一つの実態形態における本発明は、少なくとも一つの金属粉末から成る粉末混合物について述べる。一つの実態形態では、この少なくとも一つの金属粉末には、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、銅(Cu)、マグネシウム(Mg)、タングステン(W)、モリブデン(Mo)、アルミニウム(Al)およびチタン(Ti)のいずれかの粉末状合金を含む。一つの実態形態における本発明は、金属または少なくとも一部の金属部品の製造のための粉末混合物の使用について述べる。
一つの実態形態における、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合は、少なくとも鉄、ニッケル、コバルト、銅、マグネシウム、モリブデン、タングステン、アルミニウムまたはチタンのいずれかを含む既存の合金を指す。または本使用で明示された、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウム、チタン基合金、および後述する粉末混合物または本使用の方法に適しているいずれかの鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金をそれぞれ含む
既存のニッケル基合金の例えには、商業用純合金ニッケルや商業用低合金ニッケル(ニッケル200、ニッケル201、ニッケル205、ニッケル270、ニッケル290、パーマロイニッケル300、デュラロイニッケル301など)、ニッケル-クロミウム系やクロミウム-鉄系(合金600、ナイモニック合金、合金X750、合金718、合金X、ワスプロイ、合金625、合金g3/g30、合金c-276、合金690など)、鉄-ニッケル-クロミウム系合金(合金800、合金800HT、合金801、合金802、合金825など)、ニッケル-鉄系低膨張合金(インバー、合金42、合金52など)がある。既存のコバルト基合金の例えには、クローム、ニッケル、タングステンなどを含んだコバルト基物質合金(GradesMTEK6、R30006、MTEK21、R30021、MTEK31、R30031やハステロイ、FSK-414、F75、F799(類似した構成で若干異なる製造工程のCo-Cr-Mo系合金)、F90(Co-Cr-W-Ni系合金)、F562(Co-Ni-Mo-Ti系合金、ステライト)がある。既存のアルミニウム基合金の例えには、アルジンク、Al2024、Al6061、Al3003、ジュラルミン、アルクラッドなどがある。一つの実態形態におけるモリブデン基合金を含むが、それに限定されないものにはTZM、MHC、Mo-17.8Ni-4.3Cr-1.0Si-1.0Fe-0.8、Mo-3Mo2Cがある。既存のタングステン基合金の例には、タングステン-ニッケル-鉄系合金(HD17D、HD17.5、HD18D、HD18.5)、タングステン-ニッケル-銅系合金(HD17、HD18)、WHD13、WHD11、WHD14、WHD12、WHD15がある。既存のマグネシウム基合金の例には、マグノックス、AZ63、AZ81、AZ31、エレクトロン21、エレクトロン675がある。既存のチタン基合金の例には、Ti-5Al-2Sn-ELI、Ti-8SAl-1Mo-1V、Ti-6Al-2Sn-4Zr-2Mo、Ti-5Al-5Sn-2Zr-2Mo、IMI685、Ti1100、Ti6Al4Vなどがある。
ひとつの実態形態における本発明は、少なくとも二つの金属粉末を含んだ粉末混合物について述べる。別の実態形態においては、粉末混合物には、異なった融点を有する少なくとも二つの金属粉末が含まれる。ひとつの実態形態においては、粉末混合物には、少なくとも一つの粉末状低融点合金や粉末状高融点合金が含まれる。ひとつの実態形態においては、この低融点粉末合金は、合金に加えられる際、低い含有量かつ低温度下で、あらゆるタイプの液相を示す合金の二次系状態図を有する要素を含んでいる鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムおよびチタン基合金の中から精選される。ひとつの実態形態においては、粉末状の低融点合金は、ガリウム (Ga)、ビスマス (Bi)、鉛 (Pb)、ルビジウム (Rb), 亜鉛 (Zn)、 カドミウム (Cd)、 インジウム (In)、スズ (Sn)、カリウム (K)、ナトリウム (Na)、 マンガン (Mn)、ホウ素(B)、スカンジウム (Sc)、ケイ素(Si) 、マグネシウム (Mg)、またはそれらの組み合わせなどの、少なくとも一つの要素を含む鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムおよびチタン基合金から精選される。ひとつの実態形態においては、この低融点合金は、ガリウム合金、AlGa合金、CuGa合金、SnGa合金、MgGa合金、MnGa合金、NiGa合金、高マンガン含有合金、炭素(鋼)をさらに含む高マンガン含有Fe基合金、Mgを含むAl系合金、Scを含むAl系合金、Snを含むAl系合金、Alを90重量%超含有するAl系合金等が挙げられるから精選される。ひとつの実態形態においてこの高融点合金は、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデンのいずれかから精選される。ひとつの実態形態における本発明は、アルミニウムおよびチタン基合金の金属または少なくとも一部の金属性部品の製造のための粉末混合物の使用について述べる。ひとつの実態形態における粉末混合物は、さらに有機化合物を含む。ひとつの実態形態における低融点合金は、本資料に記述されている、低融点または低融点共晶を上昇させる要素などのうち少なくとも一つの要素を有する合金である、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金の中から精選される。ひとつの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素などのうち少なくとも一つの要素を有する合金である、既存の鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金の中から精選される。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含む鉄基合金である。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含むニッケル(Ni)基合金である。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含むコバルト(Co)基合金である。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含む銅(Cu)基合金である。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含むマグネシウム(Mg)基合金である。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含むタングステン(W)基合金である。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含むモリブデン(Mo)基合金である。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含むアルミニウム(Al)基合金である。
一つの実態形態における低融点合金は、低融点または低融点共晶を上昇させる要素のうち少なくとも一つの要素を有する合金を含むチタン(Ti)基合金である。
一つの実態形態における低融点または低融点共晶を上昇させる要素は、ガリウム、ビスマス、鉛、ルビジウム、 亜鉛 、 カドミウム、 インジウム、 錫、カリウム、 ナトリウム、 マンガン、 ボロン、スカンジウム、シリコン、および/またはマグネシウム、またはそれらのいずれかの組み合わせなどから精選される。
一つの実態形態における低融点合金は、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウム及びチタン基合金の二次系状態図を有するいずれかの要素から選択される。また低い含有量及び低温下におけるいずれかの液相の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。一
一つの実態形態における低い含有量の要素とは、合金中の重量が20%以下の要素を指す。ほかの実態形態では16%以下、ほかの実態形態では12%以下、ほかの実態形態では9%以下、ほかの実態形態では7%以下、ほかの実態形態では4%以下、ほかの実態形態では1.8%以下、さらにほかの実態形態では0.3%以下とされる。
ひとつの実態形態における相状態図とは、熱力学的に性質の異なった相が平衡状態で存在または共存する状態(%/重量、%/体積、%/原子量などの)を表す図表である。
ひとつの実態形態における二次系状態図とは、一定の温度や構成物に表れる平衡相を示す、温度-構成物(%/重量、%/体積、%/原子量など)図表である。
一つの実態形態における低融点合金は、鉄基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
一つの実態形態における低融点合金は、ニッケル基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
一つの実態形態における低融点合金は 、コバルト基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
一つの実態形態における低融点合金は、銅基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
一つの実態形態における低融点合金は、マグネシウム基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
一つの実態形態における低融点合金は、タングステン基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
一つの実態形態における低融点合金は、モリブデン基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
一つの実態形態における低融点合金は、アルミニウム基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
一つの実態形態における低融点合金は、チタン基合金の二次系状態図を有するいずれかの要素から選択される。またい低い含有量及び低温下におけるいずれかの液槽の存在や、合金に加えられる際のより低い温度下での液相の形成は、拡散率を高める。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせなどの中から選択された少なくとも一つの要素を含む、鉄、、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金の中から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む鉄合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含むニッケル合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含むアルミニウム合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含むコバルト合金から精選される。
ひとつの実態形態における低融点合金は、ガリウムビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む銅合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含むマグネシウム合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含むタングステン合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含むモリブデン合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含むチタン合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはこれらのいずれかの組み合わせなどから選ばれた少なくとも一つの要素を含む既存の鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせなどから選ばれた少なくとも一つの要素が加わった既存の鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存の鉄合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存の鉄合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存のニッケル合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存のニッケル合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存のアルミニウム合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存のアルミニウム合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存のコバルト合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存のコバルト合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存の銅合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存の銅合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存のマグネシウム合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存のマグネシウム合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存のタングステン合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存のタングステン合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存のモリブデン合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存のモリブデン合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、マグネシウム、スカンジウム、ケイ素、またはそれらのいずれかの組み合わせから選ばれた少なくとも一つの要素を含む既存のチタン合金から精選される。ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせに加えられた既存のチタン合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらのいずれかの組み合わせなどから選ばれた少なくとも一つの要素を含む、本資料に記述されている、新しい鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のある鉄合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のあるニッケル合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のあるアルミニウム合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のあるコバルト合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のある銅合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のあるマグネシウム合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のあるタングステン合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のあるモリブデン合金から精選される。
ひとつの実態形態における低融点合金は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはそれらいずれかの組み合わせから選ばれた少なくとも一つの要素を含む、本資料に記述のあるチタン合金から精選される。
金属微粒子の大きさは、本発明の使用において非常に重要な点である。大まかに言えば、細かな粉末は、容易に凝固し、したがって高い最終密度を得ることができる。また、精細な細部になることで、高い精度で高い耐久性を得ることも可能になる。しかしながら、コストが上がるため、経済的に実現不可能な形状も出てくる。前述にある通り、通常は、求められた表面上の大きさは主要な構成物の表面上の大きさに関係しており、異なった表面上の大きさを異なった相に有することは、本発明において都合がいい。別段の記載がない限り、金属粉末の表面上の大きさはD50と示す。また間隙充填分布の他に、テーラードや不規則分布と呼ばれるものも、いくつかの使用においては好都合である。精細な細部や急速な拡散を要する使用に金属粉末を用いる場合、78ミクロンかそれ以下のかなり細かなD50の粉末が使用できる。できれば48ミクロンかそれ以下、18ミクロンかそれ以下、8ミクロンかそれ以下と、細かい粒子であればよりよい。その他の使用時では、D50が780ミクロンかそれ以下のかなり粗目の粉末でも使用可能で、380ミクロンかそれ以下、180ミクロンかそれ以下、120ミクロンかそれ以下と、細かくなるほどよりよい。いくつかの使用によっては、細かい粉末は不利になることもあり、D50が12ミクロンかそれ以上のものが求められることもある。さらには22ミクロンかそれ以上、42ミクロンかそれ以上、72ミクロンかそれ以上のものが求められる場合もある。いくつかの金属相が微粒子の状態で存在し、かつ大多数の金属粉末の割合が異なる相の大きさである時に後者のD50値が適応される。
ひとつの実態形態における粒度分布(PSD)は、測定対象のサンプル粒子群にどういった大きさの粒子がどういった割合(総粒子量を100%とした場合の相対的な粒子量)で存在するかを示す指数である。体積、面積、長さ、そして数量は、粒子量の基準になる。しかしながら、体積基準は一般的にかなり使用されている。頻度分布は、目的の粒子サイズの範囲が異なる間隔に分かれた後、それぞれの粒子サイズの間隔に存在する粒子量をパーセンテージで示すものである。それに対し、累積分布(ふるいを通る粒子対象)は、特定の粒子サイズかそれ以下の粒子量の比率を示すものである。また頻度分布(ふるいに留まる粒子対象)は、特定の粒子サイズかそれ以上の粒子量の比率を示す。
ひとつの実態形態における粒度分布は、シーブ法を用いて決められる。シーブ法は、シンプルで安価、さらに解釈が容易であることから、いまだ広く使用されている方法である。使用法は、ふるいに留まる量がある程度一定になるまでサンプルを振るというシンプルなものである。
ひとつの実態形態における粒度分布は、レーザー散乱法を用いて決めるものである。この方法は、空気中または液体の中の粒子群にレーザー光線を照射した際に観察できる散乱光を分析するものである。照射の角度は、粒子のサイズが小さいほど大きくなるため、0.1-3000μmの大きさの粒子を測定するのに適している。精巧なデータプロセスや自動化の進歩により、この方法は、工場での粒度分布で圧倒的に使用されている方法である。この技術は比較的早く、非常に小さなサイズのサンプルにも使用できる。この技術の具体的な利点は、一連の分析プロセスのために、継続的な計測が可能な点である。レーザー回折は、照射された微粒子サンプルをレーザー光が通り過ぎる際に生じる光の角度の違いから粒度分布を測定する方法である。下の図で示される通り、大きな粒子は、照射したレーザー光と比較すると小さな角度で光が散乱し、小さな粒子の場合は、大きな角度で光が散乱する。散乱の角度差のデータは、ミー散乱理論を用いて散乱パターンを作成し、粒子サイズを測定した後、散乱角度の分析を行う。粒子サイズは、球体積相当径として報告される。今現在、レーザー散乱とフラウンホーファー回析(FD)の二つの手法があり、研究対象のサイズ範囲により選択される。DLSは、少量のナノメーターから、およそ1ミクロンのサイズのものに使用し、FDは1ミクロンからミリメーターサイズのものに使用する。ひとつの実態形態における粒度分布を決定する方法は、DLSである。ひとつの実態形態における粒度分布を決定する方法は、FDである。
ひとつの実態形態における粉末のD50は、78ミクロンかそれ以下である。ほかの実態形態においては、48ミクロンかそれ以下、18ミクロンかそれ以下、8ミクロンかそれ以下と、それぞれの実態形態により異なる。
ひとつの実態形態における粉末のD50は、780ミクロンかそれ以下である。ほかの実態形態においては、380ミクロンかそれ以下、180ミクロンかそれ以下、120ミクロンかそれ以下と、それぞれの実態形態により異なる。
ひとつの実態形態における粉末混合物の最大の最頻値は、78ミクロンかそれ以下である。ほかの実態形態においては、48ミクロンかそれ以下、18ミクロンかそれ以下、8ミクロンかそれ以下と、それぞれの実態形態により異なる。
ひとつの実態形態における粉末混合物の最大の最頻値は、780ミクロンかそれ以下である。ほかの実態形態においては、380ミクロンかそれ以下、180ミクロンかそれ以下、120ミクロンかそれ以下と、それぞれの実態形態により異なる。
ひとつの実態形態における主要な金属粉末は、D50値が780ミクロンかそれ以下の場合は単峰性分布になる。他の実態形態においては380ミクロンかそれ以下であればよりよいとし、他の実態形態においては180ミクロンかそれ以下、120ミクロンかそれ以下、78ミクロンかそれ以下。48ミクロンかそれ以下、18ミクロンかそれ以下、8ミクロンかそれ以下、とそれぞれの実態形態によって異なり、小さい値であるほどよりよいとする
一つの実態形態における主要な金属粉末は、最頻値が780ミクロンかそれ以下の場合は二峰性分布となる。他の実態形態においては380ミクロンかそれ以下であればよりよいとし、他の実態形態においては180ミクロンかそれ以下、120ミクロンかそれ以下、78ミクロンかそれ以下。48ミクロンかそれ以下、18ミクロンかそれ以下、8ミクロンかそれ以下、とそれぞれの実態形態によって異なり、小さい値であるほどよりよいとする。
一つの実態形態における主要な金属粉末は、最頻値が780ミクロンかそれ以下の場合は三峰性分布となる。他の実態形態においては380ミクロンかそれ以下であればよりよいとし、他の実態形態においては180ミクロンかそれ以下、120ミクロンかそれ以下、78ミクロンかそれ以下。48ミクロンかそれ以下、18ミクロンかそれ以下、8ミクロンかそれ以下、とそれぞれの実態形態によって異なり、小さい値であるほどよりよいとする。
本発明において発明者は、ポリマーか少なくとも二つの異なる金属物質を含む材料の使用が、多くの使用において有益であるとみている。発明者は、金属の性質やその形態が、本発明により製造された部品の最終的な性質に重要な役割を担っているとみている。球状の形状や粒度分布に影響を与える粉末の形状も、表面の活性部位や最大限の体積分率を得るという点において併せて重要であるとみている。
個々の金属粉末は、異なる大きさの統計分布により分類できる。一つの実態形態におけるこの分布は、個々群分布の平均値、中央値、最頻値などの統計パラメータにより分類できる。一つの実態形態において、その際の平均値とは、個々群の平均サイズ、中央値とは、個々群のサイズがサイズ値の50%以上または以下のサイズ、さらに最頻値とは、最大度数のサイズを示す。このように、粒度分布の種類により、表れるカーブが正規、歪み、多峰性などに分かれる。一つの実態形態における正規またはガウス分布は、カーブが対称かつ逆U字型であり、個々群の平均値と標準偏差を特徴とする。歪み分布は、左右非対称のカーブが特徴的で、一方の裾がもう一方の裾よりも短く、右に歪んだ分布または左に歪んだ分布に分けられる。一つの実態形態において、カーブが左右非対称な場合、中央値は特徴付けにおいて最もよいパラメーターである。本発明のある実態形態は、分布カーブのピークが異なるために二つのモード値が区別される二峰性粒度分布を含む。他の実態形態においては、三つ以上のモード値が存在する場合、三峰性、四峰性となる。
粉末よりもかなり高い金属の体積分率が求められる場合には、球状に近くなり、粒度分布は細くなる。粉末の真球度は、粒子と同じ体積を有する球の表面積の間の比率と定義されている無次元パラメーターである。いくつかの使用で求められる粒子の表面積は、0.53以上であり、0.76以上、0.86以上、0.92以上と、大きな値であるほどより求められる。本発明において金属粒子の高い緊密化が必要となる場合、0.92以上の金属粉末の高い真球度がしばしば求められる。さらに、0.94以上、0.98以上、または1.0の高い真球度が値を増すほどにより好まれる。いくつかの使用における真球度については、大半の球状粒子の平均真球度の点から、大部分の粉末だけが評価される。使用される粉末の体積の60%以上を対象に平均値を算出するのが好ましく、78%以上、83%以上、96%以上と値が増すほどより好ましい。表面の活性部位が、焼結の間の拡散の質を決定要因となるいくつかの使用においては、粉末の表面の活性部位が広いほどよく、よって高い真球度である必要はなくなる。この場合の真球度は、0.94以下、0.88%以下、0.68%以下、0.48以下と値が低いほどよい。一つの実態形態における少なくとも部分的な金属粉末は、コーティングまたは包埋されている。図4に示されているような形状の実態形態における真球度とは、AM微粒子を示す。発明者は、本発明における多くの場合に、粒子分布と真球度に加え、使用された金属粉末の平均粒子サイズは、最終的な性質のみならず得られる形状に関しても、極めて重要な役割を担っているとみている。一つの実態形態における少なくとも二つの金属粉末および一つのポリマーの異なる粒群は、混合されている。有機物質は多くの場合、特有の粒度分布粉末状の混合物に加えられる。他の実態形態における金属粉末または異なる融点を有する二つ以上の粉末の混合物は、コーティングまたは包埋されている。図4に示されているような可能な形の実態形態におけるこのシステムは、金属粒度分布の場合と同じように理解し、そのサイズは、本資料を通して定義されている通り、AM微粒子を参考にする。優れた機械的性質の最終コンポネントが求められる事があるように、高密度が必要とされる場合は、金属混合物の高密度も求められ、球状粉末の場合はさらに、最密充填にできる限り近づけることが求められる。一つの実態形態における明確な高密度は、凝固作用が行われている間に起こりうる後の欠陥の発生を未然に防ぎ、また、これらを予測するためのいくつかのモデルもできている。一つの実態形態において、均一性のない粒度分布を考慮することは、充填密度を上げるために有益である。
本資料の説明で明らかにされている通り、本発明における実施に際し、精度を決定づける重要なパラメーターの一つは、AM微粒子の大きさである。また他の実施においては金属粉末の大きさがそれに該当する。
本資料の説明で明らかにされている通り、本発明における実施に際し、精度を決定づける重要なパラメーターの一つは、AM微粒子の大きさである。また他の実施においては金属粉末の大きさがそれに該当する。本発明の多くの実例にみられるように、こうした実例において、また製造スピードが優先される場合、必ずしも高い精度が必要なわけではない。AM微粒子の大きさによって決定する場合などは、AM微粒子の等価直径平均値が、22μ以上、55μ以上、102μ以上、220μ以上のものが使用可能であり、高い数値のものがより好まれる。同様の実例で、かつ、金属粉末の大きさによって精度が決まる技術においては、等価直径の平均値が16μ以上、32μ以上、52μ以上、106μ以上のものが、数値が高いほど好まれる。別の意味では、高い精度が望ましい場合で、精度がAM微粒子により決定付けられる場合、発明者はしばしば、AM微粒子の等価直径平均値が88μ以下、38μ以下、18μ以下、8μ以下のも使用できるとみている。なお数値が低いほどより好まれる。同様の実例で、かつ金属粉末の大きさににより精度が決まる技術においては、等価直径平均値が48μ以下のものがしばしば求められ、28μ以下であればよりよいとされる
一つの実態形態における使用されたAM微粒子は、等価直径の平均値が16μ以上、他の実態形態においては22μ以上、他の実態形態においては32μ以上、他の実態形態においては52μ以上、他の実態形態においては55μ以上、他の実態形態においては102μ以上、他の実態形態においては106μ以上、さらに他の実態形態においては220μ以上である。
一つの実態形態における使用されたAM微粒子は、等価直径の平均値が88μ以下。他の実態形態においては38μ以下、他の実態形態においては18μ以下、さらに他の実態形態においては8μである。
一つの実態形態においては、より密度の高い充填剤のために、二峰性分布を有するのがよいとする。また他の実態形態においても、さらに密度の高い充填剤のために、三峰性粒度分布を有するのがよいとする。これは、より複雑な粒子分布を要する特定の使用においても、例外ではない。
こうした面では、適切な混合やさらに微粒子に含まれる金属粉の体積率にとっても、異なる大きさの粒子を選ぶことは、特に有益である。例としては、最密構造の主な位置を占める傾向のある大きさの主要な粉末が選ばれる。一つの実態形態においては、第二の粉末は、主要粒子の大きさよりも下のサイズ分布のものを選ぶことが好ましい。ある特定の使用においては、第二粉末の大きさは、八面体空隙を埋める傾向のある大きさのものが選ばれる。ある特定の使用においては、主要な粒子と第二の粒子の大きさの比率は、およそ1:0.414にしなければならない。いくつかの使用においては、第三の粒子の大きさは、主要な粒子と第二粒子の大きさよりも下の別のサイズ分布と一致する大きさのものが選ばれることが好ましい。ある特定の使用においては、第三の粒子は、四面体サイトを埋める傾向のある大きさのものが選ばれ、よって主要な粉末と第三の粉末の大きさの比率は、およそ1:0.225にしなければならない。
高い機械的性質の最終コンポネントが求められる場合や、高い密度の金属粉末混合物が求められる場合、さらには、可能な限り最密充填の球状粉末が求められる場合などは、高い密度が必要となる。適切な混合やさらに微粒子に含まれる金属粉末の体積率にとって、異なる大きさの粒子を選ぶことは、特に有益である。例としては、最密構造の主な位置を占める傾向のある大きさの主要なな粉末が選ばれ、同時に、第二粉末の大きさは、八面体空隙を埋める傾向のある大きさのものが選ばれる。なお大きさの比率は、およそ1:0.414にしなければならない。最終的に、第三粉末には四面体サイトを埋める傾向のある大きさのものが選ばれ、大きさの比率は、およそ1:0.225にしなければならない。
一つの実態形態における粉末混合物は、主要な粉末と第二の粉末を有し、両者の比率は1:0.414である。他の実態形態における粉末混合物は、さらに第三の粉末を含み、主要な粉末と第三の粉末の比率は1:0.225である。一つの実態形態におけるこの比率は、主要な粉末のD50を基準にして決まる。他の実態形態においては、主要な粉末の最高モード値を基準に決まる。
一つの実態形態における主要な粉末の八面体空隙や四面体空隙は、第二の粉末により完全に塞がっている。他の実態形態では、主要な粉末の3/4以下の八面体空隙および四面体空隙が、第二粉末により塞がっている。主要な粉末の1/2以下の八面体空隙および四面体空隙が、第二粉末により塞がっている。主要な粉末の1/3以下の八面体空隙および四面体空隙が、第二粉末により塞がっている。主要な粉末の1/4以下の八面体空隙および四面体空隙が、第二粉末により塞がっている。
一つの実態形態では、主要な粉末の八面体空隙また四面体空隙は、第二粉末または第三粉末により塞がっている。他の実態形態では、主要な粉末の3/4以下の八面体空隙および四面体空隙が、第二粉末または第三粉末により塞がっている。他の実態形態では、主要な粉末の1/2以下の八面体空隙および四面体空隙が、第二粉末または第三粉末により塞がっている。他の実態形態では、主要な粉末の1/3以下の八面体空隙および四面体空隙が、第二粉末または第三粉末により塞がっている。他の実態形態では、主要な粉末の1/4以下の八面体空隙および四面体空隙が、第二粉末または第三粉末により塞がっている。
一つの実態形態においては、適切な混合または微粒子に含まれる金属粉の体積率にとっても、異なる大きさの粒子を選ぶことは、特に有益である。例としては、最密構造の主な位置を占める傾向のある大きさの主要な粉末が選ばれる。一つの実態形態においては、主要の粒子の大きさよりも下のサイズ分布を有する第二の粉末を選ぶことが望ましい。ある特定の使用における第二粉末の大きさは、主要な粉末の空隙を塞ぐ傾向のある大きさのものが選ばれる。ある特定の使用における主要な粒子の大きさと第二の粒子の大きさの間の比率は、およそ1:0.125にしなければならない。いくつかの使用においては、第二の粉末ならびに、主要の粉末の空隙を塞ぐ大きさの第三の粉末が好まれる。例えとして、第二の粉末のコストが高い場合や、第二の粉末の構成に、粉末混合物に多く含まれることが望ましくない要素が含まれている場合の、主要の粉末と第三の粉末の大きさの比率は、およそ1:0.125にしなければならない。
一つの実態形態における粉末混合物は、主要な粒子の大きさと第二の粒子の大きさの比率が1:0.125の主要な粉末と第二の粉末を有する。他の実態形態における粉末混合物は、主要な粒子と第三の粒子の大きさの比率が1:0.125の第三の粉末を含んでいる。一つの実態形態おけるこの比率は、主要な粉末のD50を基準にして決まる。また他の実態形態においては、主要な粉末の最高モード値を基準にして決まる。さらに他の実態形態においては、主要な粉末と1:0.125の比率を有する二つ以上の粉末を、粉末混合物に加える。
一つの実態形態おいては、適切な混合または微粒子に含まれる金属粉の体積率にとっても、異なる大きさの粒子を選ぶことは、特に有益である。例としては、最密構造だけではなく、主要な粉末の最も大きな粒子間の空隙の主な位置を占める傾向のある大きさの主要な粉末が選ばれる。一つの実態形態においては、主要な粉末(主要な粉末の最高モード値の粒子)の最も大きい粒子と、小さな粒子の比率がおよそ1:0.125の主要粒度分布のこの二番目の大きさを選ぶことが望ましい。
一つの実態形態における粉末混合物は、主要な粒子と粉末混合物に含まれる粒子の大きさの比率が1:0.154の粒子を含む。一つの実態形態におけるこれらの粒子は、主要な粉末由来のものである。他の実態形態におけるこれらの粒子は、第二の粉末由来である。さらに他の実態形態におけるこれらの粒子は、第三の粉末由来である。
一つの実態形態において発明者は、性質の均一性の予想外の有益な効果を観察できた。具体例としては、主要な粒子の四面体または八面体空隙が完全に塞がれていてかつマイクロ偏析がない場合や、ラウンド分数が1/2、1/3、または1/4の場合などがある。近いラウンド分数とは、±10%以下、±8%以下、±4%以下、±2%以下または、ほぼ顕著ではない程度の差を指し、数値が低いほどより好まれる。
一つの実態形態における主要な粉末とは、金属粉末全体の体積で最も高い比率を有する金属粉末を指す。
一つの実態形態における主要な粉末は、金属粉末全体の重量で最も高い比率を有する金属粉末を指す。
一つの実態形態において、主要な粉末は使用によっては、低融点合金を指す。またその他の使用によっては、高融点合金を指す。
一つの実態形態における主要な金属粉末は、す高融点合金を指す。
一つの実態形態における主要な金属粉末は、粉末混合物中の高融点合金で最も高い重量比を有する高融点合金を指す。
一つの実態形態における主要な粉末とは、粉末混合物中の高融点合金で最も高い体積比を有する高融点合金を指す。
一つの実態形態における主要な粉末とは、低融点合金を指す。
一つの実態形態における主要な粉末とは、粉末混合物中の低融点合金で、最も高い重量比を有する低融点合金を指す。
一つの実態形態における主要な粉末とは、粉末混合物中の低融点合金で、最も高い体積比を湯数る低融点合金を指す。
一つの実態形態においては、より小さな粒子を有することが望ましい(この資料内では小さな粒子と記す)。一つの実態形態における主要な粒子とこの小さな粒子の間の比率は、主要な粒子の大きさの0.18以下である。他の実態形態では、0.165以下。他の実態形態では、0.145以下。他の実態形態では、0.12以下、0.095以下である。一つの実態形態におけるこの比率は、主要な粉末のD50を基準に決まる。他の実態形態においては、主要な粉末の最も高いモード値を基準に決まる。一つの実態形態におけるこれらの小さな粒子は、体積中の5.3%以上である。他の実態形態では、6.4%以上である。他の実態形態では、7.0%以上である。他の実態形態では、7.3%以上である。他の実態形態では、9.3%以上である。他の実態形態では、11.2%以上である。他の実態形態では、14.7%以上である。他の実態形態では、18.7%以上である。他の実態形態では、21.4%以上である。他の実態形態では、24.3%以上である。他の実態形態では、28.2%以上である。他の実態形態では、29.2%以上である。さらに他の実態形態では、粉末混合物の32.6%以上である。
一つの実態形態における主要な粉末の空隙は、第二の粉末由来の小さな粒子により完全に塞がれている。
他の実態形態においては、主要な粉末の1/2以下の八面体空隙か四面体空隙は、第二の粉末由来の小さな粒子により塞がれている。他の実態形態においては、主要な粉末の1/3以下の八面体空隙か四面体空隙は、第二の粉末由来の小さな粒子により塞がれている。他の実態形態においては、主要な粉末の1/4以下の八面体空隙か四面体空隙は、第二の粉末由来の小さな粒子により塞がれている。
一つの実態形態における主要な粉末の空隙は、第二の粉末および第三の粉末由来の小さな粒子により完全に塞がれている。他の実態形態においては、主要な粉末の3/4以下の八面体空隙か四面体空隙は、第二または第三の粉末由来の小さな粒子により塞がれている。他の実態形態においては、主要な粉末の1/2以下の八面体空隙か四面体空隙は、第二または第三の粉末由来の小さな粒子により塞がれている。他の実態形態においては、主要な粉末の1/3以下の八面体空隙か四面体空隙は、第二または第三の粉末由来の小さな粒子により塞がれている。他の実態形態においては、主要な粉末の1/4以下の八面体空隙か四面体空隙は、第二または第三の粉末由来の小さな粒子により塞がれている。
一つの実態形態における小さな粒子は、粉末混合物の体積の5.3%以上である。他の実態形態では、6.4%以上。他の実態形態では、7.0%以上。他の実態形態では、7.3%以上。他の実態形態では、9.3%以上。他の実態形態では、11.2%以上。他の実態形態では、14.7%以上。他の実態形態では、18.7%以上。他の実態形態では、21.4%以上。他の実態形態では、24.3%以上。他の実態形態では、27.1%以上。他の実態形態では、28.2%以上。他の実態形態では、29.2%以上、さらに他の実態形態では、32.6%以上である
一つの実態形態における小さな粒子は、粉末混合物の体積の5.3%以上である。他の実態形態では、6.4%以上。他の実態形態では、7.0%以上。他の実態形態では、7.3%以上。他の実態形態では、9.3%以上。他の実態形態では、11.2%以上。他の実態形態では、14.7%以上。他の実態形態では、18.7%以上。他の実態形態では、21.4%以上。他の実態形態では、24.3%以上。他の実態形態では、27.1%以上。他の実態形態では、28.2%以上。他の実態形態では、29.2%以上、さらに他の実態形態では、32.6%以上である。
一つの実態形態における小さな粒子は、金属相(粉末混合物の金属粉末の和)の体積の5.3%以上である。他の実態形態では、6.4%以上。他の実態形態では、7.0%以上。他の実態形態では、7.3%以上。他の実態形態では、9.3%以上。他の実態形態では、11.2%以上。他の実態形態では、14.7%以上。他の実態形態では、18.7%以上。他の実態形態では、21.4%以上。他の実態形態では、24.3%以上。他の実態形態では、27.1%以上。他の実態形態では、28.2%以上。他の実態形態では、29.2%以上、さらに他の実態形態では、32.6%以上である。
一つの実態形態における小さな粒子は、粉末混合物の体積の33.1%以下である。他の実態形態では、29.3%以下。他の実態形態では、26.4%以下。他の実態形態では、22.9%以下。他の実態形態では、18.6%以下。他の実態形態では、15.6%以下。他の実態形態では、12.7%以下。他の実態形態では、9.3%以下。他の実態形態では、8.1%以下。他の実態形態では、6.1%以下。他の実態形態では、4.2%以下。他の実態形態では、3.2%以下、さらに他の実態形態では、1.9%以下である。
一つの実態形態における小さな粒子は、金属相(粉末混合物の金属粉末の和)の体積の33.1%以下である。他の実態形態では、29.3%以下。他の実態形態では、26.4%以下。他の実態形態では、22.9%以下。他の実態形態では、18.6%以下。他の実態形態では、15.6%以下。他の実態形態では、12.7%以下。他の実態形態では、9.3%以下。他の実態形態では、8.1%以下。他の実態形態では、6.1%以下。他の実態形態では、4.2%以下。他の実態形態では、3.2%以下、さらに他の実態形態では、1.9%以下である。
一つの実態形態におけるこれらの小さな粒子は、主要な粉末由来の粒子の空隙を塞いでいる。
一つの実態形態におけるこれらの小さな粒子は、低融点合金由来で、かつ主要な粉末由来の粒子の空隙を塞いでいる。一つの実態形態におけるこの主要な粉末は、高融点合金である。
一つの実態形態における粉末混合物は、粉末状の少なくとも一つの低融点合金由来の小さな粒子を含んでいる。
一つの実態形態における粉末混合物は、主要な粉末と第二の粉末で構成されている。主要な粒子と、第二の粉末由来の粒子の間の比率は、主要な粒子の大きさの0.18以下である。他の実態形態においては、0.165以下。他の実態形態においては、0.145以下。他の実態形態においては、0.12以下、さらに他の実態形態においては、0.095以下である。
一つの実態形態において、粉末混合物の高いタップ密度を得るために、二峰性または三峰性のサイズ分布が使用される。この分布のそれぞれ互いのモード値の粒子サイズの細い粒度分布の粉末混合物および高い真球度の粒子を有する。一つの実態形態における二峰性分布は、粉末混合物中のより高い体積比を有する粒度分布の、より高いモード値と一致する、主要な粒子サイズを有する。また、小さな粒子(主要な大きさの粒子の約0.414倍の直径を有する)と一致する他のモード値は、完全または少なくとも一部の、主要の大きさの粒子間の八面体空隙を塞ぐために用いられる。一つの実態形態における三峰性粒度分布では、さらに小さな粒子(主要な大きさの粒子の約0.215倍の直径を有する)は、完全または少なくとも一部の、主要な大きさの粒子間の四面体空隙を塞ぐために用いられる。
一つの実態形態においては、二つか三つの大きさの粉末の混合物が望まれる。一つの実態形態においては、粒子の主な割合を有した粉末混合物の二峰性分布が選ばれる。具体的な割合は、粉末混合物の体積の70%以上で、主な割合の粒子径の0.75倍の直径を有するより小さな粒子の他の割合である。
一つの実態形態おける粉末混合物は、粉末状の少なくとも一つの低融点合金由来の小さな粒子を含む。
一つの実態形態における粉末混合物は、粉末状の少なくとも一つの高融点合金由来の小さな粒子を含む。
一つの実態形態における粉末混合物は、粉末状の少なくとも一つの低融点合金由来の小さな粒子と、粉末状の少なくとも一つの高融点合金由来の小さな粒子で構成されている。
一つの実態形態における粉末混合物はさらに、主要な粒子の0.18以下の粒子サイズ比率を有する第三金属粉末を含む。他の実態形態においては、0.165以下。他の実態形態においては、0.145以下。他の実態形態においては、0.12以下、さらに他の実態形態においては、0.095以下となっている。
一つの実態形態おける主要な粉末は、小さな粒子を含むサイズ分布を有する。
一つの実態形態における小さな粒子の少なくとも26%は、主要な粉末由来である。他の実態形態では、33%以上、46%以上、61%以上、72%以上、84%以上となっている。
一つの実態形態における小さな粒子の少なくとも26%は、高融点合金由来である。他の実態形態では、33%以上、46%以上、61%以上、72%以上、84%以上となっている。
一つの実態形態における粉末混合物は、41.3%以上の充填密度を有する。他の実態形態においては、52.7%以上。他の実態形態においては、64.3%以上。他の実態形態においては、71.6%以上。他の実態形態においては、77.3%以上。他の実態形態においては、86.8%以上。他の実態形態においては、91.2%以上。他の実態形態においては、93.8%以上、さらに他の実態形態においては、96.6%以上となっている。
さらに他の実態形態においては未決定である。
AM微粒子の金属体積分率の重要性、および異なる金属粉末または場合によってポリマー粉末の均質な混合物の重要性により、粉末の細いサイズ分布を用いる必要がある。この場合、発明者は、圧縮の質を上げるためには、1.8以下の幾何標準偏差のサイズ分布を有することが理想的だとみている。またさらには、1.4以下、0.8以下、0.4以下の、数値の低いものほど理想的だとみている。一つの実態形態においては、分布上のモード値がひとつ以上の場合、この幾何標準偏差は、いずれかの異なるモード値のサイズ分布を指す(具体的には、例えば、二つの粉末混合物が二つ以上のモード値を有するとした場合、各モード値に二つ以上の幾何標準偏差が生じる。また、二つ以上のモード値に対する幾何標準偏差は細いサイズ分布になる)。特定の種類の空隙を埋める複数の粒子を有する場合、理論上の空隙サイズからの偏差が38%以内の平均粒子サイズ(D50) が理想的である。さらに22%以内、12%以内、4%以内で、数値が低いほどより理想的である。こうした偏差は、後述の式で算出する。例えば八面体間隙の場合は:
D50(大きい粒子)×0.414×(1+X%)>D50(小さな粒子)>D50(大きな粒子)×0.414×(1-X%)
なおX%は、パーセント偏差とする。
一つの実態形態における粉末混合物の粒度分布は、1.8以下の幾何標準偏差を有する。また1.4以下、0.8以下、0.4以下と、数値が低いほど理想的である。
一つの実態形態における金属相(粉末混合物内に含まれたすべての金属粉末の和)は、粉末混合物の全ての構成要素の重量の24%以上である。また、他の実態形態では、36%以上、56%以上、72%以上とである。
一つの実態形態における本発明は、少なくとも一つの金属粉または類似の融点を有する少なくとも一つ以上の金属粉末を含む粉末混合物を指す。一つの実態形態おけるこの少なくとも一つの金属粉末は、本資料で明らかにされたように、粉末状のいずれかの鉄基合金である。一つの実態形態における粉末混合物は、さらに有機化合物を含む。一つの実態形態における、この少なくとも一つの金属粉末の粒子は、0.53以上の真球度を有する。なお他の実態形態においては、0.76以上、0.86以上の真球度を有する。なお他の実態形態においては、0.92以上。なお他の実態形態においては、0.94以上、0.98以上の真球度を有する。他の実態形態における金属粉末は、粉末混合物の41.3%以上の圧縮密度を得るためのサイズ分布を有する。他の実態形態においては、52.7%以上また。他の実態形態においては、64.3%以上または。他の実態形態においては、71.6%以上または。他の実態形態においては、77.3%以上または。他の実態形態においては、86.8%以上または。他の実態形態においては、91.2%以上または。他の実態形態においては、93.8%以上または、96.9%以上の圧縮密度である。一つの実態形態における早い成形方法および後処理工程に用いられるこの粉末混合物は、金属または少なくとも一部の金属コンポネントの製造を可能にする。一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のためのこれらの粉末混合物の使用を示す。
一つの実態形態における本発明は、少なくとも一つの金属粉末を含む粉末混合物を指す。
一つの実態形態では、ただ一つだけの合金の金属粉末のみが粉末混合物に含まれている場合における金属相とは、この金属粉末を指す。他の実態形態では、異なる合金の複数の金属粉末が粉末混合物に含まれる場合の金属相とは、これらの全ての金属粉を指す。
一つの実態形態における本発明は、少なくとも二つの金属粉末を含む粉末混合物を指す。
一つの実態形態における本発明は、少なくとも一つの粉末状の、低融点合金および高融点合金を含む粉末混合物を指す。
一つの実態形態における低融点合金とは、ガリウム合金である。一つの実態形態における低融点合金とは、51%以上の重量のガリウムを含むガリウム合金である。また他の実態形態では、62%以上。また他の実態形態では、71%以上。また他の実態形態では、83%以上。また他の実態形態では、91%以上、または96%以上としている。いくつかの使用では、ガリウム合金中のガリウムの内容は、スズ、ビスマス,スカンジウム、マンガン、ホウ素、ケルビン、ナトリウム、マグネシウム、ケイ素のいずれかに置き換えることができる。一つの実態形態おける少なくとも重量中5%のガリウムは、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素またはマグネシウムから選んだ要素に置き換えることができる。また他の実態形態では少なくとも10%。また他の実態形態では少なくとも15%。また他の実態形態では少なくとも25%、さらに他の実態形態では少なくとも30%としている。
一つの実態形態における低融点合金とは、アルミニウム-ガリウム(AlGa)合金である。一つの実態形態における低融点合金とは、0.1%以上の重量のガリウムを含むアルミニウム基合金である。また他の実態形態では、1.2%以上。また他の実態形態では、3.4%以上。また他の実態形態では、5.7%以上。また他の実態形態では、7.1%以上。また他の実態形態では、9.6%以上。また他の実態形態では、14.3%以上。また他の実態形態では、19.1%以上または24%以上としている。いくつかの使用では、アルミニウム合金のガリウムの内容は、スズ、ビスマス,スカンジウム、マンガン、ホウ素、ケルビン、ナトリウム、マグネシウム、ケイ素のいずれかに置き換えることができる。一つの実態形態おける少なくとも重量中5%のガリウムは、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素またはマグネシウムから選んだ要素に置き換えることができる。また他の実態形態では少なくとも10%。また他の実態形態では少なくとも15%。また他の実態形態では少なくとも25%、さらに他の実態形態では少なくとも30%としている。
一つの実態形態における低融点合金は、スズ-ガリウム(SnGa)合金である。一つの実態形態における低融点合金は、0.1%のガリウムを含むスズ基合金である。また他の実態形態においては、1.2%以上。また他の実態形態においては、3.4%以上。また他の実態形態においては、5.7%以上。また他の実態形態においては、7.1%以上。また他の実態形態においては、9.6%以上。また他の実態形態においては、14.3%以上。また他の実態形態においては、19.1%以上または24%以上としている。一つの実態形態おける低融点合金とは、0.1%以上のガリウムを含む既存のスズ基合金である。さらに他の実態形態おいては、1.2%以上。さらに他の実態形態おいては、3.4%以上。さらに他の実態形態おいては、5.7%以上。さらに他の実態形態おいては、7.1%以上または9.6%以上としている。いくつかの使用では、ガリウム合金中のガリウムの内容は、スズ、ビスマス,スカンジウム、マンガン、ホウ素、ケルビン、ナトリウム、マグネシウム、ケイ素のいずれかに置き換えることができる。一つの実態形態おける少なくとも重量中5%のガリウムは、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素またはマグネシウムから選んだ要素に置き換えることができる。また他の実態形態では少なくとも10%。また他の実態形態では少なくとも15%。また他の実態形態では少なくとも25%、さらに他の実態形態では少なくとも30%としている。
一つの実態形態における低融点合金は、マグネシウム-ガリウム(MgGa)合金である。一つの実態形態における低融点合金は、0.1%のガリウムを含むマグネシウム基合金である。また他の実態形態においては、1.2%以上。また他の実態形態においては、3.4%以上。また他の実態形態においては、5.7%以上。また他の実態形態においては、7.1%以上。また他の実態形態においては、9.6%以上。また他の実態形態においては、14.3%以上。また他の実態形態においては、19.1%以上または24%以上としている。一つの実態形態おける低融点合金とは、0.1%以上のガリウムを含む既存のスズ基合金である。さらに他の実態形態おいては、1.2%以上。さらに他の実態形態おいては、3.4%以上。さらに他の実態形態おいては、5.7%以上。さらに他の実態形態おいては、7.1%以上または9.6%以上としている。いくつかの使用では、ガリウム合金中のガリウムの内容は、スズ、ビスマス,スカンジウム、マンガン、ホウ素、ケルビン、ナトリウム、マグネシウム、ケイ素のいずれかに置き換えることができる。一つの実態形態おける少なくとも重量中5%のガリウムは、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素またはマグネシウムから選んだ要素に置き換えることができる。また他の実態形態では少なくとも10%。また他の実態形態では少なくとも15%。また他の実態形態では少なくとも25%、さらに他の実態形態では少なくとも30%としている。
一つの実態形態における低融点合金は、銅-ガリウム(CuGa)合金である。一つの実態形態における低融点合金は、0.1%のガリウムを含む銅基合金である。また他の実態形態においては、1.2%以上。また他の実態形態においては、3.4%以上。また他の実態形態においては、5.7%以上。また他の実態形態においては、7.1%以上。また他の実態形態においては、9.6%以上。また他の実態形態においては、14.3%以上。また他の実態形態においては、19.1%以上または24%以上としている。一つの実態形態おける低融点合金とは、0.1%以上のガリウムを含む既存のスズ基合金である。さらに他の実態形態おいては、1.2%以上。さらに他の実態形態おいては、3.4%以上。さらに他の実態形態おいては、5.7%以上。さらに他の実態形態おいては、7.1%以上または9.6%以上としている。いくつかの使用では、ガリウム合金中のガリウムの内容は、スズ、ビスマス,スカンジウム、マンガン、ホウ素、ケルビン、ナトリウム、マグネシウム、ケイ素のいずれかに置き換えることができる。一つの実態形態おける少なくとも重量中5%のガリウムは、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素またはマグネシウムから選んだ要素に置き換えることができる。また他の実態形態では少なくとも10%。また他の実態形態では少なくとも15%。また他の実態形態では少なくとも25%、さらに他の実態形態では少なくとも30%としている。
一つの実態形態における低融点合金は、マンガン-ガリウム(MnGa)合金である。一つの実態形態における低融点合金は、0.1%のガリウムを含むマンガン基合金である。また他の実態形態においては、1.2%以上。また他の実態形態においては、3.4%以上。また他の実態形態においては、5.7%以上。また他の実態形態においては、7.1%以上。また他の実態形態においては、9.6%以上。また他の実態形態においては、14.3%以上。また他の実態形態においては、19.1%以上または24%以上としている。一つの実態形態おける低融点合金とは、0.1%以上のガリウムを含む既存のスズ基合金である。さらに他の実態形態おいては、1.2%以上。さらに他の実態形態おいては、3.4%以上。さらに他の実態形態おいては、5.7%以上。さらに他の実態形態おいては、7.1%以上または9.6%以上としている。いくつかの使用では、ガリウム合金中のガリウムの内容は、スズ、ビスマス,スカンジウム、マンガン、ホウ素、ケルビン、ナトリウム、マグネシウム、ケイ素のいずれかに置き換えることができる。一つの実態形態おける少なくとも重量中5%のガリウムは、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素またはマグネシウムから選んだ要素に置き換えることができる。また他の実態形態では少なくとも10%。また他の実態形態では少なくとも15%。また他の実態形態では少なくとも25%、さらに他の実態形態では少なくとも30%としている。
一つの実態形態における低融点合金は、ニッケル-ガリウム(NiGa)合金である。一つの実態形態における低融点合金は、0.1%のガリウムを含むニッケル基合金である。また他の実態形態においては、1.2%以上。また他の実態形態においては、3.4%以上。また他の実態形態においては、5.7%以上。また他の実態形態においては、7.1%以上。また他の実態形態においては、9.6%以上。また他の実態形態においては、14.3%以上。また他の実態形態においては、19.1%以上または24%以上としている。一つの実態形態おける低融点合金とは、0.1%以上のガリウムを含む既存のスズ基合金である。さらに他の実態形態おいては、1.2%以上。さらに他の実態形態おいては、3.4%以上。さらに他の実態形態おいては、5.7%以上。さらに他の実態形態おいては、7.1%以上または9.6%以上としている。いくつかの使用では、ガリウム合金中のガリウムの内容は、スズ、ビスマス,スカンジウム、マンガン、ホウ素、ケルビン、ナトリウム、マグネシウム、ケイ素のいずれかに置き換えることができる。一つの実態形態おける少なくとも重量中5%のガリウムは、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素またはマグネシウムから選んだ要素に置き換えることができる。また他の実態形態では少なくとも10%。また他の実態形態では少なくとも15%。また他の実態形態では少なくとも25%、さらに他の実態形態では少なくとも30%としている。
一つの実態形態における低融点合金は、高マンガンを含む合金である。一つの実態形態における低融点合金は、炭素を含む高マンガン鉄基合金である。一つの実態形態における低融点合金とは、炭素(また鉄、マンガンとガリウムを含む合金)を含む鉄基合金であり、さらに重量のうち0.1%以上のガリウムを含む。他の実態形態では1.2%以上、他の実態形態では3.4%以上。他の実態形態では5.7%以上。他の実態形態では7.1%以上。他の実態形態では9.6%以上。他の実態形態では14.3%以上。他の実態形態では19.1%以上、さらに他の実態形態では24%としている。
一つの実態形態における低融点合金は、マグネシウム-アルミニウム(MgAl)合金である。一つの実態形態における低融点合金は(およびマンガンおよびガリウムを含む合金)、0.1%のガリウムを含むマグネシウム基合金である。また他の実態形態においては、1.2%以上。また他の実態形態においては、3.4%以上。また他の実態形態においては、5.7%以上。また他の実態形態においては、7.1%以上。また他の実態形態においては、9.6%以上。また他の実態形態においては、14.3%以上。また他の実態形態においては、19.1%以上または24%以上としている。一つの実態形態おける低融点合金とは、0.1%以上のガリウムを含む既存のスズ基合金である。さらに他の実態形態おいては、1.2%以上。さらに他の実態形態おいては、3.4%以上。さらに他の実態形態おいては、5.7%以上。さらに他の実態形態おいては、7.1%以上または9.6%以上としている。いくつかの使用では、ガリウム合金中のガリウムの内容は、スズ、ビスマス,スカンジウム、マンガン、ホウ素、ケルビン、ナトリウム、マグネシウム、ケイ素のいずれかに置き換えることができる。一つの実態形態おける少なくとも重量中5%のガリウムは、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素またはマグネシウムから選んだ要素に置き換えることができる。また他の実態形態では少なくとも10%。また他の実態形態では少なくとも15%。また他の実態形態では少なくとも25%、さらに他の実態形態では少なくとも30%としている。
一つの実態形態における高融点合金は、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金から精選される。
一つの実態形態における鉄基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態におけるニッケル基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態におけるコバルト基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態における銅基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態におけるマグネシウム基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態におけるタングステン基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態におけるモリブデン基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態におけるアルミニウム基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態におけるチタン基合金粒子は、780μ以下のD50値を有する。さらに他の実態形態では、380μ以下。さらに他の実態形態では、180μ以下。さらに他の実態形態では、120μ以下。さらに他の実態形態では、78μ以下。さらに他の実態形態では、48μ以下。さらに他の実態形態では、18μ以下、または8μ以下である。
一つの実態形態における高融点合金は、いずれかの既存の鉄基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかの鉄基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかの鉄基合金である。
一つの実態形態における高融点合金は、いずれかの既存のニッケル基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかのニッケル基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかのニッケル基合金である。
一つの実態形態における高融点合金は、いずれかの既存のコバルト基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかのコバルト基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかのコバルト基合金である。
一つの実態形態における高融点合金は、いずれかの既存の銅基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかの銅基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかの銅基合金である。
一つの実態形態における高融点合金は、いずれかの既存のマグネシウム基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかのマグネシウム基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかのマグネシウム基合金である。
一つの実態形態における高融点合金は、いずれかの既存のタングステン基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかのタングステン基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかのタングステン基合金である。
一つの実態形態における高融点合金は、いずれかの既存のモリブデン基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかのモリブデン基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかのモリブデン基合金である。
一つの実態形態における高融点合金は、いずれかの既存のアルミニウム基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかのアルミニウム基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかのアルミニウム基合金である。
一つの実態形態における高融点合金は、いずれかの既存のチタン基合金である。一つの実態形態における高融点合金は、本資料で明らかなになったように、いずれかのチタン基合金である。一つの実態形態における高融点合金は、後述する通り、本発明の粉末混合物に適したいずれかのチタン基合金である。
一つの実態形態における本発明は、粉末状の少なくとも一つの低融点合金および高融点合金を含む粉末混合物を示す。なお低融点合金は、アルミニウムが重量の90%以上を占めるアルミニウム基合金である。さらに高融点合金は鉄基合金、および必要に応じては有機化合物である。
一つの実態形態における本発明は、粉末状の少なくとも一つの低融点合金および高融点合金を含む粉末混合物を示す。なお低融点合金は、アルミニウムが重量の90%以上を占めるアルミニウム基合金である。さらに高融点合金はニッケル基合金、および必要に応じては有機化合物である。
一つの実態形態における本発明は、粉末状の少なくとも一つの低融点合金および高融点合金を含む粉末混合物を示す。なお低融点合金は、アルミニウムが重量の90%以上を占めるアルミニウム基合金である。さらに高融点合金はコバルト基合金、および必要に応じては有機化合物である。
一つの実態形態における本発明は、粉末状の少なくとも一つの低融点合金および高融点合金を含む粉末混合物を示す。なお低融点合金は、アルミニウムが重量の90%以上を占めるアルミニウム基合金である。さらに高融点合金は銅基合金、および必要に応じては有機化合物である。
一つの実態形態における本発明は、粉末状の少なくとも一つの低融点合金および高融点合金を含む粉末混合物を示す。なお低融点合金は、アルミニウムが重量の90%以上を占めるアルミニウム基合金である。さらに高融点合金はアルミニウム基合金、および必要に応じては有機化合物である。
一つの実態形態における本発明は、粉末状の少なくとも一つの低融点合金および高融点合金を含む粉末混合物を示す。なお低融点合金は、アルミニウムが重量の90%以上を占めるアルミニウム基合金である。さらに高融点合金はチタン基合金、および必要に応じては有機化合物である。
一つの実態形態における本発明は、粉末状の少なくとも一つの低融点合金および高融点合金を含む粉末混合物を示す。なお低融点合金は、アルミニウムが重量の90%以上を占めるアルミニウム基合金である。さらに高融点合金はタングステン基合金、および必要に応じては有機化合物である。
一つの実態形態における本発明は、粉末状の少なくとも一つの低融点合金および高融点合金を含む粉末混合物を示す。なお低融点合金は、アルミニウムが重量の90%以上を占めるアルミニウム基合金である。さらに高融点合金はモリブデン基合金、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、アルミニウム-ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、アルミニウム-ガリウム合金である。さらにこの高融点合金はニッケル基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、アルミニウム-ガリウム合金である。さらにこの高融点合金はコバルト基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、アルミニウム-ガリウム合金である。さらにこの高融点合金は銅基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、アルミニウム-ガリウム合金である。さらにこの高融点合金はアルミニウム基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、アルミニウム-ガリウム合金である。さらにこの高融点合金はチタン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、アルミニウム-ガリウム合金である。さらにこの高融点合金はタングステン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、アルミニウム-ガリウム合金である。さらにこの高融点合金はモリブデン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、銅-ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、銅-ガリウム合金である。さらにこの高融点合金はニッケル基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、銅-ガリウム合金である。さらにこの高融点合金はコバルト基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、銅-ガリウム合金である。さらにこの高融点合金は銅基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、銅-ガリウム合金である。さらにこの高融点合金はアルミニウム基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、銅-ガリウム合金である。さらにこの高融点合金はチタン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、銅-ガリウム合金である。さらにこの高融点合金はタングステン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、銅-ガリウム合金である。さらにこの高融点合金はモリブデン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ニッケル-ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ニッケル-ガリウム合金である。さらにこの高融点合金はニッケル基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ニッケル-ガリウム合金である。さらにこの高融点合金はコバルト基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ニッケル-ガリウム合金である。さらにこの高融点合金は銅基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ニッケル-ガリウム合金である。さらにこの高融点合金はアルミニウム基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ニッケル-ガリウム合金である。さらにこの高融点合金はチタン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ニッケル-ガリウム合金である。さらにこの高融点合金はタングステン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ニッケル-ガリウム合金である。さらにこの高融点合金はモリブデン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、スズ-ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、スズ-ガリウム合金である。さらにこの高融点合金はニッケル基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、スズ-ガリウム合金である。さらにこの高融点合金はコバルト基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、スズ-ガリウム合金である。さらにこの高融点合金は銅基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、スズ-ガリウム合金である。さらにこの高融点合金はアルミニウム基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、スズ-ガリウム合金である。さらにこの高融点合金はチタン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、スズ-ガリウム合金である。さらにこの高融点合金はタングステン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、スズ-ガリウム合金である。さらにこの高融点合金はモリブデン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マグネシウム-ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マグネシウム-ガリウム合金である。さらにこの高融点合金はニッケル基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マグネシウム-ガリウム合金である。さらにこの高融点合金はコバルト基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マグネシウム-ガリウム合金である。さらにこの高融点合金は銅基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マグネシウム-ガリウム合金である。さらにこの高融点合金はアルミニウム基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マグネシウム-ガリウム合金である。さらにこの高融点合金はチタン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マグネシウム-ガリウム合金である。さらにこの高融点合金はタングステン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マグネシウム-ガリウム合金である。さらにこの高融点合金はモリブデン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マンガン-ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マンガン-ガリウム合金である。さらにこの高融点合金はニッケル基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マンガン-ガリウム合金である。さらにこの高融点合金はコバルト基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マンガン-ガリウム合金である。さらにこの高融点合金は銅基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マンガン-ガリウム合金である。さらにこの高融点合金はアルミニウム基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マンガン-ガリウム合金である。さらにこの高融点合金はチタン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マンガン-ガリウム合金である。さらにこの高融点合金はタングステン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、マンガン-ガリウム合金である。さらにこの高融点合金はモリブデン基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における本発明は、少なくとも一つの低融点合金を含む粉末混合物を指し、また低融点合金の中の粉末状の高融点合金は、ガリウム合金である。さらにこの高融点合金は鉄基合金であり、および必要に応じては有機化合物である。
一つの実態形態における粉末混合物の圧縮密度は、41.3%以上である。また他の実態形態では、52.7%以上。また他の実態形態では、64.3%以上。また他の実態形態では、71.6%以上。また他の実態形態では、77.3%以上。また他の実態形態では、86.8%以上。また他の実態形態では、91.2%以上。また他の実態形態では、93.8%以上、または96.9%である。
一つの実態形態における高融点合金は、粉末混合物の主要な粉末である。
一つの実態形態における低融点合金は、高融点合金の粒子の、八面体空隙または四面体空隙を埋めるために精選される。
一つの実態形態における低融点合金は、主要な粉末の粒子の空隙を埋めるために精選される。
一つの実態形態における低融点は、高融点の粒子サイズの0.18以下の粒子サイズ比を有する。他の実態形態では、0.165以下。他の実態形態では、0.145以下。他の実態形態では、0.12以下、または0.095以下である。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの金属粉末または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態のおける本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも二つの異なった融点を有する金属粉末および必要に応じて有機化合物を含む金属粉末の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、重量の90%以上のアルミニウムを有するアルミニウム基合金である少なくとも一つの低融点合金、および鉄基合金である粉末状の高融点合金、または必要に応じて有機化合物を含む、粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、重量の90%以上のアルミニウムを有するアルミニウム基合金である少なくとも一つの低融点合金、およびニッケル基合金である粉末状の高融点合金、または必要に応じて有機化合物を含む、粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、重量の90%以上のアルミニウムを有するアルミニウム基合金である少なくとも一つの低融点合金、およびコバルト基合金である粉末状の高融点合金、または必要に応じて有機化合物を含む、粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、重量の90%以上のアルミニウムを有するアルミニウム基合金である少なくとも一つの低融点合金、および銅基合金である粉末状の高融点合金、または必要に応じて有機化合物を含む、粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、重量の90%以上のアルミニウムを有するアルミニウム基合金である少なくとも一つの低融点合金、およびアルミニウム基合金である粉末状の高融点合金、または必要に応じて有機化合物を含む、粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、重量の90%以上のアルミニウムを有するアルミニウム基合金である少なくとも一つの低融点合金、およびチタン基合金である粉末状の高融点合金、または必要に応じて有機化合物を含む、粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、重量の90%以上のアルミニウムを有するアルミニウム基合金である少なくとも一つの低融点合金、およびタングステン基合金である粉末状の高融点合金、または必要に応じて有機化合物を含む、粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、重量の90%以上のアルミニウムを有するアルミニウム基合金である少なくとも一つの低融点合金、およびモリブデン基合金である粉末状の高融点合金、または必要に応じて有機化合物を含む、粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(アルミニウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(鉄基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(アルミニウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(ニッケル基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(アルミニウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(コバルト基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(アルミニウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(銅基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(アルミニウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(アルミニウム基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(アルミニウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(チタン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(アルミニウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(タングステン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(アルミニウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(モリブデン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(銅-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(鉄基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(銅-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(ニッケル基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(銅-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(コバルト基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(銅-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(銅基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(銅-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(アルミニウム基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(銅-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(チタン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(銅-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(タングステン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(銅-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(モリブデン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(ニッケル -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(鉄基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(ニッケル -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(ニッケル基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(ニッケル -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(コバルト基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(ニッケル -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(銅基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(ニッケル -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(アルミニウム基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(ニッケル -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(チタン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(ニッケル -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(タングステン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(ニッケル -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(モリブデン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(スズ -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(鉄基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(スズ -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(ニッケル基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(スズ -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(コバルト基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(スズ -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(銅基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(スズ -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(アルミニウム基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(スズ -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(チタン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(スズ -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(タングステン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(スズ -ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(モリブデン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マグネシウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(鉄基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マグネシウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(ニッケル基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マグネシウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(コバルト基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マグネシウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(銅基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マグネシウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(アルミニウム基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マグネシウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(チタン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マグネシウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(タングステン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マグネシウム-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(モリブデン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マンガン-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(鉄基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マンガン-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(ニッケル基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マンガン-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(コバルト基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マンガン-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(銅基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マンガン-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(アルミニウム基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マンガン-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(チタン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マンガン-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(タングステン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくとも一つの低融点合金(マンガン-ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(モリブデン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくともひとつの低融点合金(ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(鉄基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくともひとつの低融点合金(ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(ニッケル基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくともひとつの低融点合金(ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(コバルト基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくともひとつの低融点合金(ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(銅基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくともひとつの低融点合金(ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(アルミニウム基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくともひとつの低融点合金(ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(チタン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくともひとつの低融点合金(ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(タングステン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、金属または少なくとも一部の金属コンポネントの製造のための、少なくともひとつの低融点合金(ガリウム合金)および低融点合金に含まれる粉末状の高融点合金(モリブデン基合金)、または必要に応じて有機化合物を含む粉末混合物の使用を示す。
一つの実態形態における本発明は、下記の工程で構成された、部品、パーツ、コンポネント、ツールなどの、少なくとも一部の金属製品の製造方法を示す。
a. 少なくとも一つの有機相および少なくとも一つの金属相を含むコンポネントの用意
b. 形状保持がほぼ有機相により提供された製造プロセスを用いたコンポネントの成形
c. 0.35*Tm以上の温度下にコンポネントを置く。低融点を有する金属相の融点をTmとする。液相の形成または金属相の間の適切な拡散に十分な時間を与え、それにより、少なくとも一つの有機化合物が劣化し始める前に、金属相における形状保持プロセスの完了を確保する。
一つの実態形態における本発明は、コンポネントが少なくとも二つの金属相が含み、さらに金属相の間の融点に110℃以上の差がある、クレーム1による方法を示す。
一つの実態形態における本発明は、コンポネントが490℃以下の融点を有する少なくとも一つの金属相を含む、クレーム1または2による方法を示す。
一つの実態形態における本発明は、コンポネントが110℃以上で膨張する液相および固相の共存領域を有する少なくとも一つの金属相を含む、クレーム1から3による方法を示す。
一つの実態形態における本発明は、クレーム1から4のいずれかに基づく方法を示す。この製法は、他の金属相の少なくとも一つの化学要素の拡散または溶解をもよる、結合の結果である工程c)の実施に伴い、少なくとも110℃まで上昇した融点を有する少なくとも一つの金属相を含むコンポネントの製造方法である。
一つの実態形態における本発明は、コンポネントが0.1wt%以上のガリウムを有する少なくとも一つの金属相を含む、クレーム1から5のいずれかに基づく方法を示す。
一つの実態形態における本発明は、工程b)の形状保持の製造プロセスがAM方法である、クレーム1から6のいずれかに基づく方法を示す。
一つの実態形態における本発明は、工程b)の形状保持の製造プロセスが、感光性樹脂の選択性硬化に基づくAM方法である、クレーム1から7のいずれかに基づく方法を示す。
一つの実態形態における本発明は、工程b)の形状保持の製造プロセスが、化学反応を通じた樹脂の選択性硬化に基づくAM方法である、クレーム1から8のいずれかに基づく方法を示す。
一つの実態形態における本発明は、工程b)の形状保持の製造プロセスが、選択性溶解またはポリマーの可塑化に基づくAM方法である、クレーム1から9のいずれかに基づく方法を示す。
一つの実態形態における本発明は、工程b)の形状保持の製造プロセスが、局在的溶解またはポリマーの軟化に基づくAM方法である、クレーム1から10のいずれかに基づく方法を示す。まず、選択的溶解または軟化のための温度勾配が、エネルギーフローを強化または防止する添加物などによって展開する。これら添加物は、管理されたパターンにも使用できる。
一つの実態形態における本発明は、工程b)の形状保持の製造プロセスが、溶解射出法、熱形成法、鋳造法、圧縮法、プレス法、押出法、回転成形法、ディップ成形、形状成形法から構成されるグループより選択されたポリマー成形法である、クレーム1から11のいずれかに基づく方法を示す。
一つの実態形態における本発明は、工程b)の形状保持の製造プロセスが、感光性樹脂の硬化とその後継続的な硬化方法を用いたAM方法である、クレーム1から12のいずれかに基づく方法を示す。
クレーム1から13のいずれかの方法においては、工程c)では、コンポネントは0.35*Tm以上の温度を対象にする。Tmとは、最も低い融点を有した金属相の融点、さらに少なくとも一つの有機化合物の最も高い分解温度以下のことである。その後低融点金属相の少なくとも一つの要素の過半数以上の金属相の微粒子の表面から10mmの濃度の上昇を可能にするに十分な時間を持てる。3%以上の比較重量平均の3%以上を加える(平均値を算出するのに30%の最も高い値が考慮される)表面からの距離は、はじめの接触点を交差した上の二つの異なる微粒子の間の接触面から直交に測定される。
一つの実態形態における本発明は、工程b)とc)の間の少なくとも1vol%の金属液相が形成される方法である、クレーム1から14のいずれかに基づく方法を示す。
一つの実態形態における本発明は、少なくとも一つの有機相と有機相の最高分解点より二倍低い融点を有する少なくとも一つの金属相を含んだ原料を示す。またこれらの金属相の融点と有機相の分解点はケルビンで表し、さらに金属相は36%以上の体積分率を表す。
本発明における方法は、AMまたはその他の早い成形プロセスによる低コストな部品製造のために開発された。この方法は、あらゆる固気比や、あらゆる大きさや形状の部品に使用できる。一つの実態形態におけるこの方法は、従来の製造方法では成しえなかった、大きなコンポネントの製造を可能にした。一つの実態形態における本発明は、少なくとも一つの金属粉末を含む粉末混合物を用いた、金属または少なくとも一部の金属コンポネントの製造に関連する。本発明は、コンポネントの成形や、いくつかの実態形態では、成形後から後処理工程で得られるコンポネントを対象とする。一つの実態形態における有機物質は、さらにまた粉末混合物に含まる。他の実態形態におけるポリマーは、粉末混合物に含まれる。一つの実態形態おける少なくとも一つの粉末は、部分的もしくは全体的に有機物質でコーティングされている。一つの実態形態おいては、粉末混合物の中に一つ以上の金属粉が存在する場合、粉末のいずれかは少なくとも部分的にポリマーでコーティングされている。また、一つ以上のポリマーが全体または部分的にコーティングされた各金属粉末や異なるポリマーは、完全または少なくとも部分的に各金属粉末をコーティングするために使用される。この方法は、特定の部品の製造を実現させる。
一つの実態形態における本発明は、金属または少なくとも一部の、部品、部分品、コンポネント、道具などの金属コンポネントの、下記の工程で構成された製造方法を示す: 少なくとも一つの低融点合金と高融点合金、または必要に応じて有機化合物を含む粉末混合物を用意;
加工部品を製作する成形技術を用いた粉末混合物による成形;
コンポネントの形成を目的とした少なくとも一後処理工程。
一つの実態形態における本発明は、従来の製法に比べ低コストで、かつ早い製造方法を可能にする方法を示す。他の実態形態における本発明は、鍛冶、鋳造、スタンピング、サンドブラスト、ダイカッティング、表面硬化法、はんだ付けなどの従来の製法では成しえなかった、複雑な形状の金属または少なくとも一部の金属コンポネントの製造を可能にする。
一つの実態形態における加工部品とは、粉末混合物を用いた成形技術によって得られるコンポネントを指す。
一つの実態形態における金属粉とは、粉末状の合金を指す。一つの実態形態における金属粉とは、粉末状の鉄、ニッケル、モリブデン、チタン、アルミニウム、タングステン、銅、コバルトまたはマグネシウム基合金を指す。
一つの実態形態における少なくとも一つの金属粉末を含む粉末混合物とは、粉末状の一つまたは複数の合金の混合物を指す。
一つの実態形態における合金とは、他の非金属成分を必要に応じて含む金属の混合物を指す。
一つの実態形態における、前述したいずれかの粉末状の合金は、本発明の方法において金属粉として使用するのに適している。一つの実態形態における、前述したいずれかの、少なくとも一つのの高融点または低融点を含む粉末混合物は、本発明の方法において金属粉として使用するのに適している。
低い固気比の部品には、除去形成に基づくシステムが使用できる。また高い固気比の部品には、凝縮または配座に基づく形成システムが求められる。異なる形成システムは、同時または順次に部品の製造のために使用される。本発明の方法は、直接的に金属集結に働けるが、多くの使用には複合ポリマー金属材料を用いることで、非常に有利である。
一つの実態形態におけるコンポネントとは、構造、道具、部品、金型やダイス型などを指す。一つの実態形態における複雑な形状のコンポネントは、本発明の方法を用いて得られる。
一つの実態形態におけるコンポネントとは、構造を指す。一つの実態形態におけるコンポネントとは、道具を指す。一つの実態形態におけるコンポネントとは、ダイス型を指す。一つの実態形態におけるコンポネントとは、部品を指す。
いくつかの実態形態における複雑な形状とは、溶解射出法では得られない形状を指す。他の実態形態においては、アメリカンモルドビルダーズアソシエーションの塑性溶解射出法の使用法によれば、溶解射出法では、経済的に製造できない形状を指す。他の実態形態おいては、スタンピング法では得られない形状を指す。他の実態形態では、ダイススタンピング法では、経済的に製造できない形状を指す。他の実態形態では、商業化できるプロフィールでは得られない構造を指す。一つの実態形態では、製造にUS塑性射出協会が推算した1000米ドル以上の費用を要する(2010年1月の支出)を指す。他の実態形態では、ロックスワックス鋳造やサンド鋳造では得られない形状を指す。他の実態形態では、粉砕、中ぐり、電食といったような従来のダイス製造方法では得られないダイスを指す。
一つの実態形態では、金属溶解射出(MIM) を指す場合、大きなコンポネントとは、25g以上のものを指す。さらに他の実態形態においてはそれぞれ、55g以上、。さらに他の実態形態においてはそれぞれ、155g以上、。さらに他の実態形態においてはそれぞれ、210g以上、。さらに他の実態形態においてはそれぞれ、320g以上、1kg以上となっている。
一つの実態形態における部分的の金属コンポネントとは、金属または構成的に金属とは異なる構成要素を有するコンポネントを指す。一つの実態形態おける金属とは異なる構成要素とは、これらに限らないが、特にセラミック、ポリマー、グラフェン、セルロースなどの構成要素を指す。一つの実態形態における部分的な金属コンポネントとは、構成的に金属とは異なる他の構成要素の体積の0.1%以上を有するコンポネントを指す。他の実態形態においては、体積の11%以上、23%以上。他の実態形態においては、48以上。他の実態形態においては、67%以上。他の実態形態においては、83%以上、91%以上としている。
一つの実態形態では、前述した、粉末状の鉄ニッケル、モリブデン、マグネシウム、アルミニウム、タングステン、銅、コバルトまたはチタン基合金のいずれかを含む粉末混合物は、本発明の使用に特に適している。
一つの実態形態では、前述した、高い充填密度を有した粉末混合物は、本発明の使用に適している。
最終コンポーネントへの低融点金属の構成要素の影響は、この低融点合金の要素の低い濃度に対して無害である。発明者は、製造工程の間に形状保持を促す、ポリマーの分解による形状保持への十分なアシストすることで、これら合金が低い濃度を持つためのいくつかの方法とみている。一般的に、低融点金属要素の均一な分布しかり、原料内の金属の高い体積分率を有する緻密な構造が注視されてきた。例えば、90%以上のアルミニウム合金が、スチール基金属要素の上の低融点金属要素として使用されるのは、低いアルミニウム含有量を持つスチールが、沈殿物を通じて強度を増す、オーステナイト粒の成長を制限する、脱酸、硬い窒化層を作るなどの有益な効果を有するからである。しかしながらこの効果は、0.1−1重量%の間の大きさの順にむしろアルミニウム含量が低い場合に起こる。この状況の打開策は、スチール微粒子の緻密な構造に高い密度をもたらすことである(球状および細い粒度分布により)。その後、主要な微粒子のD50の約0.41倍のD50を有する金属微粒子が、八面体間隙を満たすために約0.7重量%をもたらす。この微粒子は、主要な金属要素と同じ性質を持ち得る。またこの微粒子は、拡散やその他の全ての処理が完了した際に、求めた性能を有するために選ばれた(ここでも真球度と細い粒度分布が役立つ)。90%+のアルミニウム合金の細かな粉末は、主要な微粒子のD50の約0.225倍のD50を持つ。四面体間隙を満たすためにおよそ0.6体積%でなければならない(さらにここでも真球度と細い粒度分布が役立つ)。アルミニウムのこの密度と、スチールのこの体積分率は、最終製品にアルミニウム合金90%+の0.15重量%を示す。この値はアルミニウムからスチールにプラスに働く範囲内である。
一つの実態形態における90%以上のアルミニウム重量を有するアルミニウム基合金は、低融点合金として使用し、スチール基合金は、金属または少なくとも部分的に金属コンポネントの製造に用いられた粉末混合物中の高融点合金として使用する。一つの実態形態におけるこの90%以上のアルミニウム重量を有するアルミニウム基合金は、全ての金属構成要素の体積の10%以下である。一つの実態形態におけるすべての金属構成要素の体積の7%は、アルミニウム基合金である。このアルミニウム基合金の重量の90%以上を、スチール基合金の主要な粒子の0.41倍のD50直径を有するアルミニウム粒子が占める。また、すべての金属構成要素の体積の0.6%は、スチール基合金の主要な粒子の0.225倍のD50直径を有するアルミニウム粒子の90%以上の重量を占める。
一つの実態形態における本発明は、成形技術による粉末混合物から金属または少なくとも部分的な金属コンポネントを製造する方法を示す。
一つの実態形態における成形技術は、AM技術である。
一つの実態形態における成形技術は、3Dプリンティング、インク噴射、Sプリント、Mプリント技術、レーザー積層法、レーザー硬化法、直接金属積層法や電子ビームダイレクト溶解法、熱溶解積層法(FDM)、直接金属のレーザー焼結(DMLS)、レーザー溶解法(SLM)、エレクトロンビーム溶解法(EBM)、レーザー焼結法(SLS)、光造形法、デジタルライトプロセッシング(DLP)などのAM技術である。
一つの実態形態における成形技術は、ポリマー成形技術である。一つの実態形態における成形技術は、金属溶解噴出である。一つの実態形態における成形技術は、焼結法である。一つの実態形態における成形技術は、焼結鍛造である。一つの実態形態における成形技術は、熱間等方圧加工法(HIP)である。一つの実態形態における成形技術は、冷間等方圧加工法(CIP)である。一つの実態形態における本発明は、最終金属または少なくとも部分的な金属コンポネントが成形後に得られる成形技術による、粉末混合物を用いた金属または少なくとも部分的な金属コンポネントを製造する方法を示す
一つの実態形態における本発明は、成形技術による粉末混合物からの金属または少なくとも部分的な金属コンポネントの製造の方法を示す。ここでは、成形後に得られた金属または少なくとも部分的な金属コンポネント(グリーン体)は、少なくとも一度の後処理を受ける。
一つの実態形態におけるすべての後処理は、いずれかの適した形で組み合わせることができる。
一つの実態形態における後処理は、脱バインダである。
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象にした脱バインダ;
工程c)で得たコンポネントを対象にした熱処理および必要に応じた焼結や熱間等方圧加工。
一つの実態形態における後処理とは、熱処理を指す。
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象とした熱処理加工;
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象とした熱処理加工;
工程c)で得たコンポネントを対象とした焼結;
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象とした熱処理加工;
工程c)で得たコンポネントを対象とした熱間等方圧加工法。
一つの実態形態における後処理とは、焼結を指す。
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象とした焼結。
一つの実態形態における焼結は、高融点合金(融点が0.7倍の高融点合金)の0.7*Tm以上の温度で行われる。一つの実態形態における焼結は、高融点合金(融点が0.75倍の高融点合金)の0.75*Tm以上の温度で行われる。一つの実態形態における焼結は、高融点合金(融点が0.8倍の高融点合金)の0.8*Tm以上の温度で行われる。一つの実態形態における焼結は、高融点合金(融点が0.85倍の高融点合金)の0.85*Tm以上の温度で行われる。一つの実態形態における焼結は、高融点合金(融点が0.9倍の高融点合金)の0.9*Tm以上の温度で行われる。一つの実態形態における焼結は、高融点合金(融点が0.95倍の高融点合金)の0.7*Tm以上の温度で行われる。
一つの実態形態におけるコンポネントは、脱バインダ前の焼結処理の対象である。一つの実態形態におけるコンポネントは、熱処理前の焼結処理の対象である。一つの実態形態におけるコンポネントは、熱処理前の焼結鍛冶処理の対象である。
一つの実態形態におけるコンポネントは、脱バインダ前の熱間等方圧加工法の対象である。一つの実態形態におけるコンポネントは、熱処理前の熱間等方圧加工法の対象である。
一つの実態形態における後処理は、焼結鍛冶である。
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象とした焼結鍛冶;
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象とした熱処理加工;
工程c)で得たコンポネントを対象とした焼結鍛冶
一つの実態形態における後処理は、熱間等方圧加工法(HIP)である。
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象としたHIP
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象とした熱処理加工;
工程c)で得たコンポネントを対象とした熱間等方圧加工法。
一つの実態形態における後処理は、冷間等方圧加工法(CIP)である。
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象としたCIP;
一つの実態形態における本発明は、部品、コンポネント、道具のような金属または少なくとも部分的な金属コンポネントを製造する、下記の工程を含む方法を示す。
少なくとも一つの低融点合金また高融点合金、および必要に応じて有機化合物を含む粉末混合物の用意;
成形技術による粉末混合物の成形;
成形されたコンポネントを対象とした熱処理加工;
工程c)で得たコンポネントを対象としたCIP
一つの実態形態における熱処理に伴ういずれかの処理中に、熱を移すために使用されるシステムは、マイクロ波、熱誘導、熱対流、放熱や熱伝導を用いて行う。
一つの実態形態における熱処理に伴ういずれかの処理中に、熱を移すために使用されるシステムは、マイクロ波を用いて行う。
一つの実態形態における熱処理に伴ういずれかの処理中に、熱を移すために使用されるシステムは、熱誘導を用いて行う。
一つの実態形態における熱処理に伴ういずれかの処理中に、熱を移すために使用されるシステムは、熱対流を用いて行う。
一つの実態形態における熱処理に伴ういずれかの処理中に、熱を移すために使用されるシステムは、放熱を用いて行う
。一つの実態形態における熱処理に伴ういずれかの処理中に、熱を移すために使用されるシステムは、熱伝導を用いて行う。
一つの実態形態における熱処理に伴ういずれかの処理中に、熱を移すために使用されるシステムは、本資料に記述のある熱処理の焼結、脱バインダ、またはHIPなどを含むがそれに限られない。
一つの実態形態における後処理は、真空、低圧力、高圧力、不活性雰囲気、還元性雰囲気、酸化雰囲気下などで行われる。
一つの実態形態における本発明は、MIM、HIP法、CIP法、焼結鍛冶、焼結および粉末の構造に適したいずれかの技術、さらにこれらのいずれかを組み合わせた技術などのAM技術を使用した、少なくとも一つの金属粉末を含んだ粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造するための方法を示す。一つの実態形態における粉末混合物は、さらにまた有機化合物も含む。他の実態形態における本発明は、AM技術を用いた一つの金属粉末を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。一つの実態形態のおける粉末混合物は、さらにまた有機化合物も含む。他の実態形態における本発明は、AM技術を用いた類似した融点の有する一つ以上の金属粉を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。一つの実態形態における粉末混合物は、さらにまた有機化合物も含む。一つの実態形態における本発明は、AM技術を用いた少なくとも二つの金属粉末を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。
一つの実態形態における粉末混合物は、さらにまた有機化合物を含む。他の実態形態における本発明は、AM技術を用いた異なる融点を有する少なくとも二つ以上の金属粉末を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。一つの実態形態における粉末混合物は、さらにまた有機化合物も含む。一つの実態形態における本発明は、AM技術を用いた少なくとも一つの低融点金属粉末と高融点金属粉末を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。この低融点金属粉末は、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金から精選される。これらの基合金には、合金に加えられる際に、低温かつ低含有量の、いずれかの液相を示す選ばれた合金の二元性状態図の少なくとも一つの要素を含む。高融点合金は、鉄またはチタン基合金から選ばれる。一つの実態形態における粉末混合物は、さらにまた有機混合物も含む。
一つの実態形態における本発明は、AM技術を用いた少なくとも一つの低融点金属粉末また高融点金属粉末を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。低融点金属粉は、ガリウム、マグネシウムまたはいずれかの組み合わせなどから少なくとも一つの要素を含む鉄またはチタン基合金から選ばれる。高融点合金は、鉄またはチタン基合金から選ばれる。一つ実態形態における粉末混合物は、さらにまた有機化合物を含む。一つの実態形態における本発明は、AM技術を用いた少なくとも一つの低融点金属粉末と高融点金属粉末を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。この低融点金属粉末は、ガリウム合金、Al-Ga合金、Cu-Ga合金、Sn-Ga合金、Mg-Ga合金、Mn-Ga合金、Ni-Ga合金、マグネシウムを多く含む合金、マグネシウムを多く含みさらに炭素(スチール)を含む鉄基合金、マグネシウムを含むアルミニウム基合金、スカンジウムを含むアルミニウム基合金、スズを含むアルミニウム基合金、90%以上のアルミニウム重量を含むアルミニウム基合金、また鉄またはチタン基合金から選ばれた高融点合金から精選する。一つの実態形態における粉末混合物は、さらにまた有機混合物も含む。
一つの実態形態において、二つの金属粉末を有する粉末混合物の低融点とは、最も低い融点を有する金属粉末を指し、高融点合金とは、高融点を有する金属粉末を指す。両者間の融点の差は、少なくとも62℃以上とする。また他の実態形態においては110℃以上。また他の実態形態においては230℃以上。また他の実態形態においては110℃以上。また他の実態形態においては230℃以上。また他の実態形態においては420℃以上。また他の実態形態においては640℃以上、さらにまた他の実態形態においては820℃以上とする。
一つの実態形態における金属粉末の融点は、平衡状態下で液体に変化する温度を指す。
一つの実態形態における低融点合金のTmは、この合金の融点を指す。
一つの実態形態における高融点合金のTmは、この合金の融点を指す。
一つの実態形態では、一つ以上の低融点合金が粉末混合物の中に含まれる時。一つの実態形態における低融点合金のTmは、粉末混合物/金属相において、より高い重量/体積の比率を有する合金のTmを指す。
一つの実態形態における低融点合金のTmは、最も低い融点を有する低融点合金のTmを指す。
一つの実態形態における高融点合金のTmとは、金属相において、より高い重量比を有する合金(より低い融点を有する合金を除く)のTmを指す。一つの実態形態では、粉末混合物/金属相において、最も高い値である同じ重量比を有する一つ以上の合金(より低い融点を持つ合金を除く)が存在する場合、Tmとは、これらの間で最も低いTmを有する合金を指す。
一つの実態形態における高融点合金のTmとは、粉末混合物中において、より高い重量比を有する合金(より低い融点を有する合金を除く)のTmを指す。一つの実態形態では、粉末混合物/金属相において、最も高い値である同じ重量比を有する一つ以上の合金(より低い融点を有する合金を除く)が存在する場合、Tmとは、これらの間で最も低いTmを有する合金を指す。
一つの実態形態における高融点合金のTmとは、粉末混合物中において、より高い体積比を有する合金(より低い融点を有する合金を除く)のTmを指す。一つの実態形態では、粉末混合物/金属相において、最も高い値である同じ体積比を有する一つ以上の合金(より低い融点を有する合金を除く)が存在する場合、Tmとは、これらの間で最も低いTmを有する合金を指す。
一つの実態形態における高融点合金のTmとは、金属相において、より高い体積比を有する合金(より低い融点を有する合金を除く)のTmを指す。一つの実態形態では、粉末混合物/金属相において、最も高い値である同じ体積比を有する一つ以上の合金(より低い融点を持つ合金を除く)が存在する場合、Tmとは、これらの間で最も低いTmを有する合金を指す。
一つの実態形態では、粉末混合物に一つ以上の低融点合金が存在する場合。一つの実態形態における低融点のTmは、すべての低融点合金(粉末混合物の重量の1%以下の融点合金を除く)のより低いTmを指す。他の実態形態における低融点合金のTmは、すべての低融点合金(粉末混合物中の重量が2.4%以下の低融点合金を除く)のより低いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末混合物中の重量が3.8%以下の低融点合金を除く)のより低いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末混合物中の4.8%以下の重量が低融点合金を除く)のより低いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末混合物/金属相中(粉末混合物中のすべての金属粉末の和)の重量が7%以下の低融点合金を除く)のより低いTmを指す。
一つの実態形態では、粉末混合物に一つ以上の低融点合金が存在する場合。一つの実態形態における低融点のTmは、すべての低融点合金(粉末混合物中の体積が1%以下の融点合金を除く)のより低いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉末の和)の体積が2.4%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉末の和)の体積が3.8%以下の低融点合金を除く)の、より低いTmを指す。他の実態形態における低融点Tmは、すべての低融点合金(粉末金属相中の(粉末混合物中のすべての金属粉末の和)の体積が4.8%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点Tmは、すべての低融点合金(粉末金属相中の(粉末混合物のすべての金属粉末の和)の体積が7%以下の低融点合金を除く)の、より低いTmを指す。
一つの実態形態では、粉末混合物に一つ以上の低融点合金が存在する場合。一つの実態形態における低融点のTmは、すべての低融点合金(粉末混合物中の重量が1%以下の低融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末混合物中の重量が2.4%以下の低融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末混合物中の重量(粉末混合物中のすべての金属粉末の和)中の3.8%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末混合物中の重量が4.8%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmは、すべての低融点合金(粉末混合物/金属相(粉末混合物中のすべての金属粉末の和)中の重量が7%以下の融点合金を除く)の、最も高いTmを指す。
一つの実態形態では、粉末混合物に一つ以上の低融点合金が存在する場合。一つの実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の重量が1%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の重量が2.4%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の重量が3.8%以下の融点合金を除く)の、より低いTmを指す。他の実態形態では、低融点Tmは、すべての低融点合金(粉末混合物中の重量が4.8%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の重量が7%以下の融点合金を除く)の、最も高いTmを指す。
一つの実態形態では、粉末混合物に一つ以上の低融点合金が存在する場合。一つの実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の体積が1%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉末の和)の体積が2.4%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉の和)の体積が3.8%以下の低融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉の和)の体積が4.8%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉の和)の体積が7%以下の低融点合金を除く)の、最も高いTmを指す。
一つの実態形態では、粉末混合物に一つ以上の低融点合金が存在する場合。一つの実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の体積が1%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態おける低融点のTmとは、すべての低融点合金(粉末混合物中の体積が2.4%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の体積が3.8%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の体積が4.8%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の体積が7%以下の融点合金を除く)の、最も高いTmを指す。
一つの実態形態では、粉末混合物中に一つ以上の低融点合金が存在する場合。一つの実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の重量が1%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉の和)の重量が2.4%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末金属相中の(粉末混合物中のすべての金属粉の和)の重量が3.8%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉の和)の重量が4.8%以下の融点合金を除く)の、最も高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末金属相中(粉末混合物中のすべての金属粉の和)の重量が7%以下の低融点合金を除く)の、最も高いTmを指す。
一つの実態形態における高融点合金のTmとは、この合金の融点を指す。
一つの実態形態において、粉末混合物中に一つ以上の融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、粉末混合物中に、より高い重量比を有する低融点合金のTmを指す。
一つの実態形態において、粉末混合物中に一つ以上の融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、粉末混合物中に、より高い体積比を有する低融点合金のTmを指す。
一つの実態形態において、粉末混合物中に一つ以上の融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、粉末混合物中に、より低い重量比を有する低融点合金のTmを指す。
一つの実態形態において、粉末混合物中に一つ以上の融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、粉末混合物中に、より低い体積比を有する低融点合金のTmを指す。
一つの実態形態において、粉末混合物中に一つ以上の融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、金属相(粉末混合物中のすべての金属粉の和)中に、より高い重量比を有する低融点合金のTmを指す。
一つの実態形態において、粉末混合物中に一つ以上の融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、粉末金属相中(粉末混合物中のすべての金属粉の和)に、より高い体積比を有する低融点合金のTmを指す。
一つの実態形態において、粉末混合物中に一つ以上の融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、粉末金属相中(粉末混合物中のすべての金属粉の和)に、より低い重量比を有する低融点合金のTmを指す。
一つの実態形態において、粉末混合物中に一つ以上の融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、粉末金属相中(粉末混合物中のすべての金属粉の和)に、より低い体積比を有する低融点合金のTmを指す
。
一つの実態形態において、類似した重量比(類似した体積比とは、その差が10%以下のものを指す)を有した一つ以上の高融点合金が混合物に存在し、かつ粉末混合物に、より高い重量比の高融点合金が存在する場合、高融点合金のTmとは、類似した体積比を有するこれらの合金の、より低いTm値を指す。
一つの実態形態において、類似した体積比(類似した重量比とは、その差が10%以下のものを指す)を有する一つ以上の高融点合金が混合物に存在し、かつ粉末混合物に、より高い体積比の高融点合金が存在する場合、高融点合金のTmとは、類似した重量比を有するこれらの合金の、より低いTmを指す
一つの実態形態において、類似した重量比(類似した体積比とは、その差が10%以下のものを指す)を有した一つ以上の高融点合金が混合物に存在し、かつ粉末混合物に、より高い重量比の高融点合金が存在する場合、高融点合金のTmとは、類似した体積比を有するこれらの合金の、より高いTm値を指す。
一つの実態形態において、類似した体積比(類似した重量比とは、その差が10%以下のものを指す)を有する一つ以上の高融点合金が混合物に存在し、かつ粉末混合物に、より高い体積比の高融点合金が存在する場合、高融点合金のTmとは、類似した重量比を有するこれらの合金の、より高いTmを指す
一つの実態形態おいて、粉末混合物中に一つ以上の高融点合金が存在する場合。一つの実態形態における高融点合金のTmとは、すべての高融点合金(粉末混合物の重量が1%以下の高融点合金を除く)の、より高いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の重量が3.4%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点合金のTmとは、すべての低融点合金(粉末混合物中の重量が6.2%以下の高融点合金を除く)の、より低いTmを指す。
一つ実態形態において、粉末混合物中に一つの以上の高融点合金が存在する場合。一つの実態形態における高融点のTmとは、すべての高融点合金(金属相中(粉末混合物中のすべての金属粉の和)の重量が1%以下の高融点合金を除く)の、より低いTmを指す。他の実態形態おける低融点のTmとは、すべての低融点合金(金属相(粉末混合物中のすべての金属粉末の和)の重量が3.4%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(金属相(粉末混合物中のすべての金属粉末の和)の重量が6.2%以下の高融点合金を除く)の、より低いTmを指す。
一つの実態形態において、粉末混合物中に一つの以上の高融点合金が存在する場合。一つの実態形態における高融点のTmとは、すべての高融点合金(粉末混合物中の重量が1%以下の高融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の重量が3.4%以下の融点合金を除く)の、より低いTmを指す。他の実態形態における低融点のTmとは、すべての低融点合金(粉末混合物中の重量が6.2%以下の高融点合金を除く)の、より低いTmを指す
一つの実態形態における最終コンポネントは、成形後に得られる。一つの実態形態において、最終コンポネントは、焼結、焼結鍛冶、冷間等方圧加工法、熱間等方圧加工法などの、粉末混合物を用いた成形技術後に得られる。
一つの実態形態おいて、成形後に得られるコンポネントは、後処理の対象になる。一つの実態形態において、粉末混合物を成形する粉末凝固技術に、焼結、焼結鍛冶、または熱間等方圧加工法が用いられた場合の、成形後に得られるコンポネントが、最終コンポネントである。
一つの実態形態において、金属または部分的な金属コンポネントが後処理を通して成形された後に得られるコンポネントは、グリーン体である。一つの実態形態において、この後処理には、脱バインダ、PMSRTまたはMSRTを促進させる熱処理、焼結、焼結鍛冶、CIPさらにHIPが含まれる
一つの実態形態における脱バインダまたは少なくとも部分的な脱バインダは、本資料に記述があるように、熱処理中に行われる。他の実態形態における脱バインダは、熱処理前に行われる。
一つの実態形態におけるグリーン体とは、金属または少なくとも部分的な金属コンポネントを得るまでの後処理の対象になりうるAM技術またはポリマー成形技術を用いた粉末混合物の成形後に得られるコンポネントを指す。
一つの実態形態における後処理とは、最終コンポーネントを得るまでの、グリーン体の生じる加工技術を指す。一つの実態形態おけるこの後処理には、PMSRTやMSRTを促進させる熱処理、脱バインダ、HIP、CIP、焼結鍛冶、焼結、またはこれらの加工技術のいずれかの組み合わせなどの、目的の最終コンポネントを得るまでのグリーン体の高密度化、凝固などの加工技術が含まれる。
一つの実態形態において、異なる融点を有する少なくとも二つの金属粉末が、粉末混合物及びポリマーに含まれる場合、グリーン体に高いタップ密度を与えるために、粒度分布と粒子サイズの適切な選択が行われる。またポリマーの分解(少なくとも部分的に)に要する加工および金属相を形状保持の最重要因子にするために、低温で行われる(従来の、最終コンポネントを得るまでのグリーン体の後処理の間の方法と比べて)。こうすることでコンポネントは、処理の間に、より低い熱応力や残留応力を受けことになる。
AM製造とは、多くの構造の複製を可能にする精度を大幅に上げた一連の技術である。
ASTMインターナショナルの資料F2792-12aによると、現在AM技術は、i)結合剤噴射ii)指向性エネルギー堆積 iii)材料押出堆積 iv)材料噴射堆積 v)粉末床溶解結合 vi)シート積層 vii)液槽光重合の七つのカテゴリーに分類されている。この分類は、下記の多くの技術を要約する: 3Dプリンティング、インクジェット、Sプリント技術、Mプリント技術、レーザー積層法、レーザー硬化法、直接金属積層法や電子ビームダイレクト溶解法、熱溶解積層法(FDM)、直接金属のレーザー焼結(DMLS)、レーザー溶解法(SLM)、エレクトロンビーム溶解法(EBM)、レーザー焼結法(SLS)、光造形法、デジタルライトプロセッシング(DLP)など。
一つの実態形態における本発明は、AM技術を用いた金属または部分的な金属コンポネントの製造のための粉末混合物の成形工程を含む。一つの実態形態おいて、これらのAM技術には、有機化合物に加えて少なくとも一つの金属粉末を含む粉末混合物の使用が適している。
一つの実態形態における成形工程は、3Dプリンティング、インクジェット、Sプリント技術およびMプリント技術を含む結合剤噴射法を用いて行われる。一つの実態形態における本発明は、3Dプリンティング、インクジェッティング、Sプリント技術、Mプリント技術を用いた粉末混合物の成形による、少なくとも一つの金属粉末および必要に応じて有機化合物を含む粉末混合物を使用した、金属または少なくとも部分的に金属コンポネントを製造する法を示す。
一つの実態形態おける成形工程は、指向性エネルギー堆積法を用いて行われる。この技術は、レーザー(レーザー堆積やレーザー凝固)、アークまたは電子ビーム熱源(指向性金属体積や電子ビーム直接溶解)などの、粉末やワイヤーなどの原料を吹き付けた位置に、集束エネルギーを集めるすべての技術を含む。一つの実態形態における本発明は、少なくとも一つの金属粉末または必要に応じて有機化合物を含む粉末混合物を用いた指向性エネルギー堆積法による、金属粉末または少なくとも部分的な金属コンポネントを製造する方法を示す。この技術は、レーザー(レーザー堆積やレーザー凝固)、アークまたは電子ビーム熱源(指向性金属体積や電子ビーム直接溶解)などの、粉末やワイヤーなどの原料を吹き付けた位置に、集束エネルギーを集めるすべての技術を含む。
一つの実態形態による成形工程は、材料押出堆積法を通して行われる。造形物は、ノズルから材料を注入し加熱した後、一層ごとに堆積して作られる。ノズルおよびプラットホームは、最も一般的な材料押出技術である熱溶解積層法のように、新しい層を構築するごとに、それぞれ水平かつ垂直に動かすことができる。一つの実態形態における本発明は、少なくとも一つの金属粉末および必要に応じて有機化合物の粉末混合物を用いた材料押出堆積法による、金属または少なくともひとつの部分的金属コンポネントを製造する方法を示す。造形物は、ノズルから材料を注入し加熱した後、一層ごとに堆積して作られる。最も一般的な材料押出堆積法である熱溶解積層法のように、一層一層作られるごとに、ノズルとプラットフォームがそれぞれ水平または垂直に動く。
一つの実態形態における成形工程は、二次元インクジェットプリンティングに類似した技術である材料噴射法を用いて行われる。この技術は、ポリマーやワイヤーなどの材料をプラットフォームに向け噴射する造形法である。一層ごとにモデルが造形されるまで、UVライトを用いて凝固させる。一つの実態形態における本発明は、少なくとも一つの金属粉末または必要に応じて有機化合物を含む粉末混合物を用いた材料噴射による、金属粉末または少なくとも部分的な金属コンポネントを製造する方法を示す。この技術は、二次元インクジェットプリンティングに類似した技術である。主にポリマーやワイヤーなどの材料を、プラットフォームに向け噴射する造形法である。一層ごとにモデルが造形されるまで、UVライトを用いて凝固させる。
一つの実態形態における成形工程は、粉末床(金属、ポリマーまたはセラミック)の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いるすべての技術を含む、粉末床溶解結合法を用いて行われる。さらに指向性金属レーザー焼結(DMLS)、選択性レーザー溶解(SLM)、電子ビーム溶解(EBM)、選択性レーザー焼結(SLS)などの技術も、昨今使用されている。一つの実態形態における本発明は、少なくとも一つの金属粉末または必要に応じて有機化合物を含む粉末混合物を用いた粉末床溶解結合法による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。この技術は、粉末床(金属、ポリマーまたはセラミック)の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いるすべての技術を含む。さらに、指向性金属レーザー焼結(DMLS)、選択性レーザー溶解(SLM)、電子ビーム溶解(EBM)、選択性レーザー焼結(SLS)などの技術も、昨今使用されている。
一つの実態形態における成形工程は、正確にカットされた金属シートを積み重ねて、立体モデルを造形するシート積層法を用いて行われる。この技術にはさらにまた、超音波による固体化やシート状の資材の製造も含まれる。前者には、シートを接合するためのソノトロードを用いた超音波溶接を使用し、後者には、溶接の代わりに紙と接着剤を材料として用いる。一つの実態形態における本発明は、少なくとも一つの金属粉末または必要に応じて有機化合物の粉末混合物を用いたシート積層法による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。この技術は、正確にカットされた金属シートを積み重ねて、立体モデルを造形する技術である。この技術にはさらにまた、超音波による固体化やシート状の資材の製造も含まれる。前者は、シートを接合するためにソノトロードを用いた用いた超音波溶接を使用し、後者には、溶接の代わりに紙と接着剤を材料として用いる。
一つの実態形態における成形工程は、バットに貯めた光硬化性樹脂を用いた液槽光重合を用いて行われる。立体モデルは、凝固因子として電磁気放射を用いて、一層ごとに造形しいく。断面層は、立体モデルを作るために、プラットフォームを動かしながら、連続的かつ選択的に硬化されていく。多くの場合、感光性樹脂が使用される。この主な技術は、光造形法及びデジタルライトプロセッシング(DLP)である。これらの技術では、感光性樹脂の凝固のためにレーザーではなくプロジェクターライトが用いられる。一つの実態形態における本発明は、少なくとも一つの金属粉末または必要に応じて有機化合物の粉末混合物、また、バットに貯めた光硬化性樹脂を用いた液槽光重合による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。立体モデルは、凝固因子として電磁気放射を用いて、一層ごとに造形していく。断面層は、立体モデルを作るために、プラットフォームを動かしながら、連続的かつ選択的に硬化されていく。多くの場合、感光性樹脂が使用される。この主な技術は、光造形法及びデジタルライトプロセッシング(DLP)である。これらの技術では、感光性樹脂の凝固のためにレーザーではなくプロジェクターライトが用いられる。
金属造形物を製造するためのAM方法は、その目的を明確にする意味で、二つのグループに分けることができる。まず一つ目は、AM後に焼結工程を必要としない、金属の指向性溶解または指向性焼結に基づいた方法である。二つ目は、AM後に焼結工程を必要とする、接着剤によるバインドに基づいた方法である。一つの実態形態におけるAM方法は、形状を作り、それを一時的に形状を保持するだけのものである。一つの実態形態における焼結などの後処理は、最終製品を得る前に必要である。
発明者は、本発明の成形工程において非常に早いAMプロセスが選ばれた際に生じる一つのことに注視した。それは、本発明のほとんどの場合で、通常のAMプロセスでは必要としない後処理を伴うことである
一つの実態形態における粉末混合物の成形方法は、成形プロセスにレーザーを要する技術を用いる。この成形プロセスは、少なくとも一つの金属粉末と必要に応じて有機化合物をレーザーを用いて堆積させる(通常は指向性エネルギー堆積)方法や、少なくとも一つの金属粉末または必要に応じて有機化合物を含む粉末混合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いる方法を含むが限らないこれらの方法から選択される。
本資料に記述されているこの粉末混合物は、成形プロセスにレーザーを必要とするこれらの技術の使用に、特に適している。
一つの実態形態における本発明は、成形プロセスにレーザーを要する技術を用いて造形物を製造する方法を示す。この成形プロセスは例えば、少なくとも一つの金属粉末と必要に応じて有機化合物をレーザーを用いて堆積させる(通常は指向性エネルギー堆積)方法や、少なくとも一つの金属粉末または必要に応じて有機化合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いるすべての技術を含むがそれに限らないこれらの技術から選ばれる。
一つの実態形態における本発明は、成形プロセスにレーザーを要する技術を用いてコンポネントを製造する方法を示す。この成形プロセスは例えば、少なくとも一つの金属粉末と必要に応じて有機化合物をレーザーを用いて堆積させる(通常は指向性エネルギー堆積)方法や、少なくとも一つの金属粉末または必要に応じて有機化合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いるすべての技術を含むがそれに限らないこれらの技術から選ばれる。
一つの実態形態において発明者は、成形工程にレーザーを伴う技術が用いられた場合に、本発明の方法の使用が大変有益だとみている。例えば、少なくとも一つの金属粉末と必要に応じて有機化合物を含む粉末混合物が用いるプロセスである、レーザーによる堆積法(通常は指向性エネルギー堆積)や、少なくとも一つの金属粉末および必要に応じて非有機化合物を含む粉末混合物の粉末床(金属、ポリマーまたはセラミック)の選択的な溶解または焼結に、集束エネルギー(電子ビームまたはレーザービーム)を用いるプロセスなど、本資料に記述されているように、粉末混合物の適切な粒度分布を用いた場合に得られる充填密度による。
一つの実態形態において、成形プロセスにレーザーを用いる技術が、少なくとも一つの金属粉末または必要に応じて他の非金属コンポネントの混合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いるすべての技術を含むがそれに限らないこれらの技術から選ばれる場合で、この方法と、本発明に記述されている、異なる粉末混合物(主に、異なる融点を有する少なくとも二つの金属粉末を含む混合物)が使用される場合、このプロセスは、発明の説明にある方法と比較して、さらに低い温度下で行われる。この発明の説明にある方法は、成形プロセスの間、低いエネルギー入力を伴うもので、そのためコンポネントの製造プロセスにおいてより低いコストと、さらにはより低い熱応力か、より低い残留応力(またはその両方)を伴う。一つの実態形態におけるこの造形物は、望まれた最終コンポネントに到達するまで、後処理を要する。反対に、他の実態形態における最終コンポネントは、この成形プロセス後に直接得られる。
一つの実態形態において、成形プロセスにレーザーを用いる技術が、金属粉末または必要に応じて他の非金属コンポネントの混合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いるすべての技術を含むがそれに限らないこれらの技術から選ばれる場合で、この方法と、本発明に記述されている、粉末混合物(主に、類似する融点を有する少なくとも一つの金属粉末か一つ以上の金属粉末を含む混合物)が使用される場合、このプロセスの間はまた、粉末混合物のより高い充填密度や、より低い熱応力、残留応力(またはその両方)により、低いエネルギー入力を伴い、より低い温度下で行われる発明の説明にある方法と比較して、より低いエネルギー入力を伴う。多くの場合、この成形されたコンポネントは、望まれた最終コンポネントに到達するまで、後処理を要する。別の場合においては反対に、この成形プロセス後に直接、最終コンポネントを得ることができる。
一つの実態形態においては、それぞれの使用に選ばれた粉末混合物(時にはAM微粒子)の粒度分布により、一つまたは一つ以上の多峰性サイズ分布を有する金属粉末を使用した場合に、高い粉末床充填密度に達することがある。この多峰性サイズ分布には、本資料に示されたように、空隙を減らす目的がある(多くの場合、本資料に示されているように、異なる融点を有する少なくとも二つの金属粉末を用いて、一つの実態形態においては、少なくとも一つの低融点合金が、高い充填密度に至る高融点を有する主要な金属粉末の八面体または四面体間隙の全体または少なくとも部分的に埋めるために用いられる。一つの実態形態において、成形プロセスにレーザーを用いる技術が、粉末混合物または必要に応じて有機化合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いる技術から選ばれた場合の粉末充填密度は、75%以上である。他の実態形態においてはそれぞれ、79.3%以上、83.5%以上、87%以上となっている。一つの実態形態においては、前述のプロセスを用いた成形コンポネントの高いタップ密度や高い粉末床充填密度の適切な選択された場合に達する。一つの実態形態における振動は、正確な粒度分布や粉末床の高い充填密度とともに得られる。他の実態形態においては、粉末床の充填密度を改善する正確な粒度分布を高めるための、他のいずれかの方法は本発明と結びつけるのに適している。
一つの実態形態において、成形プロセスにレーザーを伴う技術が、金属粉末または必要に応じて他の非金属コンポネントの混合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いる技術から選ばれた場合に得られる成形されたコンポネントのタップ密度は、89.3%以上である。他の実態形態においてはそれぞれ、92.7%以上、95.5%以上、97.6%以上、98.9%、さらには完全な密度を得られた。一つ実態形態におけるこれらのタップ密度は、粉末床の粉末充填密度が75%以上である粒度分布を有する、少なくとも一つの金属粉末を持つ粉末床に金属粉末混合物が含まれる時に得られる。他の実態形態においてはそれぞれ、79.3%以上、83.5%以上、87%以上となっている。一つの実態形態における金属粒子は、コーティングまたは埋められているか、図4に示されているように、ポリマーと関係した他のいずれかの形態になっている。一つの実態形態における粒度分布。
一つの実態形態における本発明は、成形プロセスにレーザーを伴う技術を用いた最低でも一つの金属粉末で構成された粉末混合物の成形による金属または少なくとも部分的な金属コンポネントの製造方法を示す。例として、粉末混合物および必要に応じて有機化合物を含む粉末床の選択的な溶解または焼結のために集束エネルギー(通常はレーザービーム)が用いられるプロセスなど。この粉末床の充填密度は、75%以上である。その他の実態形態においてはそれぞれ、79.3%以上、83.5%以上、87%以上となっている。成形コンポネントのタップ密度は実態形態によりぞれぞれ、89.3%以上、92.7%以上、95.5%以上、97.6%以上、98.9%以上、さらに完全密度となっている。
一つの実態形態における本発明は、粉末混合物や必要に応じて有機化合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いるすべての技術を含むがそれに限らないこれらの技術から選ばれた成形プロセスにレーザーを伴う技術を用いた、異なる融点を有する少なくとも二つの金属粉末を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。この粉末床の充填密度は、75%以上である。その他の実態形態においてはそれぞれ、79.3%以上、83.5%以上、87%以上となっている。成形コンポネントのタップ密度は実態形態によりぞれぞれ、89.3%以上、92.7%以上、95.5%以上、97.6%以上、98.9%以上、さらに完全密度となっている。
一つの実態形態における本発明は、粉末混合物や必要に応じて有機化合物を含む粉末床の層の選択的な溶解または焼結のために、集束エネルギー(電子ビームまたはレーザービーム)を用いるすべての技術を含むがそれに限らないこれらの技術から選ばれた成形プロセスにレーザーを伴う技術を用いた、少なくとも一つの低融点金属粉末や一つの高融点粉末を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。この粉末床の充填密度は、75%以上である。その他の実態形態においてはそれぞれ、79.3%以上、83.5%以上、87%以上となっている。成形コンポネントのタップ密度は実態形態によりぞれぞれ、89.3%以上、92.7%以上、95.5%以上、97.6%以上、98.9%以上、さらに完全密度となっている。
金属粉末混合物または必要に応じて有機化合物の高密度及び圧縮といった面において、本資料は、異なる粒度分布または本発明の方法に適したいくつかの実態形態について詳しく述べている。これは先述のレーザーを伴う技術に直接使用できる。これらに限らないが、例えば、少なくとも一つの金属粉末と場合によっては非金属コンポネントの混合物をレーザーを用いて堆積する方法(通常、指向性エネルギー堆積法)や、混合物を含んだ粉末床に集束エネルギーを照射し、選択的に溶解または焼結を行う方法などがそうである。いくつかの実態形態においては、金属粒子がコーティングされているか、囲まれているか、さらに図4で示されているような、ポリマーに関連した類似の状態である場合の粒子は、AM微粒子を指す。一つの実態形態においては、最終コンポネントに高い機械特性が求められる場合、または金属粉末混合物に高い密度が求められる場合、さらに最密充填により近いものが求められる場合、粉末混合物の粒子には二峰性の細い粒度分布が選ばれる。その他の実態形態においては、粒子の三峰性の細い粒度分布が選ばれる。一つの実態形態においては、混合物が一つ以上の粉末で構成されている場合、異なる粒度分布が選ばれる。例えば、最も大きい粒子サイズを持つために一つの粉末が選ばれ、最も大きい粒子サイズによって金属粉末の間隙を埋める傾向のあるその他の粉末が選ばれ、さらにこの、多峰性サイズ分布(通常は二峰性や三峰性)を有する最も大きい粒子サイズの粉末は、粒度分布の間の空隙を埋める。さらに他の実態形態においては、多峰性サイズ分布の混合物のすべての金属粉末を含む。これらはより大きなサイズの粒子の間の間隙を埋める傾向のある選ばれた他のサイズ分布と大きな粒子サイズを持つ。一つの実態形態における粒度分布は、細いサイズ分布を持つために選ばれる。その他の実態形態においては、二峰性サイズ分布は使用される場合、これは、二つのモード値およびこれら二つのモード値周囲の細いサイズ分布を有する粉末サイズ分布を意味している。他の実態形態においては、三峰性サイズ分布が使用された場合、これは、三つのモード値およびこれら三つのモード値周囲の細いサイズ分布を有する粉末サイズ分布を意味している。さらに、いくつかの実態形態における金属粉末の異なる混合物は、本資料に記述があるように、成形コンポネントの高いタップ密度を得るためのこの成形方法に用いられるのに、特に適している
一つの実態形態おいて、成形プロセスにレーザーを伴う技術が選ばれた場合、少なくとも一つの金属粉末と必要に応じてその他のポリマーのような有機化合物を、レーザーを用いて堆積させる(通常は指向性エネルギー堆積)、造形物が得るタップ密度は89.3%以上であるまた他の実態形態ではそれぞれ、92.7%以上、95.5%以上、97.6%以上、98.9%以上となっており、さらに他の実態形態においては、完全なタップ密度が得られた。一つの実態形態においては、原料内の粉末混合物および必要に応じて有機化合物の高密度また圧縮は、高タップ密度や、この資料にて後述する異なる粒度分布、本発明の方法に適している、成形工程にレーザーを用いる前述の技術に直接適用できるいくつかの実態形態を達成することを可能にする。一例としては、レーザーを用いて、少なくとも一つの金属粉末と場合によってその他の有機成分を含む粉末混合物を堆積させる方法(通常は指向性エネルギー堆積法)がある。いくつかの実態形態において、金属粒子がコーティングされているか、囲まれているか、または図4に示されているような、ポリマーに関連したその他の状態である場合、粒子とは、AM微粒子のことである。さらにまたいくつかの実態形態では、本資料に記述があるように、多くの場合、少なくとも二つの金属粉末で構成された異なる混合物は、成形コンポネントに高いタップ密度を得るためのこの成形方法の使用に、特に適している。
一つの実態形態における本発明は、成形プロセスにレーザーを伴う技術による、少なくとも一つの金属粉末を含む粉末混合物を用いた、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。これは、レーザーを用いて粉末混合物を堆積させる(通常は指向性エネルギー堆積)方法で、成形されたコンポネントのタップ密度は89.3%以上である。その他の実態形態においてはそれぞれ、92.7%、95.5%、97.6%、98.9%となり、さらに他の実態形態においては、完全な密度を得ている。
一つの実態形態における本発明は、成形プロセスにレーザーを伴う技術による、少なくとも一つの低融点金属粉末や一つの高融点金属粉末を含む粉末混合物を用いた、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。これは、レーザーを用いて混合物を堆積する(通常は指向性エネルギー堆積)方法で、成形されたコンポネントの得られるタップ密度は、89.3%以上である。その他の実態形態においてはそれぞれ、92.7%、95.5%、97.6%、98.9%となり、さらに他の実態形態においては、完全な密度を得ている。
一つの実態形態おいて、レーザーによる粉末混合物の堆積(通常は指向性エネルギー堆積)方法を含む、成形プロセスにレーザーを伴う技術を用いて得られるコンポネントは、金属または少なくとも部分的な金属コンポネントである。
一つの実態形態おいて、レーザーによる粉末混合物の堆積(通常は指向性エネルギー堆積)方法を含む、成形プロセスにレーザーを伴う技術を用いて得られるコンポネントは、グリーン体である。このグリーン体は、金属または少なくとも部分的な金属コンポネントを得るために、後処理の対象となる。
一つの実態形態において、粉末混合物を含む粉末床の選択的な溶解または焼結のための、成形プロセスに集束エネルギー(通常はレーザービーム)を含むレーザーを用いる技術によって得られるコンポネントは、金属または少なくとも部分的な金属コンポネントである。
一つの実態形態において、粉末混合物を含む粉末床の選択的な溶解または焼結のための、成形プロセスに集束エネルギー(通常はレーザービーム)を含むレーザーを用いる技術によって得られるコンポネントは、グリーン体である。なおこのグリーン体は、金属または少なくとも部分的な金属コンポネントを得るために、後処理の対象となる。
上記のいずれかの実態形態は、それぞれの特性に互換性がある場合に限り、ここで記述されたいずれかの実態形態と組み合わせることができる。
先述の通り、本発明のある実施はネットシェイプ鍛造またはネットシェイプのような技術の使用について考察する。これらの技術は厳密にはAMではないが、本発明でほとんどの事例で使用されている微粒子から利益を得る。つまり金属物質または有機物質を含む微粒子は、有機物質が分解される間、形状保持は損なわれない。それには、有機物質の成形性の利点を利用したいずれかの技術が含まれる。また、本発明の微粒子の形状保持能力を利用する。
本発明のいくつかの材料を用いたAMと並び、他の製造プロセスも成形工程に使用できる。これらの製造プロセスには、スピードが求められる。ほとんどのポリマー形成方法(溶解射出、中空成形、熱成形、鋳造、圧縮法、プレス法、押出法、回転成形法、ディップ成形、形状成形)は、ひとつの選択肢である。溶解射出の例として、金属溶解噴出(MIM)と呼ばれる既存のプロセスが挙げられるが、このプロセスでは、金属コンポネントを得ることはできるが、数百グラムに限られる。本発明の材料と方法を用いれば、機能性に優れ、さらにコストの抑えられた、より大きなコンポネントの製造が可能である。
説明目的のため、またこれが組み合わせることが特に有利になる技術であり、かつ説明しやすいため、金属噴射成形(MIM)について詳細に記述する。この技術は、複雑な形状の部品(しかし形状に対する制約はしばしば、ほとんどのAM技術のそれよりも多い)の製造を可能にする。しかし同時に、合理的な生産においては、コンポネントのサイズは明らかに制限される。一般的には一度の噴射で使用されなければならない材料の最大限の量は200g以下である。これは原料のレオロジーや、噴射に必要な圧力に関係している。これは、混合物中の金属粉末の高い体積分率に関係する。この粉末の割合および噴射圧力は、脱バインダーに際し形成保持を保証するために、かなり高い必要がある。発明者は、MIMは、本発明のいくつかの原料を用いた場合の大きな部品の製造に効果的な技術であるとみている(特に、少なくとも二つのタイプの金属粉末を含む原料で、そのうち一つはポリマーがその形状保持力を失う前に十分な量の溶解が生じる顕著に低融点を有する金属粉末)(また、粉末単独や相の混合物の少なくとも一つは低融点を有するか、低温で拡散が始まる金属粉末)。より低い金属体積分率や噴射圧力が多く使用されることで、より高い流動性能が得られ、さらまた大きく複雑な形状を可能にする充填材が作られる。この方法で噴射された材料(体積分率金属要素や圧力の低いもの)は脱バインダーに際して分解される。これは液相や、拡散が完了するまで形状保持を保証するポリマーが完全分解する前に形成される強い拡散ブリッジによるものではない。ある使用またはその他の使用には、本発明に記述のあるほとんどすべての原料が有効活用できる。
一つの実態形態における本発明は、少なくとも一つの金属粉、または有機化合物を含む粉末混合物を用いた、金属または部分的な金属コンポーネントを製造する方法に関する。それらにはさらに、製造後の金属または部分的な金属コンポネントに独自の望ましい性質を得るために、他の成分も加えられる。形状を得るために、ポリマー成形技術の他に、溶解射出、金属溶解射出、中空成形、熱成形、鋳造、圧縮法、プレス法、押出法、回転成形法、ディップ成形、や型成形などが使用される。一つの実態形態において、ポリマー成形技術により得られたコンポネントがグリーン体である。それらはまた、金属または少なくとも部分的な金属コンポネントの高密度化や硬化を可能にするために、後処理の対象となる。
一つの実態形態における本発明は、少なくとも一つの低融点金属粉末または一つの高融点金属粉末を含んだ粉末混合物を用いて、金属または部分的な金属コンポネントを製造する方法に関する。この低融点金属粉末は、ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウムまたはそれらのいずれかの組み合わせの要素を少なくとも一つ含んだ鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムおよびチタン基合金から選ばれる。また高融点合金は、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金及び有機化合物から精選される。形状を得るためにポリマー成形技術が使用され、製造後の金属または部分的な金属コンポネントに独自の望ましい性質を得るために、他の成分も加えられる。形状を得るために、ポリマー成形技術の他に、溶解射出、金属溶解射出、中空成形、熱成形、鋳造、圧縮法、プレス法、押出法、回転成形法、ディップ成形、や型成形などが使用される。一つの実態形態において、ポリマー成形技術により得られたコンポネントがグリーン体である。それらはまた、金属または少なくとも部分的な金属コンポネントの高密度化や硬化を可能にするために、後処理の対象となる。
一つの実態形態における本発明は、少なくとも一つの低融点金属粉末及び一つの高融点金属粉末を含む混合物を用いて、金属または部分的な金属コンポネントを製造する方法に関する。粉末混合物は、MIM法を用いて成形される。一つの実態形態における、MIMを用いて成形されたコンポネントが、金属または少なくとも部分的な金属コンポネントである。
一つの実態形態における本発明は、少なくとも一つの低融点金属粉末及び一つの高融点金属粉末を含む混合物を用いて、金属または部分的な金属コンポネントを製造する方法に関する。粉末混合物は、MIM法を用いて成形される。一つの実態形態における、MIMを用いて成形されたコンポネントが、金属または少なくとも部分的な金属コンポネントである。一つの実態形態における、MIMを用いて成形されたコンポネントが、金属または少なくとも部分的な金属コンポネントである。
一つの実態形態において、本発明の方法を実施するにあたり、熱間等方圧加工法(HIP)、冷間等方圧加工法(CIP)、焼結鍛冶、焼結などの別の有用な形成技術がある。一つの実態形態おいてこれらのプロセスは、望まれた最終金属や少なくとも部分的な金属コンポネントを得るために、粉末混合物に適用される。他の実態形態では、AM技術やポリマー噴射技術のような、前述の成形技術の後、金属または少なくとも部分的な金属コンポネントの高密度化及び凝固のために、後処理の間にHIP、焼結鍛冶、CIP、または焼結が適応される。
一つの実態形態における熱間等方圧加工法(HIP)は、粉末物質はダイと呼ばれる容器に密封しカプセル状にし、一軸圧力を施す前に、高温下で、緻密な固形物に変化するまで焼結を行う製造方法である。通常アルゴンは、100-3300MPa範囲内の充填密度圧力の使用のために、液体培地として用いられる。また温度は通常、1000-1200℃範囲内で調整される。拡散、べき法測クリープ、イールド拡散の三つが、主な焼結メカニズムとしてあげられる。熱間等方圧加工法の間に、拡散結合が起こる温度は、通常低融点物質の融点のおよそ50-70%である。いずれの物質に溶解を伴わない粉末拡散は、それゆえに分離もせず、界面混合域の収縮に伴う亀裂の生成もない。時折、拡散層は、最上部から基板までの望ましくない要素の拡散を防止するために用いられる。拡散メカニズムの割合は、粒子サイズに強く依存する。使用されたガス圧力を用いた焼結の最終目的は、理論上の完全な密度を実現することである。ダイスが詰められ、粒子の配置や結果として生じる粒子間隙の分布は、パウダー質量のその後の性質に多大な影響をもたらす。
一つの実態形態における本発明は、少なくとも一つの金属相を含む、粉末混合物による金属または部分的な金属コンポネントを製造する方法に関する。粉末混合物にはさらに、有機化合物が加えらる場合もある。これらのコンポネントは、HIPを通して得られる。
一つの実態形態おける冷間等方圧装置は、等方圧または等方圧に近い条件下で生じる充填密度による粉末冶金である。二つの主な異なるプロセスがあり、それぞれ乾式法及び湿式法と呼ぶ。前者は主に、原型または少量生産の際に使用し、一方後者は大量生産の際に使用される。どちらのバリアントも、低い形状精度を示す。この金属粉末は、周囲をソリッドコアロッドに囲まれた柔軟な型に配置される。この型は通常、ゴム、ウレタンまたはプラスチック製のもが使用される。その後400-1000MPaの静水圧により加圧される。
一つの実態形態における本発明は、少なくとも一つの金属粉を含む粉末混合物を用いて、金属または部分的な金属コンポネントを製造する方法に関する。これらにはさらに、製造後の金属または部分的な金属コンポネントに独自の望ましい性質を得るために、有機化合物が加えられることもある。これらのコンポネントは、冷間等方圧加工法を通じて得られる。
一つの実態形態における焼結法は、圧密金属粉を、再結晶の起こる温度以上かつ融点以下の温度で加熱するものである。焼結メカニズムは事実上、非常に複雑であり、金属粉の構成と加工パラメーターによる。
一つの実態形態における焼結法は、性質に大きな欠陥を生じさせずに高い緻密化を可能にする温度下で行われる。
一つの実態形態における本発明のコンポネントは、焼結法にある後処理の対象となる。
一つの実態形態のおいて、コンポネントは、熱処理前に焼結法の対象となる。
一つの実態形態における焼結法は、高融点合金の0.7*Tm以上の温度下(高融点合金の融点の0.7倍の温度)で行われる。一つの実態形態における焼結法は、高融点合金の0.75*Tm以上の温度下(高融点合金の融点の0.75倍の温度)で行われる。一つの実態形態における焼結法は、高融点合金の0.8*Tm以上の温度下(高融点合金の融点の0.8倍の温度)で行われる。一つの実態形態における焼結法は、高融点合金の0.85*Tm以上の温度下(高融点合金の融点の0.85倍の温度)で行われる。一つの実態形態における焼結法は、高融点合金の0.9*Tm以上の温度下(高融点合金の融点の0.9倍の温度)で行われる。一つの実態形態における焼結法は、高融点合金の0.95*Tm以上の温度下(高融点合金の融点の0.95倍の温度)で行われる。
一つの実態形態における焼結法は、五時間以内で行われる。一つの実態形態における焼結法は、三時間以内で行われる。一つの実態形態においては、二時間以内で行われる。
一つの実態形態における焼結後のタップ密度は、90%以上である。他の実態形態においては、0.94%以上、さらに他の実態形態においては、96%以上である。
上述のいずれかの実態形態は、性質上の互換性がない場合を除いて、この中に記述したいずれかの実態形態の組み合わせることができる。
一つの実態形態における本発明は、少なくとも一つの金属粉末を含む粉末混合物を用いて、金属または少なくとも部分的な金属コンポネントを製造する方法に関する。これらはさらに、製造後の金属または部分的な金属コンポネントに独自の望ましい性質を得るために、有機化合物が加えられることもある。これらのコンポネントは、焼結法を通じて得られる。
2012年に広く使用された部品およびコンポーネントの、粉末冶金(プレス加工された金属粉の焼結法)、切削加工などの他の製法はしばしば、本発明の方法に特によく適している。
別の態様における本発明は、少なくとも一つの金属粉末を含む粉末混合物を用いた、焼結法による、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。
本製法の特別な使用は、異なる融点を有する少なくとも二つの異なる金属粉末を混合する場合。
上述のいずれかの実態形態は、性質上の互換性がない場合を除いて、この中に記述したいずれかの実態形態と組み合わせることができる。
一つの実態形態における本発明は、異なる融点を有する少なくとも二つの粉末の粉末混合物を用いた、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。一つの実態形態における、本資料に記述された、異なる融点を有する少なくとも二つの金属粉末を含む粉末混合物は、後述する方法に特に適している。先述した一つの実態形態における、本発明の製法の使用に特に適した低融点合金は、ガリウムまたはガリウム合金、AlGa合金、CuGa合金、SnGa合金、MgGa合金、MnGa合金、NiGa合金、高マンガン含有合金、炭素(鋼)をさらに含む高マンガン含有Fe基合金、Mgを含むAl系合金、Scを含むAl系合金、Snを含むAl系合金、Alを90重量%超含有するAl系合金等が挙げられるから精選される。一つの実態形態における、本発明の製法の使用に適した高融点合金は、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムおよびチタン合金から選ばれる。
ひとつの実態形態における本発明は、少なくとも二つの金属粉末を含む混合物を用いた、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。一つの実態形態における本発明は、少なくとも二つの金属粉末を含む混合物を用いた、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。この混合物は、前述したいずれかのAMプロセスはもちろん、ポリマー成形をはじめ粉末成形に適した製法、さらに、今後展開していく後述の少なくとも一つの金属粉末を含む混合物を使用し、最終コンポネントを得るために少なくとも一度の後処理を要する成形技術などの、他のAM製法を用いて成形される。
本資料において、高融点合金、低融点合金、金属構成要素、相、微粒子を定義する場合は、時には絶対的な術語として、さらに度々相対的な術語として理解できる。ほとんどの場合、低融点合金と高融点合金は、それらの融点の差で分けられ、使用によって両者の低融点や高融点に偏差が生じるような相対的な値で分けられることはない。こうした意味で、しばしば両者の融点の差は62℃以上とされ、できれば110℃以上、230℃以上、420℃以上、640℃以上、820℃以上とされ、差が大きいほどよい。この温度差は、しばしば、本資料に記述のあるように、二つ以上の金属構成物が存在する場合において、最も高い値を有する金属相と最も低い値を有する金属相の間の融点の差に関係する。
一つの実態形態において、粉末混合物に粉末状の三つ以上の合金が存在する場合に、その合金が低融点または高融点かのいずれかを定義するためには、最も低い融点を有する金属粉末を基準にする。一つの実態形態においては、最も低い融点を有する金属粉末よりも62℃以上高い融点を有する金属を、高融点合金とする。一つの実態形態においては、最も低い融点を有する金属粉末よりも110℃以上高い融点を有する金属を、高融点合金とする。一つの実態形態においては、最も低い融点を有する金属粉末よりも230℃以上高い融点を有する金属を、高融点合金とする。一つの実態形態においては、最も低い融点を有する金属粉末よりも420℃以上高い融点を有する金属を、高融点合金とする。一つの実態形態においては、最も低い融点を有する金属粉末よりも640℃以上高い融点を有する金属を、高融点合金とする。一つの実態形態においては、最も低い融点を有する金属粉末よりも820℃以上高い融点を有する金属を、高融点合金とする。
一つの実態形態において、ある合金を低融点合金と定義するには、粉末混合物中の重量の少なくとも1%を低融点合金が占めていなければならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が低融点合金である場合でも、粉末混合物中の低融点合金の重量が1%未満である場合は、低融点合金のTmを算出する対象にはならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が低融点合金である場合でも、粉末混合物中の低融点合金の重量が3.8%未満である場合は、低融点合金のTmを算出する対象にはならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が低融点合金である場合でも、粉末混合物中の低融点合金の重量が4.2%未満である場合は、低融点合金のTmを算出する対象にはならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が低融点合金である場合でも、金属相(粉末混合物中のすべての金属粉末の和)中の低融点合金の重量が1%未満の場合は、低融点合金のTmを算出する対象にはならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が低融点合金である場合でも、金属相(粉末混合物中のすべての金属粉末の和)中の低融点合金の重量が3.8%未満の場合は、低融点合金のTmを算出する対象にはならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が低融点合金である場合でも、金属相(粉末混合物中のすべての金属粉末の和)中の低融点合金の重量が4.2%未満の場合は、低融点合金のTmを算出する対象にはならない。
一つの実態形態において、粉末混合物に三つまたはそれ以上の金属粉末が存在する場合に、その合金が低融点または高融点かのいずれかを定義するためには、最も高い融点を有する金属粉末を基準にする。一つの実態形態においては、最も高い融点を有する金属粉末よりも62℃以上低い融点を有する金属を、低融点合金とする。一つの実態形態においては、最も高い融点を有する金属粉末よりも110℃以上低い融点を有する金属を、低融点合金とする。一つの実態形態においては、最も高い融点を有する金属粉末よりも230℃以上低い融点を有する金属を、低融点合金とする。一つの実態形態においては、最も高い融点を有する金属粉末よりも420℃以上低い融点を有する金属を、低融点合金とする。一つの実態形態においては、最も高い融点を有する金属粉末よりも640℃以上低い融点を有する金属を、低融点合金とする。。一つの実態形態においては、最も高い融点を有する金属粉末よりも820℃以上低い融点を有する金属を、低融点合金とする。
一つの実態形態において、ある合金を高融点合金と定義するには、粉末混合物中の重量の少なくとも1%を高融点合金が占めていなければならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が高融点合金である場合でも、粉末混合物中の高融点合金の重量中が1%未満である場合は、高融点合金のTmを算出する対象にはならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が高融点合金である場合でも、粉末混合物中の高融点合金の重量中が3.8%未満である場合は、高融点合金のTmを算出する対象にはならない。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が高融点合金である場合でも、粉末混合物中の高融点合金の重量中が4.2%未満である場合は、高融点合金のTmを算出する対象にはならない。
一つの実態形態のおいて、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が高融点合金である場合でも、金属相(粉末混合物中のすべての金属粉の和)中の高融点合金の重量が1%未満である場合は、低融点合金のTmを算出する対象にはならない
一つの実態形態のおいて、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が高融点合金である場合でも、金属相(粉末混合物中のすべての金属粉の和)中の高融点合金の重量が3.8%未満である場合は、低融点合金のTmを算出する対象にはならない
一つの実態形態のおいて、三つまたはそれ以上の金属粉末が粉末混合物中に存在し、その内二つかそれ以上の金属粉末が高融点合金である場合でも、金属相(粉末混合物中のすべての金属粉の和)中の高融点合金の重量が4.2%未満である場合は、低融点合金のTmを算出する対象にはならない
一つの実態形態において、二つかそれ以上の高融点合金が粉末混合物中に存在する場合、高融点合金のTmとは、すべての高融点合金の中で、最も高い重量比を有する高融点合金のTmを指す。
一つの実態形態において、二つかそれ以上の高融点合金が粉末混合物中に存在する場合、高融点合金のTmとは、すべての高融点合金の中で、最も大きい体積比を有する高融点合金のTmを指す。
一つの実態形態において、二つかそれ以上の低融点合金が粉末混合物中に存在する場合、低融点合金のTmとは、すべての低融点合金の中で、最も大きい体積比を有する低融点合金のTmを指す。
一つの実態形態において、二つかそれ以上の低融点合金が、粉末混合物中に存在する場合、低融点合金のTmとは、すべての低融点合金の中で、最も高い重量比を有する低融点合金のTmを指す。
一つの実態形態において、二つかそれ以上の高融点合金が粉末混合物中に存在する場合、高融点合金のTmとは、すべての高融点合金の中で、最も低い重量比を有する高融点合金のTmを指す。
一つの実態形態において、二つかそれ以上の高融点合金が粉末混合物中に存在する場合、すべての高融点合金の中で、最も低い体積比を有する高融点合金のTmを指す。
一つの実態形態において、二つかそれ以上の低融点合金が粉末混合物中に存在する場合、低融点合金のTmとは、すべての低融点合金の中で、最も低い体積比を有した低融点合金のTmを指す。
一つの実態形態において、二つかそれ以上の低融点合金が粉末混合物中に存在する場合、低融点合金のTmとは、すべての低融点合金の中で、最も低い重量比を有する低融点合金のTmを指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、すべての高融点合金の中で、最も高い重量比を有し、かつ粉末混合物中で、最も低い融点を有する金属粉末よりも62℃以上の融点を有する成分のTmを指す。一つの実態形態において、同じ重量比を有する一つ以上の高融点合金が存在する場合、Tmとは、両者の間でより高いTmを有する金属粉の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、すべての高融点合金の中で、最も高い重量比を有し、かつ粉末混合物中で、最も低い融点を有する金属粉末よりも110℃以上の融点を有する成分のTmを指す。一つの実態形態において、同じ重量比を有する一つ以上の高融点合金が存在する場合、Tmとは、両者の間でより高いTmを有する金属粉の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも1%ある)の中で最も低い融点を有する金属粉末よりも、230℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも1%ある)の中で最も低い融点を有する金属粉末よりも、230℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも1%ある)の中で、最も低い融点を有した金属粉末よりも230℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも1%ある)の中で、最も低い融点を有した金属粉末よりも230℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも1%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも230℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも1%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも230℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも1%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも230℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも1%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも230℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも1%ある)の中で最も低い融点を有する金属粉末よりも、640℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも1%ある)の中で最も低い融点を有する金属粉末よりも、640℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも1%ある)の中で、最も低い融点を有した金属粉末よりも640℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも1%ある)の中で、最も低い融点を有した金属粉末よりも640℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも1%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも640℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも1%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも640℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも1%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも640℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも1%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも640℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、62℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、62℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも62℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも62℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも62℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも62℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも62℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも62℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、110℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、110℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも110℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも110℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも110℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも110℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも110℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも110℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、230℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、230℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも230℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも230℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも230℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも230℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも230℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも230℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、420℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、420℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも420℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも420℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも420℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも420℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも420℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも420℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、640℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、640℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも640℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも640℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも640℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも640℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも640℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも640℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、820℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の重量が少なくとも3.8%ある)の中で最も低い融点を有する金属粉末よりも、820℃以上高い融点を有した成分のTmを指す。ひとつの実態形態では、一つ以上の、同じ重量比を有する金属粉が存在する場合、最も高値、Tmとは両者の間で高いTmを有する金属粉の融点のTmを指す。一つの実態形態において、最も高い同じ重量比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも820℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する粉末混合物中の体積が少なくとも3.8%ある)の中で、最も低い融点を有した金属粉末よりも820℃以上高い融点を有した成分のTmを指す。一つの実態形態おいて、最も高い同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも820℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の重量が少なくとも3.8%ある)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも820℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い値である同じ重量比を有する一つ以上の金属粉末が存在する場合のTmは、両者の間ので、低いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも820℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間ので高いTmを有する金属粉末の融点を指す。
一つの実態形態において、三つまたはそれ以上の金属粉末が粉末混合物中に存在する場合、高融点のTmとは、粉末混合物(最も高い重量比を有する、粉末混合物中の体積が少なくとも3.8%である)の中で、最も低い融点を有する金属相(粉末混合物中のすべての金属粉の和)よりも820℃以上高い融点を有する成分のTmを指す。一つの実態形態において、最も高い、同じ体積比を有する一つ以上の金属粉末が存在する場合、Tmとは、両者の間で、低いTmを有する金属粉末の融点を指す。
この金属粉末はしばしばコーティングされているか、ポリマーに混ざっている。発明者はいくつかの使用において、原料の設定方法が、得られる性質や実現可能な形状に大きく影響するとみている。図4、相対的な位置のポリマーと金属相に関連した異なる種類の設定。二つの主な設定が生じる; 被覆粒子と金属微粒子が詰められた有機ペレット。有機化合物は、懸濁液と同じように混合した金属微粒子とともに非固形状態としても存在できる。しかしながらこれらのいくつかの使用では、有機化合物のミキシングと金属相は早い段階で準備しておくほうがよい。また原料が再び流動化する別の段階に進むまで有機化合物が固体で金属相が混ざっている中間状態であることは珍しい。有機化合物が使用によって固体状態の時、異なる設定がさらに求められる。また、図4のいくつかの例にみられるように、二次またはそれ以上の金属相が組み込まれる時に異なる方法が生じる。いくつか使用にとって、主に有機化合物によりコーティングされたそれぞれの原料粒子の中の多数の金属微粒子を有することは、かなり有益である。これは、金属相の充填の管理をより良くする。他方では、いくつかの使用にとおいて、有機化合物の量が最小限にされ、成形工程の間にバインダが生じる場合(主に原料微粒子の表面を通じて)(また主に有機化合物がこの段階で形状保持の責任因子である場合)、コーティングされた金属粒子の設定が、しばしば優先される。一つの例では、微粒子の光バインディング、局限性可塑化、またはポリマーの溶解などに、どちらの原料設定も使用できるが、コーティングされた粒子設定がより使用される。金属粒子充填物を用いる有機ペレットに基づく一つのとても興味深い設定は、緻密構造内の一定の微粒子空隙の充填材に都合の良い特別な呼びサイズ比率を有する金属微粒子を含む二つ以上の金属相が使用されたときに生じる。その後、目的の設定は、特にAM関連のいくつかの成形プロセスにかなりの利点をもたらしすでに原料内に用意される。コーティングされた粒子の場合、小さな粒子サイズの金属相は、コーティングされた、コーティングされていない、または囲まれた状態で起き、それぞれ溶液は異なる使用にとって一層良い。
一つの実態形態における粉末混合物は、さらに有機物質を含む。
一つの実態形態におけるこの有機物質とはポリマーである。他の実態形態におけるこの有機物質は樹脂である。他の実態形態における樹脂とは光硬化型樹脂である。一つの実態形態では、有機化合物は粉状である。一つの実態形態におけるポリマー物質は粉末状である。一つの実態形態における少なくとも一つの粉末は、部分的または完全に、有機物資で覆われている。一つの実態形態における少なくとも一つの粉末は、有機物質で覆われている。一つの実態形態における少なくとも一つの粉末は、ポリマーで覆われている。
一つの実態形態における少なくとも一部の金属粉末、またいくつかの実態形態における少なくとも一つの金属粉末は覆われておるか、有機物質で囲われている。他の実態形態における粉末混合物中の少なくとも一つの金属粉末(さらにいくつかの実態形態では、少なくとも部分的、また他の実態形態ではすべての金属粉末)は、図4に示されているその他の可能な形態である。他の実態形態における少なくとも二つの金属粉末、または他の実態形態における粉末混合物中のすべての金属粉末は、覆われているか囲われているか、さらに図4に示されているその他の可能な形態である。他の実態形態にける有機化合物は対照的に、粉末状である。
一つの実態形態のこの使用において、覆われた金属粉末、囲われた金属粉末、または図4に記されたその他の可能な形態である場合、微粒子よりもAM微粒子を参照にする。いくつかの実態形態におけるAM微粒子の大きさは、覆われた、囲われた、または有機ペレットに詰められた、または図4に記されたその他のいずれかの可能な形態の金属微粒子を参照にする。
一つの実態形態において、金属粒子および有機化合物に関して少なくとも一つの金属粉末の粉末混合物には、多数の可能な設定がある。どちらかはより興味深いかは選ばれた具体的な成形技術による。一つの実態形態においては、粉末混合物に二つ以上の金属粉末が含まれる場合、いくつかの使用にとっては一つのみの少なくとも有機化合物で一部が覆われている金属粉末を有することが望ましく、他の実態形態では、有機化合物で完全に覆われた金属粉末を有することが望ましい。一つの実態形態における混合物中のその他の金属粉末は、少なくとも部分的に有機物質で覆われていて、いくつかの実態形態では完全に覆われている。いくつかの実態形態における同様の金属物質は、すべての金属粉末を覆っている。またその他の実態形態におけるそれぞれの金属粉末は、異なる有機化合物で覆われている。さらに他の実態形態における異なる有機化合物は、一つの金属粉末を覆うために用いられる。
一つの実態形態において、粉末混合物が二つ以上の金属粉末を含む場合、いくつかの使用にとっては、少なくとも一つのみの金属粉末が部分的に有機化合物によって囲われていることが望ましく、その他の実態形態では、完全に囲われていることが望ましい。その他の実態形態における混合物のその他の金属粉末は、少なくとも部分的に有機化合物で囲われ、いくつかの実態形態においては、完全に囲われていることが望ましい。いくつかの実態形態におけるすべての金属粉末は、同じ有機物質で囲われているが、その他の実態形態にけるそれぞれの金属粉は、異なる有機化合物で囲われている。さらに他の実態形態における一つの金属粉末は、異なる有機化合物で囲われている。
一つの実態形態におけるこの特定の使用は、異なる融点を有した少なくとも二つの金属粉末の混合物が、ポリマーにより覆われているかまたは混ざっているか、図4に示されたその他のあり得る状態である場合、非常に興味深い。このポリマーは、金属粉末混合物に使用されたAMプロセスまたはその他のいずれかの成形プロセス(例えばMIM)の間の形状設定や形状保持のための責任因子である。また、最終コンポネントに求められた性質が得られるまで、少なくとも部分的にポリマーが排除され、金属または少なくとも部分的な金属コンポネントの緻密化や凝固を要する後処理の間のグリーン状態の部品の扱いにおいても重要な役割を担っている。
一つの実態形態における粉末混合物中の少なくとも一つの低融点合金は、部分的または完全に有機物資により覆われている。一つの実態形態おける粉末混合物中の少なくとも一つの低融点合金は、有機物資で覆われている。一つの実態形態における粉末混合物中の少なくとも一つの低融点合金は、部分的または完全にポリマーで覆われている。一つの実態形態における粉末混合物中の少なくとも一つの高融点合金は、ポリマーで覆われている。
一つの実態形態における粉末混合物中の少なくとも一つの高融点合金は、部分的または完全に有機物質で覆われている。一つの実態形態における粉末混合物中の高融点合金は、有機物質で覆われている。一つの実態形態における粉末混合物中の高融点合金は、部分的または完全にポリマーで覆われている。一つの実態形態における粉末混合物中の高融点合金は、ポリマーで覆われている。
本発明の方法の実施において、金属相が独自の働きをするという点を鑑みて、少なくともいくつかの金属間合金、金属基複合物、メタロイドなどは、本発明の使用における金属相の定義に見合う候補とされる。
一つの実態形態における有機化合物は、オキサイド、カーバイド、ニトリド、ホウ化物、セラミック成分、黒鉛、タルク、雲母、ワックス、獣脂、または感受性のあるいずれかの有機化合物(糖質、プロテイン、脂質、天然油、ペプチド、炭水化物)、イースト、テフロン(登録商標)、ハロンガス、シアン化合物などに限らないがそれらを含む非有機化合物などが詰まった天然または人工の化合物(ポリマー)を指す。一つの実態形態における有機化合物は、後処理の間に消えてなくなる金属を含む。他の実態形態においてそれらは、主要な金属構成物を含む合金である。また他の実態形態においてはコンポネントに浸透し、留まる。
本発明にとって金属相は、必要不可欠な要素である。有機化合物は、様々な目的に応じて、多様な充填要素や、他の自然由来の成分を持ち得る。こうした意味で、ポリマーの充填剤としてや、他の有機化合物のように使用できる非有機化合物、また同様に、非金属由来の目的を持った相は、本発明の製法に適している。例えとしては、摩損への対策には、オキシド、カーバイド、ニトリド、ホウ化物や他のいずれかのセラミック、滑りに作用する黒鉛、タルク、雲母、いずれかの物理的または機械的性質に作用するなどがある。要約すれば、有機化合物及び金属相の他に、その他の相は追加の性能を得るために存在している。
ポリマーはどんな理由においても、いずれかの種類の有機または無機充填材や混合物を持つことができる(多数の内の一例では、より良い流動のためのワックス混合物、着色のためのピグメントなど)。さらにいずれかの感受性天然有機化合物(砂糖、たんぱく質、脂質、天然油/脂、ペプチド、炭水化物、イースト、テフロン(登録商標)、ハロンガス、シアン化合物など)。実際に、ポリマーというワードは立体成形または成形工程(AM、噴射などによる)中のダインディング形状保持物質のように、製造工程で形状保持を助けることができ、かつ金属構成物の分解を必要とせずに消滅する他のコンポネントに置き換えることができる。例えば、ワックス、脂、タルク、金属など。金属の場合は、単数である。このタイプの金属は、自己消滅するか、主要な金属コンポネントと合金化するか、潤滑材として残ることができる。
発明者は、いくつかの使用においてこれが特に必要だとみている。この発明者は、いくつかの使用において、少なくとも一つの非金属成分を含む混合物が必要だとみている。多くの実態形態では、本資料に記述があるように、有機物質の最も高い分解点(ケルビン表示)の3.2倍以下の融点を有する混合物中の有機化合物または少なくとも一つの金属成分が必要とされる。他の実態形態においてはそれぞれ、2.6倍以下、2倍以下、1.6倍以下と、低いほどより好ましい。この混合物はいくつかの代替使用にとっても求められる。
一つの実態形態における本発明は、金属または少なくとも部分的な金属成分の製造方法を示す。この製法には少なくとも一つの金属粉末や有機混合物を含む粉末混合物が使用され、有機物質の最も高い分解点の3.2倍低い融点(ケルビン表記)を有する少なくとも一つの金属粉末を含む粉末混合物に特徴づけられる。その他の実態形態においてはそれぞれ、2.6倍以下、2倍以下、1.6倍以下と、低いほどより好ましい。この成分は、AM技術や、その他のポリマー成形などの非AM技術、さらに本資料に記述のある少なくとも一つの金属粉末及び有機化合物の粉末混合物を用いる成形技術に適した成形技術が用いられ、成形される。いくつかの実態形態におけるこの製造方法は、目的のコンポネントを得るまでの成形コンポネントへの後処理を要する。
一つの実態形態における本発明は、少なくとも低融点金属粉末および高融点金属粉末を含む粉末混合物を用いる金属または少なくとも部分的な金属成分の製造方法に関する。ここでは、低融点金属粉は、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金から精選される。これらの合金は下記の中の少なくとも一つの要素を含む:ガリウム、ビスマス、鉛、ルビジウム、亜鉛、カドミウム、インジウム、スズ、カリウム、ナトリウム、マンガン、ホウ素、スカンジウム、ケイ素、マグネシウム、またはいずれかの組み合わせ。また、高融点合金は、鉄、ニッケル、コバルト、銅、マグネシウム、タングステン、モリブデン、アルミニウムまたはチタン基合金または有機化合物から精選される。これらの少なくとも一つの金属粉末を含む混合物は、有機物質の最も高い分解点が3.2倍以下の融点(ケルビン表記)を有することに特徴づけられる。さらに他の実態形態においてはそれぞれ、2.6倍以下、2倍以下、1.6倍以下と、低いほどより好ましい。この成分は、AM技術や、その他のポリマー成形などの非AM技術、さらに本資料に記述のある少なくとも一つの金属粉末及び有機化合物の粉末混合物を用いる成形技術に適した成形技術が用いられ、成形される。いくつかの実態形態におけるこの製造方法は、目的のコンポネントを得るまでの成形コンポネントへの後処理を要する。
一つの実態形態において、混合物の内一つ以上の成分が有機化合物である場合、有機化合物の最も高い分解温度とは、混合物の中でより高い融点を有する成分の融点を指す。その他の実態形態は、混合物の大多数の成分の融点に関する。その他の実態形態においては、有機物質がポリマー性物質の場合で、このポリマー性物質の分解点と一致するより高い分解点のコンポネントがこれ以上存在しない場合。
一つの実態形態におけるポリマーのような有機成分の分解とは、熱、光または化学的な一つ以上の環境要因によるポリマーまたはポリマーベースの物質の張力、色、形状などの性質の変化を指す。多くの場合、性質上の変化を劣化と呼ぶ。劣化は、ポリマーが熱、酸素及び機械的ストレスにさらされる工程の間に起こる。または、酸素や太陽光が最も大きな劣化原因となる物資の有効期限内に起きる。さらに、特別な使用において分解は、高エネルギー放射線、オゾン、大気汚染物質、機械的ストレス、生物学的作用、加水分解などの要因によって引き起こされる。
一つの実態形態におけるポリマーのような有機化合物の熱分解は、過熱による分子の劣化を意味する。ポリマーの長鎖骨格の成分は、高温下で分裂しはじめ(分子開裂)、ポリマーの性質を変化させるために互いに反応し合う。熱分解に伴うこの化学反応は、初期の性質と比べた場合の、物理的及び光学的な性質の変化に繋がる。熱分解は一般的に、ポリマーの分子量(また分子量分布)や特有の性質などに変化を伴う。これらの変化には、求めた物理的変化とは程遠い、延性や脆化、白亜化、色の変化、ひび割れ、変形一般なども含まれる。
一つの実態形態におけるそれぞれの変化が始まる温度とは、有機化合物の分解度である。
一つの実態形態におけるポリマーのそれぞれの変化が始まる温度とは、ポリマーの分解温度である。
一つの実態形態おけるそれぞれの変化が始まる温度とは、ポリマーの分解温度である。
一つの実態形態における有機化合物の熱分解は、示差走査熱量計の平均値によって測定される。
一つの実態形態における有機化合物の熱分解は、示差熱分析の平均値によって測定される。
一つの実態形態におけるポリマーの熱分解は、示差走査熱量計の平均値によって測定される。
一つの実態形態におけるポリマーの熱分解は、示差熱分析の平均値によって測定される。
一つの実態形態における示差走査熱量計(DSC)の基本原理は、試料の熱による状態変化を受けるとき、一定の熱を与え、を流れる両者の温度を一定に保つことを基準として。試料が必要とする熱流量は、プロセスが発熱によるものか吸熱によるものかによる。試料と参考例の熱流における差を観察することにより、示差走査熱量計はこのような遷移での吸熱量や発熱量を測定することができる
一つの実態形態における示差熱分析では、試料及び参考例の熱流には、温度とは異なり変化は見られない。試料及び参考例が同様に加熱した場合、相には変化が見られ、他の熱工程では、両者の間に温度差が生じた。
一つの実態形態における示差走査熱量計は、ポリマー性物質の熱遷移を評価し決めるために用いられる。ほとんどのポリマーへの融点及びガラス転移点は、標準のコンピレーションから利用できる。またこの使用は、例えばTmのような予想した融点を下げることによりポリマー分解を表すことができる。Tmは、ポリマーの分子量と熱履歴による。低い値であるほど、予測した融点よりも低くなる。ポリマーの結晶部の比率は、DSCグラフの結晶化/融点ピークから推測できる。参照となる融解熱は、文献から見つけられる。
一つの実態形態における熱重量測定(TGA)は、有機化合物の分解定型を決めるために用いられる。ポリマーに含まれる不純物は、サーモグラフの変則的な点を評価し決められる。また可塑剤は、それぞれ特有の沸点において検出される。
一つの実態形態におけるTGAは、有機化合物の分解を測定するために用いられる。
一つの実態形態におけるTGAは、ポリマーの分解を測定されるために、用いられる。
一つの実態形態における本発明は、異なる融点を有する少なくとも二つの金属粉末を含む粉末混合物を用いて、金属または少なくとも部分的な金属コンポネントを製造する方法を示す。また、混合物中の少なくとも一つの金属粉末は、有機物質の最も高い分解点よりも3.2倍以下の融点(ケルビン表記)を有する。また他の実態形態においてはそれぞれ、2.6倍以下、2倍以下、1.6倍以下の融点を有する。この成分は、AM技術や、その他のポリマー成形などの非AM技術、さらに本資料に記述のある少なくとも一つの金属粉末及び有機化合物の粉末混合物を用いる成形技術に適した成形技術が用いられ、成形される。いくつかの実態形態におけるこの製造方法は、目的のコンポネントを得るまでの成形コンポネントへの後処理を要する。いくつかの実態形態における製法は、求めたコンポネントになるまで、後処理を要する。
発明者は、多くの機械的性質の利点は、原料内の金属成分の高い体積分率から得られると見ている。これに対し、原料が粘度を和らげるために用意された場合、原料内の金属成分の過度の体積分率は悪影響になることもある。同様に、使用されたいくつかのAM技術及び他の成形プロセスは、やや少なく充填された原料を用いた場合に実施しやすい。有機化合物の成形プロセスのために最低限の機能が必要とされるようになったため。このように、機械的性質または密度などが優先される場合、無機物質の体積分率は、少なくとも42%が好ましく、さらに56%以上、68%以上、76%以上と、数値が高いほどより好ましい。無機充填材、またはセラミック補強材が考慮されない場合は、原料内の金属構成物の体積分率は、少なくとも36%が好ましく、さらに52%以上、62%以上、75%以上と、数値が上がるほどより好ましい。金属構成物の内の高融点金属構成物の量もまた、いくつかの使用において非常に重要である。その量が多過ぎると凝固作用が難しくなり、少な過ぎると、過度な変形などを引き起こす。この場合、高融点金属構成物の体積分率は、すべての金属構成物の32%以上が好ましく、さらにまた、52%以上、72%以上と、数値が高いほどより好ましい。さらに92%以上の体積分率であっても、長い拡散処理においては許容される。反対に、短時間での凝固作用や経済的な理由から、高融点金属構成物の体積分率は、すべての金属構成物に比べて94%以下であることが望ましい。さらには、88%以下、77%以下、68%以上と、低いほどより望ましい。
この発明者は、いくつかの使用において、24%以上の体積分率を示す金属相(粉末混合物中に含まれるすべての金属粉の和)は非常に興味深いと考えている。さらにまた、36%以上、56%以上、72%以上と、数値が高いほどより好まれる。
一つの実態形態において本発明の方法で用いられる、有機化合物、類似の融点を有する少なくとも一つの金属粉末、または一つ以上の金属粉末を含む金属混合物の体積分率は、24%以上である。他の実態形態においてはそれぞれ、36%以上、53%以上、72%以上であり、残りは有機化合物で構成される。他の実態形態における金属粉末のより高い体積分率はそれぞれ、78%以上、84%以上、91%以上とされる。さらにいくつかの実態形態においては、金属粉末混合物以外の成分を含まない場合もある。一つの実態形態におけるすべての金属構成物の中の高融点金属構成物の体積分率は、32%以上であり、さらに他の実態形態ではそれぞれ、52%以上、72%以上、92%以上と、数値が高いほどより好まれる。違う意味では、他の実態形態におけるすべての金属構成物の中の高融点金属構成物の体積分率は94%以下、88%以下、77%以下、68%以下とされる。
一つの実態形態において、本発明の方法に使用される有機化合物や、異なる融点を有する少なくとも二つの金属粉末を含む粉末混合物の内の金属粉末の体積分率は、24%以上である。他の実態形態においてはそれぞれ、36%以上、53%以上、72%以上であり、残りは有機化合物で構成される。他の実態形態における金属粉末のより高い体積分率はそれぞれ、78%以上、84%以上、91%以上とされる。さらにいくつかの実態形態においては、金属粉末混合物以外の成分を含まない場合もある。一つの実態形態におけるすべての金属構成物の中の高融点金属構成物の体積分率は、32%以上であり、さらに他の実態形態ではそれぞれ、52%以上、72%以上、92%以上と、数値が高いほどより好まれる。違う意味では、他の実態形態におけるすべての金属構成物の中の高融点金属構成物の体積分率は94%以下、88%以下、77%以下、68%以下とされる。
一つの実態形態におけるすべての金属構成物の中の高融点金属構成物の体積分率は、32%以上であり、さらに他の実態形態ではそれぞれ、52%以上、72%以上、92%以上と、数値が高いほどより好まれる。違う意味では、違う意味では、他の実態形態におけるすべての金属構成物の中の高融点金属構成物の体積分率は94%以下、88%以下、77%以下、68%以下とされる。
金属粒子の大きさは、本発明のいくつかの使用において非常に重大な要素である。通常は細かな粉末ほど固形化が容易となり、よって高い最終密度を得ることができる。さらにまた、細かな細部が実現可能になることで、より高い精度や耐久性を得ることができる。一方で、コストが上がるため、実現不可能ないくつかの形状もある。前述の通り、異なる呼びサイズの異なる相を有することは、求めた呼びサイズが主要な構成物の呼びサイズと関連している場合など、時に本発明にとって有益である。特筆しない限り、金属粉の呼びサイズとは、D50を指す。間隙充填分布の他にも、いわゆる作為的並びに無作為な分布は、いくつかの使用にとって有益になりうる。細かな細部または早い拡散などを要する、金属粉末を用いるいくつかの使用においては、むしろ78ミクロン以下のD50の細かな粉末が使用できる。さらに、48ミクロン以下、18ミクロン以下、8ミクロン以下と、値が低いほどより好まれる。また他の使用には、780ミクロン以下のD50の粗い粉末のほうがより良い場合もある。さらに380ミクロン以下、180ミクロン以下、120ミクロン以下と、値が低いほど、より好ましい。いくつかの使用においては、細かな粉末が不利になることもあるため、その場合12ミクロン以上の粉末が好ましい。さらに22ミクロン以上、42ミクロン以上、72ミクロン以上と、値が高いほどより好ましい。いくつかの金属相が微粒子の状態で存在する場合、さらに異なるサイズの相がほとんどの金属粉末の比率に充てられた場合、先のD50値は後者を指す。
本発明において発明者は、ポリマー及び少なくとも二つの異なる金属物質を含む材料の使用は、多くの使用にとって有益であるとみている。発明者は、金属物質のサイズ及びそれらの形状は、本発明による造形物の最終的な性質において、非常に重要な役割を担っているみている。活性面また最大の体積分率を得るという意味で、球状形状や粒度分布に影響される粉末の形状もまたとても非常に重要である。
最終コンポネントの低融点金属構成物の影響が、この低融点合金の低い濃度の要素にとって無害である場合、発明者は低い濃度のこれら合金を有するためにいくつかの方法があるとみている。この濃度はしかし製造工程の間のポリマー分解による形状保持の実施には十分である。一般的に原料内の高い体積分率を有する金属の緻密構造、さらに低融点金属構成物の均一な分布は役に立つ。例えば、90%+のアルミニウム合金がスチール基金属構成物上の低融点金属構成物として使用される場合、アルミニウム含量の低いスチールでも、有益な効果をもたらすことがある。例えば沈殿物を通じて強化を高める、オーステナイトの成長を制限する、脱酸、窒化層の強化など。しかしこれらの効果は0.1−1重量%の間の低い%Alの際にみられる。この状態を打破するにはスチール粒子の緻密化が必要となる(真球度と細いサイズ分布が役立つため)。その後、八面体空隙を埋めるため主要な金属粒子のD50の直径の0.41倍のD50を有する金属粒子が7.0重量%を達成する。この微粒子は、主要な金属構成物と同じような性質を持つ。また、拡散が生じた後の目的の機能のためにすべての加工が完了する(ここでも真球性と細いサイズ分布が役立つ)。その後、90%+アルミニウム合金の細かな粒子は、四面体空隙を埋めるため主要な金属粒子のD50の直径の0.225倍のD50を有する金属粒子が0.6体積%を達成する(ここでも真球性と細いサイズ分布が役立つ)。アルミニウムに与えられた密度とスチールの体積分率は、最終製品に90%+0.15重量%のアルミニウム合金を示す。これはスチールへのアルミニウムの分布の許容範囲内である。
一つの実態形態におけるアルミニウム90重量%以上のアルミニウム基合金は、粉末混合物中の低融点合金として、またスチール基合金は粉末混合物中の高融点合金として、金属または少なくとも部分的な金属コンポネントの製造のために使用される。一つの実態形態におけるこれらのアルミニウム90重量%以上のアルミニウム基合金は、金属構成要素全体の10体積%である。一つの実態形態における金属構成要素全体の7体積%は、スチール基合金の主な粒子の約0.41倍のD50のアルミニウム粒子90重量%以上を含むアルミニウム基合金、およびスチール基合金の主な粒子の約0.225倍のD50のアルミニウム粒子90重量%以上を含むアルミニウム基合金である。
発明者は、成形工程に高速のAM、または他の成形プロセスが用いられた場合に起こる本発明のある実施に注目している。本発明の多く場合、AMプロセスでは通常必要としない後処理を伴う。まず初めに、後処理は不利な点であり、時折のみ高精度である。しかし発明者は、これらの後処理の有する欠点も、本発明が提案する製造スピードの向上や適応性により克服できるとみている。事実、金属に基づくプロセスに比べ、このポリマーに基づいたAMプロセスは、より速く実行できる。後処理と用いれば、一つの装置または続くプロセスで同時に多くの部品に適応できる。さらに、後処理工程の実質的な処理時間は大幅に減ることで、工程の多さとは裏腹に多くの部品が1時間で製造できてしまうのである。このように発明者は、手間のかかる後処理だとしても、大きな部品が同時に製造できるという意味でも効果的であるとみている。例えば一度に2000個の部品に後処理加工または拡散加工を施した場合、一つの部品の加工にかかる時間は2秒以下である。
一つの実態形態における500個以上の部品の後処理は、同時に行われる。他の実態形態においてはそれぞれ、800個以上、1200個以上、1600個以上、2000個以上の後処理が同時に行われる。
一つの実態形態における部品一個の後処理に要する時間は10秒以下である。他の実態形態においてはそれぞれ、7秒以下、4秒以下、2秒以下である。
一つの実態形態における造形物には、いくつかの後処理加工を施すことができ、その内の多くは特定の温度下にコンポネントを置くものである。
一つの実態形態においては、グリーン体が基準となる場合、これらは、本資料に記述がある通り、成形方法で得られる中間コンポネントを指す。さらにこれらのグリーン体には、最終コンポネントが形成される前に少なくとも一つの熱を伴う後処理を受けさせる。この使用においてこのグリーン体は、少なくとも部分的に有機化合物(バインダ)を排除するために、脱バインダ工程を受ける
グリーン体の抵抗力を、三点曲げ実験を用いた抗析力によって測定する場合、発明の説明に用いられ、明らかになった材料や方法のために4-25MPaに近い値を見つける。しかし、グリーン体が脱バインダを受け、バインダが1MPa以上で完全に分解するのは、材料や、発明の説明で用いた、金属または少なくとも部分的な金属コンポネントの製造の方法にとって、実現するのが困難である。これは、形状保持目的で、部品が凝固するまで焼結法やHIPが用いられる際に、型やその他の要素の使用を伴う大きな部品の製造では、さらに困難である。
一つの実態形態における抗析力(TSR)とは、曲げ試験による、破断直前の物質にかかる応力と定義される、物質の性質である。
一つの実態形態における抗析力とは、三点曲げ実験をを用いて、円形断面または長方形断面を有する試料が破壊されるまで曲げられる曲げ実験にって決められる。この曲げ強度は、これらの実験を通して物質が破断する瞬間の最大応力を示すものである。
発明の説明にあるいくつかの例では、脱バインダー工程の間、有機物質は完全に分解された状態ではなく、また、コンポーネント(発明の説明内で時々ブラウン体と呼ばれるが、本資料においてのブラウン体とは意味が異なる)の抗析力測定法は、グリーン体のそれに似ている。通常は有機化合物によって、部品の強固のための焼結法や、HIP法、または他のいずれかの後処理の使用前の部品の操作がしやすくするなる。このような場合、熱処理が執り行われる際、有機混合物は、焼結やHIP温度に達する前に完全に分解される。残った有機化合物はしばしば、焼結やHIP温度に達するまでの加熱時に完全に分解される。有機化合物が完全に分解された時、部品の抗析力の最小値に達する。この値が2MPa(部品の脱バインダが全工程行われた場合にも同様の値を得られる)を超えることはほとんどない。
発明者は、本発明の方法及び少なくとも二つの金属粉末やその他の非金属コンポネント含む混合物(多くの場合、ポリマー性物質のような有機物質を含む)を用いる場合、粒度分布の適切な選択に加え、先述した混合物中の高融点金属粉末と低融点金属粉末の選択は、グリーン体の高いタップ密度や高い抵抗値に加え、高い抵抗力に変えるグリーン体形状の緻密化を可能とする。
一つの実態形態において、部分的な脱バインダが行われている時や形状保持をポリマーから金属相へと変えるための熱処理がグリーン体に直接施されている時、工程のほぼすべての臨界点の熱処理後のコンポネントの抗析力値(工程の臨界点とは、有機化合物が排除される間に抗析力値が最小値に達するまでの間や、形状保持から金属部品に移行する瞬間を指す。焼結やHIPまたはそれ以外の処理の前の高温下で、合金システムの脱バインダは、少なくとも500℃に達した場合に起こりえる。一つの実態形態においては、焼結またはHIP以下の100℃以上、さらにその他の実態形態においてはそれぞれ、200℃以上、さらにその他の実態形態においてはそれぞれ、400℃以上、600℃以上となっている。また有機化合物ではなく金属コンポネントを通して形状保持が行われた場合にも起こりえる。
一つの実態形態においては、完全な脱バインダが行われた場合に、ブラウン体が得られる。コンポネントが焼結温度以下の熱処理を受けた場合の横靭性強度は室温の0.3Mpa以上である。その他の実態形態においてはそれぞれ、0.55MPa以上。その他の実態形態においてはそれぞれ、0.6MPa以上。その他の実態形態においてはそれぞれ、0.8MPa以上。その他の実態形態においてはそれぞれ、1.1MPa以上。その他の実態形態においてはそれぞれ、1.6MPa以上。その他の実態形態においてはそれぞれ、2.3MPa以上。その他の実態形態においてはそれぞれ、2.6MPa以上。その他の実態形態においてはそれぞれ、3.1MPa以上。その他の実態形態においてはそれぞれ、4.1MPa以上。その他の実態形態においてはそれぞれ、5.2MPa以上。その他の実態形態においてはそれぞれ、7.2MPa以上。その他の実態形態においてはそれぞれ、9.3MPa以上。その他の実態形態においてはそれぞれ、13.6MPa以上。その他の実態形態においてはそれぞれ、15.9MPa以上。その他の実態形態においてはそれぞれ、25.3MPa以上。その他の実態形態においてはそれぞれ、41.2MPa以上。その他の実態形態においてはそれぞれ、51MPa以上、56MPa以上となっている。
一つの実態形態における抗析力は、ISO 3325:1996を用いて測定される。
一つの実態形態におけるグリーン体は、少なくとも部分的なPMSRTが行われる熱処理を受ける。
一つの実態形態におけるグリーン体は、少なくとも部分的なMSRTが行われる熱処理を受ける。
一つの実態形態において、熱処理の間、少なくとも部分的な脱バインダが行われる。
一つの実態形態におけるグリーン体は、PMSRTが行われる熱処理を受ける。
.一つの実態形態おけるグリーン体は、MSRTが行われる熱処理を受ける。
一つの実態形態においては、熱処理の間に脱バインダが行われる。
一つの実態形態における後処理加工は、少なくともMSRTが行われる熱処理を含む。
一つの実態形態におけるグリーン体は、熱処理を受ける。
一つの実態形態における熱処理は、低融点合金の0.35*Tmと20%のポリマーが分解する温度の間で行われる。一つの実態形態における熱処理は、低融点合金の0.35*Tmと29%のポリマーが分解する温度の間で行われる。一つの実態形態における熱処理は、低融点合金の0.35*Tmと36%のポリマーが分解する温度の間で行われる。一つの実態形態における熱処理は、低融点合金の0.35*Tmと48%のポリマーが分解する温度の間で行われる。一つの実態形態における熱処理は、低融点合金の0.35*Tmと69%のポリマーが分解する温度の間で行われる。一つの実態形態における熱処理は、低融点合金の0.35*Tmと81%のポリマーが分解する温度の間で行われる。一つの実態形態における熱処理は、低融点合金の0.35*Tmと92%のポリマーが分解する温度の間で行われる。一つの実態形態における熱処理は、低融点合金の0.35*Tmと100%のポリマーが分解する温度の間で行われる。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの機械的強度と比較して、ISO6892によって測定された同じ状況下の機械的強度の20%がポリマーである場合に20%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの抗張力と比較して、ISO6892によって測定された同じ条件下の抗張力の20%が有機ポリマーである場合に20%が分解される。
一つの実態形態におけるポリマー化合物は、未焼結状態のポリマーの横強度と比較して、ISO3325:1996によって測定された同じ条件下の横強度の20%がポリマーである場合に20%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの機械的強度と比較して、ISO6892によって測定された同じ状況下の機械的強度の29%がポリマーである場合に29%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの抗張力と比較して、ISO6892によって測定された同じ条件下の抗張力の29%が有機ポリマーである場合に29%が分解される。
一つの実態形態におけるポリマー化合物は、未焼結状態のポリマーの横強度と比較して、ISO3325:1996によって測定された同じ条件下の横強度の29%がポリマーである場合に29%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの機械的強度と比較して、ISO6892によって測定された同じ状況下の機械的強度の36%がポリマーである場合に36%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの抗張力と比較して、ISO6892によって測定された同じ条件下の抗張力の36%が有機ポリマーである場合に36%が分解される。
一つの実態形態におけるポリマー化合物は、未焼結状態のポリマーの横強度と比較して、ISO3325:1996によって測定された同じ条件下の横強度の36%がポリマーである場合に36%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの機械的強度と比較して、ISO6892によって測定された同じ状況下の機械的強度の48%がポリマーである場合に48%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの抗張力と比較して、ISO6892によって測定された同じ条件下の抗張力の48%が有機ポリマーである場合に48%が分解される。
一つの実態形態におけるポリマー化合物は、未焼結状態のポリマーの横強度と比較して、ISO3325:1996によって測定された同じ条件下の横強度の48%がポリマーである場合に48%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの機械的強度と比較して、ISO6892によって測定された同じ状況下の機械的強度の69%がポリマーである場合に69%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの抗張力と比較して、ISO6892によって測定された同じ条件下の抗張力の69%が有機ポリマーである場合に69%が分解される。
一つの実態形態におけるポリマー化合物は、未焼結状態のポリマーの横強度と比較して、ISO3325:1996によって測定された同じ条件下の横強度の69%がポリマーである場合に69%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの機械的強度と比較して、ISO6892によって測定された同じ状況下の機械的強度の81%がポリマーである場合に81%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの抗張力と比較して、ISO6892によって測定された同じ条件下の抗張力の81%が有機ポリマーである場合に81%が分解される。
一つの実態形態におけるポリマー化合物は、未焼結状態のポリマーの横強度と比較して、ISO3325:1996によって測定された同じ条件下の横強度の81%がポリマーである場合に81%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの機械的強度と比較して、ISO6892によって測定された同じ状況下の機械的強度の92%がポリマーである場合に92%が分解される。
一つの実態形態におけるポリマーは、未焼結状態のポリマーの抗張力と比較して、ISO6892によって測定された同じ条件下の抗張力の92%が有機ポリマーである場合に92%が分解される。
一つの実態形態におけるポリマー化合物は、未焼結状態のポリマーの横強度と比較して、ISO3325:1996によって測定された同じ条件下の横強度の92%がポリマーである場合に92%が分解される。
一つの実態形態における熱処理は、低融点合金の0.35*Tmと高融点合金の0.39*Tmの間で行われる。他の実態形態においては、低融点合金の0.35*Tmと高融点合金の0.49*Tmの間で行われる。他の実態形態においては、低融点合金の0.35*Tmと高融点合金の0.55*Tmの間で行われる。他の実態形態においては、低融点合金の0.35*Tmと高融点合金の0.64*Tmの間で行われる。
一つの実態形態における熱処理は、0.7MPa以上の室温で金属または少なくとも金属コンポネントの機械的強度を得るに十分な時間内に行われる。他の実態形態においてはそれぞれ、0.9MPa以上。他の実態形態においてはそれぞれ、1.2MPa以上。他の実態形態においてはそれぞれ、1.5MPa以上。他の実態形態においてはそれぞれ、2.3MPa以上。他の実態形態においてはそれぞれ、3.4MPa以上。他の実態形態においてはそれぞれ、4.6MPa以上。他の実態形態においてはそれぞれ、5.2MPa以上。他の実態形態においてはそれぞれ、6.3MPa以上。他の実態形態においてはそれぞれ、8.1MPa以上。他の実態形態においてはそれぞれ、10.5MPa以上。他の実態形態においてはそれぞれ、14.3MPa以上。他の実態形態においてはそれぞれ、19.6MPa以上。他の実態形態においてはそれぞれ、27.2MPa以上。他の実態形態においてはそれぞれ、32.6MPa以上。他の実態形態においてはそれぞれ、51.2MPa以上。他の実態形態においてはそれぞれ、84.3MPa以上。他の実態形態においてはそれぞれ、102MPa以上、110MPa以上となっている。
一つの実態形態における機械強度とは、圧縮強度を意味する。圧縮強度とは、サイズを縮める傾向にある荷重に対して抵抗する物質または構造の抵抗力である。その反対に、伸張力とは、大きさを増そうとする荷重に対する抵抗力である。
一つの実態形態における圧縮強度試験は、圧縮荷重下の物質の反応の測定に用いられる。圧縮強度試験は、二つのプレートに試料を詰め、その後、同時にクロスヘッドを動かしながら試料に圧力を加えながら行われる。試料に圧力がかかる試験中に、変化/荷重を記録する。圧縮強度試験は、弾性限度、比例限度、降伏点、降伏強度や、いくつかの物質によっては圧縮強度を測定するために用いられる。
一つの実態形態における機械的強度を測定するために使用される基本的な試験は、ASTM E9である。これは、室温の金属物質の圧縮試験の基本的な試験方法である。
一つの実態形態における機械的強度を測定するために用いられる基本的な試験は、ASTM 209である。これは、室温以上の温度下の金属物質の圧縮試験の基本的な試験方法である。
一つの実態形態における機械強度は、伸びやすい負荷に耐える抗張力とは反対に、縮小しやすい負荷に耐える物質または構造の容量の圧縮強度を指す。
一つの実態形態における圧縮試験は、圧縮荷重下の物質の反応を測定するために用いられる方法である。圧縮強度試験は、二つのプレートに試料を詰め、その後、同時にクロスヘッドを動かしながら試料に圧力を加えながら行われる。試料に圧力がかかる試験中に、変化/荷重を記録する。圧縮強度試験は、弾性限度、比例限度、降伏点、降伏強度や、いくつかの物質によっては圧縮強度を測定するために用いられる。
一つの実態形態における機械的強度を測定するために用いられる基本的な試験は、ASTM E9である。これは、室温の金属物質の圧縮試験の基本的な試験方法である。
一つの実態形態における機械的強度を測定するために用いられる基本的な試験は、ASTM 209である。これは、室温以上の温度下の金属物質の圧縮試験の基本的な試験方法である。
一つの実態形態における本発明は、金属または、部品、パーツ、コンポーネント、ツールなどの少なくとも部分的な金属コンポネントを製造するための、下記の工程で構成された方法を示す。
a)少なくとも一つの低融点合金または高融点合金、さらに必要に応じて有機化合物で構成された粉末混合物の用意
b)最終的な形成コンポネントとなる、成形技術を用いた粉末混合物の成形
c)部品の機械強度が少なくとも1.2Mpaになるまで低融点合金の融点の0.35倍の温度と高融点合金の融点の0.39倍の温度の間の温度の少なくとも一つの熱処理を部品に受けさせる。もしも二つ以上の金属合金がある場合、低融点合金のTmとは、粉末混合物の少なくとも1重量%の量を有する最も低い融点を持つ合金の融点を指し、高融点合金の融点とは、粉末混合物の少なくとも3.8重量%の量を有する高融点合金の最も高い重量%を持つ合金のTmを指す。低融点合金のよりも少なくとも110℃高い融点を有する合金は、高融点合金である。
一つの実態形態における本発明は、金属または、部品、パーツ、コンポーネント、ツールなどの少なくとも部分的な金属コンポネントを製造するための、下記の工程で構成された方法を示す。
a)少なくとも一つの低融点合金または高融点合金、さらに必要に応じて有機化合物で構成された粉末混合物の用意
b)最終的な形成コンポネントとなる、成形技術を用いた粉末混合物の成形
c)部品の機械強度が少なくとも1.2Mpaになるまで低融点合金の融点の0.35倍の温度と高融点合金の融点の0.49倍の温度の間の温度の少なくとも一つの熱処理を部品に受けさせる。もしも二つ以上の金属合金がある場合、低融点合金のTmとは、粉末混合物の少なくとも1重量%の量を有する最も低い融点を持つ合金の融点を指し、高融点合金の融点とは、粉末混合物の少なくとも3.8重量%の量を有する高融点合金の最も高い重量%を持つ合金のTmを指す。低融点合金のよりも少なくとも110℃高い融点を有する合金は、高融点合金である。
一つの実態形態における本発明は、金属または、部品、パーツ、コンポーネント、ツールなどの少なくとも部分的な金属コンポネントを製造するための、下記の工程で構成された方法を示す。少なくとも一つの低融点合金または高融点合金、さらに必要に応じて有機化合物で構成された粉末混合物の用意; 最終的な形成コンポネントとなる、成形技術を用いた粉末混合物の成形; 成形コンポネントが熱処理を受ける。
一つの実態形態では、物質科学において、物質の強度とは、破壊または塑性変形を伴わない負荷荷重の物質の抵抗力である。この負荷荷重は、軸状(伸張性または圧縮性)、またはせん断強度である。物質強度とは、荷重を取り除いても完全には覆せない物質の変形体験を越えた、工学応力引張歪み曲線(降伏応力)を指す。またその結果、メンバーは恒久的な偏差を持つ。最終強度とは、破損を生じさせる圧力に関する工学応力引張歪みを指す。
一つの実態形態における熱処理は、0.7MPa以上の測定を熱処理を止めた瞬間のコンポネントの温度下での、金属または部分的な金属コンポーネントの機械的強度を得るに十分な時間内に行われる。他の実態形態においてはそれぞれ、0.9MPa以上。他の実態形態においてはそれぞれ、1.2MPa以上。他の実態形態においてはそれぞれ、1.5MPa以上。他の実態形態においてはそれぞれ、2.3MPa以上。他の実態形態においてはそれぞれ、3.4MPa以上。他の実態形態においてはそれぞれ、4.6MPa以上。他の実態形態においてはそれぞれ、5.2MPa以上。他の実態形態においてはそれぞれ、6.3MPa以上。他の実態形態においてはそれぞれ、8.1MPa以上。他の実態形態においてはそれぞれ、10.5MPa以上。他の実態形態においてはそれぞれ、14.3MPa以上。他の実態形態においてはそれぞれ、19.6MPa以上。他の実態形態においてはそれぞれ、27.2MPa以上。他の実態形態においてはそれぞれ、32.6MPa以上。他の実態形態においてはそれぞれ、51.2MPa以上。他の実態形態においてはそれぞれ、84.3MPa以上。他の実態形態においてはそれぞれ、102MPa以上、110MPa以上である。
一つの実態形態では、熱処理前に得られた金属または少なくとも金属コンポネントは、室温下において0.7MPa以上の機械的強度を有する。他の実態形態においてはそれぞれ、0.9MPa以上。他の実態形態においてはそれぞれ、1.2MPa以上。他の実態形態においてはそれぞれ、1.5MPa以上。他の実態形態においてはそれぞれ、2.3MPa以上。他の実態形態においてはそれぞれ、3.4MPa以上。他の実態形態においてはそれぞれ、4.6MPa以上。他の実態形態においてはそれぞれ、5.2MPa以上。他の実態形態においてはそれぞれ、6.3MPa以上。他の実態形態においてはそれぞれ、8.1MPa以上。他の実態形態においてはそれぞれ、10.5MPa以上。他の実態形態においてはそれぞれ、14.3MPa以上。他の実態形態においてはそれぞれ、19.6MPa以上。他の実態形態においてはそれぞれ、27.2MPa以上。他の実態形態においてはそれぞれ、32.6MPa以上。他の実態形態においてはそれぞれ、51.2MPa以上。他の実態形態においてはそれぞれ、84.3MPa以上。他の実態形態においてはそれぞれ、102MPa以上、110MPa以上である。
一つの実態形態では、熱処理前に得られた金属または少なくとも金属コンポネントは、熱処理を止めた瞬間のコンポネントの温度において0.7MPa以上の機械的強度を有する。他の実態形態においてはそれぞれ、0.9MPa以上。他の実態形態においてはそれぞれ、1.2MPa以上。他の実態形態においてはそれぞれ、1.5MPa以上。他の実態形態においてはそれぞれ、2.3MPa以上。他の実態形態においてはそれぞれ、3.4MPa以上。他の実態形態においてはそれぞれ、4.6MPa以上。他の実態形態においてはそれぞれ、5.2MPa以上。他の実態形態においてはそれぞれ、6.3MPa以上。他の実態形態においてはそれぞれ、8.1MPa以上。他の実態形態においてはそれぞれ、10.5MPa以上。他の実態形態においてはそれぞれ、14.3MPa以上。他の実態形態においてはそれぞれ、19.6MPa以上。他の実態形態においてはそれぞれ、27.2MPa以上。他の実態形態においてはそれぞれ、32.6MPa以上。他の実態形態においてはそれぞれ、51.2MPa以上。他の実態形態においてはそれぞれ、84.3MPa以上。他の実態形態においてはそれぞれ、102MPa以上、110MPa以上である。
一つの実態形態において、熱処理前に得られるコンポネントがさらに有機化合物を含む場合、機械的強度を測定する前の有機化合物の完全なる分解までの化学的脱バインダーのような、非熱性脱バインダの対象となる。
一つの実態形態における成形部品は、1.2MPa以上の室温にて、金属または少なくとも部分的な金属コンポネントの機械的強度を得るに十分な時間内で、低融点合金の0.35*Tmと、高融点合金0.39*Tmの間の熱処理の対象となる。
一つの実態形態における成形部品は、低融点合金の0.35*Tmと高融点合金の0.39*Tmの間の、金属または部分的な金属コンポネントが0.7*Tmの機械強度を得るに十分な時間を有する熱処理を受ける。熱処理を止めた瞬間のコンポネントの温度で測定を行う。
一つの実態形態において、粉末混合物中に金属粉末が一つのみ存在する場合、形成コンポネントは、金属粉末の融点の0.35*Tmから0.39*Tmの熱処理の対象となる。一つの実態形態において、粉末混合物中に金属粉末が一つのみ存在する場合、形成コンポネントは、金属粉末の融点の0.35*Tmから0.49*Tmの熱処理の対象となる。一つの実態形態において、粉末混合物中に金属粉末が一つのみ存在する場合、形成コンポネントは、金属粉末の融点の0.35*Tmから0.55*Tmの熱処理の対象となる。一つの実態形態において、粉末混合物中に金属粉末が一つのみ存在する場合、形成コンポネントは、金属粉末の融点の0.35*Tmから0.64*Tmの熱処理の対象となる。
一つの実態形態において、粉末混合物中に金属粉末が一つのみ存在する場合、熱処理は、0.7MPa以上の室温にて、金属または少なくとも金属コンポネントの機械的強度を得るのに十分な時間内で行われる。。他の実態形態においてはそれぞれ、0.9MPa以上。他の実態形態においてはそれぞれ、1.2MPa以上。他の実態形態においてはそれぞれ、1.5MPa以上。他の実態形態においてはそれぞれ、2.3MPa以上。他の実態形態においてはそれぞれ、3.4MPa以上。他の実態形態においてはそれぞれ、4.6MPa以上。他の実態形態においてはそれぞれ、5.2MPa以上。他の実態形態においてはそれぞれ、6.3MPa以上。他の実態形態においてはそれぞれ、8.1MPa以上。他の実態形態においてはそれぞれ、10.5MPa以上。他の実態形態においてはそれぞれ、14.3MPa以上。他の実態形態においてはそれぞれ、19.6MPa以上。他の実態形態においてはそれぞれ、27.2MPa以上。他の実態形態においてはそれぞれ、32.6MPa以上。他の実態形態においてはそれぞれ、51.2MPa以上。他の実態形態においてはそれぞれ、84.3MPa以上。他の実態形態においてはそれぞれ、102MPa以上、110MPa以上である。
一つの実態形態においては、粉末混合物中に金属粉末が一つのみ存在する場合、熱処理は、金属または少なくとも金属コンポネントが機械強度を得るに十分な時間を用いて行われる。熱処理を止めた瞬間のコンポネントの温度を用いて0.7*MPa以上の測定を行う。他の実態形態においてはそれぞれ、0.9MPa以上。他の実態形態においてはそれぞれ、1.2MPa以上。他の実態形態においてはそれぞれ、1.5MPa以上。他の実態形態においてはそれぞれ、2.3MPa以上。他の実態形態においてはそれぞれ、3.4MPa以上。他の実態形態においてはそれぞれ、4.6MPa以上。他の実態形態においてはそれぞれ、5.2MPa以上。他の実態形態においてはそれぞれ、6.3MPa以上。他の実態形態においてはそれぞれ、8.1MPa以上。他の実態形態においてはそれぞれ、10.5MPa以上。他の実態形態においてはそれぞれ、14.3MPa以上。他の実態形態においてはそれぞれ、19.6MPa以上。他の実態形態においてはそれぞれ、27.2MPa以上。他の実態形態においてはそれぞれ、32.6MPa以上。他の実態形態においてはそれぞれ、51.2MPa以上。他の実態形態においてはそれぞれ、84.3MPa以上。他の実態形態においてはそれぞれ、102MPa以上、110MPa以上である。
一つの実態形態において、漂白および粒間の直接接触のおかげで、グリーン体とブラウン体のそれぞれ熱伝導率の間に改善がみられた。
一つの実態形態では、ブラウン体やグリーン体の間の熱伝導率に、12%以上の改善がみられた。一つの実態形態では、ブラウン体やグリーン体の間の熱伝導率に、22%以上の改善がみられた。一つの実態形態では、ブラウン体やグリーン体の間の熱伝導率に、52%以上の改善がみられた。一つの実態形態では、ブラウン体やグリーン体の間の熱伝導率に、110%以上の改善がみられた。
一つの実態形態において、漂白および粒間の直接接触のおかげで、グリーン体とブラウン体の電気伝導率に、改善がみられた。
一つの実態形態において、ブラウン体およびグリーン体の間の電気伝導度に、12%以上の改善がみられた。一つの実態形態において、ブラウン体およびグリーン体の間の電気伝導度に、22%以上の改善がみられた。一つの実態形態において、ブラウン体およびグリーン体の間の電気伝導度に、52%以上の改善がみられた。一つの実態形態において、ブラウン体およびグリーン体の間の電気伝導度に、110%以上の改善がみられた。
一つの実態形態において、漂白および粒間の直接接触のおかげで、ブラウン体とグリーン等価体の間の熱伝導率に、改善がみられた。
一つの実態形態において、ブラウン体とグリーン等価体の間の熱伝導率に、12%以上の改善がみられた。一つの実態形態において、ブラウン体とグリーン等価体の間の熱伝導率に、22%以上の改善がみられた。一つの実態形態において、ブラウン体とグリーン等価体の間の熱伝導率に、52%以上の改善がみられた。一つの実態形態において、ブラウン体とグリーン等価体の間の熱伝導率に、110%以上の改善がみられた。
一つの実態形態において、漂白および粒間の直接接触のおかげで、ブラウン体とグリーン等価体の間の熱伝導率に、改善がみられた。
一つの実態形態において、ブラウン体とグリーン等価体の間の電気伝導度に、12%以上の改善がみられた。一つの実態形態において、ブラウン体とグリーン等価体の間の電気伝導度に、32%以上の改善がみられた。一つの実態形態において、ブラウン体とグリーン等価体の間の電気伝導度に、52%以上の改善がみられた。一つの実態形態において、ブラウン体とグリーン等価体の間の電気伝導度に、110%以上の改善がみられた。
一つの実態形態において、漂白および粒間の直接接触のおかげで、ブラウン体とグリーン等価体の間の熱伝導率に、改善がみられた。
一つの実態形態におけるグリーン等価体とは、ポリマーを除くグリーン体と同等のコンポネントを指す。
一つの実態形態におけるグリーン体は、熱伝導率または電気伝導率を測定する前のグリーン等価体を得る有機化合物の完全な分解までの化学的脱バインダのような、非熱性脱バインダの対象となる。
一つの実態形態における焼結温度は、高融点合金の0.7*Tm以上である。一つの実態形態における焼結温度は、高融点合金の0.75*Tm以上である。一つの実態形態における焼結温度は、高融点合金の0.8*Tm以上である。一つの実態形態における焼結温度は、高融点合金の0.85*Tm以上である。一つの実態形態における焼結温度は、高融点合金の0.9*Tm以上である。一つの実態形態における焼結温度は、高融点合金の0.95*Tm以上である。
一つの実態形態における本発明は、金属または、部品、パーツ、コンポーネント、ツールなどの少なくとも部分的な金属コンポネントを製造するための、下記の工程で構成された方法を示す。
少なくとも一つの低融点合金または高融点合金、さらに必要に応じて有機化合物で構成された粉末混合物の用意;
最終的な形成コンポネントとなる、成形技術を用いた粉末混合物の成形;
成形コンポネントが熱処理を受ける;
工程c)で得られたコンポネントを焼結の対象にする。
一つの実態形態では、室温での高融点合金の0.7*Tmに達する前の熱処理を伴う後処理をグリーン体に施した後に得られる抗析力の最小値は。0.3MPa以上である。また他の実態形態においてはそれぞれ、0.55MPa。また他の実態形態においてはそれぞれ、0.6MPa。また他の実態形態においてはそれぞれ、0.8MPa。また他の実態形態においてはそれぞれ、1.1MPa。また他の実態形態においてはそれぞれ、1.6MPa。また他の実態形態においてはそれぞれ、2.3MPa。また他の実態形態においてはそれぞれ、2.6MPa。また他の実態形態においてはそれぞれ、3.1MPa。また他の実態形態においてはそれぞれ、4.1MPa。また他の実態形態においてはそれぞれ、5.2MPa。また他の実態形態においてはそれぞれ、7.2MPa。また他の実態形態においてはそれぞれ、9.3MPa。また他の実態形態においてはそれぞれ、13.6MPa。また他の実態形態においてはそれぞれ、15.9MPa。また他の実態形態においてはそれぞれ、25.3 MPa。また他の実態形態においてはそれぞれ、41.2 MPa。また他の実態形態においてはそれぞれ、51MPa、56MPa以上となっている。
一つの実態形態では、室温での高融点合金の0.75*Tmに達する前の熱処理を伴う後処理をグリーン体に施した後に得られる抗析力の最小値は。0.3MPa以上である。また他の実態形態においてはそれぞれ、0.55MPa。また他の実態形態においてはそれぞれ、0.6MPa。また他の実態形態においてはそれぞれ、0.8MPa。また他の実態形態においてはそれぞれ、1.1MPa。また他の実態形態においてはそれぞれ、1.6MPa。また他の実態形態においてはそれぞれ、2.3MPa。また他の実態形態においてはそれぞれ、2.6MPa。また他の実態形態においてはそれぞれ、3.1MPa。また他の実態形態においてはそれぞれ、4.1MPa。また他の実態形態においてはそれぞれ、5.2MPa。また他の実態形態においてはそれぞれ、7.2MPa。また他の実態形態においてはそれぞれ、9.3MPa。また他の実態形態においてはそれぞれ、13.6MPa。また他の実態形態においてはそれぞれ、15.9MPa。また他の実態形態においてはそれぞれ、25.3 MPa。また他の実態形態においてはそれぞれ、41.2 MPa。また他の実態形態においてはそれぞれ、51MPa、56MPa以上となっている。
一つの実態形態では、室温での高融点合金の0.8*Tmに達する前の熱処理を伴う後処理をグリーン体に施した後に得られる抗析力の最小値は。0.3MPa以上である。また他の実態形態においてはそれぞれ、0.55MPa。また他の実態形態においてはそれぞれ、0.6MPa。また他の実態形態においてはそれぞれ、0.8MPa。また他の実態形態においてはそれぞれ、1.1MPa。また他の実態形態においてはそれぞれ、1.6MPa。また他の実態形態においてはそれぞれ、2.3MPa。また他の実態形態においてはそれぞれ、2.6MPa。また他の実態形態においてはそれぞれ、3.1MPa。また他の実態形態においてはそれぞれ、4.1MPa。また他の実態形態においてはそれぞれ、5.2MPa。また他の実態形態においてはそれぞれ、7.2MPa。また他の実態形態においてはそれぞれ、9.3MPa。また他の実態形態においてはそれぞれ、13.6MPa。また他の実態形態においてはそれぞれ、15.9MPa。また他の実態形態においてはそれぞれ、25.3 MPa。また他の実態形態においてはそれぞれ、41.2 MPa。また他の実態形態においてはそれぞれ、51MPa、56MPa以上となっている。
一つの実態形態では、室温での高融点合金の0.85*Tmに達する前の熱処理を伴う後処理をグリーン体に施した後に得られる抗析力の最小値は。0.3MPa以上である。また他の実態形態においてはそれぞれ、0.55MPa。また他の実態形態においてはそれぞれ、0.6MPa。また他の実態形態においてはそれぞれ、0.8MPa。また他の実態形態においてはそれぞれ、1.1MPa。また他の実態形態においてはそれぞれ、1.6MPa。また他の実態形態においてはそれぞれ、2.3MPa。また他の実態形態においてはそれぞれ、2.6MPa。また他の実態形態においてはそれぞれ、3.1MPa。また他の実態形態においてはそれぞれ、4.1MPa。また他の実態形態においてはそれぞれ、5.2MPa。また他の実態形態においてはそれぞれ、7.2MPa。また他の実態形態においてはそれぞれ、9.3MPa。また他の実態形態においてはそれぞれ、13.6MPa。また他の実態形態においてはそれぞれ、15.9MPa。また他の実態形態においてはそれぞれ、25.3 MPa。また他の実態形態においてはそれぞれ、41.2 MPa。また他の実態形態においてはそれぞれ、51MPa、56MPa以上となっている。
一つの実態形態では、室温での高融点合金の0.97*Tmに達する前の熱処理を伴う後処理をグリーン体に施した後に得られる抗析力の最小値は。0.3MPa以上である。また他の実態形態においてはそれぞれ、0.55MPa。また他の実態形態においてはそれぞれ、0.6MPa。また他の実態形態においてはそれぞれ、0.8MPa。また他の実態形態においてはそれぞれ、1.1MPa。また他の実態形態においてはそれぞれ、1.6MPa。また他の実態形態においてはそれぞれ、2.3MPa。また他の実態形態においてはそれぞれ、2.6MPa。また他の実態形態においてはそれぞれ、3.1MPa。また他の実態形態においてはそれぞれ、4.1MPa。また他の実態形態においてはそれぞれ、5.2MPa。また他の実態形態においてはそれぞれ、7.2MPa。また他の実態形態においてはそれぞれ、9.3MPa。また他の実態形態においてはそれぞれ、13.6MPa。また他の実態形態においてはそれぞれ、15.9MPa。また他の実態形態においてはそれぞれ、25.3 MPa。また他の実態形態においてはそれぞれ、41.2 MPa。また他の実態形態においてはそれぞれ、51MPa、56MPa以上となっている。
一つの実態形態では、室温での高融点合金の0.95*Tmに達する前の熱処理を伴う後処理をグリーン体に施した後に得られる抗析力の最小値は。0.3MPa以上である。また他の実態形態においてはそれぞれ、0.55MPa。また他の実態形態においてはそれぞれ、0.6MPa。また他の実態形態においてはそれぞれ、0.8MPa。また他の実態形態においてはそれぞれ、1.1MPa。また他の実態形態においてはそれぞれ、1.6MPa。また他の実態形態においてはそれぞれ、2.3MPa。また他の実態形態においてはそれぞれ、2.6MPa。また他の実態形態においてはそれぞれ、3.1MPa。また他の実態形態においてはそれぞれ、4.1MPa。また他の実態形態においてはそれぞれ、5.2MPa。また他の実態形態においてはそれぞれ、7.2MPa。また他の実態形態においてはそれぞれ、9.3MPa。また他の実態形態においてはそれぞれ、13.6MPa。また他の実態形態においてはそれぞれ、15.9MPa。また他の実態形態においてはそれぞれ、25.3 MPa。また他の実態形態においてはそれぞれ、41.2 MPa。また他の実態形態においてはそれぞれ、51MPa、56MPa以上となっている。
一つの実態形態におけるブラウン体とは、有機化合物の完全分解が行われる少なくとも一つの後処理工程をグリーン体に施した後に得られる中間成分のことを指す。
一つの実態形態におけるブラウン体とは、有機化合物の完全分解後で、尚且つ焼結温度に達する前のグリーン体を指す。
一つの実態形態における室温でのブラウン体の抗析力は、0.3MPa以上である。また他の実態形態においてはそれぞれ、0.55MPa。また他の実態形態においてはそれぞれ、0.6MPa。また他の実態形態においてはそれぞれ、0.8MPa。また他の実態形態においてはそれぞれ、1.1MPa。また他の実態形態においてはそれぞれ、1.6MPa。また他の実態形態においてはそれぞれ、2.3MPa。また他の実態形態においてはそれぞれ、2.6MPa。また他の実態形態においてはそれぞれ、3.1MPa。また他の実態形態においてはそれぞれ、4.1MPa。また他の実態形態においてはそれぞれ、5.2MPa。また他の実態形態においてはそれぞれ、7.2MPa。また他の実態形態においてはそれぞれ、9.3MPa。また他の実態形態においてはそれぞれ、13.6MPa。また他の実態形態においてはそれぞれ、15.9MPa。また他の実態形態においてはそれぞれ、25.3 MPa。また他の実態形態においてはそれぞれ、41.2 MPa。また他の実態形態においてはそれぞれ、51MPa、56MPa以上となっている。
他の実態形態における抗析力は、後処理工程を止めた瞬間のコンポネントの温度を測定により決まる。
一つの実態形態におけるコンポネントは、測定するためにこの温度で維持される。
他の実態形態における抗析力は、高融点合金の0.7*Tm以下のコンポネントの温度の測定により決まる。
一つの実態形態においては、粉末混合物中の金属粉末が一つのみ存在する場合、抗析力は金属粉末融点の0.7*Tm以下のコンポネントの温度の測定により決まる。
一つの実態形態においては、有機化合物の完全分解が行われる瞬間に、グリーン体に脱バインダや室温でのPMSRTのような後処理を施した後に得られる抗析力値は、0.3MPa以上である。また他の実態形態においてはそれぞれ、0.55MPa。また他の実態形態においてはそれぞれ、0.6MPa。また他の実態形態においてはそれぞれ、0.8MPa。また他の実態形態においてはそれぞれ、1.1MPa。また他の実態形態においてはそれぞれ、1.6MPa。また他の実態形態においてはそれぞれ、2.3MPa。また他の実態形態においてはそれぞれ、2.6MPa。また他の実態形態においてはそれぞれ、3.1MPa。また他の実態形態においてはそれぞれ、4.1MPa。また他の実態形態においてはそれぞれ、5.2MPa。また他の実態形態においてはそれぞれ、7.2MPa。また他の実態形態においてはそれぞれ、9.3MPa。また他の実態形態においてはそれぞれ、13.6MPa。また他の実態形態においてはそれぞれ、15.9MPa。また他の実態形態においてはそれぞれ、25.3 MPa。また他の実態形態においてはそれぞれ、41.2 MPa。また他の実態形態においてはそれぞれ、51MPa、56MPa以上となっている。
一つの実態形態のいくつかの使用、特にコンポネントに高い機械的性質が求めらる場合においては、有機化合物を少なくとも部分的に排除するための脱バインダ工程が必要である。いくつかの使用において、脱バインダ工程の間に、形状保持を助ける少なくとも一つの金属粉末を選ぶことは有益である。いくつかの用例において、少なくとも一つの金属粉末が、一部の溶解または最も高い体積分率を有する金属粉末の強い拡散のために選ばれた場合、ポリマーがある程度分解される前の形状保持は不可能である。このことを以って、広範囲の凝固作用を有する金属合金を持つことは、液相量を意図的に管理できるという意味でも、多くの使用にとって非常に有益であるといえる。液体の、高い体積分率は緻密化を助けるが、過剰な量になると、スランピングの原因となり得る。いくつかの用例では、過剰な後処理やスランピングを除いた、高い緻密化が求められる場合、空隙の形成やその他の全ての過剰な液相に関係した欠点は、液体の体積分率が6%以上である場合はあまり考慮されない。さらに、12%以上、22%以上、33%以上でも使用でき、高いほどより望ましい。反対に、凝固が重要視されない場合、また凝固が、過剰な液相のスランピングやその他の望まない影響による実現が求められる場合、18%以下の液相は望まれない。さらに、12%以下、8%以下、3%以下が使用でき、低いほどより好ましい。本発明のいくつかの実例における液相は、拡散を促すためだけに求められる。この様な場合、1体積%以上であることが望ましい。さらに、4%以上、8%以上、16%以上と、高いほどより好ましい。
一つの実態形態における液体の体積分率とは、液相を生じさせる金属相の総体積を指す。
一つの実態形態における液体の体積分率とは、金属相(金属相の和)の総体積を指す。
一つの実態形態における液体の体積分率とは、コンポネントの総体積を指す。
すべての処理の間の空気管理は、いくつかの使用にとって非常に重要である。内部間隙の酸化、さらに表面間隙の酸化は多くの場合求められないが、場合によっては、有益なこともある。不活性雰囲気または時として還元雰囲気は、酸化層を減らすまたは排除するために非常に有益である。場合によって空気は、表面の活性化に用いられる。これは、還元による場合以外に、エッチングやさらに酸化によっても行わる。一つの実態形態における脱バインダは、不活性雰囲気の中で行われる。その他の実態形態においては、還元性雰囲気の中で行われる。
一つの実態形態における脱バインダは、雰囲気制御下で行われる。一つの実態形態における脱バインダは、不活性雰囲気下で行われる。一つの実態形態における脱バインダは、還元雰囲気下で行われる。他の実態形態における脱バインダは、酸化雰囲気下で行われる。一つの実態形態における機械的強度は、脱バインダ中に金属または少なくとも部分的な金属コンポネントに用いられる。他の実態形態においては、脱バインダ中にコンポネントに圧力をかけて用いられる。一つの実態形態における使用された圧力は、等方圧である。他の実態形態における使用された圧力は、コンポネントの異なる部分に向けられる。他の実態形態における脱バインダは、真空下で行われる。他の実態形態における脱バインダは、低い圧力条件下で行われる。
一つの実態形態における脱バインダは、熱方式脱バインダである。
他の実態形態における脱バインダは、非熱方式脱バインダである。
一つの実態形態においては、AM技術、MIM、HIP、CIP、焼結鍛冶、焼結のようなポリマー成形技術や、粉末形態に適したいずれかの技術、または他のいずれかの組み合わせを用いた粉末混合物由来の形成されたグリーン体は、脱バインダを含む後処理の対象となる。一つの実態形態における脱バインダとは、有機化合物の少なくとも一部分解がある熱式脱バインダである。一つの実態形態における部分的な脱バインダは、有機化合物の完全分解が起こる熱式脱バインダである。また有機化合物の完全分解の前に、PMSRTが行われる。
一つの実態形態における少なくとも部分的な脱バインダは、熱処理中に起こる。
一つの実態形態における部分的な脱バインダは、有機化合物が完全に分解されていない間の有機化合物の分解に向けた処理を指す。
一つの実態形態における部分的な脱バインダは、熱方式脱バインダである。
他の実態形態における部分的な脱バインダは、非熱方式脱バインダである。
一つの実態形態における部分的な熱方式脱バインダは、熱処理前に行われる。
一つの実態形態における部分的な非熱方式脱バインダは、熱処理前に行われる。
一つの実態形態における部分的な非熱方式脱バインダは、熱処理前に行われ、またPMSRTはこの非熱方式脱バインダ中に起こる。
一つの実態形態においては、少なくとも部分的なPMSRTが熱方式脱バインダ中に起こると時、コンポネントは焼結や、CIP、HIPを直接受ける。
一つの実態形態においては、少なくとも部分的なPMSRTが非熱方式脱バインダの間に起こる時、コンポネントは焼結や、CIP、HIPを直接受ける。
一つの実態形態における有機化合物の完全分解は、熱方式脱バインダが起こる間に行われ、PMSRTは、熱方式脱バインダの間に起こる。
一つの実態形態における有機化合物の完全分解は、非熱方式脱バインダが起こる間に行われ、PMSRTは、熱方式脱バインダの間に起こる。
一つの実態形態における部分的な非熱方式脱バインダは、熱処理前に行われる。
一つの実態形態においては、脱バインダの間に液相が形成される。
一つの実態形態においては、脱バインダの間に低融点合金由来の液相が形成される。
一つの実態形態においては、液相の少なくとも1体積%は、脱バインダ処理の間に形成される。一つの実態形態においては、液相の少なくとも2.1体積%は、脱バインダ処理の間に形成される。一つの実態形態においては、液相の少なくとも3.8体積%は、脱バインダ処理の間に形成される。一つの実態形態においては、液相の少なくとも5.3体積%は、脱バインダ処理の間に形成される。一つの実態形態においては、液相の少なくとも8.6体積%は、脱バインダ処理の間に形成される。一つの実態形態においては、液相の少なくとも8.6体積%は、脱バインダ処理の間に形成される。一つの実態形態においては、液相の少なくとも12.9体積%は、脱バインダ処理の間に形成される。
一つの実態形態における液相の少なくとも1体積%は、熱処理の間に形成される。一つの実態形態における液相の少なくとも2.1体積%は、熱処理の間に形成される。一つの実態形態における液相の少なくとも3.8体積%は、熱処理の間に形成される。一つの実態形態における液相の少なくとも5.3体積%は、熱処理の間に形成される。一つの実態形態における液相の少なくとも8.6体積%は、熱処理の間に形成される。一つの実態形態における液相の少なくとも12.9体積%は、熱処理の間に形成される。一つの実態形態における液相の少なくとも18.4体積%は、熱処理の間に形成される。
一つの実態形態における、熱処理の間の液相の最大量は、34%以下である。他の実態形態においてはそれぞれ、27%以下、14%以下、6%である。
一つの実態形態における液相の1体積%は、焼結の間に形成される。一つの実態形態における液相の少なくとも2.1体積%は、焼結の間に形成される。一つの実態形態における液相の少なくとも3.8体積%は、焼結の間に形成される。一つの実態形態における液相の少なくとも5.3体積%は、焼結の間に形成される。一つの実態形態における液相の少なくとも8.6体積%は、焼結の間に形成される。一つの実態形態における液相の少なくとも2.9体積%は、焼結の間に形成される。一つの実態形態における液相の少なくとも18.4体積%は、焼結の間に形成される。
一つの実態形態における焼結の間の液相の最大量は、34%以下である。一つの実態形態における、27%以下である。一つの実態形態における、14%以下である。一つの実態形態における、6%以下である。
一つの実態形態における液相の少なくとも1体積%は、焼結鍛造の間に形成される。一つの実態形態における液相の少なくとも2.1体積%は、焼結鍛造の間に形成される。一つの実態形態における液相の少なくとも3.8体積%は、焼結鍛造の間に形成される。一つの実態形態における液相の少なくとも5.3体積%は、焼結鍛造の間に形成される。一つの実態形態における液相の少なくとも8.6体積%は、焼結鍛造の間に形成される。一つの実態形態における液相の少なくとも12.9体積%は、焼結鍛造の間に形成される。一つの実態形態における液相の少なくとも18.4体積%は、焼結鍛造の間に形成される。
一つの実態形態における焼結鍛造の間の液相の最大量は、34%以下である。一つの実態形態における、27%以下である。一つの実態形態における、14%以下である。一つの実態形態における、6%以下である。
一つの実態形態における液相の1体積%は、HIPの間に形成される。一つの実態形態における液相の2.1体積%は、HIPの間に形成される。一つの実態形態における液相の3.8体積%は、HIPの間に形成される。一つの実態形態における液相の5.3体積%は、HIPの間に形成される。一つの実態形態における液相の8.6体積%は、HIPの間に形成される。一つの実態形態における液相の8.6体積%は、HIPの間に形成される。一つの実態形態における液相の12.9体積%は、HIPの間に形成される。一つの実態形態における液相の18.4体積%は、HIPの間に形成される。
一つの実態形態における後処理の間の液相のコントロールは、金属相の間の少なくとも一つの要素の拡散のコントロールを可能にする。
一つの実態形態における高融点合金由来の少なくとも一つの要素は、後処理の間、少なくとも一つの低融点合金の中に拡散する。
一つの実態形態における低融点合金由来の少なくとも一つの要素は、後処理の間、少なくとも一つの高融点合金の中に拡散する。
一つの実態形態における後処理の間の液相のコントロールは、金属または少なくとも部分的な金属コンポネントの均一性のコントロールを可能にする。
一つの実態形態における後処理の間の液相のコントロールは、低い凝離を有する金属または少なくとも部分的な金属コンポネントの取得を可能にする。
一つの実態形態における後処理の間の液相のコントロールは、コンポネントの異なる域の凝離を有する金属または部分的な金属コンポネントを得ることを可能にする。
一つの実態形態における後処理の間の液相のコントロールは、金属または少なくとも部分的な金属コンポネントの緻密化のコントロールを可能にする。
一つの実態形態における液相のコントロールは、後処理の間の金属または少なくとも部分的な金属コンポネントの緻密化のコントロールを可能にする。
一つの実態形態における液相のコントロールは、後処理の間の金属または少なくとも部分的な金属コンポネントのスランピングを防ぐことを可能にする。
一つの実態形態における液相のコントロールは、後処理の間の金属または少なくとも部分的な金属コンポネントの空洞形成のコントロールを可能にする。
一つの実態形態における液相のコントロールは、後処理の間の金属または少なくとも部分的な金属コンポネントへの必要以上な後処理を防ぐことを可能にする。
一つの実態形態において、粉末混合物にとっての形成された液相は拡散モデルとして定義される。処理の温度と時間は、処理の間の求められた液相により定義される。
一つの実態形態におけるコンピュータ支援設計(CAD)は、プロセスのモデル化とシミュレーションに用いられる。一つの実態形態におけるCADは、後処理の間に求められる温度、時間、液相などを選択するために用いられる。
一つの実態形態においては、脱バインダの間に低融点合金は、最も高い体積分率を有する金属粉末の中にいくらかな量、または激しく拡散する。一つの実態形態においては、脱バインダの間に液相は、ポリマーが完全分解する前の粉末混合物中の少なくとも部分的な低融点合金から形成される。
さらに発明者は、液体が固体粒子を取り囲み方にはいくつかの性質にかなり影響があるとみている。さらに液体浸透が求められるいくつかの使用にとっては、110°未満(さらには40°未満、20°未満、5°未満と小さいほどより好ましい)。二面角が保証される。さらに、融点の上昇と関係のある少なくとも一つの高融点金属合金を含む低融点金属粉末の拡散を有することは、いくつかの使用にとっては非常に興味深いことである。このようにすれば、液相が過剰になることなく、すべての拡散が完了する前に形状保持が約束される。これらの場合の、望ましい融点の上昇は、60℃以上である。さらには、110℃以上、260℃以上、380℃以上と、高いほどより好ましい。一つの実態形態における温度の上昇とは、少なくとも一つの低融点合金の融点の上昇を指す。このように、工程ごとの液相の最大量が管理できる。いくつかの用例における最大量は、34%以下に留まる。さらに他の用例ではそれぞれ、27%以下、14%以下、6%以下と、数値が低いほどより好ましい。いくつかの使用においては、液相のドロドロした性質が求められる。そうした場合、広い溶解範囲を有するために、適切な合金を選ぶことが重要である(本資料における溶解範囲とは、平衡条件下で、合金の最後の液滴が凝固する時の温度と、同じ条件下で、初めの液体が形成される時の温度の差を指す)。ドロドロした状態が求められる場合の溶解範囲は、65℃以上、さらに110℃以上、または260℃以上と、高いほどより好ましく、420℃以上の溶解範囲が求められる場合もある。非常に需要の高いいくつかの使用においてもまた、製品の機械的性質(電気性及び熱性)に多くの妥協が生じることも重要な点である。この様な場合、合金が求められた性質を有するために、異なる金属粉末の精選は互換性を考慮して行う必要がある。こうした場合の例えとしては、いくつかのハイエンド使用(特に均一性が高く評価される場合)には、金属粉末が高温下でお互いに拡散し合い、拡散後の合金が適切な機械的性質を持つことがよい。この場合その使用には、個々の要素の、二つの異なる制御域を分析した時の変動が18%以下であることが望ましい。さらに14%以下、8%以下、4%以下と、数値が低いほどより望ましい。この場合、少ない制御域は、少ないミクロ偏析を意味し、賢明なミクロ偏析には、8000sqμm以下の制御域を用いることが望ましい。さらに、800sqμm以下、80sqμm以下、8sq.μm以下と、少ないほどより望ましい。靭性、破壊靭性、延性、幅広い意味での靭性のいずれかの性質は、かなりの量の特定の合金化要素の存在に影響されやすい。また低融点を有する要素または他の要素を有する低融点焼結を促す要素は、いくつかの最も関連のある高融点合金(Ti、Fe、Ni、Co、Mo、Wなどの基合金)、または低融点合金(Cu、Al、Mg、Li、Sn、Znなどの基合金)にとっては正確には汚染物質である。このように、適切な低融点合金の選択は、ささいなことではない。
一つの実態形態における液相と、最も高い体積分率を有する金属粉末の粒子の間の上反角は、110°以下である。他の実態形態においてはそれぞれ、40°以下、20°以下、5°以下とされる。
一つの実態形態では、液相と、高融点合金の粒子の間の上反角は、110°以下である。他の実態形態においてはそれぞれ、40°以下、5°以下とされる。
一つの実態形態において、脱バインダの間の少なくとも一つの低融点合金の融点の増加は、60℃以上である。他の実態形態においてはそれぞれ、110℃以上、380℃以上とされる。
一つの実態形態において、脱バインダの間の液相の最大量は、34%以下である。他の実態形態においてはそれぞれ、27%以下、14%以下、6%以下とされる。
一つの実態形態において、低融点合金の溶解範囲は65℃以上である。他の実態形態においてはそれぞれ、110℃以上、260℃以上、420℃以上とされる。
一つの実態形態において、脱バインダの間、金属粉末由来の少なくとも一つの要素の間で間で拡散が起きる。一つの実態形態おいて、脱バインダの間、低融点合金から高融点合金へ、少なくとも一つの要素の拡散が起きる。一つの実態形態において、脱バインダの間、高融点合金から低融点合金へ、少なくとも一つの要素の拡散が起きる。
一つの実態形態おいては、金属粉末の間で拡散が起こると、コンポネントの中で低い偏析が生じる。
一つの実態形態における低い偏析とは、二つの異なる制御域が分析され、かつ個々の要素の中に18%以下の変動がある場合を指す。他の実態形態においてはそれぞれ、14%以下、8%以下、4%以下とされる。
一つの実態形態においては対照的に、偏析のあるコンポネントが好まれる。他の実態形態においては、コンポネントの異なる域に偏析を有することが好まれる。こうしてコンポネントに偏析を有する域と偏析のない域ができる。一つの実態形態においては、偏析を有するコンポネントが得られる。一つの実態形態においては、異なる域の偏析を有するコンポネントが得られる。
一つの実態形態における偏析とは、特定の要素に18%以上の変動があり、二つの異なる管理された域が分析されることをいう。他の実態形態においてはそれぞれ、24%以上、30%以上、34%以上とされる。
一つの実態形態おける分析した制御域は、8000sq μm以下でる。他の実態形態においてはそれぞれ、800sq.μm以下、80sq.μm以下、8sq.μm以下とされる。
一つの実態形態おける偏析は、8000sq.μm未満の制御域中の18%以上の変動を指す。
また本発明において熱方式脱バインダはしばしば優先され、触媒、ウィッキング、乾燥、超臨界抽出、有機性溶媒抽出、水性溶媒抽出、フリーズドライをはじめとする、他の脱バインダシステムや、複合システムなども用いられる。熱分解を組み入れない液相および脱バインダ方式を用いる場合によっては、脱バインダ前または脱バインダの間(多くの脱バインダプロセスは室温よりも高い温度で行うことができるため)に記録しやすい、特に低融点を有する金属相を用いることは非常によい。この様な場合、金属相の融点が190℃以下であれば高く評価される。さらに130℃以下、90℃以下、45℃以下と、低いほどより好ましい。
一つの実態形態における脱バインダは、非熱方式脱バインダである。一つの実態形態における非熱方式脱バインダは、触媒、ウィッキング、乾燥、超臨界抽出、有機性溶媒抽出、水性溶媒抽出または、フリーズドライ脱バインダ方式などから選ばれる。
一つの実態形態において、有機混合物の完全なまたは少なくとも部分的な排除が、非熱方式脱バインダを通して行われる場合、金属または少なくとも部分的な金属コンポネントの製造に用いられる粉末混合物は、190℃以下の融点を有する低融点合金を含む。他の実態形態においてはそれぞれ、130℃以下、90℃以下、45℃以下となっている。
一つの実態形態おける拡散を助長する熱処理は、非熱方式脱バインダの前後や最中に起こり、金属相(PMSRT)を通して、形状保持を可能にする。一つの実態形態におけるこの熱処理は、有機化合物を少なくとも排除するために、必要とされる温度以下で行われる。一つの実態形態におけるこの非熱方式脱バインダの前後や最中に起こる拡散を助長する熱処理は、0.3*Tm以上の温度下で行われる。さらに他の実態形態ではそれぞれ、0.5*Tm以上、0.7*Tm以上となっている。ここでのTmとは、190℃以下の融点を有する粉末混合物中に含まれた低融点合金の融点を指す。さらに他の実態形態ではそれぞれ130℃以下。さらに他の実態形態ではそれぞれ90℃以下。さらに他の実態形態ではそれぞれ45℃以下。
一つの実態形態における本発明の方法は、有機化合物の完全分解前の金属相を通して起こる形状保持に特徴づけられる。他の実態形態における本発明の方法は、脱バインダ中の有機化合物から金属相への形状保持の変化に特徴づけられる。一つの実態形態におけるコンポネントの形状は、脱バインダ後の金属相により保持される。他の実態形態における本発明の方法は、一部の脱バインダ中の有機化合物から金属相への形状保持の変化に特徴づけられる。一つの実態形態におけるコンポネントの形状は、一部の脱バインダ後の金属相により保持される。
一つの実態形態における一部の脱バインダとは、90%以下の有機化合物が分解される後処理を指す。さらに他の実態形態においてはそれぞれ、78%以下、64%以下、52%以下となっている。
ある場合では、金属コンポネントの拡散前に失われる有機化合物の形状保持が保証される場合の組み合わせを有することが許される。この場合、中間の形状を維持する代わりのシステムが用いられる必要がある。これらのシステムは、有機化合物の分解前の製品の上に砂またはその他の粒子床を敷き、金属微粒子による形状保持が保証(いずれの拡散範囲、形状保持から完全な拡散まで)この砂や床を取り除くというだけのものである。これらの代案は、特にコストの問題が生じる高速なAMシステムを用いる場合(本資料に記述されたDLPや感光性樹脂の連続的なプリンティングシステム、投影法、インクジェッティングなどのシステム)によい。
一つの実態形態における本発明には、後処理の間、形状を維持するシステムが用いられる。一つの実態形態における本発明の方法には、後処理の間に、コンポネントの形状を保持する有機化合物の分解が起こる前に、形状を維持するシステムが用いられる。一つの実態形態における形状を保持するシステムは、コンポネントの上に砂または他の粒子床を敷くことで成る。
この手順は、このような性能を要する本発明の実施において、拡散エンハンサーまた形状保持ヘルパーとしての働きをする合金の選択を可能にする。すべての使用可能な合金の中から一つの合金を選択することは、下記のような様々な基準を遂行できる。全工程の間の液相量の管理、主要な金属粒子による容易な拡散、製造コスト、環境性、容易な操作性、拡散終了後の最終機械特性、最終熱特性、最終的な電気特性、最終的な磁気特性など。
一つの実態形態における、AM技術、MIM、HIP、CIP、焼結鍛冶、焼結、その他の粉末成形に適した技術、またはこれらの組み合わせによる技術を用いた、必要に応じて有機化合物を含む粉末混合物の成形による、金属または少なくとも部分的な金属コンポネントの製造のための粉末混合物に用いられた低融点合金の構成は、液相量、異なる金属粉末由来の少なくとも一つの要素間の拡散、最終コンポネントに求められた最終機械特性、最終化学特性、最終物理特性を基準に選ばれる。
一つの実態形態における低融点合金は、液相の少なくととも1%を形成するために選ばれる。他の実態形態においてはそれぞれ、少なくとも3%、少なくとも5%、さらに少なくとも10%の液相が、有機化合物が完全に分解される前に形成される。
一つの実態形態における液相体積は、測定される。
液体から主要な金属構成物への拡散または集結、または主要な金属構成物から液体への拡散または集結は、適切な合金システムが選択された場合拡散処理に関連した劣性変化の管理に特徴づけられる(緻密化による合金の反作用収縮を通じた膨張)。
一つの実態形態における液相は、コンポネントの劣性変化の管理のために用いられる。
少なくとも一つの金属構成物の中に液相が形成される場合、この液体による他の金属相のぬれ性に依拠して、高圧的な毛管性の力が生じ、緻密化が進む。いくつかの、高い見かけ密度を要する使用において、主要な金属相に高いぬれ性を有することは有益である。この場合、80°未満のぬれ角が望ましい。さらに、48°未満、34°未満、18°未満と、小さいほどより好ましい。また、本資料では広義に、主要な粉末が水溶性の場合、液相量の管理は常に利用される。
一つの実態形態において、高いタップ密度のコンポネントにするために、液相と金属相の間の濡れ角を大きくすることは有益である。一つの実態形態におけるフラックスは、粉末混合物の水和性を高めるために用いられることもある。化学物質を含むこのフラックスは、プロセスの前またはプロセスの間の水和性を高めるため、固体状または液状の形で粉末混合物に加えらる。これは、コンポネントの後処理に液相がある間を意味する。特定の実態形態におけるフラックスは、金属粉末に混ぜるか、または別の層と同様に用いる。ぬれ性を高めるために、フラックスの様々な効果を用いることができる。いくつかの実態形態におけるフラックスは、硫黄やリンなどのような金属およびその他の汚染物質の酸化物と反応することで、溶解中のクリーニング作用を実現する。いくつかの実態形態におけるフラックスは、空気からの遮蔽材のような働きをする。他の実態形態におけるフラックス材は、あらゆる加熱を伴うプロセスの間の温度管理をより良くする。その他のいくつかの実態形態におけるフラックスは、プロセスの間に揮発した要素の失われた分を補うか、他の要素を助成する。上述したすべてのプロセスは、固液界面張力表面エネルギーに影響し、その結果プロセスの間のぬれ性に助力する。一つの実態形態におけるフラックスは、非有機性、有機性およびロジンフラックスである。一つの実態形態における非有機性フラックスは、無機酸および塩酸、フッ化水素酸、亜錫酸、ナトリウムまたはフッ化カリウム、および塩化亜鉛などの塩類で構成される。一つの実態形態における有機フラックスとは、活性剤としてのハロゲン化合物を用いた、または用いられてない有機酸である。一つの実態形態におけるロジンフラックスとは、有機酸(樹脂酸、主にアビエチン酸、ピマール酸、イソピマール酸、ネオアビエチン酸、ジヒドロアビエチン酸、デヒドロアビエチン酸)の混合物から作られたガラス状固体である。
一つの実態形態におけるフラックスは、後処理の間のぬれ性を助成するために、コンポネントの成形中に粉末混合物に加えられるか、または別の層として用いられる。
一つの実態形態におけるフラックスは、コンポネントの成形の後処理中の、低融点金属合金と高融点金属合金の金属粒子から液相の間のぬれ角が80°未満になるように粉末混合物に別の層として加えられる。その他の実態形態においてはそれぞれ、48°未満、34°未満、18°未満となっている。
一つの実態形態におけるフラックスは、液相と金属粒子の間に80°以下のぬれ角を有するため、粉末混合物に加えられる。他の実態形態においてはそれぞれ、48°以下、34°以下、18°以下となっている。
一つの実態形態においては、少なくとも0.1重量%のフラックスが、コンポネントの成形の間に粉末混合物に加えられる。
一つの実態形態においては、少なくとも1.2重量%のフラックスが、コンポネントの成形の間に粉末混合物に加えられる。
一つの実態形態においては、少なくとも1.7重量%のフラックスが、コンポネントの成形の間に粉末混合物に加えられる。
一つの実態形態における本発明は、80°以下のぬれ角を有するために粉末混合物にフラックスが加えらることに特徴づけられた、他の実態形態においてはそれぞれ、48°以下、34°以下、18°以下となっている。異なる融点を有する少なくとも二つの金属粉末、または必要に応じて有機化合物を含む粉末混合物を用いた金属または少なくとも部分的な金属コンポネントを製造する方法を示す。一つの実態形態におけるこれらの主要な構成要素は、高融点合金である。
発明者は、原料内のその他の主要な金属粒子の緻密構造のある特定の位置を、液相を生じさせる合金が埋める時に、性質の均一性、およびミクロ偏析の不足に予定外の有益な効果を観察することができた。さらにこれらは、八面体または四面体間隙を完全に埋めているか、または少なくとも1/2、1/3、または1/4の丸い部分の近くを埋めている場合に有益な効果を示す。丸い部分の近くとは、+/-10%以下の差と理解する。さらに+/-8%以下、+/-4%以下、+/-2%以下と、少ないほどより好ましい。
一つの実態形態においては、コンポネントの特定の域のミクロ偏析は、最密充填には程遠い充填が求められるこれらの使用に有益である。
一つの実態形態における液相を生じさせる金属粉末合金は、主要な粒子の間の四面体または八面体の空隙を埋めている。一つの実態形態における主要な粉末とは、高融点合金である。その他の実態形態における液相を生じさせる金属粉末とは、低融点合金である。
主な金属構成物の液体への結合や拡散、または液体の主な混合物への結合や拡散は、合金の正確な選択がされた際(緻密化に伴う収縮を妨げる合金によるに膨張)、拡散処理と関連した寸法変化の管理に特徴づけられる。
発明者は、ほとんどの機械特性は、原料内の金属構成物の高い体積分率により利益を得るとみているが、原料が粘着性を改善するために作られ、原料内の金属構成物の過剰な体積分率により悪影響を受けるいくつかの使用によっては逆の効果をもたらす。同じように、いくつかのAM技術は、有機化合物の成形技術のために最低限の機能が求められる場合は、少ない量の原料であるほど実行しやすい。機械的性質または密度などが最優先される場合、非有機構成物は少なくとも42%の体積分率を有する事が望ましい。さらに、56%以上、68%以上、76%以上と、高いほどより望ましい。もしも非有機チャージおよびセラミック補強材が考慮されない場合、原料中の金属構成物の体積分率は少なくとも36%であることが望ましい。さらに、52%以上、62%以上、75%以上と、高いほどより望ましい。さらに、金属構成物の中の高融点金属構成物の量は、いくつかの使用にかなり重要である。多過ぎる場合、凝固が困難になり、少な過ぎる場合、過剰な変形などを引き起こす。こうした意味で、すべての金属構成物の32%以上の高融点金属構成物の体積分率が、長い拡散作用が許容される使用において好ましい。さらに、52%以上、72%以上、92%以上と、高いほどより好ましい。また反対に、すべての金属構成物の94%以下の高融点金属構成物の体積分率が、経済的理由から、より早い凝固が考慮される使用において望ましいとされる。さらに、88%以下、77%以下、68%以下と、低いほどより望ましい。
一つの実態形態において、少なくとも粉状の低融点合金または粉状の高融点合金、さらに必要に応じて有機化合物で構成される粉末混合物の場合、一つの実態形態における高融点金属粉末の体積分率は、金属相(粉末混合物の全金属構成物の和)に対して52%以上である。さらに他の実態形態においてはそれぞれ、72%以上、92%以上となっている。
チタン基合金の場合の例えとしては、低融点を有するほとんどの合金(ビスマス、カドミウム、鉛など)は、報告によれば脆化を引き起こす。合金元素である鉛は、良い候補である。残念ながら、よく使用されるグレード5のチタン合金は、合金元素の鉛を有さない。この場合、著書は、性質に有害な影響を及ぼさずに、一部の%Alを%Gaで代用できるとみている。さらにいくつかの場合においては、わずかな改良さえみられることもある。この事は図1に示されているように、重量中20%から99.2%の間の%Gaを有するGaAl合金が、30℃辺り(本資料において融点と呼ばれる)から、実際の構成物によっては600℃を超えるほどまでの相当高い温度までの広い溶解範囲を示すゆえに、かなり都合がいい。30℃で初めの液体が現れるような使用では、低すぎる。ガリウムの重量%は、融点を急激に上げる(あるいは、GaAl合金と第三要素または他の要素との合金化は目的のレベルの融点を得るために用いることができる)。その上、これらの合金へのチタンの拡散は、融点の上昇を引き起こし、さらに適切な測定が行われる場合には、かなり急激な上昇を引き起こす。これは、形状保持を危ぶむことなく、求めた焼結または熱間等方圧加工法求めた温度までの温度の上昇を可能にする。その後、焼結、熱間等方圧加工、またはその他の高温(しばしば0.36*Tm以上、0.52*Tm以上、0.62*Tm以上、0.82*Tm以上と高いほどより好ましい)を伴うプロセスの間に、緻密化だけでなく、拡散による固体状の合金化が起こる。使用された粉末の粒子が小さいほど、拡散は早く完了する。非同質性が一定のレベルで認められるため、いくつかの使用においては、そこまで高いレベルの完璧さは必要ではなく、後述にある報告によれば、一定の場合においては、有益でさえある。このような非同質性は、汚濁物のような特異なものを数えないようにしつつ、特定の要素の濃度の差を評価する。組成上のマッピングは、EDXや類似の方法によって作成することができ、重要な分離を見つけることができる。コンポネントの見かけ総面積が測定された場合の面積の割合と比較して十分に高い濃度である場合も、低い濃度である場合でも重要性は変わらない。また、この面積が、カーバイトや中間金属の発生を防ぐために十分大きい(等価直径の観点から)こともまた重要である。こうした意味で、面積は、少なくとも1%の破断面を有する場合、十分な大きさを持つことが考慮される。さらに、少なくとも2.2%、4.2%、6%と、大きいほどより好ましい。等価直径(同じ総面積を有する球体の直径)の観点からとは、しばしば、16cm3以上が好ましい。さらに42cm3以上、62cm3以上、115cm3以上と、大きいほどより好ましい。さらに少なくとも一つの関連要素との重要な差は、3重量%の範囲内である。さらに、6重量%、22重量%、54重量%と、大きいほどより好ましい。これらの差は、二つの内容物の間の相対的な差と関係しており、大きな値を小さな値の割る(%)。
この、造形物に最高密度を要する初期条件および工程は、かなり厳しくさらに高コストである。造形物にいくらかの多孔性が許容される場合は、柔軟性、さらにコスタダウンの可能性は、はるかに高い。また、多孔性がより無作為であるほど、柔軟性が上がる。残念ながら、靭性に関する機械的性質(破砕強度、弾性、破砕の際の伸度など)および熱性質、電気的性質などは、多孔性を示す場合に崩壊する傾向がある。多くの使用において、機械特性にとって水滴はかなり危機的なものである。発明者は、この影響の軽減、さらに多孔性体積分率と欠点とは程遠い機械特性に関する強度の欠如の間の修正を行ういくつかの方法について考慮している。これらのアプローチは、特性の欠如の差異が最も高い場合の低い多孔性体積分率にとって、特段有利である。これら二つの働きかけは、空隙周囲の物質の破砕強度の管理、または、塑性変形や、より圧縮力を与えつつ亀裂先端の応力場を変えることにより、核心部に有り得る亀裂を避ける物質を用いることで構成される。こうした理由から発明者は、いくつかの使用には、23MPa*m1/2以上の総体的な破砕強度を有することが望ましいとみている。さらに、44MPa*m1/2以上、72MPa*m1/2以上、122MPa*m1/2以上と、高いほどより好ましい。いくつかの場合において管理が必要となるのは、総体的な破砕強度ではなく、多孔性(多孔性のある共用表面のすべての段階のうち多孔性の共用表面の最大量を有する一つの段階)を避けた主要段階の破砕強度である。これらの場合、26MPa*m1/2以上の多孔性周囲の主要段階の破砕強度を有することがしばしば望ましい。さらに51MPa*m1/2以上、105MPa*m1/2以上、152MPa*m1/2以上と、高いほどより望ましい。空隙率から起因する核心部の潜在的な裂け目を防ごうとする場合、低い降伏強度や空隙周囲または少なくとも空隙の危機的な面(球状ではない場合、三点、ストレスコンセントレーターのように働くその他のいずれかの特性)の高い伸張相を手に入れることで実現化できる。こうして、いくつかの使用にとって、空隙周囲に780Mpa以下の降伏応力の相を有することが求められる。さらに、480MPa以下、280MPa以下、85MPa以下と、少ないほどより好ましい。これらの実施には、時に不利益ともなる、物質の中のかなり目立った均一性を伴う。これらの影響は、八面体または四面体サイトにおける形状保持には影響を及ばさずある程度の拡散も終えることができ、かつこの降伏応力のままで合金は拡散を止めることのできる程度の、低い降伏応力を有した物質を用意することで得られる。このような場合、上部に高いぬれ性を持つプロセスの間に液相を現すこうした降伏応力を有することは、空隙周囲の合金の分布を促す。空隙の形状自体も、プロセスに液金属相がある場合のぬれ角によって影響を受ける。さらに、前述の通り、いくつかの場合において、亀裂が発生する前にストレスフィールドをできるだけ圧縮することに向けた策に沿うことが可能である。この策を実施する方法としては、相の変形を引き起こす応力を有する空隙周囲の相を持つことが挙げられる。これは相の変形に体積膨張が引き起こされた場合に好都合である。緻密構造からそうでない構造に進む場合などに都合がいい (例えば、オーステナイトからマルテンサイト)。この策の例として、マルテンサイトまたはベンナイト構造が、室温で認められる炭素を含む鉄基合金がある。さらにここでは、物質が高いマンガン内容物を八面体または四面体に持たそうとする。もしも拡散が未完了で、エリアの空隙周囲に高い%Mnが残っている場合、適切なストレスフィールドがこれらにアプローチする場合、マルテンサイトやベンナイトの変形力を有するオーステナイトが残りやすくする。もしもストレスフィールドがクラックチップの場合、このストレスフィールドは、関連した体積の変化により変形により影響される。
破砕強度とは、亀裂、間隙、治金含有、結合欠陥、裂け目のあるデザインまたはいずれかの組み合わせの原因となる既存のひびを増やすことを必要とする応力度の示度である。パラメーターと呼ばれる応力度因子であるKは、破壊強度を定義するために用いられる。破壊強度Kicとは、ASTM E399を基に測定でき、単軸性荷重下における破局故障を発生させるために必要な亀裂端部の応力強度の臨界値である。この検査方法は、圧力または三点曲げ実験を受けた疲労状態の予め裂け目のある試料の検査を伴う。
一つの実態形態における金属または少なくとも一部の金属コンポネントは、23MPa*m1/2以上の破壊靭性を持つ。さらに他の実態形態においてはそれぞれ、44MPa*m1/2以上、72PMa*m1/2以上、122PMa*m1/2以上となっている。
発明者は、前述にある場合やその他の多くの場合において、過剰な液相を防ぐために低融点相が融点を上昇させようとする働きについて考察する。これにより、相の状態図をとおして融点の上昇を確認できる。融点の完全な上昇を起こす要素の比率も確認できる。形状保持が保証されるいくつかの使用のために融点を上げることも確認できる。粒子合金システムに依拠して、120℃以上の上昇が求められる。さらに220℃以上、440℃以上、640℃以上と、高いほどより求められる。いくつかのシステムにとって、より低い値も認められる。低融点合金内の完全溶解した要素の比率は、いくつかの使用にとって、2%以上であることが望ましい。さらに、4%以上、12%以上、22%以上と、高いほどより望ましい。上記の例でこれはGaAl合金中の%Tiとされる。
一つの実態形態おいては、高融点合金と低融点合金の間に拡散が起こる。
一つの実態形態における異なる金属粉末の間の少なくとも一つの要素の拡散は、固形/固形、または固形/液体拡散である。
一つの実態形態おいては、少なくとも一つの要素の2%以上が溶けた状態で高融点合金から低融点合金に侵入する。他の実態形態においてはそれぞれ、4%以上、12%以上、22%以上となっている。
%Gaが使用される場合、コンポネントの中に平均値として存在する最終的な重量比は、(非同質性が避けがたい、受け入れられる、または望まれる様々な使用例があるゆえに)使用法によって異なる。いくつかの使用において、特に主要な金属要素が高融点(900℃以上)を有する場合、この要素は重量中の1%以上であることが望ましい。さらにその他の使用においてはそれぞれ、2%以上、6%以上、12%以上と、多いほどより望ましい。その他の場合においては、特に主要な金属要素が低融点を有する場合、この要素は重量中の2%以上であることが望ましい。さらにその他の使用においてはそれぞれ、4%以上、8%以上、24%以上と、多いほどより望ましい。
一つの実態形態においては、低融点合金がガリウムを含む場合、最終的な金属または少なくとも一部の金属コンポネントのガリウムの重量比は1%以上である。その他の実態形態においてはそれぞれ、2%以上、6%以上、12%以上となっている。その他の実態形態においては、最終的な金属または少なくとも一部の金属コンポネントのガリウムの重量比は、2%以上である。その他の実態形態においてはそれぞれ、4%以上、8%以上、24%以上となっている。
本発明におけるいくつかの実例の特有の利点は、製造された部品の空隙率や粗度の管理が、原料内の金属構成物の体積分率、脱バインダと高度な拡散処理の間の液相量、あらゆる段階においての拡散処理を中断する選択が可能なことである。これは、相互接続された空隙率が求められる使用には特に都合がいい。例えば、液体は通さず、ガスのみを通す薄膜、フィルター、選択蓋、ツールなど。言うまでもなく、液体の侵入がある場合、相互接続された空隙率の管理は非常に都合がいい。また表面粗さの管理は、特定の摩擦係数を要する使用や、またある種の塗装または塗料が独自の基準点を有するための使用、表面に潤滑剤の貯蓄を要する使用、または動圧潤滑を好む表面粗さなどにとっても有益である。実際、選択蓋やツールの場合、ガスの通り抜けは可能だがポリマーや他の特記に値する液体は通り抜けられない。こうした使用に対する解決法ができてから、多くの場合、従来の機械技術では表面空隙を塞ぐ傾向があり、複雑な形状が実現困難だった使用に適応された。原料内の体積分率や後処理中の拡散量の管理による本発明の方法を用いれば、管理された空隙率は、高い適応性を有した形状を実現する。ガスのみを逃がす必要のある使用における相互接続された空隙率は、しばしば4重量%以上である。他の使用においてはそれぞれ、8重量%以上、12重量%以上、17重量%以上とされ、高いほどより好ましい。金属浸透の場合、相互接続された空隙率の高い体積分率が使用され、通常は32重量%以上である。その他の場合にはそれぞれ、46重量%以上、56重量%以上、66重量%以上で、高いほどより好ましい。この相互接続された空隙率、または少なくとも大半のそれが、金属浸透の間に、液体メタルにより塞がれる。
一つの実態形態における空隙率とは、通常はパーセンテージで記される、所定の多孔物質の間隙の総体積と多孔物質の総体積の比率である(ATSM)。
一つの実態形態におけるコンポネントは、後処理の間に金属とともに浸透する。
一つの実態形態における相互接続した空隙率は、粉末混合物中の金属構成物の体積分率の選択により管理される。一つの実態形態における相互接続した空隙率は、脱バインダ中の液相量の管理によりコントロールされる。一つの実態形態における相互接続した空隙率は、後処理の間に行われた拡散処理により管理される。
一つの実態形態における金属または少なくとも一部の金属コンポネントの相互接続した空隙率は、4重量%以上である。その他の実態形態においてはそれぞれ、8重量%以上、12重量%以上、17重量%以上である。その他の実態形態においては、金属浸透があった場合の金属または少なくとも一部の金属コンポネントの相互接続された空隙率は、32重量%以上である。その他の実態形態においてはそれぞれ、46重量%以上、56重量%以上、66重量%以上である。
発明者は現行の方法において、先述した経済における利点の他に、AMを通したいくつかの事例において金属コンポネントの大量製造に関連した、二つの重要な技術的問題の解決策を持つとみている。金属造形物の製造のためのAM方法は、以下の点を明確にする目的のために二つのグループに分けることができる。一つは、金属の直接的な溶解や焼結を基にした、AM後の焼結工程を特に必要としない場合の方法、もう一つは、接着剤による脱バインダを基にした、AM後の焼結工程を特に必要としない場合の方法である。前者に属したシステムは、複雑で大形の形状の製造を試む際にしばしばラッピングに至る、未処理の粉末およびすでに一部製造後のコンポネントに関した温度勾配による溶解帯温度の急激な上昇または低下に伴う熱応力を生じさせる問題を有する傾向にある。インクジェッティングまたは他の、金属粉末と有機バインダや接着剤の一時的な結合方法は、MIM技術と同じように同じ欠点に悩まされる。さらにまた、小さな部品に限定されたり、形状保持を保証するために砂床の中に複雑な方法で焼結される必要があるため、決まった大形かつ複雑な形状にはしばしば実行不可能で、非常に高価な方法となってしまう。
いくつかの利用において、特に求められる高精度さが過剰でない場合、発明者は、望まれた形状を築くために粉末噴射システムを用いることを強く勧めている。この場合、粉末を造形したい箇所に噴射する。そして衝撃による粒子の塑性変形を通じて、製造部品の本体の成形が行われる。この段階における結合力は、瞬間的な衝撃に強く左右されるため、に噴射スピードは、衝撃の瞬間に温度(噴射前に予熱を行う、熱風と共に噴射するなど、強い結合要素を要する表面への微粒子の小さな結合力の使用から成るその他の解決策など)を上昇させることができる噴射された粒子の変形性同様、かなり重要な要素である。こうした場合の一例として、運動エネルギー噴射の使用や、粉末の極性化および電気性結合による生成表面への固着、その後狙った域へのより強い結合を伴う粉末の硬化(化学物質、UVなど)、さらに圧縮空気による、強く結合されなかった粉末の除去、急に製造された部品の極性変化など。緻密な金属性グリーン体を要するいくつかの使用においては、二次硬化または二次接合を行う前の粉末の配置決めの間、かなりの可塑化を有することがよい。
ポリマーを用いるほとんどのAMプロセスの欠点が、経済面にある場合、これは達成可能な最大の堆積スピードや使用可能なポリマーに限界を生じさせる製造された部品の高い機械特性への需要に関する。本発明における多くの実例では、ポリマーは主に形状保持の役割のみを持つ。従ってかなり少ない機械特性も許容され、より早い堆積システムを可能にする。またいくつかのシステムには、ポリマーの乏しい熱伝導率が要因となり制限が生じるために、熱管理が厳しい。なお本発明における微粒子は、その高い金属内容物により、通常かなり高い熱伝導率を持つ。
発明者は、拡散工程後の派生合金には有害な脆化は伴わないと結論付いたと報告された本発明のいくつかの使用は、有益な使用であるとみている。派生合金に有害な脆化が伴うか否かの判断基準は、本資料の以下にある。
融点を引き下げる要素を含まない合金を選ぶ。最終呼び派生合金(その構成は実験的に測定されるか、模擬される)が選ばれる。いくつかの使用においては、非常に同質的な構成である必要はない。こうした場合、理論上の、または実験的に測定された平均値の呼び構成が選ばれる。
これら呼び合金は、派生合金と同じミクロ構造をしている。従って、製品に何が起こるかを模擬するために、いずれかの熱処理を用いる必要がある場合、模擬することは可能である。
呼び合金のサンプルは、ASTM E399に基づいて破砕強度を測定するために準備される。また機械的強度や伸度はEN ISO6892-1 B:2010に基づいて測定され、弾性はEN ISO148-1に基づいて測定される。
呼び構成物は、ドーピング元素を取り除かれている(ドーピング元素とは低融点を持つ、または低融点で共晶を形成する傾向がある。ビスマス、カドミウム、ガリウム、鉛、錫など)。
文献調査は、もっとも近い構成と熱処理を見つける執り行いである(機械強度の10%の変動以内の全ての合金[いずれにせよ熱処理は受ける必要があり、最大伸度を実現するためにできれば一つ以上の熱処理を選択する]、もしもドーピング元素を取り除かれた要素以外ない場合のみ、呼び構成に関して15%以上の変動を有する合金が考慮される。またすべての要素の変動を合わせた時、40%を超えないようにする)これらは、コンパラブル合金と呼ばれる。
サンプルはASTM E399に基づいて、破壊靭性を測定するためにコンパラブル合金から用意される。機械強度または伸度は、EN ISO 6892-1 B:2010に基づいて、さらに弾力はEN ISO 148-1に基づく。
伸度、破壊靭性、弾力の減少比率は、コンパラブル合金と比較した際の呼び構成物からの減少分と同じように測定する。
脆化は、これら三つの最大減少比率である。
多くの使用における脆化は48%以下でなければならない。さらに他の使用においてはそれぞれ、38%以下、24%以下、8%以下と、少ないほどより好ましい。
一つの実態形態における最終金属または少なくとも部分的な金属コンポネントは、48%以下の脆化を有する。その他の実態形態においてはそれぞれ、38%以下、24%以下、8%以下となっている。
この手順は、このような実施を要する本発明の実現にあたり形状保持ヘルパーまたは拡散エンハンサーと同じ働きの候補になり得る合金の選択を可能にする。すべての候補の合金から一つの合金を選択することは、様々な基準を通して実現できる。全工程の間の液相量の管理、主要な金属粒子の容易な拡散、製造コスト、環境への配慮、容易な使用、拡散完了後の最終機械特性、最終熱性特性、最終電気性特性、最終磁気性特性など。
本資料におけるその他の場合、チタン、アルミニウム、鉄基合金が用意される。例としてニッケル基合金が選択できる。いくつかのニッケル基合金は、凝結促進強化を増強策に依拠する。アルミニウムは、しばしばニッケルとともに使用される沈殿生成要素である。アルミニウムはニッケルよりもかなり低い融点を持つ。ニッケルへのアルミニウムの固形拡散は、正確な条件が成された場合はかなり早い。またアルミニウムは、融点を下げるためにガリウムなどとともに合金化される。
より低い融点または拡散促進を有するいくつかの金属粉末には、ただ一つの金属相または複数の若干異なる融点を有する相の後述の発明が使用できる。だからこそ、主要な粉末を直接用いた形状保持が達成可能となる。もしも長時間の拡散が可能であれば、この拡散は1080℃以下の温度で始まる溶解の相で実施できる。さらに、980℃以下、880℃以下、790℃以下と、低いほどより好ましい。もしも温度がポリマーによる形状保持が高温で保持されなければならないよりも高い場合、少なくとも一つの有機化合物に制限を設ける。この場合、ポリマー性基盤は310℃以下の形状保持理由により完全に分解されない。さらには、360℃以下、410℃以下、460℃以下と、高いほどより好ましい。もしも有機化合物の形状保持に多くの要求がされない場合、融点以下である740℃以下が選択される。さらに、690℃以下、640℃以下、590℃以下、540℃以下と、低いほどより好ましい。いくつかの使用においては、ポリマーの形状保持がなくなる前の金属相の溶解が始まる前の温度は、490℃以下が望ましい。さらに、440℃以下、390℃以下、340℃以下と、低いほどより好ましい。
一つの実態形態における本発明は、一つの金属粉末または類似の融点を有する複数の金属粉末で構成された粉末混合物を用いた、金属または少なくとも一部の金属コンポネントを製造する方法を示す。これらは、AM技術、MIMのようなポリマー成形技術、HIP法、CIP法、焼結鍛冶、焼結または粉末構造に適したいずれかの技術、さらにこれらを組み合わせた技術などを用いて成形される。
一つの実態形態における本発明は、一つの金属粉末または類似の融点を有する複数の金属粉末で構成された粉末混合物を用いた、金属または少なくとも一部の金属コンポネントを製造する方法を示す。これらは、AM技術、MIMのようなポリマー成形技術、HIP法、CIP法、焼結鍛冶、焼結または粉末構造に適したいずれかの技術、さらにこれらを組み合わせた技術などを用いて成形される。一つの事態形態における金属形状保持(MSRT)は、金属相とともに直接達成される。一つの実態形態における粉末混合物は1080℃以下の融点を有する。一つの実態形態においてはそれぞれ、980℃以下、880℃以下、790℃以下となっている。
二つの低融点合金の例では、明示目的のために使用される。低融点合金として選ばれるのは、アルミニウムとマグネシウムである。純アルミニウムの融点は660℃である。これは、およそ195℃で拡散が十分に実施されることを意味する(長時間拡散ではさらに低い温度でもよい)。ポリマーマトリックスを用いれば、200℃での形状保持は容易である。それにもかかわらず、このような場合、金属相による形状保持は、長時間の拡散処理と原料中の高い金属相の体積分率が要求される。ポリマーシステムの良い選択がされれば、400℃、さらに特殊な場合においては500℃以上でも、形状保持が起こる場合もある。これは、ポリマー形状保持から金属形状保持の置き換えが、0.7*Tm以上でも行われることを意味す実現できる合金を使用することが良い。これは合理的であるものの、いまだ処理や金属の高い体積分率に時間を要する。さらに産業使用や特に輸送機関(自動車、航空機、船舶、列車など)に関する使用は、純アルミニウムが使用されない代わりに、より良い機械特性を有する合金が使用される。他の産業は、物理特性(熱性、電気性、ぬれ性、溶解など)の改良に注目しているが、いずれの場合も、純アルミニウムよりアルミニウムの合金が使用される。こうして本発明では、使用するアルミニウム合金の選択において、複雑なプロセスが踏まれる。基本的に求された機械または物理特性が第一に考慮される。しかし本発明では、工程に対して細心の注意が必要となる。特にPMSRTや、複数の合金化の方法が可能な場合、低温下での拡散を助けたり、液相の存在が選択されたりする。また、拡散や液相の存在の改善の代わりに、要求された特性に多少の犠牲の可能性があることも常に考慮されなければならない。一般的には、ある合金要素は、アルミニウム中のモリブデンやジルコニウムのような拡散の遅滞因子である。一方で、マグネシウムや錫などの拡散促進因子もある。いくつかの商業用合金は錫およびマグネシウムで合金化されるため、拡散が促進する。マグネシウムを多く含む合金や遅滞因子を含まない合金の使用が目立つ。これらを踏まえた二元状態図内の低い合金化とは、38原子%以下を指す。さらに、18原子%以下、8原子%以下、2原子%以下と、低いほどより好ましい。本発明のいくつかの実例においては、二元状態図内の低い合金化の重量比評価の作成は、さらに有益となる。重量比評価は、46重量%以下を指す。さらに、38%重量%以下、18重量%以下、8重量%以下と、低いほどより好ましい。さらに、ある種の液相の存在のための二次元状態図内の低温とは、380℃以下を指す。さらに、290℃以下、240℃以下、190℃以下、80℃以下と、低いほどより好ましい。拡散を遅くすることは、コストを上げて本発明の実現を難しくするよりもはるかに都合がよいため、特性にクリープ耐性が要求される場合、大きな問題が生じる。しかしそうした場合でも、解決策はある。形成の間、拡散をしやすくすることや、少なくとも工程の終盤のPMSRT処理、さらに必要ならば工程を追加する。工程の例としては、前述したように、マグネシウムは拡散促進因子であるため、図2の状態図で示されているように、アルミニウムの融点を下げることで、顕著な効果をもたらす。特に、およそ450℃で液相が生成される12原子%以上の内容物を用いた場合。シリコンもまたマグネシウムには劣るものの、アルミニウム内の拡散を促進させる。マグネシウムを含むアルミニウム合金や固形のケイ素は、かなり低い融点を有し、拡散促進因子である。しかし、マグネシウムとケイ素がMg2Si相を生成するために用いられた場合は、逆効果となり、合金のクリープ耐性は改善される。
このように、アルミニウムまたはアルミニウム合金の場合、本発明は、重要な異なる融点を示す二つ以上の金属相内の少なくとも二つに重要な異なる融点の使用できる。しかし、一つの金属相や、類似の融点を有する複数の金属相の場合にも使用できる。この手順は製造される部品によって選ばれる。本資料における合金の融点は、液体が生成される瞬間の温度を指す。この場合の、アルミニウムとそれらの合金の融点の重要な差は、60℃以上である。さらに120℃以上、170℃以上、240℃以上と、差が大きいほどより好ましい。その差が60℃以上の場合、他の合金システムにおいては、本資料で示されている一つまたはすべての有益な解決策を使用することが得策である。例えば、高い体積分率や良い分布のための金属の緻密化を考慮したサイズの選択、低融点相の構成の選択、実行される拡散の結果同様、PMSRTの間の融点を上げることのできる相の構成の選択、液相の体積分率のより良い管理(液相が要求される場合)など。しかし、単一金属相や、融点に重要な差がない複合相も選ぶことができる。PMSRT処理は、選ばれた金属相の拡散力およびグリーン体のコンパクト化に適応する(液相は選ばれたポリマーや合金によっては可能である)。例をあげれば、仮におよそ8原子%の固形ガリウムを含む合金を選んだ場合、100℃以下で溶解が始まる。一つはこの金属相のみ持つことができるため、PMSRTはかなり設定しやすく、原料内のポリマー要素のための膨大な選択肢がある。しかし8原子%Gaは合金のコストにかなり影響するため、達成し得る特性にいくつかの制約が生じる。あるいは、緻密化のためにかなり球状の粉末により求められた特性を有するアルミニウム合金を持ち得る。このように、8原子%Gaの八面体間隙の半分を埋める(これは、球状粉末またはアルミ合金粉末の0.4倍の直径を提供する。この場合、%Gaの総重量はおよそ0.5%であり、合金のコストや屈曲性に顕著な影響をもたらす。0.%Gaを含む既存の合金はいくつもあるが、16%(8原子%)を含む場合は適応するのが難しい。八面体間隙の半分だけの8原子%Ga合金の場合、PMSRTは、ポリマー分解の間、求められた液相量。このように、適切なポリマーの選択(分解が行われる温度)、粒子サイズ(拡散段階)処理温度、タラップ、液相量の保留時間は管理される(特定の方法で混成が進む)。他の例として、熱処理拡散に要求された液相量による15から30原子%Mgを有するアルミニウム合金が挙げられる。この場合の融点は430℃以上である、この合金は拡散促進因子でもある。この合金は、関連した制約を含むメインの合金としても使用できる。マグネシウムはアルミニウムにとって一般的な合金化要素である(5xxx、6xxxシリーズ)が、通常の重量比は低い。もし先述したように用いられ、かつすべての八面体空隙を埋める場合、低融点粉末由来の実際のマグネシウム合金は、1-2重量%である。これは既存のアルミニウム合金よりも多い(その他の%Mgやその他の要素は、主要な金属粒子内で合金化できる)。おそらく本発明は、成形性の低い合金にはより有益である。なぜなら、使用された物質の成形性を問わない本発明の複雑な形状を用いて達成できるからである。さらに7xxxシリーズより上で、関連した特性の興味深い評価を有するその他の実験的合金は本発明に適している。ポリマーを除くアルミニウム合金の一般的な方法も一部の場合で使用できる。
一般的に、先述したようなアルミニウム合金のほとんどは、その適応力からマグネシウム合金に適応できる。これらのアルミニウムは、最も多く使用されている合金要素である。12-30原子%Alを有する合金は、400℃以上の融点を持つ(本発明においては)。これは一つの金属だけが要求された場合に使用できる。ポリマ分解前の液相はポリマー構成物の適切な選択を要する。また拡散も、金属の高い体積分率を要する。もし%Al分布が八面体空隙の充填材として使用された場合、この粉末はかなり小さい(4重量%以下)。本資料の記述の通り、八面体空隙が説明目的で選ばれた場合、四面体空隙は主な位置の代理として選ばれる。
形状保持が完全に劣化する温度の評価は、単純な熱方式比重測定法を用いて行われる。
一つの実態形態におけるポリマーから金属形状保持(PMSRT)は、グリーン体の形状保持が有機化合物から金属相へと変化する際の現象に特徴づけられる。
一つの実態形態におけるPMSRTは、形状保持が有機化合物から金属相に変化することに特徴づけられる。
一つの実態形態におけるPMSRTは、焼結点の前に達する。
一つの実態形態におけるPMSRTは、有機化合物の完全分解前に達する。一つの実態形態におけるブラウン体の形状は、金属相で保持される。一つの実態形態におけるコンポネントの形状は、焼結または焼結鍛冶、HIP、CIP後処理の前の金属相で保持される。
一つの実態形態における有機化合物の完全分解は、熱方式比重測定法により決まる。
PMSRTについては、発明者は多くの使用において、金属粉または微粒子の初期タップ密度は最大密度、管理された空隙率、またはいくつかの物理的および機械的特性の評価に関し重要な役割を持つとみている。このように異なる使用には、異なる初期タップ密度が求められる。高い最終密度を要する使用、PMSRT中の収縮が極小化した場合などには45%以上の高い初期タップ密度を有することが必要である。さらには、56%以上、67%以上、78%以上と、高いほどより求められる。一つの実態形態におけるタップ密度は、粉末試料を含む容器の機械的なタッピングの後に得られる上昇した嵩密度である。
一つの実態形態におけるタップ密度は、粉末試料を含むメスシリンダーまたは容器の機械的タッピングによって得られる。
初めの粉末体積または質量を観察した後、メスシリンダーまたは容器を、体積及び質量に変化がみられるまで機械的にタッピングして、体積および質量を測定する。機械的タッピングはシリンダーまたは容器を持ち上げて一定の位置に落とすものである。
一つの実態形態における粉末混合物のタップ密度は、45%以上である。その他の実態形態においてはそれぞれ、56%以上、67%以上、78%以上とされる。
一つの実態形態においては、脱バインダ工程前、必要であれば、粉末混合物の成形工程後に得られるグリーン体に直接的に、有機化合物から金属相にコンポネントの形状保持を変えるために拡散を促す熱加工が行われる(本資料ではPMSRTと記される)。一つの実態形態において、目的の温度に達するまで一定にコンポネントを加熱する処理を含んだこの熱処理は、その後コンポネントは特定の時間の間この温度で保たれる。他の実態形態においては、例えば、拡散工程を管理する目的で、低融点金属相に液相が存在する場合、このPMSRT工程の間の熱管理は、異なる方法で行われる。またこの温度は、特定の状態や工程のより良い管理の必要性に応じて、低下または上昇する。
一つの実態形態においては、PMSRT処理の間に、他の物理的変化を管理または修正するのがよい。一つの実態形態における拡散を生じさせる熱処理の空気は管理される(すべての工程中における空気管理は、いくつかの使用にあたって非常に重要である。内部空隙や表面空隙の酸化は望まれないが、時に有益な場合もある。しばしば大気管理は有益であり、不活性雰囲気や還元雰囲気などの場合においては、酸化層を減らすもしくはなくすために非常に有益である。空気は時に、表面の活性化のために使用されたり、減少のみならずある種のエッチングまたは酸化によっても行うことが可能である。一つの実態形態におけるPMSRTは、不活性雰囲気下で行われる。その他の実態形態においては還元雰囲気下で行われる。他の実態形態における機械的強度は、PMSRTの間に用いられる。他の実態形態における圧力は、PMSRTの間に用いられ、等方圧またはコンポネントの異なる部位に直接向けられる。他の実態形態におけるPMSRTは、吸引または低圧力条件下で行われる。
一つの実態形態においては、少なくとも一部のPMSRTは、脱バインダ加工中に行わえれる。一つの実態形態におけるPMSRTは、脱バインダ加工中に行われる。他の実態形態におけるPMSRTは、別々の熱処理に及ぶ。一つの実態形態におけるPMSRTは、焼結、焼結鍛冶、HIP、CIPのような、他の後処理前に達する。
PMSRT加工の間、金属コンポネントを通じて形状保持を実施する事が望ましい。さらにこの工程を要する脱バインダ工程でもすでに行われる。しばしば、固体/固体や液体/個体(液相が存在する場合)の両方の拡散は、PMSRTの間に目的の特性を得るために適合させる。多くの使用において、脱バインダ工程の他に拡散の達成は必須である。これらは、0.35*Tm以上の温度下で行うことが都合がいい(Tmとは、本発明に記述されているように、融点のことであり、ケルビンで表される)。さらに、0.53*Tm以上、0.62*Tm以上、0.77*Tm以上と、高いほどより好ましい。いくつかの使用におけるこのTmは、最も低い融点を有する金属相のことを指す。さらに他の場合では、すべての金属構成物を意味する。他の場合では、最も高い体積分率を有する金属相を指す。他の場合では、最も高い融点を有する金属相を指す。さらに他の場合では、すべての金属構成物の52重量%以上を加えることを要する最も高い体積分率の全ての金属相を意味する。この保留時間は、フルまたは部分的な機械的合金化、空隙の閉包、機械特性、または他の必要な拡散量を特定する適切なパラメーター(温度が定まった後に測定)、拡散のモデリングの観点から、目的の拡散レベルに合った使用によって測定される。一方で、脱バインダの間やPMSRTの間、拡散や液相(少なくとも一つの金属相の他に)の形成に十分な時間を要する。これは、有機化合物や相が分解される前に金属相によって形状保持が保証されるためにしばしば必要とされる。形状保持は、72時間を過ぎても、重量や形状に変化がない場合に認められる。少ない荷重の場合などに何も変化が見られない場合、9MPa以下が適用される。さらには4MPa以下、2MPa以下、0.4MPa以下と、低いほどより望ましい。さらにあまり有益ではないが、いくつかの使用における形状保持は、特定の要素の平均移動距離や、特定の金属粒子の構成の改善などの点から評価される。
一つの実態形態におけるPMSRTは、72時間を過ぎても、コンポネントの形状または重量に一定不変の変化が見られない場合に達する。
一つの実態形態におけるPMSRTは、荷重がコンポネントに適用された場合にコンポネントの形状に一切の変化が見られない場合に達する。一つの実態形態における適応される荷重は、4MPa以上である。その他の実態実験においてはそれぞれ、2MPa以上、4MPa以上、9PMa以上と、高いほどより好ましい。
一つの実態形におけるPMSRTは、脱バインダの間に部分的に行われ、焼結、焼結鍛冶、HIP、CIPの前にPMSRTを終わらせるために追加の熱処理が行われる。
一つの実態形態におけるPMSRTは、グリーン体が0.35*Tm以上の温度で生じる、熱処理によって行われる。他の実態形態においてはそれぞれ、0.53*Tm以上、0.62*Tm以上、0.77*Tm以上とされる。Tmとは、ケルビンで表される低融点合金の融点である。
一つの実態形態におけるPMSRTやMSRT達成のための熱処理の温度は、温度勾配によって決まる。
他の実態形態においては、熱処理の間に、温度勾配が増える。他の実態形態においては、初期温度勾配後の温度は保たれ、その後、増加または低下した温度勾配がPMSRTやMSRTを生じさせる。
いくつかの使用において、拡散が十分に生じたかを評価する適切な方法は(温度が定まった時の保留時間を決める。処理が拡散モデルやシミュレーションによって数々の方法で定義された場合も)、他の金属相のより高い濃度の相に少なくとも一つの存在する要素の濃度の上昇を評価して行うものである。その後、要素のより低い濃度の相に表れる体積分率の表面からの一定の距離に生じる濃度の上昇を測定する。その他の相よりも随分高い融点を有する相のある使用は、処理の間に、初めに生じる大多数の要素や二番目に生じる要素が液相に変化する時に使用できる。もしも高い融点の相が使用された場合、処理の間の液相のなかに第二が少なくとも含まれる。発明者は、いくつかの使用における目的の距離は2ミクロメートル以上とし、さらに、6ミクロメートル以上、10ミクロメートル以上、16ミクロメートル以上と、長いほどより好ましい。さらに強い拡散と大きな微粒子が使用される場合は、22ミクロンが好ましいとする。さらに32ミクロン、54ミクロン、105ミクロンと、大きいほどより好ましい。時々これは、元の等価直径の分数またはそれ以上のものに関して求めた距離を定義することがより理にかなっている。しばしないくつかの求められた使用における距離は、元の等価直径の(しばしば平均値)2%、さらに6%以上、12%以上、27%以上と、大きいほどより好ましい。先ほど本資料で説明した通り、PMSRT処理の温度置換の組み合わせを決定するための拡散強度は残留気孔率の観点から定義できる。多くの使用における特定の要素の上昇は絶対重量パーセンテージで0.02%以上、さらには0.2%以上1.2%以上、6%以上と、多いほどよりこのましい。しばしば最も高い濃度の要素の拡散の票に関与する者の中で相対的な増加すなわち元の名目上のどの増加率または相の平均パーセントの増加を測定することがより有利である(すなわち100%とは、処理前の最大の含有量を有する相と同じ内容である)。この場合は1.2%以上、さらに3%以上、5.5%以上、22%以上と、大きいほどより好ましい。多くの場合この値は製造されたコンポネント全体で一定ではない。この場合、使用により平均値が使用されることもある。この場合、得られた最大値または最低値の特定のパーセンテージのみが考慮される。このような場合m、平均を測定するには10%以上の値、さらに、20%以上、30%以上、55%以上が考慮される。
PMSRTかMSRT加工のための温度及び加熱および冷却速度を決定する場合、形状保持の他に多くのことが考慮されることが多い。よって妥協が必要になる。形状保持に関しては、しばしば、加熱冷却速度の選択の基準は、過度の加熱または冷却が行われるときの部品の異なる領域における異なる温度による熱応力の最小化における部品の複雑さである。場合によっては、有機成分からの形状保持がなお形状保持を提供する温度を最大にすることができるように、微細構造目的(しばしば特定の相変形を回避または最小限に抑える)のためには速い冷却/加熱が望ましいが、 滞留時間の上限に関してさらなる条件が課される。したがって、ほとんどの場合、単純な温度分布シミュレーションと、有機相分解パターンに関する良好な知識が、加熱および冷却速度を決定するのに十分である。保持が行われる温度(滞留時間が適用される)に応じて、観察されるすべての機能特性に対する影響の妥協として決定されるが、形状保持に関しては、すべての 現在の段階が使用され、目的の形状保持をもたらす可能な戦略を見出す。有機相が存在する場合には、存在する場合の液相の量を管理すること、または右原子の拡散によってその形成を妨げるという点で、分解および金属相に関する。 平衡状態での融解温度は、拡散によって目的の合金化を決定するために容易に計算される。 あるいは、シミュレーションの選択が自由な場合には、位相平衡図を使用して第1の近似を決定し、それを1つまたは2つの簡単な実験と対比することができ、このようにして平衡計算をより簡単にすることができる。
後処理、特にPMSRTまたはMSRT処理の場合に好ましい滞留時間を決定する場合、本発明者は、進行するのに便利な方法は、熱処理で所望されるすべての機能に従って目的の滞留時間を決定することにあることを見出した (形状保持、応力緩和、微細構造の進化など)。ほとんどの場合、最小時間が決定され、原則的には望ましいまたは経済的な理由であるが、いくつかの機能、特に最終的に有害な微細構造の進展に関連する機能によって、最大の望ましい滞留時間が決定される。各関連機能の各滞留時間が前提にある場合、最良の妥協案がしばしば必要となる。すべての関連する機能が最低限の時間を必要とする場合、そのうちの最長時間が明らかな理由のために選択される。 大部分の機能については、それらが本発明の主要な目的ではないので、経験、シミュレーション、公開文献などを使用して、各機能の目的の滞留時間を決定することができる。 形状保持の場合、目的の拡散量の関数として時間が決定される。 目的の拡散温度は、目的の融点を有する構造を達成するために平衡線図(カルパッドシミュレーション)を用いて決定することができる。 目的の濃度の量が決定され、選択された粒径の関数としてフィックの法則を使用して、選択された温度で必要とされる滞留時間を決定することができる(通常シミュレーションパッケージでも行われる)。非常に正確な拡散率の測定を避けるために、また計算を簡略化するために手作業による計算や仮定をとった場合にも、計算を出発点として使用し、 計算した時間の温度)を計算し、その結果を観察して対応する補正を行う。滞留時間の正確な決定を正確に行うためには、多くても2回行う必要がある。もし面倒であるならば、シミュレーション/計算からまっすぐに滞留時間を過大に見積もることも可能である。 さらに、希薄合金の場合には、各タイプの粉末の主要な合金元素のみを取り出すことの単純化が可能である。 フィックの法則を適用するには、拡散率の値が必要である。 関心のある合金における様々な元素の拡散率の値は、文献および特定のデータベースで見つけらる。それが当てはまらない場合、それらは測定またはモデル化することができる。どのような特定のモデルまたは異なる測定技術により測定値をレンダリングした場合、モデルもまた近似値を与えるが、拡散率の決定における正確なレベルは高すぎる必要はないので、この差異はこの場合には関係しない。これは、本資料でも説明されている他の性質にも当てはめることができる。 ディフシビティのシミュレーションに関する素晴らしい点は、いくつかのシミュレーションパッケージにはすでにいくつかのモデルが組み込まれていることである。 明らかに、同様のシステムのために開発されたモデルを考慮したモデルを使用するのが最善だが、それ以上のものがなければ、一般的なモデルの使用は完全にうまくいく。 液相への拡散の場合、スザーランドアインシュタインの式とカプタイの動粘度に関する統一方程式とを組み合わせたモデルを、シュピングスーらの。 JPEDAV(2010)31:pg。 333-340の式の12のように用いることができる。また、液体金属中での溶解としての腐食データを用いることもできる(ジャーナルオブフィジックスのヤセンコらのガリウムおよびアルミニウムの場合の例として)。 固体 - 固体拡散の場合、より良いものは得られないが、ル・クレアの仕事に基づくモデルを使うことができる。 シエスタパッケージのようなコンピュータ支援をしばしば使用する密度汎関数理論(DFT)計算のような拡散特性の決定にも技術を用いることができる。。 前述したように、現存の方法は、本方法で要求されるかなり低い精度で、拡散係数の測定によい。 Paul HeitjansとJorgKargerによって凝縮物ハンドブックの拡散に記載されているようなトレーサー法(高温または拡散係数と低温と拡散係数のためのスパッタセクション技術を使用した研削を使用することが多い)を用いることもできる(SIMS、EMPA、AES 、RBS、NRA、FG NMRまたは間接法)。
一つの実態形におけるPMSRTやMSRTは、9MPa以下の荷重が使用された場合に、72時間以上コンポネントの重量などに一切の変化が見られない場合に決まる。他の実態形態ではそれぞれ、4MPa以下、2MPa以下、0.4MPa以下となっている。
一つの実態形態におけるPMSRTやMSRTは、有機化合物が完全に分解された後に達する
一つの実態形態における偏析変化は、PMSRTのための熱処理中に起こる。
一つの実態形態においては、PMSRTは、有機化合物の完全分解が起こり、コンポネントが1.55MPa以上の横軸破壊強度を有する場合に達する。その他の実態形態においてはそれぞれ、2.1MPa以上。その他の実態形態においてはそれぞれ、4.2MPa以上、。その他の実態形態においてはそれぞれ、8.2MPa以上、。その他の実態形態においてはそれぞれ、12MPa以上、。その他の実態形態においてはそれぞれ、18MPa以上、22MPa以上となっている。
一つの実態形態において、MSRTは、コンポネントの横軸の破壊強度値が1.55MPaより高くなった場合に達する。その他の実態形態においてはそれぞれ、2.1MPa以上。その他の実態形態においてはそれぞれ、4.2MPa以上、。その他の実態形態においてはそれぞれ、8.2MPa以上、。その他の実態形態においてはそれぞれ、12MPa以上。その他の実態形態においてはそれぞれ、18MPa以上、22MPa以上となっている。
一つの実態形態において、脱バインダを必要とし、かつPMSRTに達するための熱処理がコンポネント施された場合、他の後処理がコンポネントに使用される。一つの実態形態におけるこれらの後加工は、焼結、焼結鍛冶、HIP、CIPから選ばれる。
いくつかの使用にとっては、拡散や空隙の閉包に助力することは非常に都合がよい。この様な場合は、拡大のために吸引や圧力を用いることがよい。拡散と同時に圧力を用いる方法には、熱間等方圧加工法(HIP)がある。また、内部空隙や外部空隙の酸化を避けるためにも、すべての処理において空気管理は非常に重要である。しかし、内部ないし外部空隙の酸化は時として有益な場合もある。ほとんどの場合、空気管理は有益であり、不活性雰囲気、還元性雰囲気は、酸化層の現象または排除に特に有益である。空気は表面を活性化させる場合に用いられることもあり、これは、減少のみならずある種のエッチングや酸化によって行われることもある。
本発明の使用ではよく、製造工程直後の金属構成物の密度と比較して、さらに高い密度の造形物が求められる。さらに拡散を通して、液相の毛管力、圧力などで金属粒子が収縮に伴う空隙の閉包のための置換を被る。いくつかの使用には、この収縮の管理は、部品の性能に関係する。発明者は、このような使用には、モデル、シミュレーションなどを用いて予測することが需要だとみている。こうすることで、後処理の機械装置を最小限にするか無くすかの判断を、設計段階で組み入れることができる。精度のレベルはコストにもよるため、正確な量を用いることも重要である。発明者は、最終的な寸法の+/-0.8mm以下を不正確さとみている。さらに、+/-0.4mm以下、+/-0.09mm以下、+/-0.04mm以下と、低いほどより好ましい。いくつかの場合においては、収縮を評価する際に不正確さを最大限に修正することが求められる。このように、多くの使用には、2%以下の不正確さが求められる。さらに、0.8%以下、0.38%以下、0.08%以下と、低いほどより好ましい。いくつかの使用においては、工程内で収縮に18%以下の限界を設けるが必要ある。さらに14%以下、8%以下、4%以下と、低いほどより好ましい。
発明者は、いくつかの使用のために、ポリマーを分解または排除させないことがよいとみている。ポリマーには興味深い性能もあり、ポリマーの機械特性はいまだこれらの使用に十分とは言えない。この様場合、低融点金属構成物は、ポリマーを完全には分解せずに金属部品のブリッジングの役目を担っている。興味深い使用は一定のポリマーの潤滑因子が使用された場合などに出てくる。PTFE(ポリテトラフルアロエチレン)は、スチールのよい滑り特性を持っているが、他の機械的特性や熱伝導率などが乏しい。これは、適切な量ならば260℃以上でも使用できる。この資料に記述されている通り、これはいくつかの金属合金が液体を生成するに十分な温度である。金属構造は、機械特性および冷却容量を改善するのを基準にできる。機械的安定性、よい滑り性質、よい熱管理(たとえ摩擦から抽出した熱だとしても)を要するいくつかの部品は、本発明においては、ポリマーの完全な分解や排除を伴わない金属相という観点から、製造できる。
発明者は、本発明の方法が経済的な大形のコンポネントの製造を可能にするとみている。さらに本発明の製法は、複雑な形状の大きな部品の製造や。自動車産業におけるボディインホワイト部品の大量生産に挙げられるような高い機械的需要などのためにAM技術を使用できる。特に本発明は1kg以上の部品の経済的な製造を可能にする。さらには、2kg以上、6k以上、11kg以上と、重いほど好ましい。さらに重要な点は、本発明の製法を用いれば、従来は溶接して単体の部品にしていたことも、部品を合体させることが可能であることである。また、本発明の製法は、先に挙げたボディインホワイトのような構造上、軽量化が要求されるような部品の製造も可能であるため、軽量な構造にも非常に適している。発明者は、自動車からの排気を減らす問題にも、AMや類似の技術を用いて、重量を従来の部品の89%以下に抑えたボディインホワイト部品を生産することで解決できるとみている。これは、2004年から2010年の間のULSAB-AVCプロジェクトで、同種の部品の中でもっとも軽量な部品として発表された。さらには、69%以下、49%以下、29%以下と、少ないほどより好ましい。本発明の方法は、特に適している。
発明者は、本発明の方法は、通常はダイキャスティングを用いて製造される部品の製造に特によく適しているとみている。これには、高圧ダイキャスティング、低圧ダイキャスティング、チクソモールド、または類似の方法を用いて2012年最も製造された部品を含む。これらの部品は、乗り物のパワートレイン(モーター、ギアボックス、クラッチボックスなど)、構造的部品、リム、家電用部品、家電製品などの部品である。発明者は、本発明の製法のコストダウンを図るためには、すべての用例において部品の軽量化がカギだとみている。このような用例に、発明者は、2015年10月21日に最も一般的だったキャスティング技術により製造されていた上記と同じ部品または類似の性能を有する部品と比べ、89%以下の重量の部品の製造が重要であるとみている。さらには、69%以下、49%以下、29%以下と、低いほどより好ましい。いくつかの実例では、この軽量化が、経済活力の面でも強い影響を及ぼしている。
発明者は、製造方法における軽量化、スピード、コストパフォーマンスまた、使用される材料の低コスト化の組み合わせは、AMによる製造の実現を可能にする。軽量化は大げさに二つの前述にある特定のケースの点から、後述する製造スピードとともに他の多くのコンポネントを一般化できる。しかし、AM技術による構築のために使用された材料のコストもまた非常に重要である。この場合、金属微粒子は製造部品の1キロごとのコストは、同じ性能を持つ製造部品の4.8倍以下のコストであることが望ましく、2015年10月21日に従来の製法により製造されたこの様な部品にかかったコストの2.8倍以下、さらには、1.4倍以下、0.8倍以下であることが望ましい。いくつかの実例においては、これらの要素の二つのみを有していれば十分であり、さらに他の実例においては一つだけで十分である。これは、本資料に記してある製造技術によって製造された部品についても同じである。
また、2012年に型入れ鍛造により多く製造されていた部品は、本発明の製法にも適している。クラックシャフト、ピニオン、ギアなど。
2012年に広く使用された部品の製造には他に、粉末冶金(圧縮した金属粉末の焼結)、加工などがあり、本発明の製法にも適している。
先述の二つの項の場合において、発明者は、多くの製造工程は成形に使用でき、すべての工程に有機化合物は必ずしも必要ではないとみている。本発明に記述されているとおり(天然、粒子形状、形態、体積分率など)金属微粒子の混合物は、有機構成物の有無に関わらず用意することができる。その後混合物は、型に詰められる。できれば、振動によって詰め、緻密化を図る(容器は形状保持のための温度に耐えられるものを使用する。再使用できるものでなければならないことはない)。次に、本発明に基づいた拡散処理を行う。この工程は、内部間隙の少ない、またはない、嵩張るコンポネントの使用に特に有益である。ある実例は、セラミック、ポリマー性、またはセメント系物質の、コスト効果の伴わない、目的の形状の型の作成である。金属粉末混合物を型に詰め(ここには、軋轢や他の性能向上のために有機構成物も含まれている場合もある)、粉末混合物をPMSRTのような温度の対象にする。場合によって、脱バインダが必要となる。型は、場合によって二つのピースで構成されるものもあり、これにより、WO200914115 に記されているように金属微粒子の圧縮も用いられる。また、十分なタップ密度があるまたは空隙率が顕著ではない、または目的の腐敗しやすい型を用いることができる(金属微粒子が含まれるプラスチック製の型など)、場合などは、金属相のある、またはない低温拡散により行われる。金属相により形状保持が成された場合、型は外されるか、単純に分解される。
発明者は、光硬化性ポリマーを伴う技術は、本発明の製法にある早い堆積ないし早い製造に特によく適しているとみている。これは、硬化がポリマーを特定の波長に短時間露出させることから生じる(そして、しばしば反応の阻害も余分な速度および設計の柔軟性を提供するために使用される)、これはしばしば あらゆる単一の層で硬化される周囲または表面全体による従来のかなり円筒形または楕円形のカーソルではなく、一度に1つの面に基づいて目的の波長に露光する。 一度に全層を目的のパターンで露光するシステムであっても、非常に有利に使用することができる。
発明者は、大きな構造の部品の大量製造、また、シリーズの部品の製造に驚くほど有益であるとみている。この製造には、求めた機械特性(しばしばプラズマによる原子化、ルツボのない原子化、同じまたは類似の合金の少なくともガス原子化が一般的に製品に使用される)を得るためにハイクオリティの金属微粒子の代わりに、金属微粒子を伴うAM技術を用いられる。微粒子に、安価な製法を使用する代わり(細かな微粒子への高圧力を含む液体原子化、酸化物の還元、遠心分離など)、いくつかの機械特性を犠牲にすることもあるが、より高い評価の合金を使用することで補うことができる。それどころか、本発明を用いて製造されたいくつかの部品には、粉末微粒子の製造コストは、重要な問題であり、ロンドン金属取引所の合金価格によれば、1.9倍低くなければならない。さらに、1.48倍以下、1.18倍以下、1.08倍以下と、低いほどより好ましい。発明者は、取引は驚くほど実用的であるとみている。これは、特に靭性や伸び率に関連するAMプロセスにとってネガティブな要因である。少数の空隙はこれらの性質を保証する。このように、複雑な後処理(HIPや完璧な密度のためのその他のプロセス)は、呼び値を得るために必要である。一方で、同じまたはより高い機械強度へのより高い破壊靭性を運ぶ合金コンセプト、または空隙圧の普及を止める局所的な可塑化を可能にする合金コンセプトは、驚くほど経済的である。代わりに、完全な密度を得るために複雑な後処理を使用することができる。しかしこれらの場合、大形の部品の製造や、一度に大量製造する場合には不向きである。発明者は、一度に平均600個の製造に適しているとみている。さらに1200個以上、3200個以上、12000個以上と、多いほどより好ましい。中間レベルでは、発明者は、本発明の製法の可能な実施と記されているように、液相の形成の利用について考察する。完全な密度または少なくとも空隙を減らすこと、さらに金属微粒子の生産のための低コストな製造プロセスの利用は、は経済的に可能である。発明者は、大形の部品の大量製造を競争的に実現する方法について考察している。これは、低い投資価格での早いAMシステムの使用に非常に効果的である。これにより、高精度やAM部品の機械特性の断念を伴うこともあるが、本資料に記述のある方法を使用する事で、解決でき、望んだ精度や、機械特性を実現できる。さらに発明者は、大きなシリーズの部品の製造に際し、適切なAM技術を使用することが非常に重要であると考えている。いくつかの使用では、AMシステムを用いた際の製造コストは$190.000未満としている。さらには、$88.000未満、$49.000未満、$18.000未満とされ、低いほどより好ましい。さらに、AMを用いた部品の最大面積プロジェクションは、20.000cm2以上とされ、さらに550.000cm2以上、1.2m2以上、3.2m2以上とされ、広いほどより好ましい。また発明者は、製造の最短スピードについて考察する。時間を最重要パラメーターとした場合、高さ1mmの形状が最小値で、10cm2が投射面積の最小値である。この場合の所要時間は、95秒以下が望ましい。さらに45秒以下、0.9秒以下、0.09秒以下と、短いほど好ましい。発明者は、大形の部品の製造、これら部品の大量生産、大きなシリーズの部品の生産にかかるコストを左右する重要なパラメーターは、投射面積にかかる投資額の適格な算出だとみている。しばしば、190$/cm2以下が望ましく、さらに90$/cm2以下、42$/cm2以下、22$/cm2以下とされ、安価なほどより好ましい。さらに製造コストが最重要視される場合は、4$/cm2以下、0.9$/cm2以下、0.4$/cm2以下、0.01$/cm2以下とされ、低いほどより好ましい。AMを用いた大きなシリーズの部品の製造に関するパラメーターは$*h/cm3単位を持ち、求められる値は48以下である。さらに、18以下、0.8以下、0.08以下とされ、低いほどより好ましい。精度に関しては、+/-0.06mmが許容範囲で、続いて+/-0.15mm、+/-0.32mm、+/-0.52mmとなっている。また高精度の部品が求められる場合には、+/-95μ、+/-45μ、+/-22μ、+/-8μとなっている。
発明者は、多くの実例における、自動車産業のボディインホワイトのような大きなシリーズの内の大きな部品の生産コストは、年月をかけてできるだけ能率的に活用できるようにした。特に新しい製造技術を用いた場合、調整が非常に難しい。本発明の多くの場合、製品は、顕著な軽量化が図られた場合、経済的に製造される。これを達成するために、本発明の方法の設計の柔軟性は非常に役立つ。終わりに、生物工学的な構造と一般的に天然の複製の使用を能率的に活用する。また構造製品は、同じ製品の異なる部位に異なる需要を持つ。したがって、例えば、変形に対する抵抗性または不確実性が基本である領域およびエネルギーを吸収する能力がむしろ好ましい領域を有する。また、いくつかの構造部品は、故障を回避するように設計されているが、予期せぬ高い需要の場合には、特定の方法で故障することが望ましい(一例として、車構造の完全性を保証、重大な事故、高速での衝突など)乗客が生き残る可能性が最も高い方法でシステムを故障させることが望まれる。したがって、重要な空間を尊重しながら可能な限り最大のエネルギーを提供することができる。したがって、異なる特性を有する領域を有するいくつかの構成要素は、明らかに有利であり、軽量設計にも寄与することができる。本発明の3つの方法論またはそれらの組み合わせが特に適しており、他の方法論は除外されないと言われている。デザイン、マルチマテリアルと部分的な熱処理。設計とは、異なる厚さ、異なる剛性(特に重要なトラフの生体設計)、一定の荷重パターンでの変形の経路の決定、領域のある変形の経路の決定など、コンポーネントのあらゆるレベルでのジオメトリに関連するあらゆる種類のストラテジーを指す。機械的なヒューズとして機能する(耐性が少なく、変形し、破壊靱性を低下させるために多孔性が残っている)。もう一度、バイオニックデザインと一般的にAMのデザインの柔軟性は、ミニ、マイクロ、ナノレベルでさえも材料の助けを借りて、ある種のパターンと構造の生成によって全く異なる挙動を達成することを可能にする。マルチマテリアルは、コンポーネントの異なる領域で異なるマテリアルを使用することを指すが、それは明確ではなく、特定の領域で高いスティフネスを持つマテリアルを使用できる例と、高い変形性とエネルギー吸収を持つマテリアル別の地域で部分熱処理とは、異なる熱処理を施して異なる特性を達成する領域を有することを指し、これは通常、異なる熱処理の適用によってどのような特性が得られるかを決定するため、材料による。本発明では、文献中に見出すことができるほとんどの特異的事例の他に、製造された成分の異なる領域において異なる程度の拡散度を有し、したがって同じ原料が使用されたにもかかわらず異なる組成を有することが挙げられる。
発明者は、本発明の異なる実施において望まれる原料は、他の使用にも有益になることもある。特に、少なくとも一つの有機化合物と少なくとも一つの金属相を含む原料を用いるいくつかの使用には、有益である。さらに、本資料に記述されているように、少なくとも一つの金属相の融点(ケルビンで表示)が、有機化合物の最も高い分解点に比べ3.2X低い場合特に有益である。さらに2.6X以下、2X以下、1.6X以下と、低いほどより好ましい。また、いくつかの使用によっては、金属相が24%以上の体積分率を表す場合はかなり興味深い。さらに36%以上、56%以上、72%以上と、高いほどより好ましい。本資料に記述されているその他の種類の原料、または原料属性もまた、代わりとなる使用において興味深い。
本発明のいくつかの事例を考慮しながら、AMまたは製造工程は、成形と一時的な形状保持だけを執り行う。このように、多くの他の使用においては部品には少ない機械的要望がされ、多くの有機物質には、最も一般的な製造技術が用いられる。AM技術および前述したいずれかの技術も同様に用いることができるが、これらの使用には特定の方法は不利に働くこともある。粉末床方法、指向性エネルギー堆積法、粉末プロジェクションに基づく方法、さらに材料の早い排除に基づく方法が、異なる使用に特定の利点を持ち、使用できる。選ばれた有機物質はしばしば、選ばれた製造技術の作用により異なる。軟化やポリマー溶解に基づいたシステムの場合、低コストの使用を選ぶのが望ましい場合もあれば、何よりも分解点が重要な使用もある。発明者は、本発明の製法で製造された多くの部品には、サーモセッティングポリマーを用いるのが特に有益であるとみている(エポキシ樹脂のような強度の高いいずれかの樹脂)。それは、車両および他の移動式または少なくとも輸送可能な装置用の構造および他の構成要素の製造の場合である。 この目的のために、インクジェット噴射のシステムが特に興味深い。 UVまたは他の波長硬化技術の場合、そのような高い機械的強度が達成されない場合でも、特に速い硬化や低コストの有機化合物を有することは興味深い。 高速硬化は、1ミクロンの層を硬化させるのに2秒未満、好ましくは0.8秒未満、より好ましくは0.4秒未満、さらには0.1秒未満を必要とする樹脂である。 低コストは、70ドル/リットル未満、好ましくは45ドル/リットル未満、より好ましくは14ドル/リットル未満、さらには4ドル/リットル未満である(コスト。以上は2015年11月1日までの米国内の製造可能な最低コストである。
一般に、非常に大きな構成要素の場合、好ましい製造方法は、一定のパターンが層ごとに硬化される材料の連続層に基づくものではなく、材料の投影または材料の侵食に基づくものである。 マテリアルプロジェクションには、必要以上の原料を供給し、その一部を硬化し、残りを除去するシステムの場合のように、すべてのフィードストックを使用するわけではないにしても、あらゆるタイプの供給原料の局所供給が含まれる。 言うまでもなく、投影システムは、材料の組み合わせがより容易なものであるが、ほとんどの他のシステムでも実施することができる。
本発明者は、本発明がバイオニックデザインの実施に特に適していることを見出した。ほとんどのバイオニックデザインは、ほぼ絶えず変化するセクションを持っているが、それらのいくつかはワイヤメッシュとして単純な方法で見ることができる。これは、形状がワイヤの形状ではなく、断面積が一定であることはほとんどないので、これも簡略化した図である。しかし、実際のバイオニックデザインは、各セグメントがその領域の実際のデザインの平均断面を持つワイヤーメッシュに縮小されています。本発明者は、実際の設計を表す簡略化されたシステムのワイヤの断面および長さに関していくつかの考慮を行うことができることを見出した。代表的な部品表面を最大投影面の追加と定義すると(本明細書では、投影面という用語が単独で使用される場合、最大面積を投影する投影面を指す)、平面上の最大投影面の2倍最大投影面の面である。本発明者は、代表的な部品表面の平方メートル上の等価ワイヤの長さが、いくつかの部品の適切な製造のために考慮すべき重要なパラメータであることを見出した。非常に高い機械的強度を必要とする構成要素であって重量が主要な関心事でない場合、本発明者は210μm以上、好ましくは610μm以上、より好ましくは1050μm以上、さらには2100μm以上を有することができることを見出した。一方、重量が重要な用途については、発明者は、890μm以下、好ましくは580μm以下、より好ましくは190μm以下、さらには40μm以下であることが望ましいことを見出した。本発明者は、340mm 2以下、好ましくは90mm 2以下、より好ましくは3,4mm 2以下を有することが望ましいことを本発明者が見てきたいくつかの光成分の等価ワイヤ断面(実要素の平均断面)になると、より少なく、さらには0.9以下である。
本発明者は、本発明の戦略の1つ、すなわち、主な金属成分がFe、Ti、Coをベースとする合金である場合に、Gaを含むAlGa合金または他の低融点合金の使用 (宇宙船、飛行機、自動車、列車、ボートなど)の部品に非常に適した、拡散処理後に得られる合金化システムを提供する。 したがって、本発明に記載された量の%Gaを含有する合金または合金系(一般的な組成として、強い偏析が存在し、局所的に組成が全く異なるとしても理解される)は、航空機、航空機、 海洋、航空宇宙、鉄道などの産業に利用されている。
本発明の追加の実態形態は、次のクレームで説明する。すべての実態形態の技術的特徴は、いずれの組み合わせで組み合わせることができることをここで説明する。すべての上述の実態形態は、その互換性により制限なくお互い組み合わせることが可能である。
例
例1:航空宇宙産業、装飾用、自動車、化学、医療またはその他の使用のためのチタン基合金構成物の製造のための本発明の方法を可能にする貯蔵システムが発達する。このシステムは、パウダーのような充填ポリマー性物質で構成されている。このポリマー性物質の充填物は、細い粒度分布で、D50=10μ中心のケイ素およびバナジウム含むチタン合金と、細い粒度分布で、D50=4μ中心の20%Ga80%Alの粉末を含む緻密化された粉末混合物で構成されている。このGaAl合金は全体の金属粉末の約6重量%を占める。HDPEを含むポリマー性物質。SLSは、AM技術として用いられるが、その他の技術も使用できる(特にDLP-SLA)。脱バインダ工程で構成された後処理、5K/分、400℃の加熱を30分保つ、その後3K/分、550℃で加熱、続いて1250℃で焼結。
例2:87% 1,6ヘキサンジオールアクリレート13% エトキシル化テトラアクリレートペンタエリスリトールで構成された感光性アクリル樹脂を用意。0.55%光重合開始剤(2,2 ジメトキシ 1,2 フェニルアセトフェノン)
平均粒子サイズ10μのアルミニウム粉末合金と次の構成物(重量%)を用意。
Cr: 0.25%; Cu: 0.7%; Fe: 0.1%; Mg: 2.6%; Mn: 0.2%; Si: 0.15%; Zn: 5.6%
上記の感光性樹脂を用いた懸濁液は、60体積%の示した粉末を加えて用意。粉末は段階的に加えられ、ミキシングは機械的に行われる。2重量%の分散剤(アルミニウム粒子)
が加えられる。使用された分散剤は、カチオン性分散剤で、5%のスチレンが混合物の粘度を下げるために用いられる。
低密度のシステムを使用し、各工程の停止中に50μが加えられ、硬化が起こる。フラットトラクション(互いに重なり合う)の二つの試料の形にマスクが用いられる。ピークが約36nmの水銀キセノンライト。
40層が作らる。試料の形成部品を取り除き、乾燥させる。次いで試料は、非常に薄いシリカフュームの箱に置き、蓋をする。システムは次に吸引オーブンを用いる。0.1mbarで数時間、吸引を行う。この点で、吸引を止めずに、温度は徐々に250℃まで上げられ、4時間保たれる。その後、さらに350℃まで上げ、10時間保つ。最終的に温度は550℃まで上がり、10時間保たれる。温度は徐々に下がり、部品の抽出とクリーニングへと進む。一つの試料はHIPの対象となり、550℃で100Mpaの圧力を加えられる。
T6処理は、テスト部品に対し行われる。次に研磨が施される。両方のケースで80%以上の値の弾性限界を算出する。
例3:50% フタル酸ジグリコールジアクリレート(PDDA) 10% アクリル酸 25% メチル酸メチルアクリレート 5% スチレン 10% ブチルアクリレートで構成される光硬化性アクリル樹脂を用意。混合物には、1%のカチオン性光重合開始剤(1,3,3,1‘,3’,3‘-ヘキサメチル-11-クロロ-10,12-プロピレントリカルボルシアニントリフェニルホウ酸トリブチル)が加えられる。
鉄基合金粉末は、平均サイズが50μの次の構成で用意(重量%)
%C 0.4%; %Ni: 7.5; %Cr: 8%; %Mo: 1%; %V: 1%; %Co: 2%
Al合金70% 30%Ga粉末は、20μmの平均サイズが用意される。
攪拌ミキサーに、7重量%の小さな粒子と93体積%の大きな粒子サイズの粉末の均一な粉末混合物を用意。上記の光硬化性樹脂を用いた懸濁液は、68体積%の均一な粉末混合物を加えて用意。この混合物は、段階的に粉末が加えられ、機械的に行われる。2重量%の分散剤(粉末粒子)を加える。使用された分散剤は、カチオン性分散剤で、5%のスチレンが混合物の粘度を下げるために用いられる。低密度のシステムを使用し、各工程の停止中に50μが加えられ、硬化が起こる。フラットトラクション(互いに重なり合う)の二つの試料の形にマスクが用いられる。ピークが約800nmのレーザダイオード。
40層が作らる。試料の形成部品を取り除き、乾燥させる。次いで試料は、非常に薄いシリカフュームの箱に置き、蓋をする。システムは次に真空オーブンを用いる。0.01mbarで数時間、吸引を行う。この点で、真空のまま、温度は徐々に250℃まで上げられ、4時間保たれる。その後、さらに350℃まで上げ、10時間保つ。最終的に温度は550℃まで上がり、10時間保たれる。温度は徐々に下がり、部品の抽出とクリーニングへと進む。一つの試料はHIPの対象となり、1150℃で200Mpaの圧力を加えられる。続いてオーステナイトの生成により構成される処理の対象となる。焼き入れ1040℃、二度焼き戻し540℃。どちらの場合でも、試料は2000Mpa以上の収縮耐性を得るためにテストされた。
例4: モデルは、ホットスタンピングのためのダイシステムの進歩を確かめるために開発する。並んで据え付けられた二つのダイをプレスにセットする。2セットの鋳型は、オメガの形をしている。初めの鋳型セットは、異なるレベルを有する毛管タイプの内部温度調節システムを持つ。表面下に直径4mm長さ20mmの微細流路ができるまで。各流路間の中心部からの平均距離は9mm。初めのダイセットの周囲は280℃で循環する。二つ目のダイセットは、発汗型で上部インサートと下部インサートで構成されている。活性面の孔の管網からできている。各インサートの直径は0.8mmであり、活性面の各cm2には平均して12個の孔がある。これらは同システムとUsibor1500P1.85mmを用いて進められる。各段階の保留時間は2-4秒である。製造後の部品は鋳型同様オメガ型で、機械強度は1600Mpaを超える。
ダイのインサートには、樹脂が使われ、光造形装置によって作られた型を用いて作られる。これらはDLPタイププリンターで焼かれている際には残留物を出さない。この樹脂型は流路を持たない。型はプリンター外で紫外線を照射される。また、ダイのそれぞれのインサートには異なる粉末の混合物が詰めらる。初めのダイの上部ないし下部のインサートには、下記の混合物が使用される:
D50=8μの90重量%の粉末と下記の合成物(重量%)
%C=0.45; %Mn=5%; %Si=2%; %Zr=3.8%; %Ti=2 鉄基
D50=7.5μの8.6重量%の粉末と下記の合成物(重量%)
%C=0.45; %Mn=5%; %Si=2%; %Zr=3.8%; %Ti=2 鉄基
D50=4μの1.4重量%の粉末と下記の合成物(重量%)
%Sn=40%; Ga%=60%
二つ目の上部ないし下部のインサートには下記の混合物が使用される:
D50=90μの90.6重量%の粉末と下記の合成物(重量%)
%C: 0.4; %Ni: 7.5%; %Cr: 8%; %Mo: 1%; %V: 0.8%; %Co: 2%; %Al: 0.3% 鉄基
D50=40μの8.7重量%の粉末と下記の合成物(重量%)
%C: 0.4%; %Ni: 7.5%; %Cr: 8%; %Mo: 1%; %V: 0.8%; %Co: 2%; Al: 0.3% 鉄基
D50=20μの0.7重量%の粉末と下記の合成物(重量%)
%Al=60%; Ga%=40%
それぞれのダイセットの、粉末混合物は乾燥して用いられ、型には68%以上の見かけ密度を得るまで振動がかけられる。ダイは真空オーブンで2*10-3mbarの真空圧を受け、高純度窒素で満たされる。二度行われ、初めの停止は90℃3時間かけ、徐々に580℃まで上昇し4時間、6時間経過で終了。二つ目のダイセットは6amから1150℃/200MPa圧力のHIPを受ける。
例5:樹脂による光造形装置を用いて造られた形状のPMSRTには、180℃から250℃で樹脂が形状を保持できなくなり、分解は時間による。樹脂が十分に形状を保持できる最高温度は、200℃であり、保留時間は数分である。迅速な200℃の加熱と短い滞留時間が考慮される。粒子は高融点粉末の混合物である。モード値が150μから200μの二峰性分布を有する高い機械強度の銅ベリリウム合金と、D50=20μの粉末ガリウムが用いられる。高融点粉末と低融点粉末の割合は9:1である。200℃で粉末ガリウムは完全溶解する。融点を400℃以上にするために20-30%の銅の分解が液相に求められる。必要な滞留時間を見積もるために拡散率が用いられる。銅から液体ガリウムへの拡散を考慮するためだけに簡易化が図られる。Xuping SuのJPEDAV(2010) 31: pg. 333-340 (DOI: 10.1007/s11669-010-9726-4) Equation 12の図2のデータを用いて計算される。ただしガリウムの原子量に関しては1,203*10−5m3/mol(A.F. Crawsley, Int. Met. Rev., 1974, 19, p32-48参照)になるよう計算されている。Eq. 12では、1,6*10-11m2/sとされている。これは銅の十分な拡散に必要となる数分を考慮していて、Yatsenkoおよびその他のJounal of Physics 98(2008) 062032-DOI: 10. 1088/1742-6596/98/6/062032の図3と合致する。この場合、初めの滞留時間は30分である。このようにして、検査は10分の滞留時間後に完了する。
例6:分解点がおよそ200℃の樹脂を焼いてでた低灰分を用いてAMにより型が造られる。充填材はD50=70μの95%の鉄を含むスチールの高融点粉末、D50=10μの融点およそ200℃の90%Sn10%Gaの低融点粉末で構成される。高融点粉末と低融点粉末の体積分率比は77/23である。PMSRTの初めの滞留は150℃で行われる。低融点粉末に1%の鉄が含まれる場合、低融点粉末の融点は500℃以上で設定される。初めの検査では鉄の拡散だけが考慮される(鉄表面DO=1,8*10-4cm2/s; Q=51,1Kj/mol)。D*tは8.1*10-12m2に設定。最短滞留時間の近似値は240秒でなければならない。初めの検査の所要時間は熱応力を避けるためスピードを上げるため2時間とする。初めの試みでは、低融点粉末への鉄の拡散は予定を上回り、低融点粉末の中心部に4%以上の鉄が見つかる。
例7:本発明の方法を可能にする粉末混合物は、ブロンズ基合金部品の製造にも用いられる。この製法は、D50=20μの細い粒度分布の有する粉末ブロンズの凝縮混合物(90重量% Cu と10重量%Sn)と、D50=8μの細い粒度分布を有する20重量%Gaと80重量%の合金粉末で構成されている。この粉末混合物は、そのタップ密度で成形され、熱処理を受ける。熱処理では、室温から150℃まで加熱、20℃/hで5時間保留した後、250℃まで加熱、20℃/hで5時間保留する。
表3.ぬれ性評価(乏しい-普通-良い-とても良い)温度の関数(100℃-200℃-300℃)
表4.SEMによる要素の拡散分析(乏しい-普通-良い-とても良い)
基板の選ばれた合金(4、9、10)
熱処理室温から250℃-20℃/h等温5時間、不活性雰囲気(1ppm O2)
例9:低融点合金としての合金9と異なる高融点合金(スチール、銅、青銅、アルミニウム、チタン)への異なる熱処理の分析(表2例1を参照)
(D50低融点合金
=10μm)スケール分析(乏しい-普通-良い-とても良い)
分析基準:
乏しい−混合物が粉末状で残っている状態
普通−混合物が部分的に粉末状で残っている状態
良い−混合物が部分的に緻密化している状態
とても良い−混合物が緻密化した状態