーは堰(隔壁)11をオーバーフローせずに堰(隔壁)11の通液口11aのみを通過して下流側のスラリー貯留室に移送されることになる。この場合、堰(隔壁)11を挟んで互いに隣接するスラリー貯留室同士の液位差は、該堰(隔壁)11の通液口11aでの圧力損失だけでほぼ定まるため、オーバーフローが生じている時の液位差に比べて極めて小さくなり、各スラリー貯留室において設計通りの保有液量が得られなくなる。その結果、各スラリー貯留室での滞留時間が減少するので浸出反応の反応時間が不十分になり、所望のニッケル回収効率が達成されなくなるおそれがある。
これに対して、本発明の実施形態のオートクレーブ装置10は、堰(隔壁)11に設けた通液口11aの開口面積についてオートクレーブ装置10の堰(隔壁)11におけるオーバーフロー状況や通液口11aの閉塞等を考慮して検討を重ねた結果、上記の設計流量の60%の最低負荷時においてオーバーフローが生じ得る条件下で求めた最低負荷時開口面積A’にかける上記の係数αの値を1.5以上2.0以下に規定している。これにより、通液口11aの開口面積が広すぎることに起因する問題を抑えることができ、各スラリー貯留室において所望の保有液量を維持することが可能になる。その結果、各スラリー貯留室において所望の滞留時間を安定的に確保することができ、浸出反応を良好に進行させることができる。
上記の係数αが1.5未満では、各堰(隔壁)11でのオーバーフロー量が通常運転時において特に過大になり、各スラリー貯留室での保有液量が不安定になったり堰(隔壁)11の上部におけるスケールの付着が増大したりする問題が生じ得るので好ましくない。また、残渣がオートクレーブ装置10の底部に溜まりやすくなり、通液口11aが閉塞するリスクが高くなる。逆に、上記の係数αが2.0を超えると、各堰(隔壁)11においてオーバーフローが生じない状況が生じやすくなり、浸出スラリーは通液口11aのみを通過して上流側のスラリー貯留室から下流側のスラリー貯留室に移送されることになるので堰(隔壁)11の前後で液位差がほとんど生じなくなり、各スラリー貯留室において設計通りの保有液量を得ることができず、所望の滞留時間が確保されなくなって浸出処理が不十分になる。
本発明の実施形態のオートクレーブ装置10の上記堰(隔壁)11の各々は、そのすぐ上流側のスラリー貯留室とそのすぐ下流側のスラリー貯留室との液位の差が50〜150mmの範囲内にあることが好ましい。この液位差は、オートクレーブ装置10の内径の1.1〜3.1%に相当する。上記の液位差は最も下流側の堰(隔壁)を除いて隣接する堰(隔壁)同士の高さの差を50〜150mmの範囲内にすることで可能になる。なお、最も下流側の堰は最終室13fのレベル計を調整することで上記液位差を確保することができる。
本発明の実施形態のオートクレーブ装置10は、上記通液口11aが図3に示すように堰(隔壁)の最下端部に位置しているのが好ましい。これによりオートクレーブ装置10の底部に残渣が蓄積するのをより確実に防ぐことができるので、オートクレーブ装置10内の容量をより有効に活用することが可能になる。また、各堰(隔壁)11の通液口11aは、例えばスライド式の扉によって開口面積を適宜調整できるようにしてもよい。更に、浸出処理が進むに従って浸出スラリー中の固形分濃度が変化するので、これに応じて通液口11aの開口面積を堰(隔壁)11ごとに変えてもよい。例えば、下流側にいくに従って通液口11aの開口面積を徐々に狭くなるようにしてもよい。
本発明の実施形態のオートクレーブ装置10は、複数のスラリー貯留室のうち、最も上流側に位置する第1室13aとこれに隣接する第2室13bとを区分する堰(隔壁)11の高さがオートクレーブ装置10の内径の90%以上であるのが好ましい。これにより、オートクレーブ装置10の容積の91%以上をスラリーの保有用に利用することができる。なお、堰(隔壁)11の高さの上限は、オーバーフローが阻害されないのであれば特に限定はないが、一般的にはオートクレーブ装置10の内径の95%以下であるのが好ましい。また、各堰(隔壁)11の高さは、例えばスライド式の矩形板状部材を用いて適宜調整できるようにしてもよい。
[実施例1]
図2に示すような5枚の堰(隔壁)11によって内部が6つのスラリー貯留室に区分されたオートクレーブ装置10を用意し、その最も上流側の第1室13aに、Ni品位1.1%のニッケル酸化鉱石に水を加えてスラリー濃度42wt%に調製した原料スラリーを設計流量Fdの125%で連続的に供給し、温度253℃、圧力4450kPaG、遊離酸濃度48g/Lの反応条件で高圧酸浸出処理を行った。なお、上記原料スラリーのCa濃度は0.1g/L以下であった。
最も上流側に位置する第1室13aとこれに隣接する第2室13bとを区分する堰(隔壁)11の高さはオートクレーブ装置10の内径の90%とし、それ以外の4枚の堰(隔壁)は下流側になるに従って100mmずつ低くなるようにした。また、スラリー貯留室の最終室13fに放射線式のレベル計14を設け、該最終室13fの液面レベルがオートクレーブ装置10の内径の85%の高さが維持されるようにレベル計14を調整した。
各堰(隔壁)11の最下端部には矩形の通液口11aを設け、その開口面積は設計流量Fdの60%で各堰(隔壁)11においてオーバーフローが生じうる条件である0.6Fd÷(2gΔh)0.5に係数αをかけて求めた。その際、Δhには隣接する2つの堰(隔壁)11の高さの差である100mmを採用し、係数αは1.6とした。その結果、原料スラリー中のニッケル酸化鉱石のNi浸出率は94.2%となった。なお、このNi浸出率は、浸出残渣と原料スラリー中のニッケル酸化鉱石とをそれぞれサンプリングし、それらをXRF分析装置で分析して得たNi含有量とスラリー濃度から求めた。
上記の高圧酸浸出処理を一定期間行った後、オートクレーブ装置10の開放点検時に内部を確認したところ、残渣の堆積はほとんど認められなかった。また、各堰(隔壁)11の壁面に全面に亘ってスケールがほぼ均等に付着しており、この状況からオーバーフローが生じていることが確認できた。よって、オートクレーブ装置10の全スラリー貯留室において、オートクレーブ装置10の容積の91.8%に相当する保有液量が確保されていたことになる。
[比較例]
係数αに1.6に代えて4.6を採用した以外は上記の実施例1と同様にして高圧酸浸出処理を行った。その結果、原料スラリー中のニッケル酸化鉱石のNi浸出率は93.9%となった。実施例1と同様に高圧酸浸出処理を一定期間行った後にオートクレーブ装置10の開放点検時に内部を確認したところ、残渣の堆積はほとんど認められなかったものの、各堰(隔壁)11の壁面においてオートクレーブ装置10の内径の85%の液レベルよりも高い部分にはスケールがほとんど付着していなかった。このスケール付着状況から判断してオーバーフローが生じておらず、この場合はオートクレーブ装置10の全スラリー貯留室の保有液量はオートクレーブ装置10の全容積の85.6%になる。
10 オートクレーブ装置
11 堰(隔壁)
11a 通液口
12 攪拌機
13a〜13f スラリー貯留室(第1室、第2室、・・・、最終室)
14 レベル計
15 抜出管
16 排出弁
MW マンウェイ
S1 鉱石準備工程
S2 HPAL工程
S3 予備中和工程
S4 向流型水洗工程
S5 中和工程
S6 脱亜鉛工程
S7 硫化工程
S8 最終中和工程

Claims (4)

  1. 横向きにした略円筒形の圧力容器の内部がその中心軸に垂直な壁面を有する1以上の堰によって複数のスラリー貯留室に区画されたニッケル酸化鉱石の高温加圧酸浸出処理用のオートクレーブ装置であって、
    前記1以上の堰の各々はその下部に通液口を有しており、該通液口の開口面積は最低負荷時において当該堰でオーバーフローが生じ得る条件下で求めた開口面積の1.5〜2.0倍の広さを有していることを特徴とするオートクレーブ装置。
  2. 前記1以上の堰の各々は、そのすぐ上流側のスラリー貯留室とそのすぐ下流側のスラリー貯留室の液位の差が50〜150mmの範囲内にあることを特徴とする、請求項1に記載のオートクレーブ装置。
  3. 前記1以上の堰のうち、最も上流側に位置する堰は、その高さがオートクレーブ装置の内径の90%以上であることを特徴とする、請求項1又は2に記載のオートクレーブ装置。
  4. 前記通液口は前記堰の最下端部に設けられていることを特徴とする、請求項1〜3のいずれか1項に記載のオートクレーブ装置。
JP2018180267A 2018-09-26 2018-09-26 ニッケル酸化鉱石のオートクレーブ装置 Active JP7298126B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018180267A JP7298126B2 (ja) 2018-09-26 2018-09-26 ニッケル酸化鉱石のオートクレーブ装置
PH12019000357A PH12019000357A1 (en) 2018-09-26 2019-09-23 Autoclave device of nickel oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180267A JP7298126B2 (ja) 2018-09-26 2018-09-26 ニッケル酸化鉱石のオートクレーブ装置

Publications (2)

Publication Number Publication Date
JP2020049420A true JP2020049420A (ja) 2020-04-02
JP7298126B2 JP7298126B2 (ja) 2023-06-27

Family

ID=69995043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018180267A Active JP7298126B2 (ja) 2018-09-26 2018-09-26 ニッケル酸化鉱石のオートクレーブ装置

Country Status (2)

Country Link
JP (1) JP7298126B2 (ja)
PH (1) PH12019000357A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296048B1 (ja) 2022-03-31 2023-06-22 住友金属鉱山株式会社 スケーリング防止方法
JP7571477B2 (ja) 2020-11-06 2024-10-23 住友金属鉱山株式会社 フラッシュベッセル内からの残留物の排出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530077A (ja) * 2006-03-17 2009-08-27 バリック・ゴールド・コーポレイション 底流仕切部材を備えたオートクレーブ
US20100024603A1 (en) * 2004-12-22 2010-02-04 Placer Dome Technical Services Ltd. Reduction of lime consumption when treating refractory gold ores or concentrates
JP2014025143A (ja) * 2012-06-19 2014-02-06 Sumitomo Metal Mining Co Ltd 高圧酸浸出工程におけるオートクレーブ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100024603A1 (en) * 2004-12-22 2010-02-04 Placer Dome Technical Services Ltd. Reduction of lime consumption when treating refractory gold ores or concentrates
JP2009530077A (ja) * 2006-03-17 2009-08-27 バリック・ゴールド・コーポレイション 底流仕切部材を備えたオートクレーブ
JP2014025143A (ja) * 2012-06-19 2014-02-06 Sumitomo Metal Mining Co Ltd 高圧酸浸出工程におけるオートクレーブ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7571477B2 (ja) 2020-11-06 2024-10-23 住友金属鉱山株式会社 フラッシュベッセル内からの残留物の排出方法
JP7296048B1 (ja) 2022-03-31 2023-06-22 住友金属鉱山株式会社 スケーリング防止方法
JP2023151304A (ja) * 2022-03-31 2023-10-16 住友金属鉱山株式会社 スケーリング防止方法

Also Published As

Publication number Publication date
PH12019000357A1 (en) 2021-11-22
JP7298126B2 (ja) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6135609B2 (ja) オートクレーブへのガス吹込み方法
WO2011132693A1 (ja) 貯液装置及びその圧力制御方法
JP5644878B2 (ja) 固液分離処理方法、並びにニッケル酸化鉱石の湿式製錬方法
JP7298126B2 (ja) ニッケル酸化鉱石のオートクレーブ装置
JP5692458B1 (ja) 固液分離処理方法、並びにニッケル酸化鉱石の湿式製錬方法
JP6020651B1 (ja) 鉱石スラリーの前処理方法、鉱石スラリーの製造方法
WO2017051578A1 (ja) 比重分離装置
JP6589950B2 (ja) 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法
JP6222141B2 (ja) ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP6953988B2 (ja) 硫化剤の除去方法
JP2020033602A (ja) 高濃度鉱石スラリーの製造方法
JPWO2019172392A1 (ja) Ni・Co硫化物製造方法及び鉄品位安定化システム
JP2016113703A (ja) ニッケル酸化鉱石の湿式製錬における中和方法
JP2020076129A (ja) 石膏スケールの析出を抑制したニッケル酸化鉱石の湿式製錬方法
JP5971364B1 (ja) 鉱石スラリーの前処理方法、鉱石スラリーの製造方法
JP7277074B2 (ja) 残存硫化水素の除去方法及び硫化反応容器
JP6661936B2 (ja) ニッケル酸化鉱石の湿式製錬方法、浸出処理設備
JP2021030101A (ja) 中和処理方法
JP7293873B2 (ja) ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
WO2017130693A1 (ja) 残存硫化水素の除去方法
JP7279546B2 (ja) ニッケル酸化鉱石の浸出処理方法及びこれを含む湿式製錬方法
JP7285425B2 (ja) 高圧酸浸出処理を行うオートクレーブ装置
JP7247729B2 (ja) ニッケル酸化鉱石の湿式製錬において発生する貧液の中和処理方法
JP2020132945A (ja) 硫化反応設備及びその運転方法
JP7571477B2 (ja) フラッシュベッセル内からの残留物の排出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230302

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150