JP2019204790A - Control valve type lead-acid battery - Google Patents
Control valve type lead-acid battery Download PDFInfo
- Publication number
- JP2019204790A JP2019204790A JP2019128297A JP2019128297A JP2019204790A JP 2019204790 A JP2019204790 A JP 2019204790A JP 2019128297 A JP2019128297 A JP 2019128297A JP 2019128297 A JP2019128297 A JP 2019128297A JP 2019204790 A JP2019204790 A JP 2019204790A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- mass
- positive electrode
- alloy
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、制御弁式鉛蓄電池に関し、特に負極集電体の耳の腐食が抑制された制御弁式鉛蓄電池に関する。 The present invention relates to a control valve type lead acid battery, and more particularly to a control valve type lead acid battery in which corrosion of an ear of a negative electrode current collector is suppressed.
鉛蓄電池には、極板群を挿入した電槽の中に電解液を注液して構成される開放型の液式電池と、正極板と負極板の間に挿入された微細ガラスマットセパレータ(リテーナーマット)に電解液を保持させ、正極で発生する酸素ガスを負極活物質上で水に還元する、いわゆる酸素サイクルと呼ばれる原理を利用した制御弁式電池とがある。 For lead-acid batteries, an open-type liquid battery constructed by injecting an electrolyte into a battery case in which an electrode plate group is inserted, and a fine glass mat separator (retainer mat) inserted between a positive electrode plate and a negative electrode plate In other words, there is a control valve type battery using a so-called oxygen cycle, in which an electrolytic solution is retained and oxygen gas generated at the positive electrode is reduced to water on the negative electrode active material.
液式電池は、充電中に起こる水の電気分解反応や自然蒸発によって電解液中の水分が失われるため、適宜精製水を補給する必要があるのに対して、制御弁式鉛蓄電池は、メンテナンスフリーとすることができるため、近年、据え置き用や車載用にその利用が進んでいる。 Liquid batteries lose water in the electrolyte due to water electrolysis and spontaneous evaporation that occur during charging, and it is necessary to replenish purified water as needed. Since it can be made free, its use has been progressing recently for stationary use and in-vehicle use.
制御弁式鉛蓄電池においては、負極集電体の耳とストラップの溶接部が電解液から露出しているため、充電時においても、鉛の平衡電位より貴な状態におかれる。そのため、負極集電体では、耳やストラップを這い上がった硫酸と正極から発生した酸素によって、耳やストラップで腐食が進行し、溶接界面での破断が多発する問題があり、これまでに耐食性を向上させる目的で、負極集電体の合金組成について、種々検討されている。 In the control valve type lead-acid battery, since the weld of the negative electrode current collector and the strap is exposed from the electrolytic solution, the lead-acid battery is placed in a noble state from the equilibrium potential of lead even during charging. For this reason, the negative electrode current collector has a problem that corrosion occurs at the ears and straps due to sulfuric acid that scoops up the ears and straps and oxygen generated from the positive electrode, resulting in frequent fracture at the weld interface. For the purpose of improving, various studies have been made on the alloy composition of the negative electrode current collector.
特許文献1には、「負極格子に、カルシウム(Ca)を0.025〜0.065質量%、錫(Sn)を0.25〜1.0質量%含む鉛(Pb)−Ca−Sn系合金を用い、極板耳部を接続するストラップを形成するための足し鉛として、純鉛、あるいはSnを1.3質量%以下含むPb−Sn合金を用いたことを特徴とする密閉型鉛蓄電池」(請求項1)について、「負極格子中のCa量を0.020〜0.065質量%としたものでは、過充電試験後においても負極ストラップ(耳部との溶接部近傍)での腐食はほとんど認められなかった。」(0044)旨が記載されている。 Patent Document 1 states that “lead (Pb) —Ca—Sn system containing 0.025 to 0.065% by mass of calcium (Ca) and 0.25 to 1.0% by mass of tin (Sn) in the negative electrode lattice. A sealed lead-acid battery using pure lead or a Pb-Sn alloy containing 1.3 mass% or less of Sn as an additional lead for forming a strap for connecting an electrode plate ear using an alloy (Claim 1): "In the case where the amount of Ca in the negative electrode lattice is 0.020 to 0.065 mass%, corrosion occurs in the negative electrode strap (near the welded portion) even after the overcharge test. Was hardly recognized "(0044).
特許文献2には、「鉛−スズ−カルシウム系合金からなる極板格子の耳部相互を、鉛−スズ−セレン系合金からなる棚部により接続したことを特徴とする鉛蓄電池」(請求項1)について、「負極格子には、鉛−0.5重量%スズ−0.08重量%カルシウム合金からなる鉛合金シートにエキスパンド加工を施したエキスパンド格子を‥用いた」(0012)ことが記載されている。 Patent Document 2 discloses a “lead storage battery characterized in that the ears of the electrode plate lattice made of a lead-tin-calcium alloy are connected to each other by a shelf made of a lead-tin-selenium alloy” (claim) Regarding 1), it is stated that “an expanded lattice obtained by subjecting a lead alloy sheet made of lead-0.5% by weight tin-0.08% by weight calcium alloy to an expanded process as the negative electrode lattice” was used (0012). Has been.
また、特許文献3には、「負極活物質の密度が3.5〜4.0g/cm3であり、負極活物質と正極活物質の質量比を(負/正)が0.5〜0.8であることを特徴とする制御弁式鉛蓄電池」(請求項1)について、「負極活物質と正極活物質の質量比(負/正)を0.5〜0.8に小さく規定したので、スタンバイ使用における浮動充電電流が減少して正極格子の腐食が防止され、長寿命である。また負極活物質の密度を3.5〜4.0g/cm3と小さく規定したので負極活物質の利用率が高くなり、従って正極活物質量に対する負極活物質量を減らしても、低温高率放電特性は従来品と同等に維持される。」(0007)と記載されている。
負極活物質と正極活物質の質量比(負/正)0.5〜0.8を、負極活物質の質量に対する正極活物質の質量の比(正/負)に換算すると、1.25〜2.0である。
Patent Document 3 states that “the density of the negative electrode active material is 3.5 to 4.0 g / cm 3 and the mass ratio of the negative electrode active material to the positive electrode active material is (negative / positive) is 0.5 to 0. The control valve type lead-acid battery characterized in that it is .8 (Claim 1), “the mass ratio (negative / positive) of the negative electrode active material and the positive electrode active material is defined as small to 0.5 to 0.8” Therefore, the floating charging current in standby use is reduced, corrosion of the positive electrode grid is prevented, and the life is long, and the density of the negative electrode active material is defined as small as 3.5 to 4.0 g / cm 3 , so that the negative electrode active material Therefore, even if the amount of the negative electrode active material is reduced with respect to the amount of the positive electrode active material, the low-temperature high-rate discharge characteristics are maintained at the same level as the conventional product ”(0007).
When the mass ratio (negative / positive) 0.5 to 0.8 of the negative electrode active material and the positive electrode active material is converted into the ratio (positive / negative) of the mass of the positive electrode active material to the mass of the negative electrode active material, 1.25 to 2.0.
特許文献4には、「化成された状態の前記正極板に保持されている総活物質量(P)と、化成された状態の前記負極板に保持されている総活物質量(N)の質量比N/Pが、1.0<N/P≦1.2の関係を有し、化成された状態における前記正極板の活物質の多孔度が45〜50%の範囲であることを特徴とする制御弁式鉛蓄電池。」(請求項1)について、「質量比N/Pの関係が、1.0<N/P≦1.2の範囲にあるときは、満充電未満の状態で長期間使用したときに負極板に難還元性硫酸鉛が蓄積しても、負極板には正極板との充放電反応に関与するために必要十分な活物質量が確保されているので、鉛蓄電池を長寿命化させることができる。そして、正極板に保持されている活物質の多孔度が45〜50%にあるので、活物質強度が向上し放電深度の深い充放電サイクルに伴う活物質の劣化や泥状化を抑制することができて、長寿命の鉛蓄電池を実現することが可能となる。」(0007)と記載されている。
このN/Pを負極活物質の質量に対する正極活物質の質量の比(P/N)に換算すると、0.83〜1.0である。
Patent Document 4 states that “the total amount of active material (P) held in the formed positive electrode plate and the total amount of active material (N) held in the formed negative electrode plate”. The mass ratio N / P has a relationship of 1.0 <N / P ≦ 1.2, and the porosity of the active material of the positive electrode plate in the formed state is in the range of 45 to 50%. The control valve-type lead-acid storage battery is as follows. (Claim 1) “When the relationship of mass ratio N / P is in the range of 1.0 <N / P ≦ 1.2, Even if hard-to-reduced lead sulfate accumulates in the negative electrode plate when used for a long time, the negative electrode plate has enough active material necessary to participate in the charge / discharge reaction with the positive electrode plate. The life of the storage battery can be extended, and the porosity of the active material held on the positive electrode plate is 45 to 50%. It is possible to suppress the deterioration and mudification of the active material associated with the charge / discharge cycle having a deep discharge depth, and to realize a long-life lead-acid battery ”(0007). .
When this N / P is converted into the ratio (P / N) of the mass of the positive electrode active material to the mass of the negative electrode active material, it is 0.83 to 1.0.
従来の制御弁式鉛蓄電池においては、負極集電体の耳の耐食性を向上させる目的で、様々な負極集電体の合金組成が検討され、一定の成果を上げてきた。しかしながら、耐食性の高い合金組成を選択しても、高温環境下で使用された一部の電池において、フロート寿命が短く目標値に達しないという問題があった。
また、制御弁式鉛蓄電池において、正極活物質と負極活物質の質量比を規定することも、正極板の劣化防止(特許文献3(0007)参照)や、硫酸鉛の蓄積による負極容量の低下対策(特許文献4(0007)参照)等を目的として、従来から行われている。しかし、上記の質量比と負極集電体の耳の耐食性との関係について言及した先行技術は、発見できなかった。
In conventional control valve type lead-acid batteries, various alloy compositions of negative electrode current collectors have been studied for the purpose of improving the corrosion resistance of the negative electrode current collector ears, and certain results have been achieved. However, even if an alloy composition with high corrosion resistance is selected, there is a problem that some batteries used in a high temperature environment have a short float life and do not reach the target value.
Moreover, in the control valve type lead-acid battery, the mass ratio between the positive electrode active material and the negative electrode active material can be regulated by preventing the deterioration of the positive electrode plate (see Patent Document 3 (0007)) or by reducing the negative electrode capacity due to the accumulation of lead sulfate. Conventionally, for the purpose of countermeasures (see Patent Document 4 (0007)) and the like. However, the prior art that refers to the relationship between the above-described mass ratio and the corrosion resistance of the negative electrode current collector ear could not be found.
本発明は、負極集電体の耳の腐食が抑制され、寿命の長い制御弁式鉛蓄電池を提供することを目的とする。 An object of the present invention is to provide a control valve type lead storage battery in which corrosion of an ear of a negative electrode current collector is suppressed and the life is long.
上記の目的を達成するために、本発明は、以下の手段を採用する。
(1)合金の全質量に対して、Ca0.07質量%以上0.12質量%以下、Sn0.75質量%以下を含有するPb−Ca−Sn系合金、又は合金の全質量に対してCa0.07質量%以上0.12質量%以下を含有するPb−Ca系合金からなる負極集電体を備え、且つ、負極電極材料の質量に対する正極電極材料の質量の比が、1.27以上1.35以下、又は1.47以上である制御弁式鉛蓄電池。
(2)合金の全質量に対してCa0.07質量%以上0.12質量%以下、Sn0.75質量%以下を含有するPb−Ca−Sn系合金、又は合金の全質量に対してCa0.07質量%以上0.12質量%以下を含有するPb−Ca系合金からなる負極耳を備え、且つ、負極電極材料の質量に対する正極電極材料の質量の比が、1.27以上1.35以下、又は1.47以上である制御弁式鉛蓄電池。
In order to achieve the above object, the present invention employs the following means.
(1) Pb-Ca-Sn alloy containing 0.07 mass% or more and 0.12 mass% or less of Ca, or Sn0.75 mass% or less with respect to the total mass of the alloy, or Ca0 with respect to the total mass of the alloy A negative electrode current collector made of a Pb—Ca-based alloy containing 0.07% by mass or more and 0.12% by mass or less, and the ratio of the mass of the positive electrode material to the mass of the negative electrode material is 1.27 or more and 1 Control valve type lead acid battery which is .35 or less, or 1.47 or more.
(2) Pb-Ca-Sn alloy containing 0.07 mass% or more and 0.12 mass% or less of Ca, or Sn0.75 mass% or less with respect to the total mass of the alloy, or Ca0. The negative electrode ear which consists of Pb-Ca type alloy containing 07 mass% or more and 0.12 mass% or less is provided, and the ratio of the mass of positive electrode material to the mass of negative electrode material is 1.27 or more and 1.35 or less Or a valve-regulated lead-acid battery that is 1.47 or higher.
本発明によれば、負極集電体の耳の腐食を抑え、長寿命の制御弁式鉛蓄電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the corrosion of the ear | edge of a negative electrode collector can be suppressed, and a long-life control valve type lead acid battery can be provided.
本発明者は、耐食性を向上させる合金の組成に関して種々検討したところ、合金の全質量に対してCaが0.07質量%以上0.12質量%以下、Snが0.75質量%以下のPb−Ca−Sn系合金、又は合金の全質量に対してCaが0.07質量%以上0.12質量%以下のPb−Ca系合金が、微細な結晶粒を形成し、耐食性に効果があることを見出した。
結晶性の組織を有する金属の腐食は、まず、結晶粒の粒界に沿って起こる。したがって、微細な結晶粒を形成する前記の合金においては、個々の結晶粒による粒界腐食の深さが小さいから、粒界に沿って起こる腐食が進行しがたいと推測し、これを負極集電体の耳に用いた。
As a result of various studies on the composition of the alloy that improves the corrosion resistance, the present inventor has found that Pb having a Ca content of 0.07% by mass to 0.12% by mass and a Sn content of 0.75% by mass or less with respect to the total mass of the alloy. -Ca-Sn alloy, or Pb-Ca alloy having a Ca content of 0.07 mass% or more and 0.12 mass% or less with respect to the total mass of the alloy forms fine crystal grains and is effective in corrosion resistance. I found out.
Corrosion of a metal having a crystalline structure first occurs along the grain boundaries of the crystal grains. Therefore, in the alloy that forms fine crystal grains, since the depth of intergranular corrosion due to individual crystal grains is small, it is assumed that the corrosion that occurs along the grain boundaries is difficult to proceed. Used for electrical ears.
ここで、鉛蓄電池の集電体は、格子状や放射状に桟を設けてなるいわゆるグリッド(格子)と呼ばれる部分を有しているから、一般的に「格子」と呼ばれることがある。集電体の耳の合金組成は、格子と同じであることが通常である。しかし、本発明は、負極集電体の耳の腐食の抑制を目的とするものであるから、耳が前記の合金組成であることが重要である。もちろん、耳を含む負極集電体が前記の合金組成である場合も、本発明に含まれる。
本明細書では、一般的な呼び名に倣って、耳を含む負極集電体を「負極格子」といい、負極集電体の耳を「負極耳」ということがある。
また、前記の合金組成は、主材がPb、Ca及びSnであるか、又はPb及びCaであ
る(Snが0%)ことを表わすものであり、Al等の他の不可避元素の含有を否定するものではない。合金中の「%」の表記は、合金の全質量に対する割合を示す。
Here, the current collector of the lead storage battery has a so-called grid (grid) formed by providing bars in a lattice shape or a radial shape, and therefore is generally called a “grid”. The alloy composition of the current collector ear is usually the same as the lattice. However, since the present invention is intended to suppress the corrosion of the ear of the negative electrode current collector, it is important that the ear has the above alloy composition. Of course, the present invention also includes the case where the negative electrode current collector including the ear has the above alloy composition.
In this specification, in accordance with a general name, a negative electrode current collector including an ear may be referred to as a “negative electrode lattice”, and an ear of the negative electrode current collector may be referred to as a “negative electrode ear”.
The alloy composition indicates that the main material is Pb, Ca and Sn, or Pb and Ca (Sn is 0%), and denies the inclusion of other inevitable elements such as Al. Not what you want. The notation “%” in the alloy indicates the ratio to the total mass of the alloy.
ところで、前記の合金からなる負極格子を有する鉛蓄電池であっても、高温環境下で使用された一部の機種では、目標の寿命年数に達しない場合があった。
その原因を調査した結果、負極耳とストラップとの溶接部付近(以下、「負極ストラップ部」という。)で腐食が進行しやすい電位になっていることが判明した。
By the way, even if it is a lead storage battery which has the negative electrode grid | lattice which consists of the said alloy, in some models used in high temperature environment, the target lifetime years might not be reached.
As a result of investigating the cause, it has been found that the potential is such that corrosion tends to proceed in the vicinity of the welded portion between the negative electrode ear and the strap (hereinafter referred to as “negative electrode strap portion”).
さらに、鋭意調査を行ったところ、負極ストラップ部の電位は、負極電極材料の質量に対する正極電極材料の質量の比に影響されるという新たな知見を得た。
なお、本明細書において、極板から集電体を除き、電池反応に寄与する物質(反応物質)と電池反応に寄与しない添加剤や補強材等の物質を合わせたものを電極材料と呼ぶ。本明細書では、「電極材料」を「活物質」という場合があり、「負極電極材料の質量に対する正極電極材料の質量の比」を、以下、「正極/負極電極材料質量比」という。
Furthermore, as a result of intensive investigations, a new finding was obtained that the potential of the negative electrode strap portion is affected by the ratio of the mass of the positive electrode material to the mass of the negative electrode material.
In this specification, a material obtained by removing the current collector from the electrode plate and combining a substance (reactive substance) that contributes to the battery reaction and a substance such as an additive or a reinforcing material that does not contribute to the battery reaction is referred to as an electrode material. In this specification, the “electrode material” may be referred to as “active material”, and the “ratio of the mass of the positive electrode material to the mass of the negative electrode material” is hereinafter referred to as “positive electrode / negative electrode material mass ratio”.
図1は、電位と腐食速度の関係を示すグラフである。
電位と腐食速度の関係は、以下の試験セルを用いて、75℃、0〜+70mV (vs Pb/PbSO4)の定電位条件で腐食試験を行い、
腐食速度=(初期厚み−試験後の腐食層を除いた厚み)/2/試験日数
として求めた。
試験セル構成
試験極および対極:純鉛の平板
参照極:Pb/PbSO4電極
電解液:比重1.28硫酸
図1から、+30〜+50mV(vs Pb/PbSO4)の電位範囲で、腐食速度が大きく、負極腐食が進行しやすいことがわかる。
FIG. 1 is a graph showing the relationship between potential and corrosion rate.
The relationship between the potential and the corrosion rate was determined by conducting a corrosion test at a constant potential condition of 75 ° C. and 0 to +70 mV (vs Pb / PbSO 4 ) using the following test cell.
Corrosion rate = (initial thickness−thickness excluding corrosion layer after test) / 2 / test days.
Test Cell Configuration Test Electrode and Counter Electrode: Pure Lead Flat Plate Reference Electrode: Pb / PbSO 4 Electrode Electrolyte: Specific Gravity 1.28 From FIG. 1, the corrosion rate is in the potential range of +30 to +50 mV (vs Pb / PbSO 4 ). It is large and it turns out that negative electrode corrosion advances easily.
図2は、正極/負極電極材料質量比と負極ストラップ部の電位との関係を示すグラフである。
負極ストラップ部の電位は、正極/負極電極材料質量比を1.19〜1.56に変化させた制御弁式鉛蓄電池を作製し、40℃2.23Vフロート充電を行い、Pb/PbSO4参照極の先端を負極ストラップに接触させて測定した。
正極/負極電極材料質量比が1.35より大きく1.47未満の場合は、負極ストラップ部の電位が腐食の進行しやすい+30〜+50mV(vs Pb/PbSO4)の電位になっている。これに対して、正極/負極電極材料質量比が1.35以下、又は1.47以上では、負極ストラップ部の電位が腐食の進行しやすい電位よりも貴になっている。そのため、負極腐食が抑制されると考えられる。
FIG. 2 is a graph showing the relationship between the positive electrode / negative electrode electrode material mass ratio and the potential of the negative electrode strap portion.
The potential of the negative electrode strap part is a control valve type lead storage battery in which the mass ratio of the positive electrode / negative electrode electrode material is changed to 1.19 to 1.56, 40 ° C. and 2.23 V float charging, and Pb / PbSO 4 reference Measurements were made with the tip of the pole in contact with the negative strap.
When the mass ratio of the positive electrode / negative electrode material is greater than 1.35 and less than 1.47, the potential of the negative electrode strap portion is a potential of +30 to +50 mV (vs Pb / PbSO 4 ) where corrosion is likely to proceed. On the other hand, when the mass ratio of the positive electrode / negative electrode electrode material is 1.35 or less, or 1.47 or more, the potential of the negative electrode strap portion is nobler than the potential at which corrosion easily proceeds. Therefore, it is thought that negative electrode corrosion is suppressed.
正極/負極電極材料質量比が、負極ストラップ部の電位に影響を与える作用・機序は、以下のように推察される。
正極/負極電極材料質量比が1.35以下では、正極活物質量が相対的に少ないので、正極活物質利用率が高くなり、正極電位が貴になって、酸素ガスの発生量が増加する。そのため、発生した酸素ガスを負極板で吸収しきれず、リテーナーマットから露出した負極ストラップや耳で還元が起きる。したがって、負極ストラップ部の電位が貴にシフトする。
正極/負極電極材料質量比が1.47以上では、負極活物質量が相対的に少ないので、正極で発生した酸素ガスを負極板で吸収しきれない。そのため、リテーナーマットから露出した負極ストラップや耳で還元が起き、負極ストラップ部の電位が貴にシフトする。
すなわち、正極/負極電極材料質量比が1.35以下の場合と1.47以上の場合とでは、作用・機序は異なるものの、負極ストラップ部の電位が貴にシフトするという同様の
現象が生じるものと推察される。
The action / mechanism that the mass ratio of the positive electrode / negative electrode material affects the potential of the negative electrode strap portion is presumed as follows.
When the mass ratio of the positive electrode / negative electrode material is 1.35 or less, the amount of the positive electrode active material is relatively small, so that the utilization rate of the positive electrode active material is increased, the positive electrode potential becomes noble, and the generation amount of oxygen gas increases. . For this reason, the generated oxygen gas cannot be completely absorbed by the negative electrode plate, and reduction occurs at the negative electrode strap and the ear exposed from the retainer mat. Therefore, the potential of the negative strap part is shifted preciously.
When the mass ratio of the positive electrode / negative electrode material is 1.47 or more, the amount of the negative electrode active material is relatively small, so that the oxygen gas generated at the positive electrode cannot be completely absorbed by the negative electrode plate. Therefore, reduction occurs at the negative electrode strap and the ear exposed from the retainer mat, and the potential of the negative electrode strap portion is shifted preciously.
That is, although the action / mechanism is different between the case where the mass ratio of the positive electrode / negative electrode electrode material is 1.35 or less and the case where it is 1.47 or more, a similar phenomenon occurs in which the potential of the negative electrode strap portion is shifted preciously. Inferred.
なお、正極/負極電極材料質量比が1.27未満では、正極活物質利用率が高いため、正極劣化が負極腐食に先立って進行し、短寿命化の原因となる。したがって、正極/負極電極材料質量比1.27以上が必要である。
正極/負極電極材料質量比が1.62より大きい場合、寿命性能に特段の影響はない。しかし、エネルギー密度確保のため、上記質量比は1.62以下が好ましく、1.56以下がより好ましい。
If the positive electrode / negative electrode material mass ratio is less than 1.27, the positive electrode active material utilization rate is high, so that the positive electrode deterioration proceeds prior to the negative electrode corrosion, causing a shortened life. Therefore, a positive electrode / negative electrode material mass ratio of 1.27 or more is required.
When the positive electrode / negative electrode material mass ratio is larger than 1.62, there is no particular influence on the life performance. However, in order to ensure energy density, the mass ratio is preferably 1.62 or less, and more preferably 1.56 or less.
以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。 Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be changed as appropriate according to the common knowledge of those skilled in the art and the disclosure of the prior art.
(正極板の作製)
Ca0.06質量%、Sn1.5質量%、Al0.02質量%以下、及び不可避不純物を含有するPb−Ca−Sn系合金から、厚さ3.8mmの正極格子を鋳造して正極集電体とした。なお、正極格子の合金組成、寸法、デザイン、および鋳造、エキスパンド、圧延シート打抜き等の製造方法は任意である。
ボールミル法による鉛粉99.9質量%と、合成樹脂繊維0.1質量%を、25℃で比重が1.16の硫酸を加えて正極ペーストとし、これを正極格子に充填して、熟成と乾燥を行い、正極格子と正極活物質からなる正極板を作製した。ペースト充填量は、化成後の正極/負極電極材料質量比が1.19〜1.56となるように調整した。正極活物質の密度等は任意である。
(Preparation of positive electrode plate)
A positive electrode current collector obtained by casting a positive electrode grid having a thickness of 3.8 mm from a Pb—Ca—Sn alloy containing 0.06% by mass of Ca, 1.5% by mass of Sn, 0.02% by mass of Al, and inevitable impurities. It was. In addition, the alloy composition, dimensions, and design of the positive electrode lattice, and manufacturing methods such as casting, expanding, and punching of a rolled sheet are arbitrary.
Add 99.9% by mass of lead powder by ball mill method and 0.1% by mass of synthetic resin fiber to a positive electrode paste by adding sulfuric acid having a specific gravity of 1.16 at 25 ° C. It dried and produced the positive electrode plate which consists of a positive electrode grid and a positive electrode active material. The paste filling amount was adjusted so that the mass ratio of the positive electrode / negative electrode material after chemical conversion was 1.19 to 1.56. The density and the like of the positive electrode active material are arbitrary.
(負極板の作製)
Ca0.06〜0.13質量%、Sn0〜0.9質量%、Al0.02質量%以下、及び不可避不純物を含有するPb−Ca−Sn系合金、又はPb−Ca系合金からなる厚さ1.9mmの負極格子を鋳造し、表1及び表2に示すNo.1〜90の電池に用いる負極集電体とした。なお、負極格子の寸法、デザイン等は任意である。
ボールミル法の鉛粉98.3質量%と、合成樹脂繊維0.1質量%、カーボンブラック0.1質量%、BaSO41.4質量%、及びリグニン0.1質量%を、25℃で比重が1.14の硫酸を加えて負極ペーストとし、これを負極格子に充填して、熟成と乾燥を行い、負極格子と負極活物質からなる負極板を作製した。ペースト充填量は、化成後の正極/負極電極材料質量比が1.19〜1.56となるように調整した。負極活物質の密度等は任意である。
(Preparation of negative electrode plate)
Thickness 1 made of Pb—Ca—Sn alloy or Pb—Ca alloy containing 0.06 to 0.13% by mass of Ca, Sn 0 to 0.9% by mass, Al 0.02% by mass or less, and inevitable impurities A negative grid of 9 mm was cast, and No. 1 shown in Tables 1 and 2 were cast. It was set as the negative electrode collector used for the battery of 1-90. The dimensions and design of the negative electrode grid are arbitrary.
A lead powder 98.3 wt% of the ball mill method, the synthetic resin fibers 0.1 wt%, carbon black 0.1 wt%, BaSO 4 1.4 wt%, and 0.1 wt% lignin, a specific gravity at 25 ° C. 1.14 sulfuric acid was added to form a negative electrode paste, which was filled in the negative electrode lattice, and was aged and dried to prepare a negative electrode plate composed of the negative electrode lattice and the negative electrode active material. The paste filling amount was adjusted so that the mass ratio of the positive electrode / negative electrode material after chemical conversion was 1.19 to 1.56. The density and the like of the negative electrode active material are arbitrary.
(電池の組立)
正極板8枚と負極板9枚を、微細ガラスマットセパレータを介して積層して極板群とし、極板群の長さが電槽内寸法になるまで圧迫を加えて電槽内に収納した。足し鉛に純鉛を用いて、同極板間を接続する正極ストラップ、及び負極ストラップをそれぞれ形成した。なお、ストラップには、純鉛に限らず、Pb−Sn系合金を使用することができる。
電槽に蓋体を接着した後、蓋体の注液部から電解液として硫酸を加え、電槽化成を施して、正極/負極電極材料質量比が1.19〜1.56、定格容量200Ah、2Vの制御弁式鉛蓄電池を組み立てた。
(Battery assembly)
Eight positive electrode plates and nine negative electrode plates were laminated through a fine glass mat separator to form an electrode plate group, and the electrode plate was compressed and stored in the battery case until the length of the electrode plate group reached the dimensions in the battery case. . Using pure lead as the additional lead, a positive strap and a negative strap that connect the same polar plates were formed. The strap is not limited to pure lead, and a Pb—Sn alloy can be used.
After adhering the lid to the battery case, sulfuric acid is added as an electrolyte from the liquid injection part of the lid, the battery case is formed, the mass ratio of the positive electrode / negative electrode material is 1.19 to 1.56, and the rated capacity is 200 Ah. A 2V control valve type lead acid battery was assembled.
(加速試験)
作製したNo.1〜90の鉛蓄電池について、以下の加速試験を行った。
試験条件
(1)容量確認試験:25℃、0.2CA、終止電圧1.75V/セル
(2)回復充電:25℃、2.23V/セル定電圧充電(最大電流0.2CA)、48時間
(3)フロート充電:50℃、2.23V/セル×14日間
(4)放電深度5%放電:50℃、0.005CA×10時間
(5)フロート充電:50℃、2.23V/セル×14日間
上記(1)〜(5)の工程を繰り返し行い、(1)の工程で放電時間が4時間未満になる時点で終了する。
(Accelerated test)
The following accelerated tests were performed on the produced lead-acid batteries No. 1 to 90.
Test conditions (1) Capacity confirmation test: 25 ° C., 0.2 CA, end voltage 1.75 V / cell (2) Recovery charge: 25 ° C., 2.23 V / cell constant voltage charge (maximum current 0.2 CA), 48 hours (3) Float charge: 50 ° C., 2.23 V / cell × 14 days (4) 5% depth of discharge: 50 ° C., 0.005 CA × 10 hours (5) Float charge: 50 ° C., 2.23 V / cell × The steps (1) to (5) are repeated for 14 days, and the process is terminated when the discharge time is less than 4 hours in the step (1).
(寿命判定)
上記(1)〜(5)の2サイクルを25℃での寿命1年と換算して、加速試験終了までの期間からフロート寿命を判定した。目標とするフロート寿命は25℃換算で13年とした。
(Life judgment)
The two cycles of (1) to (5) were converted to a lifetime of 1 year at 25 ° C., and the float lifetime was determined from the period until the end of the acceleration test. The target float life was 13 years in terms of 25 ° C.
(負極腐食量)
加速試験終了後の電池を解体して取り出した負極ストラップと耳の溶接部の断面を金属顕微鏡で観察し、腐食層を除いた耳厚みを確認して、負極腐食量を下式を用いて算出した。
負極腐食量(%)=(耳初期厚み−試験後の腐食層を除いた耳厚み)/耳初期厚み×100
寿命年数及び負極腐食量の結果を表1、表2に示す。
(Anode corrosion amount)
After accelerating the battery, disassemble the battery and take out the negative electrode strap and the cross-section of the welded part of the ear with a metal microscope, check the ear thickness excluding the corroded layer, and calculate the negative electrode corrosion amount using the following formula did.
Negative electrode corrosion amount (%) = (ear initial thickness−ear thickness excluding the corroded layer after the test) / ear initial thickness × 100
Tables 1 and 2 show the results of the life years and the negative electrode corrosion amount.
表1のNo.1〜18、No.19〜36、No.37〜54の電池は、種々の負極格子合金を用い、正極/負極電極材料質量比をそれぞれ1.27、1.39、及び1.51としたものであり、それぞれ図3〜5に対応する。 No. in Table 1 1-18, no. 19-36, no. The batteries of 37 to 54 use various negative electrode lattice alloys, and have positive / negative electrode material mass ratios of 1.27, 1.39, and 1.51, respectively, and correspond to FIGS. .
正極/負極電極材料質量比が1.39である電池(No.19〜36、図4)は、負極格子の合金組成に関わらず、負極耳腐食量が大きく、フロート寿命は目標値である25℃換算13年に遙かに及ばない。 A battery having a positive electrode / negative electrode material mass ratio of 1.39 (No. 19 to 36, FIG. 4) has a large negative electrode ear corrosion amount regardless of the alloy composition of the negative electrode lattice, and the float life is a target value. It is far less than 13 years in terms of ℃.
正極/負極電極材料質量比が1.27である電池(No.1〜18、図3)、及び1.51である電池(No.37〜54、図5)において、負極格子の合金組成中、Caが0.06質量%又は0.13質量%である電池(No.1〜3、No.16〜18、No.37〜39、No.52〜54)、及びSnが0.9質量%である電池(No.7、11、15、43、47、51)は、負極耳腐食量が大きく、目標のフロート寿命を達成していない。
これに対して、正極/負極電極材料質量比が1.27及び1.51であり、負極格子の合金組成が、Ca:0.07〜0.12質量%、Sn:0〜0.75質量%を満たす電池(No.4〜6、8〜10、12〜14、40〜42、44〜46、48〜50)は、負極耳腐食量が小さく、25℃換算13年を上回る寿命性能を有している。
In a battery (No. 1-18, FIG. 3) having a positive electrode / negative electrode material mass ratio of 1.27, and a battery having a mass ratio of 1.51 (No. 37-54, FIG. 5), the alloy composition of the negative electrode lattice , Batteries in which Ca is 0.06 mass% or 0.13 mass% (No. 1 to 3, No. 16 to 18, No. 37 to 39, No. 52 to 54), and Sn is 0.9 mass % Batteries (No. 7, 11, 15, 43, 47, 51) have a large negative electrode ear corrosion amount and do not achieve the target float life.
On the other hand, the positive electrode / negative electrode electrode material mass ratio is 1.27 and 1.51, and the alloy composition of the negative electrode lattice is Ca: 0.07 to 0.12 mass%, Sn: 0 to 0.75 mass. % (Nos. 4-6, 8-10, 12-14, 40-42, 44-46, 48-50) have a small negative electrode ear corrosion amount and have a life performance exceeding 13 years in terms of 25 ° C. Have.
表2は、負極格子の合金組成について、それぞれCaが0.07〜0.12質量%、Snが0〜0.75質量%であることを満たす5種類の電池(No.55〜60、No.61〜66、No.67〜72、No.73〜78、及びNo.79〜84)と、負極格子の合金組成中、Caが0.06質量%でSnが0.75質量%である電池(No.85〜90)において、それぞれ正極/負極電極材料質量比を1.19〜1.56の範囲で異ならせた結果(No.4、22、40、6、24、42、9、27、45、13、31、49、14、32、50、3、21、39を含む。)であり、図6、7は、その結果をグラフ化したものである。 Table 2 shows five types of batteries (Nos. 55 to 60, No.) satisfying that the alloy composition of the negative electrode lattice is 0.07 to 0.12% by mass of Ca and 0 to 0.75% by mass of Sn. .61-66, No. 67-72, No. 73-78, and No. 79-84), and the alloy composition of the negative electrode lattice, Ca is 0.06 mass% and Sn is 0.75 mass%. Results (Nos. 4, 22, 40, 6, 24, 42, 9, and 9) in which the positive electrode / negative electrode material mass ratios were varied in the range of 1.19 to 1.56 in the batteries (No. 85 to 90), respectively. 27, 45, 13, 31, 49, 14, 32, 50, 3, 21, 39.), and FIGS. 6 and 7 are graphs of the results.
Caが0.06質量%でSnが0.75質量%である電池(No.85〜90、図6)は、いずれの正極/負極電極材料質量比であっても、負極耳腐食量が大きく、寿命年数が短いから、負極格子の合金組成が適正でないことが分かる。
前者の5種類の電池において、正極/負極電極材料質量比が1.43の場合(No.58、64、70、76、82)は、1.39の場合(No.22、24、27、31、32)と同じく、負極耳腐食量が大きく、寿命年数が短いから、正極/負極電極材料質量比が適正でないことがわかる。
正極/負極電極材料質量比が1.19の場合(No.55、61、67、73、79)は、いずれも負極耳腐食量は小さいが、25℃換算の寿命年数が13年を切っている。これは、正極活物質利用率が高いことにより、正極劣化が進んだことによるものである。
これに対して、前者の5種類の電池において、正極/負極電極材料質量比が1.32、1.35、1.47又は1.56の場合(No.56、57、59、60、62、63、65、66、68、69、71、72、74、75、77、78、80、81、83、84)は、正極/負極電極材料質量比が1.27又は1.51の場合(No.4、40、6、42、9、45、13、49、14、50)と同様に、負極耳腐食量が小さく、かつ、25℃換算の寿命年数13年以上を達成している。
A battery (No. 85 to 90, FIG. 6) in which Ca is 0.06% by mass and Sn is 0.75% by mass has a large negative electrode ear corrosion amount at any positive electrode / negative electrode material mass ratio. Since the lifetime is short, it can be seen that the alloy composition of the negative electrode lattice is not appropriate.
In the former five types of batteries, when the positive electrode / negative electrode electrode material mass ratio is 1.43 (No. 58, 64, 70, 76, 82), the case of 1.39 (No. 22, 24, 27, 31 and 32), the negative electrode ear corrosion amount is large and the life years are short, so that it is understood that the mass ratio of the positive electrode / negative electrode material is not appropriate.
When the positive electrode / negative electrode electrode material mass ratio is 1.19 (No. 55, 61, 67, 73, 79), the negative electrode ear corrosion amount is small, but the lifetime in terms of 25 ° C. is less than 13 years. Yes. This is because the positive electrode active material utilization rate is high, and the positive electrode deterioration is advanced.
On the other hand, in the former five types of batteries, when the positive electrode / negative electrode electrode material mass ratio is 1.32, 1.35, 1.47 or 1.56 (No. 56, 57, 59, 60, 62) 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84) when the positive electrode / negative electrode material mass ratio is 1.27 or 1.51 Similarly to (No. 4, 40, 6, 42, 9, 45, 13, 49, 14, 50), the negative electrode ear corrosion amount is small, and a lifetime of 13 years or more converted to 25 ° C. has been achieved. .
以上の結果から、負極格子又は負極耳の合金組成が、Caを0.07質量%以上0.12質量%以下、Snを0.75質量%以下含むPb−Ca−Sn系合金又はPb−Ca系合金であり、正極/負極電極材料質量比が1.27以上1.35以下、又は1.47以上である場合に、長寿命の制御弁式鉛蓄電池が得られることがわかる。 From the above results, the alloy composition of the negative electrode lattice or the negative electrode ear is Pb—Ca—Sn alloy or Pb—Ca containing 0.07 mass% or more and 0.12 mass% or less of Ca and 0.75 mass% or less of Sn. It is understood that a long-life control valve type lead-acid battery is obtained when the mass ratio of the positive electrode / negative electrode electrode material is 1.27 or more and 1.35 or less, or 1.47 or more.
なお、正極/負極電極材料質量比は、前述のように、正極格子に充填する正極ペーストと負極格子に充填する負極ペーストとの量比によって調整することができる。
市販の電池について、化成後の正極/負極電極材料質量比を確認するためには、電池に100%以上の充電をしてから解体して、正極板及び負極板を取り出し、正極電極材料、負極電極材料の質量を測定し、質量比を算出すればよい。また、できるだけ新品又は新品に近い電池で確認することが望ましい。
In addition, the positive electrode / negative electrode electrode material mass ratio can be adjusted by the quantitative ratio of the positive electrode paste filled in the positive electrode lattice and the negative electrode paste filled in the negative electrode lattice as described above.
In order to confirm the mass ratio of the positive electrode / negative electrode material after conversion for a commercially available battery, the battery is disassembled after being charged 100% or more, and the positive electrode plate and the negative electrode plate are taken out. What is necessary is just to measure the mass of electrode material and to calculate mass ratio. Moreover, it is desirable to check with a new battery or a new battery as close as possible.
本発明によれば、長寿命の制御弁式鉛蓄電池が得られるから、据え置き用や車載用の電池として有用である。 According to the present invention, a control valve type lead-acid battery having a long life can be obtained, so that it is useful as a battery for stationary or in-vehicle use.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019128297A JP6830615B2 (en) | 2019-07-10 | 2019-07-10 | Control valve type lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019128297A JP6830615B2 (en) | 2019-07-10 | 2019-07-10 | Control valve type lead acid battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015055481A Division JP6836315B2 (en) | 2015-03-19 | 2015-03-19 | Control valve type lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019204790A true JP2019204790A (en) | 2019-11-28 |
JP6830615B2 JP6830615B2 (en) | 2021-02-17 |
Family
ID=68727284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019128297A Active JP6830615B2 (en) | 2019-07-10 | 2019-07-10 | Control valve type lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6830615B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6091572A (en) * | 1983-10-24 | 1985-05-22 | Yuasa Battery Co Ltd | Sealed lead storage battery |
JPH01128367A (en) * | 1987-11-11 | 1989-05-22 | Yuasa Battery Co Ltd | Sealed type lead storage battery |
JP2004014283A (en) * | 2002-06-06 | 2004-01-15 | Matsushita Electric Ind Co Ltd | Valve regulated lead battery |
JP2004047302A (en) * | 2002-07-12 | 2004-02-12 | Matsushita Electric Ind Co Ltd | Control valve type lead-acid battery |
JP2005310462A (en) * | 2004-04-20 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Lead-acid storage battery |
JP2006049025A (en) * | 2004-08-03 | 2006-02-16 | Furukawa Battery Co Ltd:The | Control valve type lead-acid storage battery |
JP2006210210A (en) * | 2005-01-31 | 2006-08-10 | Matsushita Electric Ind Co Ltd | Lead-acid battery |
-
2019
- 2019-07-10 JP JP2019128297A patent/JP6830615B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6091572A (en) * | 1983-10-24 | 1985-05-22 | Yuasa Battery Co Ltd | Sealed lead storage battery |
JPH01128367A (en) * | 1987-11-11 | 1989-05-22 | Yuasa Battery Co Ltd | Sealed type lead storage battery |
JP2004014283A (en) * | 2002-06-06 | 2004-01-15 | Matsushita Electric Ind Co Ltd | Valve regulated lead battery |
JP2004047302A (en) * | 2002-07-12 | 2004-02-12 | Matsushita Electric Ind Co Ltd | Control valve type lead-acid battery |
JP2005310462A (en) * | 2004-04-20 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Lead-acid storage battery |
JP2006049025A (en) * | 2004-08-03 | 2006-02-16 | Furukawa Battery Co Ltd:The | Control valve type lead-acid storage battery |
JP2006210210A (en) * | 2005-01-31 | 2006-08-10 | Matsushita Electric Ind Co Ltd | Lead-acid battery |
Also Published As
Publication number | Publication date |
---|---|
JP6830615B2 (en) | 2021-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5120620A (en) | Binary lead-tin alloy substrate for lead-acid electrochemical cells | |
JP2016177909A (en) | Control valve type lead-acid battery | |
JP4798972B2 (en) | Control valve type lead-acid battery for standby | |
JP2002175798A (en) | Sealed lead-acid battery | |
CN101824562A (en) | Positive grid alloy material for lead-acid storage battery | |
JP6601654B2 (en) | Control valve type lead acid battery | |
JP2019204790A (en) | Control valve type lead-acid battery | |
JP5505248B2 (en) | Lead acid battery | |
JP2012138331A (en) | Lead storage battery and idling stop vehicle | |
US2994626A (en) | Low loss battery | |
CN113782747B (en) | High-calcium alloy for lead-acid storage battery grid and preparation method thereof | |
JPS58117658A (en) | Sealed lead-acid battery | |
JP2005122922A (en) | Manufacturing method of grid for lead acid battery and lead acid battery | |
JP2010277941A (en) | Lead-acid battery | |
JP4827452B2 (en) | Method for producing lead-acid battery | |
JP4923399B2 (en) | Lead acid battery | |
JPH01117272A (en) | Lead-acid battery | |
JPH0548586B2 (en) | ||
JPH01189859A (en) | Lead-acid battery | |
JPH01117279A (en) | Lead-acid battery | |
JP2014191976A (en) | Sealed lead acid battery | |
JPS5924500B2 (en) | lead acid battery | |
JP5375049B2 (en) | Lead acid battery | |
JPH01128357A (en) | Lead storage battery | |
JPH01143147A (en) | Lead storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200318 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6830615 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |