Nothing Special   »   [go: up one dir, main page]

JP2019178847A - Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method - Google Patents

Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method Download PDF

Info

Publication number
JP2019178847A
JP2019178847A JP2018070094A JP2018070094A JP2019178847A JP 2019178847 A JP2019178847 A JP 2019178847A JP 2018070094 A JP2018070094 A JP 2018070094A JP 2018070094 A JP2018070094 A JP 2018070094A JP 2019178847 A JP2019178847 A JP 2019178847A
Authority
JP
Japan
Prior art keywords
waste
grate
incinerator
moisture content
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018070094A
Other languages
Japanese (ja)
Inventor
太一 薄木
Taichi Usuki
太一 薄木
知広 傳田
Tomohiro Denda
知広 傳田
中山 剛
Takeshi Nakayama
剛 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2018070094A priority Critical patent/JP2019178847A/en
Publication of JP2019178847A publication Critical patent/JP2019178847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

To provide a waste moisture percentage measuring apparatus and waste moisture percentage measuring method which can acquire the moisture percentage of wastes just before fed into a combustion chamber and control the operation of a waste incinerator in an adequate operation condition.SOLUTION: A chute 15 by which wastes P are fell and supplied into a combustion chamber 13 has a pair of parallel wall parts 15A, 15B, and is provided with a moisture percentage meter 20 for measuring the moisture percentage of the wastes in the chute 15. The moisture percentage meter 20 is a type of a microwave transmission, and has a transmitting part 20A-2 which transmits microwave and a receiving part 20B-2 which receives the microwave. The transmitting part is placed in a window part 17B formed in one of the pair of the parallel wall parts 15A, 15B of the chute 15, and the receiving part 20B-2 is placed in a window part 17B formed in the other parallel wall part 15B. A transmission frequency of the transmitting part 20A-2 is equal to or more than 15 MHz and equal to or less than 120 MHz.SELECTED DRAWING: Figure 2

Description

本発明は廃棄物の性状としての水分率に応じて廃棄物を焼却するために水分率を測定する廃棄物水分率測定装置及び廃棄物水分率測定方法、そして、都市ごみ等の廃棄物を焼却する火格子式廃棄物焼却炉及び廃棄物焼却方法に関する。   The present invention relates to a waste water content measuring device and a waste water content measuring method for measuring the water content in order to incinerate waste according to the water content as a property of waste, and incineration waste such as municipal waste. The present invention relates to a grate-type waste incinerator and a waste incineration method.

都市ごみ等の廃棄物を焼却処理する焼却炉として、火格子式廃棄物焼却炉が広く用いられている。その代表的なものの構成の概要を以下に説明する。   Grate-type waste incinerators are widely used as incinerators for incinerating waste such as municipal waste. The outline of the configuration of the representative one will be described below.

火格子式廃棄物焼却炉は、廃棄物を燃焼する燃焼室の下部に廃棄物の移動方向に配置され三段から成る火格子(乾燥火格子、燃焼火格子そして後燃焼火格子)を有し、後燃焼火格子の上方に位置する燃焼室の出口に二次燃焼室が連設されている。上記燃焼室には乾燥火格子の上方に位置して廃棄物投入口が設けられている。そして後燃焼火格子の廃棄物の移動方向下流側下方には灰排出口が設けられている。通常、上記二次燃焼室は廃熱回収用の廃熱ボイラの一部でもあり、その入口近傍部分である。また、乾燥火格子、燃焼火格子そして後燃焼火格子それぞれの火格子下から燃焼用一次空気を吹き込む燃焼用一次空気吹込み機構が設けられている。   The grate-type waste incinerator has a three-stage grate (dry grate, combustion grate, and post-combustion grate) that is arranged in the direction of waste movement at the bottom of the combustion chamber that burns the waste. The secondary combustion chamber is connected to the outlet of the combustion chamber located above the post-combustion grate. The combustion chamber is provided with a waste inlet located above the dry grate. An ash discharge port is provided at the downstream side of the post-combustion grate waste in the moving direction. Usually, the secondary combustion chamber is also a part of a waste heat boiler for waste heat recovery, and is in the vicinity of the inlet. Further, a combustion primary air blowing mechanism for blowing combustion primary air from below the grate of each of the dry grate, the combustion grate, and the post-combustion grate is provided.

このような火格子式廃棄物焼却炉において、廃棄物投入口から燃焼室内に投入された廃棄物は、乾燥火格子上に堆積され、乾燥火格子の下からの空気と炉内の輻射熱により乾燥されると共に、昇温されて着火する。すなわち、上記乾燥火格子の直上方では、廃棄物の移動方向の上流側空間で乾燥領域が形成され、乾燥火格子の直上方の下流側空間から燃焼火格子の直上方の上流側空間にかけて燃焼開始領域が形成される。燃焼開始領域で着火して燃焼を開始した廃棄物は、乾燥火格子から燃焼火格子上に送られ、廃棄物が熱分解されて可燃性ガスが発生し、燃焼火格子の下から送られる燃焼用一次空気により可燃性ガスが火炎を形成して燃焼し、さらに固形分が燃焼して、燃焼火格子の直上方空間で主燃焼領域が形成される。そして、更に後燃焼火格子上で、固定炭素など未燃分が完全に燃焼し、該後燃焼火格子の直上方空間で後燃焼領域が形成される。しかる後、燃焼後に残った灰は、灰排出口より外部に排出される。   In such a grate-type waste incinerator, waste thrown into the combustion chamber from the waste inlet is deposited on the dry grate and dried by air from the bottom of the dry grate and radiant heat in the furnace. At the same time, the temperature is raised and ignition occurs. That is, immediately above the dry grate, a dry region is formed in the upstream space in the waste movement direction, and combustion occurs from the downstream space directly above the dry grate to the upstream space directly above the combustion grate. A starting region is formed. The waste that ignites in the combustion start area and starts combustion is sent from the dry grate onto the combustion grate, and the waste is pyrolyzed to generate combustible gas, and the combustion sent from the bottom of the combustion grate The combustible gas forms a flame by the primary air for combustion and burns, and further, the solid content burns to form a main combustion region in the space immediately above the combustion grate. Further, unburned components such as fixed carbon are completely burned on the post-combustion grate, and a post-combustion region is formed in a space immediately above the post-combustion grate. Thereafter, the ash remaining after combustion is discharged to the outside through the ash discharge port.

かくして、火格子式廃棄物焼却炉では、廃棄物は燃焼室にて三段の火格子の下から吹き込まれる燃焼用一次空気により燃焼する。さらに、燃焼室からの燃焼ガスに含まれている可燃性ガスの未燃分(未燃ガスという)は、廃熱ボイラの一部である二次燃焼室で二次燃焼用空気を受けて燃焼(二次燃焼という)する。二次燃焼の後に燃焼排ガスは廃熱ボイラで熱回収され、蒸気を発生させ、蒸気は発電機に供給される。   Thus, in the grate-type waste incinerator, the waste is burned by the primary combustion air blown from below the three-stage grate in the combustion chamber. Furthermore, unburned combustible gas contained in the combustion gas from the combustion chamber (referred to as unburned gas) receives and burns secondary combustion air in the secondary combustion chamber that is part of the waste heat boiler. (Called secondary combustion). After the secondary combustion, the combustion exhaust gas is recovered by a waste heat boiler to generate steam, and the steam is supplied to the generator.

このような廃棄物焼却炉による廃棄物の燃焼においては、近年、廃棄物焼却炉における廃棄物の焼却処理によって発生する熱エネルギーの回収への関心が高まってきており、この熱エネルギーで蒸気を発生させ駆動するボイラ発電設備が設置された廃棄物焼却炉が増加し、高い効率での熱回収を実現できる燃焼運転が要求されている。一方、廃棄物焼却炉から大気中に放出される環境汚染物質の規制が厳しくなるに従い、ダイオキシン類や窒素酸化物など燃焼由来の有害物質の排出を低減する燃焼運転も要求されている。   In the combustion of waste in such a waste incinerator, in recent years, there has been an increasing interest in the recovery of thermal energy generated by incineration of waste in a waste incinerator, and steam is generated by this thermal energy. The number of waste incinerators installed with boiler power generation equipment to be driven increases, and a combustion operation capable of realizing heat recovery with high efficiency is required. On the other hand, as regulations on environmental pollutants released from the waste incinerator to the atmosphere become stricter, a combustion operation for reducing emission of harmful substances derived from combustion such as dioxins and nitrogen oxides is also required.

このように、廃棄物焼却炉に高度な燃焼運転制御が望まれているため、従来、自動燃焼制御装置によって上述の要求を満たす運転制御が行われている。この自動燃焼制御装置では、焼却炉が例えばストーカ式焼却炉の場合、操作量である給塵(火格子への廃棄物供給)速度、燃焼火格子送り速度、燃焼空気量、及び冷却空気量などを制御することにより、蒸気発生量を安定化し、かつ排ガス中のダイオキシン類や窒素酸化物濃度を低く抑え、灰中の未燃成分を少なくする目的で、廃棄物を安定して燃焼するように運転されている。しかしながら、このような従来の燃焼制御は、廃棄物の投入の時点で該廃棄物の性状を監視せずに、燃焼の結果発生する燃焼ガス温度、燃焼ガス中酸素濃度、燃焼ガス中一酸化炭素濃度等を監視する因子として検出して、各操作量の制御値へフィードバックする方法であり、そのため、後追い型の制御となり、焼却炉に投入する廃棄物の性状が変動した場合にこの変動への追従が遅れてしまい、必ずしも安定した運転制御が達成できないことがある。   Thus, since advanced combustion operation control is desired for a waste incinerator, conventionally, operation control that satisfies the above-described requirements has been performed by an automatic combustion control device. In this automatic combustion control device, when the incinerator is, for example, a stoker type incinerator, the operation amount of dust supply (waste supply to the grate), combustion grate feed rate, combustion air amount, cooling air amount, etc. In order to stabilize the amount of steam generated and to control the concentration of dioxins and nitrogen oxides in the exhaust gas, and to reduce the unburned components in the ash, the waste should be stably burned. It is driving. However, such conventional combustion control does not monitor the properties of the waste at the time of the introduction of the waste, and does not monitor the combustion gas temperature, oxygen concentration in the combustion gas, carbon monoxide in the combustion gas. It is a method of detecting the concentration as a factor to monitor and feeding back to the control value of each manipulated variable.Therefore, it becomes a follow-up type control, and this fluctuation is changed when the property of the waste put into the incinerator fluctuates. Tracking may be delayed, and stable operation control may not always be achieved.

廃棄物焼却炉の燃焼運転の安定性を乱す大きな要因として、投入される廃棄物の性状が一定しないため廃棄物の発熱量が変動するという点がある。焼却炉へ投入される廃棄物の性状は、廃棄物が収集される地域や、収集される時刻、または天候や、季節によって大きく異なることから、廃棄物の発熱量は大きく変動する。そこで、投入される廃棄物の性状を投入前に求めて、求めた廃棄物の性状により燃焼制御を行う廃棄物焼却炉の制御方法が特許文献1で提案されている。廃棄物の性状のうち、上記発熱量を大きく左右する因子は廃棄物の水分率であり、特許文献1では、廃棄物焼却炉の投入口から燃焼室へ向け垂下するシュートの高さ方向中間部に水分率計として静電容量計を配置し、一対の電極間での廃棄物の静電容量を計測することで廃棄物の水分率を得ることとしている。静電容量計は、静電容量の値と水分率との値の対応関係を保有している水分率算定器に接続されており、静電容量計で計測された計測値から上記対応関係にもとづいて水分率を算定できる。   A major factor that disturbs the stability of the combustion operation of a waste incinerator is that the amount of heat generated from the waste fluctuates because the properties of the input waste are not constant. Since the properties of the waste thrown into the incinerator vary greatly depending on the area where the waste is collected, the time of collection, the weather, and the season, the calorific value of the waste varies greatly. Therefore, Patent Document 1 proposes a control method for a waste incinerator in which the properties of the waste to be charged are obtained before being charged, and combustion control is performed based on the properties of the obtained waste. Among the properties of waste, the factor that greatly affects the heat generation amount is the moisture content of the waste. In Patent Document 1, the middle portion in the height direction of the chute hanging from the inlet of the waste incinerator toward the combustion chamber A capacitance meter is disposed as a moisture meter, and the moisture content of the waste is obtained by measuring the capacitance of the waste between the pair of electrodes. The capacitance meter is connected to a moisture content calculator that has a correspondence relationship between the capacitance value and the moisture content, and the above correspondence relationship is obtained from the measured value measured by the capacitance meter. Based on this, the moisture content can be calculated.

特開2010−216990JP2010-216990

廃棄物は種類が多岐に渡るだけでなく、シュート内では水分率が高い割合の廃棄物が局所的に存在していたりする。廃棄物を焼却炉へ供給するシュートにおいて、焼却前の廃棄物の水分率を測定することが行われているが、シュート内の廃棄物の水分率の分布はばらついたものとなっている。   There are not only a wide variety of wastes, but there are also local wastes with a high moisture content in the chute. In a chute that supplies waste to an incinerator, the moisture content of the waste before incineration is measured, but the distribution of the moisture content of the waste in the chute varies.

上記特許文献1によれば、静電容量式水分率計をシュートに取り付け廃棄物の水分率を測定することとしているが、センサ部が接する部分の近い領域の廃棄物について水分率を測定するので、シュート内の廃棄物の水分率を測定できる廃棄物の範囲が狭くなり、シュートを経て焼却炉内へ投入される廃棄物の全体について水分率を正確には測定できず、廃棄物全体についての発熱量を正確に把握できないという問題があった。シュートにセンサ部を複数配置することとしても、シュート幅に対して、どの程度の範囲の廃棄物の水分を測定すれば十分に廃棄物の発熱量を把握できるかについて特段考慮されていなかった。   According to Patent Document 1, a capacitance moisture meter is attached to a chute to measure the moisture content of waste, but the moisture content is measured for waste in a region close to the portion in contact with the sensor unit. , The range of waste that can measure the moisture content of the waste in the chute is narrowed, and the moisture content cannot be accurately measured for the entire waste thrown into the incinerator via the chute, There was a problem that the calorific value could not be accurately grasped. Even when a plurality of sensor portions are arranged on the chute, no particular consideration has been given to how much moisture in the waste can be measured relative to the chute width to sufficiently grasp the heat generation amount of the waste.

水分率計としては、上述した静電容量式水分率計以外にもマイクロ波透過式水分率計が知られている。このマイクロ波透過式水分率計は、発信したマイクロ波を廃棄物に透過させ受信したマイクロ波の減衰率などから廃棄物の水分率を測定する減衰形式であり、測定できる廃棄物の範囲を広く確保できることができるので、シュート内の廃棄物のように水分率が不均一分布な場合の測定に適している。   As the moisture meter, a microwave transmission moisture meter is known in addition to the capacitance moisture meter described above. This microwave transmission moisture meter is an attenuation format that measures the moisture content of waste from the attenuation rate of the received microwave by transmitting the transmitted microwave to the waste, and widens the range of waste that can be measured Since it can be secured, it is suitable for measurement when the moisture content is unevenly distributed, such as waste in a chute.

減衰形式のマイクロ波透過式水分率計により、廃棄物の水分率を測定する場合には、発信マイクロ波周波数によって廃棄物中の透過特性や減衰特性が異なることがある。そこで、シュート内の廃棄物の水分率を感応性が高く精度よく測定することができる好適な発信マイクロ波周波数で水分率を測定することが求められているが、発信マイクロ波周波数の適切な範囲について検討は十分にはなされていない。   When measuring the moisture content of waste with an attenuation-type microwave transmission moisture meter, the transmission characteristics and attenuation characteristics in the waste may differ depending on the transmitted microwave frequency. Therefore, it is required to measure the moisture content at a suitable transmission microwave frequency capable of measuring the moisture content of the waste in the chute with high sensitivity and accuracy, but the appropriate range of the transmission microwave frequency is required. There is not enough consideration.

また、燃焼室内での廃棄物の安定燃焼のためには、燃焼室に供給する廃棄物の水分率を正確に測定し、水分率測定値から廃棄物発熱量を算出して把握し、廃棄物発熱量が変動する場合には、廃棄物発熱量の変動を把握しこの廃棄物発熱量の変動に対応することが必要である。   In addition, for stable combustion of waste in the combustion chamber, the moisture content of the waste supplied to the combustion chamber is accurately measured, and the calorific value of the waste is calculated and grasped from the measured moisture content. When the calorific value fluctuates, it is necessary to grasp the fluctuation of the waste heat generation amount and cope with the fluctuation of the waste heat generation amount.

廃棄物発熱量の変動に対して追従して一次空気供給量等の廃棄物焼却炉の操業条件の制御が適正に対応されていない場合には、廃棄物の燃焼が不安定となり、排ガスからの熱回収により発生させる蒸気量が変動するという問題が生じたり、燃焼排ガスの温度、ガス組成を所定の適正範囲内に保持することができず、排ガス中のCO濃度、NOx濃度が増大するという問題が生じる。   If the control of the operating conditions of the waste incinerator such as the primary air supply amount is not properly handled following the fluctuation of the heat generation amount of the waste, the combustion of the waste becomes unstable and the Problems that the amount of steam generated by heat recovery fluctuates, or that the temperature and gas composition of combustion exhaust gas cannot be maintained within a predetermined appropriate range, and the CO concentration and NOx concentration in the exhaust gas increase. Occurs.

しかしながら、廃棄物の水分率を正確に測定ができない状況では、廃棄物発熱量の変動を把握できないので、この廃棄物発熱量の変動に十分に追従した操業条件の制御がなされずに、蒸気量が変動したり、排ガス中の有害物濃度が増大するという問題が生じることがある。   However, in a situation where the moisture content of waste cannot be measured accurately, fluctuations in waste heat generation cannot be ascertained. May fluctuate or the concentration of harmful substances in the exhaust gas may increase.

本発明は、かかる事情に鑑み、マイクロ波透過式水分率計によりシュート内の廃棄物の水分率を測定する際、廃棄物の水分率を正確に測定することができ、廃棄物発熱量の変動を把握でき、適正な運転条件で廃棄物焼却炉を運転制御することを可能とする廃棄物水分率測定装置及び廃棄物水分率測定方法を提供することを課題とする。   In view of such circumstances, the present invention can accurately measure the moisture content of the waste when measuring the moisture content of the waste in the chute using a microwave transmission moisture meter, and change the amount of waste heat generated. It is an object of the present invention to provide a waste water content measuring apparatus and a waste water content measuring method capable of grasping the above and controlling the operation of a waste incinerator under appropriate operating conditions.

マイクロ波透過式の水分率計を用いて測定するためには、マイクロ波の発信部と受信部をそれぞれシュートの対向する壁面に設置する。マイクロ波は水分に吸収される特性をもつため、発信部から発信されたマイクロ波は、廃棄物を透過する際に廃棄物中の水分によって減衰しシュートの他方の壁面に配された受信部へ到達する。このマイクロ波の減衰率を測定することにより、廃棄物に含まれる水分率を測定することができ、この方式を減衰式と呼称する。   In order to perform measurement using a microwave transmission moisture meter, a microwave transmitter and a receiver are installed on opposite wall surfaces of the chute. Since the microwave has a characteristic of being absorbed by moisture, the microwave transmitted from the transmitter is attenuated by moisture in the waste when passing through the waste, and is received by the receiver disposed on the other wall surface of the chute. To reach. By measuring the attenuation rate of this microwave, the moisture content contained in the waste can be measured, and this method is called an attenuation type.

本発明は、減衰式のマイクロ波透過型水分率計を用いた廃棄物水分率測定装置そして方法に関する。   The present invention relates to a waste moisture content measuring apparatus and method using an attenuation type microwave transmission moisture meter.

このような機能をもたらす本発明は、廃棄物水分率測定装置、火格子式廃棄物焼却炉及び廃棄物水分率測定方法、廃棄物焼却方法として次のように構成される。   The present invention that provides such a function is configured as follows as a waste water content measuring device, a grate-type waste incinerator, a waste water content measuring method, and a waste incineration method.

<第一発明:廃棄物水分率測定装置>
廃棄物を燃焼室へ落下供給するシュートが廃棄物の落下方向に対して直角な横方向で対面し互いに平行な一対の平行壁部を有し、該シュート内の廃棄物の水分率を測定する水分率計を該シュートに設けた廃棄物水分率測定装置において、
水分率計は、マイクロ波透過式の水分率計であって、マイクロ波を発信する発信部と、このマイクロ波を受信する受信部とを有し、シュートの一対の平行壁部の一方に形成された窓部に発信部がそして他方に形成された窓部に受信部が配置され、発信部は、その発信マイクロ波周波数が15MHz以上120MHz以下であることを特徴とする廃棄物水分率測定装置。
<First invention: Waste water content measuring device>
A chute for supplying waste to the combustion chamber has a pair of parallel walls facing each other in a lateral direction perpendicular to the direction in which the waste falls, and measuring the moisture content of the waste in the chute. In a waste water content measuring apparatus provided with a moisture meter on the chute,
The moisture meter is a microwave transmission moisture meter having a transmitter for transmitting microwaves and a receiver for receiving the microwaves, and is formed on one of a pair of parallel wall portions of the chute. A waste water content measuring device, wherein a transmitter is disposed in the window portion formed and a receiver is disposed in the window portion formed on the other, and the transmitter microwave frequency is 15 MHz or more and 120 MHz or less. .

<第二発明:廃棄物焼却炉>
火格子式廃棄物焼却炉であって、火格子を備え該火格子上の廃棄物を燃焼する燃焼室と、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込手段と、火格子上に廃棄物を供給する給塵機とを有する廃棄物焼却炉において、
第一発明の廃棄物水分率測定装置と、該廃棄物水分率測定装置により測定された廃棄物の水分率測定値又は該水分率測定値から算出した廃棄物の発熱量算出値に基づき、焼却炉の操業条件を制御する制御装置とを備えることを特徴とする廃棄物焼却炉。
<Second invention: Waste incinerator>
A grate-type waste incinerator comprising a grate and a combustion chamber for burning waste on the grate, and primary air blowing means for blowing combustion primary air into the combustion chamber from under the grate In a waste incinerator having a dust feeder for supplying waste on a grate,
Incineration based on the waste water content measuring device of the first invention and the waste water content measured value measured by the waste water content measuring device or the waste heat value calculated from the water content measured value A waste incinerator comprising a control device for controlling operating conditions of the furnace.

本発明において、制御装置は、焼却炉の操業条件として、給塵機の廃棄物供給速度、火格子の廃棄物搬送速度、燃焼用一次空気供給量のうちの少なくとも一つを制御することが好ましい。   In the present invention, the control device preferably controls at least one of the dust supply waste supply speed, the grate waste conveyance speed, and the combustion primary air supply amount as the operation condition of the incinerator. .

<第三発明:廃棄物水分率測定方法>
廃棄物を燃焼室へ落下供給するシュートが廃棄物の落下方向に対して直角な横方向で対面し互いに平行な一対の平行壁部を有し、該シュート内の廃棄物の水分率を測定する水分率計を該シュートに設けた廃棄物水分率測定装置による廃棄物水分率測定方法において、
水分率計としてマイクロ波透過式の水分率計を用い、シュートの一対の平行壁部の一方に形成された窓部に該水分率計の発信部をそして他方の平行壁部に形成された窓部に該水分率計の受信部を配置し、発信部から発信マイクロ波周波数が15MHz以上120MHz以上のマイクロ波を発信し、このマイクロ波を受信部で受信することを特徴とする廃棄物水分率測定方法。
<Third invention: Waste water content measuring method>
A chute for supplying waste to the combustion chamber has a pair of parallel walls facing each other in a lateral direction perpendicular to the direction in which the waste falls, and measuring the moisture content of the waste in the chute. In the waste water content measuring method by the waste water content measuring device provided with a moisture content meter on the chute,
A microwave transmission moisture meter is used as a moisture meter, a window formed on one of a pair of parallel wall portions of a chute, a transmission portion of the moisture meter, and a window formed on the other parallel wall portion The moisture content meter is characterized in that a receiving portion of the moisture content meter is disposed in a portion, a microwave having a transmitted microwave frequency of 15 MHz or more and 120 MHz or more is transmitted from the transmitting portion, and the microwave is received by the receiving portion. Measuring method.

<第四発明:廃棄物焼却方法>
火格子式廃棄物焼却炉による廃棄物焼却方法であって、燃焼室内に備えられた火格子上で廃棄物を燃焼し、給塵機により火格子上に廃棄物を供給し、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む火格子式廃棄物焼却炉による廃棄物焼却方法において、
第三発明の廃棄物水分率測定方法により廃棄物の水分率を測定し、測定された廃棄物の水分率測定値又は該水分率測定値から算出した廃棄物の発熱量算出値に基づき、焼却炉の操業条件を制御装置で制御することを特徴とする火格子式廃棄物焼却炉による廃棄物焼却方法。
<Fourth Invention: Waste Incineration Method>
A waste incineration method using a grate-type waste incinerator, in which waste is burned on a grate provided in a combustion chamber, waste is supplied onto the grate by a dust feeder, and primary air for combustion In a waste incineration method using a grate-type waste incinerator that blows into the combustion chamber from under the grate,
Measure the moisture content of the waste by the waste moisture content measuring method of the third invention, and incinerate based on the measured moisture content measurement value of the waste or the calorific value calculation value of the waste calculated from the measured moisture content value A waste incineration method using a grate-type waste incinerator characterized in that the operating conditions of the furnace are controlled by a control device.

本発明において、制御装置による制御は、焼却炉の操業条件として、給塵機の廃棄物供給速度、火格子の廃棄物搬送速度、燃焼用一次空気供給量のうちの少なくとも一つについてなされることが好ましい。   In the present invention, the control by the control device is performed for at least one of the dust supply waste supply speed, the grate waste transport speed, and the combustion primary air supply amount as the operating condition of the incinerator. Is preferred.

<発明原理>
このような本発明の廃棄物分率測定装置そして廃棄物水分率測定方法にあっては、マイクロ波透過式の水分率計の原理は、シュート内の廃棄物中をマイクロ波が透過するときの水分による減衰を測定し廃棄物水分率を測定するものである。マイクロ波を発信し受信部で受信するマイクロ波強度を測定し、発信強度と受信強度との差を減衰量として例えば差分電圧値で測定し、差分電圧値と水分率との予め定めてある対応関係により水分率を求める。差分電圧値が大きいほどマイクロ波の廃棄物中水分による減衰が大きく廃棄物水分率が高いことを示し、また、水分電圧値が小さいほど廃棄物水分率が低いことを示す。
<Invention Principle>
In such a waste fraction measuring apparatus and waste moisture measuring method of the present invention, the principle of the microwave transmission moisture meter is that when microwaves pass through the waste in the chute. Attenuation due to moisture is measured to measure the moisture content of waste. The microwave intensity transmitted and received by the receiver is measured, the difference between the transmitted intensity and the received intensity is measured as an attenuation amount, for example, a differential voltage value, and a predetermined correspondence between the differential voltage value and the moisture content The moisture content is obtained from the relationship. The greater the differential voltage value, the greater the attenuation of microwaves due to moisture in the waste, and the higher the moisture content, and the smaller the moisture voltage value, the lower the waste moisture content.

マイクロ波は、廃棄物の水分率が高いほど、大きく減衰するが、同一水分率の場合でも、発信マイクロ波周波数によって廃棄物中の透過特性や減衰特性が異なる。そこで、シュート内の廃棄物の水分率を感応性が高く精度よく測定することができる発信マイクロ波周波数の適正な範囲を求める検討を行った。水分率の異なる廃棄物について、それぞれ種々の発信周波数で廃棄物中でのマイクロ波の減衰量を測定し、減衰量と水分率との予め定めてある対応関係により水分率を求める。一方、他の水分率を求める手法として廃棄物焼却炉からの排ガスの実測熱データをもとに算出した廃棄物の算出水分率を求める。マイクロ波透過式水分率計から求めたマイクロ波減衰量測定による水分率の経時変化と、排ガス熱データから求めた算出水分率の経時変化とを比較し、所定期間内で両者が一致するタイミングの合計時間を調べ所定期間に対する比率を一致率(%)として評価した。このような一致率で評価することにより、瞬間的な水分率の変動やばらつきによる仔細な影響を排除して、適切に評価することができる。一致率が70%以上であれば、マイクロ波減衰量測定による測定水分率が廃棄物の水分率を感応性高く精度よく測定できていることを意味し、この水分率を用いて焼却炉の燃焼制御を行うことが支障なく可能であることを確認した。そのため、一致率が70%以上となるような発信マイクロ波周波数の好ましい範囲を求めると、発信マイクロ波周波数を120MHz以下とすることが適切であることが判明した。発信マイクロ波周波数が120MHzより高いと、一致率が70%より低くなり好ましくない。このような検討に基づき、マイクロ波透過式水分率計の発信マイクロ波周波数は、120MHz以下とすることが好ましい。   Microwaves are more attenuated as the moisture content of the waste is higher, but even in the case of the same moisture content, the transmission characteristics and attenuation characteristics in the waste differ depending on the transmitted microwave frequency. Therefore, an investigation was conducted to find an appropriate range of the transmitted microwave frequency that can measure the moisture content of the waste in the chute with high sensitivity and high accuracy. For wastes having different moisture percentages, the attenuation of microwaves in the waste is measured at various transmission frequencies, and the moisture percentage is obtained from a predetermined correspondence between the attenuation and the moisture percentage. On the other hand, as another method for obtaining the moisture content, the calculated moisture content of the waste calculated based on the measured heat data of the exhaust gas from the waste incinerator is obtained. Compare the time-dependent change in moisture content from the microwave attenuation measurement obtained from the microwave transmission moisture meter and the time-dependent change in the calculated moisture content obtained from the exhaust gas heat data. The total time was examined and the ratio with respect to a predetermined period was evaluated as the coincidence rate (%). By evaluating with such a coincidence rate, it is possible to appropriately evaluate by excluding detailed influences due to instantaneous fluctuations and variations in moisture content. If the coincidence rate is 70% or more, the measured moisture content by microwave attenuation measurement means that the moisture content of the waste can be measured with high sensitivity and high accuracy. It was confirmed that control can be performed without any problem. For this reason, when a preferable range of the transmitted microwave frequency such that the coincidence rate is 70% or more is obtained, it has been found that it is appropriate to set the transmitted microwave frequency to 120 MHz or less. If the transmission microwave frequency is higher than 120 MHz, the coincidence rate is lower than 70%, which is not preferable. Based on such examination, it is preferable that the transmission microwave frequency of the microwave transmission moisture meter is 120 MHz or less.

また、マイクロ波の発信周波数が低いほど、発信部の大きさが大きいものとなることから、発信周波数を低くするほど、発信部を配設する窓部を大きくとるためにシュートに設ける切り欠き部を大きくする必要がある。つまり、発信周波数を低い周波数とする場合には、大きな発信部になるので、発信部の寸法は窓部を設けるシュート壁の寸法の制約を受けることになる。   Also, the lower the transmission frequency of the microwave, the larger the size of the transmission part. Therefore, the lower the transmission frequency, the larger the notch part provided in the chute for taking a larger window for arranging the transmission part. Need to be larger. That is, when the transmission frequency is set to a low frequency, the transmission portion becomes a large transmission portion, and thus the size of the transmission portion is restricted by the size of the chute wall provided with the window portion.

一方、火格子式廃棄物焼却炉のシュートの構造は下記のようなものが多い。シュートの上部は平行壁部となっているものが多く鋼製構造部であって、シュートの下部は傾斜部となっているものが多く燃焼室からの高熱に耐えるように耐火物構造部となっている。また、シュート平行壁部にはシュート内で閉動作してホッパ側から燃焼室への空気の流入を閉止するシュート開閉ゲートが備えらえている。火格子式廃棄物焼却炉のシュートに発信部を配置することができる領域は、シュート開閉ゲートの動作に干渉しないようにシュート開閉ゲート下端位置から下方であって、シュートの耐火物構造部上端位置より上方の鋼製構造部の範囲となる。多くの火格子式廃棄物焼却炉において、このシュートに発信部を配置可能な領域の高さ方向の寸法は1500〜2000mmであり、この最大高さ寸法である2000mmの大きさの発信部を設ける場合には、発信周波数は15MHz程度となる。言い換えれば、発信周波数が15MHz以上の発信部としなければ、発信部の寸法が2000mmを超えてしまい、発信部を配置可能なシュート領域の高さ方向範囲内にすることができず、制約を充足することができなくなる。このようなことから、多くの火格子式廃棄物焼却炉において、発信部を配置するシュートの領域の制約に適合するため、求められる発信部の大きさの制約に対応するためには、発信周波数は15MHz以上とすることが必要となる。このような検討に基づき、マイクロ波透過式水分率計の発信マイクロ波周波数は、15MHz以上とすることが好ましい。   On the other hand, the structure of the chute of the grate-type waste incinerator is often as follows. The upper part of the chute is mostly a steel structure, and the lower part of the chute is often an inclined part, and it is a refractory structure so that it can withstand high heat from the combustion chamber. ing. Further, the chute parallel wall portion is provided with a chute opening / closing gate that closes in the chute and closes inflow of air from the hopper side to the combustion chamber. The area where the transmitter can be placed on the chute of the grate-type waste incinerator is below the lower end position of the chute opening / closing gate so as not to interfere with the operation of the chute opening / closing gate, and the upper end position of the refractory structure part of the chute It is the range of the steel structure part above. In many grate-type waste incinerators, the area in the height direction of the area where the transmission part can be arranged on this chute is 1500 to 2000 mm, and the transmission part having a maximum height of 2000 mm is provided. In this case, the transmission frequency is about 15 MHz. In other words, if the transmission frequency is not 15 MHz or more, the size of the transmission unit exceeds 2000 mm, and cannot be within the height direction range of the chute area where the transmission unit can be placed, satisfying the restrictions. You can't. For this reason, in many grate-type waste incinerators, in order to meet the restrictions on the size of the chute where the transmitter is placed, Is required to be 15 MHz or more. Based on such examination, it is preferable that the transmission microwave frequency of the microwave transmission moisture meter is 15 MHz or more.

このような検討の結果、マイクロ波透過式水分率計の発信マイクロ波周波数は、15MHz以上120MHz以下であることが好ましいことが明らかとなった。   As a result of such studies, it has been clarified that the microwave transmission frequency of the microwave transmission moisture meter is preferably 15 MHz or more and 120 MHz or less.

以上のように、本発明では、シュート内の廃棄物の水分率を測定する装置及び方法において、水分率計をマイクロ波透過式の水分率計とし、マイクロ波を発信する発信部と、このマイクロ波を受信する受信部とを備えていて、シュートの一対の平行壁部の一方に形成された窓部に発信部がそして他方の平行壁部に形成された窓部に受信部が配置され、発信部の発信マイクロ波周波数が15MHz以上120MHz以下であることとしたので、シュート内の廃棄物の水分率を感応性が高く精度よく測定することができる好適な発信マイクロ波周波数の範囲を明らかにすることができた。   As described above, according to the present invention, in the apparatus and method for measuring the moisture content of the waste in the chute, the moisture meter is a microwave transmission moisture meter, the transmitter for transmitting microwaves, and the microwave A receiving portion for receiving a wave, a transmitting portion is disposed in a window portion formed in one of a pair of parallel wall portions of the chute, and a receiving portion is disposed in a window portion formed in the other parallel wall portion, Since the transmission microwave frequency of the transmitter is 15 MHz or more and 120 MHz or less, the range of the suitable transmission microwave frequency that can measure the moisture content of the waste in the chute with high sensitivity and accuracy is clarified. We were able to.

さらに、本発明の火格子式廃棄物焼却炉及び廃棄物焼却方法では、シュート内の廃棄物の水分率を正確に測定することにより、廃棄物の発熱量を正確に把握して、廃棄物発熱量の変動に対応して焼却炉の操業条件を適正に制御して、廃棄物を安定して燃焼することができるので、排ガスからの熱回収により発生させる蒸気量の変動を抑制でき、排ガス中のCO濃度、NOx濃度を低く抑制できる。   Furthermore, in the grate-type waste incinerator and the waste incineration method of the present invention, by accurately measuring the moisture content of the waste in the chute, the heat generation amount of the waste can be accurately grasped, and the waste heat generation Since the waste can be stably combusted by appropriately controlling the operating conditions of the incinerator in response to fluctuations in the volume, fluctuations in the amount of steam generated by heat recovery from the exhaust gas can be suppressed. CO concentration and NOx concentration can be suppressed low.

本発明の廃棄物水分率測定装置を備えた一実施形態としての廃棄物焼却炉装置の概略構成図である。It is a schematic block diagram of the waste incinerator apparatus as one Embodiment provided with the waste-water-content measuring apparatus of this invention. 図1装置に用いられている水分率測定装置の概要構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the moisture content measuring apparatus used for the apparatus of FIG. 図2装置により測定された水分電圧と焼却炉排ガスの熱データから求めた(算出)水分率とを経時的に示す比較図である。2 is a comparative diagram showing the moisture voltage measured by the apparatus and the (calculated) moisture content obtained from the thermal data of the incinerator exhaust gas over time.

図1は、本発明の水分率測定装置を備えた廃棄物焼却炉の一例として火格子式廃棄物焼却炉1(以下、廃棄物焼却炉)の構成を示す。本発明は、火格子式のみならず他の形式の廃棄物焼却炉にも適用可能である。   FIG. 1 shows the configuration of a grate-type waste incinerator 1 (hereinafter referred to as a waste incinerator) as an example of a waste incinerator equipped with the moisture content measuring apparatus of the present invention. The present invention is applicable not only to the grate type but also to other types of waste incinerators.

廃棄物焼却炉1は、燃焼室13の底部に廃棄物を移動させながら燃焼させる火格子11が設けられており、火格子11の下方から燃焼室13内に燃焼用空気を供給する燃焼用空気供給配管9から燃焼用空気を受け、上記火格子11上の廃棄物Pを焼却するようになっている。燃焼用空気供給配管9にはブロワ8、燃焼用空気供給量調整機構としてのダンパ10が設けられている。火格子11は図示しない駆動機構により連動して廃棄物Pを図1にて右方に向け搬送するようになっている。上記火格子11の左端上方位置には給塵装置14、例えばプッシャーが廃棄物を火格子11上に送り出すように設けられている。該給塵装置14の上方にはシュート15が上方に延びており、その上端に投入口としてのホッパ16が設けられている。廃棄物焼却炉1の炉外には、廃棄物ピット(図示せず)が配置されていて、廃棄物クレーン(図示せず)により、上記廃棄物ピットから廃棄物Pを取り出して上記ホッパ16へ投下するようになっている。   The waste incinerator 1 is provided with a grate 11 for burning while moving waste to the bottom of the combustion chamber 13, and combustion air for supplying combustion air into the combustion chamber 13 from below the grate 11. The combustion air is received from the supply pipe 9, and the waste P on the grate 11 is incinerated. The combustion air supply pipe 9 is provided with a blower 8 and a damper 10 as a combustion air supply amount adjusting mechanism. The grate 11 is configured to convey the waste P toward the right in FIG. 1 in conjunction with a drive mechanism (not shown). A dust supply device 14, for example, a pusher is provided at a position above the left end of the grate 11 so as to send waste to the grate 11. A chute 15 extends upward above the dust supply device 14, and a hopper 16 serving as a charging port is provided at the upper end thereof. A waste pit (not shown) is disposed outside the waste incinerator 1, and the waste P is taken out from the waste pit by a waste crane (not shown) to the hopper 16. It has come to drop.

上記燃焼用空気供給配管9から供給される燃焼用空気供給量、火格子11の廃棄物搬送速度、給塵装置14の廃棄物供給速度等の操作量は可変となっていて、後述の制御装置30により制御されるようになっている。   Operation amounts such as the combustion air supply amount supplied from the combustion air supply pipe 9, the waste conveyance speed of the grate 11 and the waste supply speed of the dust supply device 14 are variable, and will be described later. 30 is controlled.

上記シュート15は、対をなした平行壁部15A,15Bを有する縦長筒状に形成されている。図1に見られるごとく、該シュート15には、発信装置20Aと受信装置20Bとから成るマイクロ波透過式の水分率計20が取り付けられており、該水分率計20は制御装置30へ測定信号を送るように該制御装置30に接続されている。   The chute 15 is formed in a vertically long cylindrical shape having a pair of parallel wall portions 15A and 15B. As shown in FIG. 1, a microwave transmission moisture meter 20 comprising a transmitting device 20A and a receiving device 20B is attached to the chute 15, and the moisture meter 20 sends a measurement signal to the control device 30. Is connected to the control device 30.

上記水分率計20は、図2にて拡大図示されているようにシュート15の一対の平行壁部15A,15Bの一方の壁部15Aに形成された窓部17Aに発信装置20Aが取り付けられ、他方の壁部15Bに形成された窓部17Bに受信装置20Bが取り付けられている。本実施形態では、図2にて横方向で見たとき、受信装置20Bは、発信装置20Aと対向する位置に配設され、発信部と同一の形状、寸法をなしている。   As shown in the enlarged view of FIG. 2, the moisture meter 20 has a transmitter 20A attached to a window portion 17A formed on one wall portion 15A of the pair of parallel wall portions 15A and 15B of the chute 15. The receiving device 20B is attached to a window portion 17B formed on the other wall portion 15B. In this embodiment, when viewed in the horizontal direction in FIG. 2, the receiving device 20B is disposed at a position facing the transmitting device 20A and has the same shape and size as the transmitting unit.

上記発信装置20Aは、上記窓部17Aに位置するプラスチック等のマイクロ波透過材20A−1の背面側に配されてマイクロ波Mを発信する発信部20A−2を有し、該発信部20A−2は、その発信部前面が受信装置20Bの方に向けて上記マイクロ波透過材20A−1の背面に面しており、また、上記発信部20A−2の背面そして周面が鉄板等のマイクロ波反射材20A−3で覆われている。   The transmitting device 20A includes a transmitting unit 20A-2 configured to transmit a microwave M disposed on the back side of the microwave transmitting material 20A-1 such as plastic positioned in the window portion 17A. The transmitting unit 20A- 2, the transmitter front surface faces the back surface of the microwave transmitting material 20 </ b> A- 1 toward the receiving device 20 </ b> B, and the transmitter and the rear surface of the transmitter 20 </ b> A- 2 are microplates such as iron plates. It is covered with a wave reflector 20A-3.

次に、上記受信装置20Bは、上記発信装置20Aの場合と同様に、上記窓部17Bに位置するプラスチック等のマイクロ波透過材20B−1の背面側に配されてマイクロ波を受信する受信部20B−2を有し、該受信部20B−2は、その受信部前面が発信装置20Aの方に向けて上記マイクロ波透過材20B−1の背面に面しており、また該受信部20B−2の背面そして周面が鉄板等のマイクロ波反射材20B−3で覆われている。   Next, as in the case of the transmitting device 20A, the receiving device 20B is disposed on the back side of the microwave transmitting material 20B-1 such as plastic located in the window portion 17B and receives a microwave. 20B-2, and the receiving unit 20B-2 has the front surface of the receiving unit facing the back surface of the microwave transmitting material 20B-1 toward the transmitting device 20A, and the receiving unit 20B- 2 is covered with a microwave reflecting material 20B-3 such as an iron plate.

水分率計20は、本実施形態では減衰式水分率計をなしていて、発信部20A−2の発信マイクロ波強度に対する受信部20B−2での受信マイクロ波強度との電圧比(又は電圧差)、すなわち発信部20A−2における発信電圧に対する受信部20B−2における受信電圧の電圧比(又は電圧差)を、マイクロ波が廃棄物を透過した際の減衰率(又は減衰量)として求め、該減衰率から水分率を算定する水分率算定器(図示せず)を介して上記受信部20B−2が上記制御装置30に接続されている。該水分率算定器では、マイクロ波の減衰率と廃棄物の水分率との相関関係を予め保持していて、実測の上記電圧比として求められた上記減衰率から廃棄物の水分率を算定してこれを制御装置30へ伝送する。   The moisture content meter 20 is an attenuation-type moisture content meter in this embodiment, and is a voltage ratio (or voltage difference) between the reception microwave intensity at the reception unit 20B-2 and the transmission microwave intensity at the transmission unit 20A-2. ) That is, the voltage ratio (or voltage difference) of the reception voltage at the reception unit 20B-2 with respect to the transmission voltage at the transmission unit 20A-2 is obtained as an attenuation rate (or attenuation amount) when the microwave passes through the waste, The receiver 20B-2 is connected to the control device 30 via a moisture content calculator (not shown) that calculates the moisture content from the attenuation rate. In the moisture content calculator, the correlation between the attenuation rate of the microwave and the moisture content of the waste is held in advance, and the moisture content of the waste is calculated from the attenuation rate obtained as the actually measured voltage ratio. This is transmitted to the control device 30.

制御装置30は、上記水分率算定器より受けた上記水分率の値から、予め保持している対応関係にもとづき、正確な廃棄物の発熱量を算出し、その発熱量に応じて、予め保持している制御フローにもとづき、安定的な廃棄物の焼却処理が行われるように、燃焼用空気供給配管9に設けられた燃焼用空気供給量調整機構としてのダンパ10、火格子11、給塵装置14へ指令信号を送り、燃焼用空気供給量、火格子11の廃棄物搬送速度、給塵装置14の廃棄物供給速度等の各操作量を制御するようになっている。このように、廃棄物Pはシュート15内で、すなわち燃焼室13へ送入される直前にマイクロ波が透過され、その際のマイクロ波減衰率から水分率が求められる。かくして、この水分率測定値にもとづき廃棄物の発熱量を算出し、廃棄物発熱量にもとづいて、上記各操作量を制御装置30によって廃棄物焼却炉1を制御するようになっているので、廃棄物焼却炉1の運転条件を最適に制御でき、廃棄物発熱量が変動しても安定的に焼却処理できる。   The control device 30 calculates an accurate heat generation amount of the waste from the moisture content value received from the moisture content calculator based on the correspondence relationship held in advance, and holds it in advance according to the heat generation amount. The damper 10 as a combustion air supply amount adjusting mechanism provided in the combustion air supply pipe 9, the grate 11, and the dust supply so that the stable waste incineration processing is performed based on the control flow being performed. A command signal is sent to the device 14 to control the operation amounts such as the combustion air supply amount, the waste conveyance speed of the grate 11, the waste supply speed of the dust supply device 14, and the like. In this way, the waste P is transmitted through the microwave in the chute 15, that is, immediately before being sent to the combustion chamber 13, and the moisture content is obtained from the microwave attenuation rate at that time. Thus, the calorific value of the waste is calculated based on the moisture content measurement value, and the waste incinerator 1 is controlled by the control device 30 based on the waste calorific value. The operating conditions of the waste incinerator 1 can be optimally controlled, and the incineration can be stably performed even when the waste heat generation amount fluctuates.

本実施形態では、廃棄物焼却炉1に供給された廃棄物Pは次の要領で処理される。   In the present embodiment, the waste P supplied to the waste incinerator 1 is processed in the following manner.

廃棄物Pは廃棄物ピットからホッパ16へ廃棄物クレーンにより投入される。該廃棄物Pは、シュート15の下部に設置された給塵装置14(プッシャー)により火格子11上に押し出される。火格子11上の廃棄物Pは火格子11下の燃焼用空気供給配管9から吹き込まれる燃焼用空気により燃焼される。   The waste P is thrown into the hopper 16 from the waste pit by a waste crane. The waste P is pushed out onto the grate 11 by a dust supply device 14 (pusher) installed at the lower part of the chute 15. The waste P on the grate 11 is burned by the combustion air blown from the combustion air supply pipe 9 below the grate 11.

ホッパ16へ投入された廃棄物Pは、上述したように、給塵装置14により火格子11上へ向け押し出される前に、該シュート15内で水分率計20により水分率が測定される。該水分率計20の発信部20A−2からマイクロ波Mが発信されて廃棄物P中を透過して受信部20B−2で受信される。発信部20A−2からは、マイクロ波Mが球面波をなして発信(放射)されるので、該マイクロ波Mは、発信部20A−2の前面から受信部20B−2へ直接向けられ進行するのみならず、該発信部20A−2の背面そして周面の方へ向けられたマイクロ波Mが上記マイクロ波反射材20A−3で反射され、発信部20A−2から発信されたマイクロ波Mは、廃棄物Pを透過した後に上記受信部20B−2へ到達し、受信されるようになる。   As described above, the moisture content of the waste P put into the hopper 16 is measured by the moisture meter 20 in the chute 15 before being pushed out onto the grate 11 by the dust supply device 14. The microwave M is transmitted from the transmitter 20A-2 of the moisture content meter 20, passes through the waste P, and is received by the receiver 20B-2. Since the microwave M is transmitted (radiated) as a spherical wave from the transmitter 20A-2, the microwave M is directly directed from the front surface of the transmitter 20A-2 to the receiver 20B-2 and travels. In addition, the microwave M directed toward the back surface and the peripheral surface of the transmitter 20A-2 is reflected by the microwave reflector 20A-3, and the microwave M transmitted from the transmitter 20A-2 is After passing through the waste P, it reaches the receiving unit 20B-2 and is received.

マイクロ波Mは廃棄物Pを透過することで、該廃棄物Pの水分率によって異なる減衰をする。その減衰率は、発信部20A−2での発信電圧に対する受信部20B−2での受信電圧の比として測定され、図示せぬ水分率算定器で、予め保持されている減衰率と水分率との相関関係から、測定された減衰率に相当する水分率を得る。   The microwave M permeates the waste P and attenuates differently depending on the moisture content of the waste P. The attenuation rate is measured as the ratio of the reception voltage at the reception unit 20B-2 to the transmission voltage at the transmission unit 20A-2, and the attenuation rate and the moisture rate held in advance by a moisture rate calculator (not shown) From the correlation, a moisture content corresponding to the measured attenuation rate is obtained.

この水分率は、制御装置30へ送られる。制御装置30では、水分率算定器から送られてきた水分率の値から、予め保持している対応関係に基づき、正確な廃棄物の発熱量を算出し、それに応じて予め保持している制御フローに基づき、安定的な廃棄物の焼却処理が行われるように、燃焼用空気供給配管9に設けられた燃焼用空気供給量調整機構としてのダンパ10、火格子11、給塵装置14へ指令信号を送り、燃焼用空気供給量、火格子11の廃棄物搬送速度、給塵装置14の廃棄物供給速度等の各操作量を制御して、廃棄物の燃焼状態を制御する。   This moisture content is sent to the control device 30. The control device 30 calculates an accurate heat generation amount of the waste from the moisture content value sent from the moisture content calculator based on the correspondence relationship retained in advance, and the control retained in advance accordingly. Based on the flow, instructions are given to the damper 10, the grate 11, and the dust supply device 14 as the combustion air supply amount adjusting mechanism provided in the combustion air supply pipe 9 so that the stable waste incineration processing is performed. A signal is sent to control the operation amount of the combustion air supply amount, the waste conveyance speed of the grate 11, the waste supply speed of the dust supply device 14, and the like, thereby controlling the combustion state of the waste.

マイクロ波透過式水分率計の減衰率から求める水分率と、他の手法で求める水分率とを比較した試験結果を図3に示す。本発明にしたがって発信部から一定の発信強度で発信されたマイクロ波を廃棄物中へ透過させた後に受信部へ到達させ受信させ、受信するマイクロ波強度を測定し、減衰量に相当する発信強度と受信強度との差を水分電圧値として測定し、水分電圧値と水分率との予め定めてある対応関係により水分率を求める。水分電圧値が大きいほど水分率が高く、すなわち発熱量が小さく、また、水分電圧値が小さいほど水分率が低く、すなわち発熱量が大きい。水分電圧の時間変化を[I]線で示し、これがマイクロ波の減衰率から求める水分率の時間変化に相当している。一方、他の手法として廃棄物焼却炉からの排ガスの実測熱データをもとに算出した算出水分率を「(算出)水分率」として時間変化を[II]線で示している。図3(A)で示すマイクロ波周波数が52MHzの場合、図3(B)で示すマイクロ波周波数が116MHzの場合には、ともに、マイクロ波透過式水分率計の減衰率から求める水分率が、廃棄物焼却炉からの排ガスの実測熱データをもとに算出した算出水分率と相関関係を有しており、マイクロ波透過式水分率計により精度よく水分率を測定することができることを確認した。   FIG. 3 shows the test results comparing the moisture content obtained from the attenuation rate of the microwave transmission moisture meter and the moisture content obtained by other methods. According to the present invention, the microwave transmitted from the transmitter with a constant transmission intensity is transmitted through the waste, then reaches the receiver and is received, the received microwave intensity is measured, and the transmission intensity corresponding to the attenuation amount And the received intensity are measured as a moisture voltage value, and the moisture content is obtained from a predetermined correspondence between the moisture voltage value and the moisture content. The greater the moisture voltage value, the higher the moisture content, that is, the smaller the amount of heat generated, and the smaller the moisture voltage value, the lower the moisture content, that is, the greater the amount of heat generated. The time variation of the moisture voltage is indicated by [I] line, which corresponds to the time variation of the moisture content obtained from the attenuation rate of the microwave. On the other hand, as another method, the calculated moisture percentage calculated based on the measured heat data of the exhaust gas from the waste incinerator is shown as [(calculated) moisture percentage], and the time change is shown by the line [II]. When the microwave frequency shown in FIG. 3 (A) is 52 MHz and the microwave frequency shown in FIG. 3 (B) is 116 MHz, the moisture content obtained from the attenuation rate of the microwave transmission moisture meter is It has a correlation with the calculated moisture content calculated based on the measured heat data of the exhaust gas from the waste incinerator, and it was confirmed that the moisture content can be accurately measured with a microwave transmission moisture meter. .

13 燃焼室
15 シュート
15A,15B 平行壁部
17A,17B 窓部
20A−2 発信部
20B−2 受信部
13 Combustion chamber 15 Chute 15A, 15B Parallel wall 17A, 17B Window 20A-2 Transmitter 20B-2 Receiver

Claims (6)

廃棄物を燃焼室へ落下供給するシュートが廃棄物の落下方向に対して直角な横方向で対面し互いに平行な一対の平行壁部を有し、該シュート内の廃棄物の水分率を測定する水分率計を該シュートに設けた廃棄物水分率測定装置において、
水分率計は、マイクロ波透過式の水分率計であって、マイクロ波を発信する発信部と、このマイクロ波を受信する受信部とを有し、シュートの一対の平行壁部の一方に形成された窓部に発信部がそして他方の平行壁部に形成された窓部に受信部が配置され、発信部は、その発信マイクロ波周波数が15MHz以上120MHz以下であることを特徴とする廃棄物水分率測定装置。
A chute for supplying waste to the combustion chamber has a pair of parallel walls facing each other in a lateral direction perpendicular to the direction in which the waste falls, and measuring the moisture content of the waste in the chute. In a waste water content measuring apparatus provided with a moisture meter on the chute,
The moisture meter is a microwave transmission moisture meter having a transmitter for transmitting microwaves and a receiver for receiving the microwaves, and is formed on one of a pair of parallel wall portions of the chute. A transmitter having a transmitter and a receiver disposed in a window formed on the other parallel wall, wherein the transmitter has a microwave frequency of 15 MHz to 120 MHz. Moisture content measuring device.
火格子式廃棄物焼却炉であって、火格子を備え該火格子上の廃棄物を燃焼する燃焼室と、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込手段と、火格子上に廃棄物を供給する給塵機とを有する廃棄物焼却炉において、
請求項1に記載の廃棄物水分率測定装置と、該廃棄物水分率測定装置により測定された廃棄物の水分率測定値又は該水分率測定値から算出した廃棄物の発熱量算出値に基づき、焼却炉の操業条件を制御する制御装置とを備えることを特徴とする廃棄物焼却炉。
A grate-type waste incinerator comprising a grate and a combustion chamber for burning waste on the grate, and primary air blowing means for blowing combustion primary air into the combustion chamber from under the grate In a waste incinerator having a dust feeder for supplying waste on a grate,
The waste water content measuring device according to claim 1 and the waste water content measured by the waste water content measuring device or the waste heat value calculated from the water content measured value. And a waste incinerator comprising a control device for controlling operating conditions of the incinerator.
制御装置は、焼却炉の操業条件として、給塵機の廃棄物供給速度、火格子の廃棄物搬送速度、燃焼用一次空気供給量のうちの少なくとも一つを制御することとする請求項2に記載の廃棄物焼却炉。   The control apparatus controls at least one of a dust supply waste supply speed, a grate waste conveyance speed, and a combustion primary air supply amount as an operation condition of the incinerator. The waste incinerator described. 廃棄物を燃焼室へ落下供給するシュートが廃棄物の落下方向に対して直角な横方向で対面し互いに平行な一対の平行壁部を有し、該シュート内の廃棄物の水分率を測定する水分率計を該シュートに設けた廃棄物水分率測定装置による廃棄物水分率測定方法において、
水分率計としてマイクロ波透過式の水分率計を用い、一対の平行壁部の一方に形成された窓部に該水分率計の発信部をそして他方の平行壁部に形成された窓部に該水分率計の受信部を配置し、発信部から発信マイクロ波周波数が15MHz以上120MHz以上のマイクロ波を発信し、このマイクロ波を受信部で受信することを特徴とする廃棄物水分率測定方法。
A chute for supplying waste to the combustion chamber has a pair of parallel walls facing each other in a lateral direction perpendicular to the direction in which the waste falls, and measuring the moisture content of the waste in the chute. In the waste water content measuring method by the waste water content measuring device provided with a moisture content meter on the chute,
A microwave transmission moisture meter is used as the moisture meter, and a transmitter portion of the moisture meter is provided in one of the pair of parallel wall portions, and a window portion formed in the other parallel wall portion. A waste water content measuring method, comprising: a receiving unit of the moisture content meter; transmitting a microwave having a transmission microwave frequency of 15 MHz to 120 MHz from the transmitting unit; and receiving the microwave by the receiving unit. .
火格子式廃棄物焼却炉による廃棄物焼却方法であって、燃焼室内に備えられた火格子上で廃棄物を燃焼し、給塵機により火格子上に廃棄物を供給し、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む火格子式廃棄物焼却炉による廃棄物焼却方法において、
請求項4に記載の廃棄物水分率測定方法により廃棄物の水分率を測定し、測定された廃棄物の水分率測定値又は該水分率測定値から算出した廃棄物の発熱量算出値に基づき、焼却炉の操業条件を制御装置で制御することを特徴とする火格子式廃棄物焼却炉による廃棄物焼却方法。
A waste incineration method using a grate-type waste incinerator, in which waste is burned on a grate provided in a combustion chamber, waste is supplied onto the grate by a dust feeder, and primary air for combustion In a waste incineration method using a grate-type waste incinerator that blows into the combustion chamber from under the grate,
The moisture content of the waste is measured by the waste moisture content measuring method according to claim 4, and based on the measured moisture content measurement value of the waste or the calorific value calculation value of the waste calculated from the measured moisture content value. A waste incineration method using a grate-type waste incinerator, wherein the operating conditions of the incinerator are controlled by a control device.
制御装置による制御は、焼却炉の操業条件として、給塵機の廃棄物供給速度、火格子の廃棄物搬送速度、燃焼用一次空気供給量のうちの少なくとも一つについてなされることとする請求項5に記載の火格子式廃棄物焼却炉による廃棄物焼却方法。   The control by the control device is performed on at least one of a dust feeder waste supply speed, a grate waste transport speed, and a combustion primary air supply amount as an operation condition of the incinerator. 6. A waste incineration method using a grate-type waste incinerator according to 5.
JP2018070094A 2018-03-30 2018-03-30 Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method Pending JP2019178847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018070094A JP2019178847A (en) 2018-03-30 2018-03-30 Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018070094A JP2019178847A (en) 2018-03-30 2018-03-30 Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method

Publications (1)

Publication Number Publication Date
JP2019178847A true JP2019178847A (en) 2019-10-17

Family

ID=68278372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018070094A Pending JP2019178847A (en) 2018-03-30 2018-03-30 Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method

Country Status (1)

Country Link
JP (1) JP2019178847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085241A1 (en) * 2021-11-12 2023-05-19 三菱重工業株式会社 Waste treatment facility
JP7568480B2 (en) 2020-11-04 2024-10-16 株式会社タクマ Waste incineration facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105845A (en) * 1994-10-03 1996-04-23 Snow Brand Milk Prod Co Ltd Method for concurrently measuring moisture and salinity
JPH08219428A (en) * 1994-12-22 1996-08-30 Abb Manag Ag Method and device to incinerate garbage
JPH11132968A (en) * 1997-10-27 1999-05-21 Matsushita Electric Works Ltd Method for measuring water content of board like building material using microwave
JP2014219208A (en) * 2013-05-01 2014-11-20 アースニクス株式会社 Moisture measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105845A (en) * 1994-10-03 1996-04-23 Snow Brand Milk Prod Co Ltd Method for concurrently measuring moisture and salinity
JPH08219428A (en) * 1994-12-22 1996-08-30 Abb Manag Ag Method and device to incinerate garbage
JPH11132968A (en) * 1997-10-27 1999-05-21 Matsushita Electric Works Ltd Method for measuring water content of board like building material using microwave
JP2014219208A (en) * 2013-05-01 2014-11-20 アースニクス株式会社 Moisture measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7568480B2 (en) 2020-11-04 2024-10-16 株式会社タクマ Waste incineration facility
WO2023085241A1 (en) * 2021-11-12 2023-05-19 三菱重工業株式会社 Waste treatment facility

Similar Documents

Publication Publication Date Title
JP2019178844A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP6927127B2 (en) Waste incinerator method
EP1726876B1 (en) Improved method of combusting solid waste
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JP6696790B2 (en) Stoker incinerator
KR20190011282A (en) Control method of waste incineration plant and waste incineration plant
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP2019178847A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP6686633B2 (en) Waste treatment furnace device and method
JP6695160B2 (en) Stoker incinerator
JP6695161B2 (en) Stoker incinerator
JP2019178848A (en) Waste incinerator and waste incineration method
JP6624451B2 (en) Waste treatment furnace equipment
JP2007010258A (en) Refuse burning state detecting method using fire grate temperature, and refuse incineration control method and fire grate temperature control method using it in stoker type refuse incinerator
JP6973246B2 (en) Waste incinerator method
JP2019178845A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JP2019086255A (en) Device and method for controlling combustion of stoker furnace and device and method for detecting fuel movement amount
JP3963925B2 (en) Secondary combustion method and apparatus in incineration system
JPH074629A (en) Refuse incinerator
JP2019178846A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JP6685506B2 (en) Waste incinerator
Junge Boilers fired with wood and bark residues
CN114568031A (en) Waste combustion device and waste combustion method
JP2005069630A (en) Device for detecting property of substance to be treated for waste treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104