JP2019174191A - Data structure, information transmitting device, control method, program, and storage medium - Google Patents
Data structure, information transmitting device, control method, program, and storage medium Download PDFInfo
- Publication number
- JP2019174191A JP2019174191A JP2018060505A JP2018060505A JP2019174191A JP 2019174191 A JP2019174191 A JP 2019174191A JP 2018060505 A JP2018060505 A JP 2018060505A JP 2018060505 A JP2018060505 A JP 2018060505A JP 2019174191 A JP2019174191 A JP 2019174191A
- Authority
- JP
- Japan
- Prior art keywords
- information
- vehicle
- position estimation
- accuracy
- estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Instructional Devices (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
本発明は、自己位置推定技術に関する。 The present invention relates to a self-position estimation technique.
従来から、車両の進行先に設置される地物をレーダやカメラを用いて検出し、その検出結果に基づいて自車位置を校正する技術が知られている。例えば、特許文献1には、計測センサの出力と、予め地図上に登録された地物の位置情報とを照合させることで自己位置を推定する技術が開示されている。また、特許文献2には、カルマンフィルタを用いた自車位置推定技術が開示されている。さらに、非特許文献1には、車両側のセンサが検出したデータをクラウドサーバで収集するためのデータフォーマットに関する仕様が開示されている。 2. Description of the Related Art Conventionally, a technique for detecting a feature installed at a destination of a vehicle using a radar or a camera and calibrating the vehicle position based on the detection result is known. For example, Patent Document 1 discloses a technique for estimating a self-position by collating the output of a measurement sensor with the position information of a feature registered in advance on a map. Patent Document 2 discloses a vehicle position estimation technique using a Kalman filter. Furthermore, Non-Patent Document 1 discloses specifications related to a data format for collecting data detected by a vehicle-side sensor with a cloud server.
自車位置推定方式として種々の方式が提案されているが、位置推定に適した実行環境及び適さない実行環境がいずれの方式においても存在する。一方、一つの自車位置推定方式を当該方式による位置推定に適さない実行環境下で実行し続けると、自車位置推定精度が悪化し、自動運転制御などの高い位置推定精度が求められる処理に悪影響が生じる可能性がある。 Various methods have been proposed as the vehicle position estimation method, but there are both an execution environment suitable for position estimation and an unsuitable execution environment. On the other hand, if one vehicle position estimation method continues to be executed in an execution environment that is not suitable for position estimation by this method, the vehicle position estimation accuracy deteriorates, and processing that requires high position estimation accuracy such as automatic driving control is required. Adverse effects may occur.
本発明は、上記のような課題を解決するためになされたものであり、情報処理装置に送信されるデータであって、自己位置推定方式を走行エリアに応じて選択するための事前情報の生成に好適なデータのデータ構造及び当該データを送信する情報送信装置を提供することを主な目的とする。 The present invention has been made to solve the above-described problems, and is data transmitted to an information processing apparatus, and generates prior information for selecting a self-position estimation method according to a traveling area. The main object of the present invention is to provide a data structure suitable for data and an information transmission apparatus for transmitting the data.
請求項に記載の発明は、移動体の位置推定の精度に関する情報を収集する情報処理装置に送信されるデータのデータ構造であって、移動体の推定された位置を示す位置情報と、前記位置の推定精度を示す精度情報と、前記位置を推定した時点を含む所定期間における前記推定精度の平均及び標準偏差の情報と、前記位置の推定に用いた推定方式を示す方式情報と、を含み、地点又はエリアごと、かつ、前記推定方式ごとの位置推定の推奨値を前記情報処理装置が算出するのに用いられるデータのデータ構造である。 The invention described in the claims is a data structure of data transmitted to an information processing apparatus that collects information on accuracy of position estimation of a moving object, the position information indicating the estimated position of the moving object, and the position Accuracy information indicating the estimation accuracy, information on the average and standard deviation of the estimation accuracy in a predetermined period including the time when the position was estimated, and method information indicating the estimation method used for the estimation of the position, It is the data structure of the data used for the said information processing apparatus to calculate the recommended value of the position estimation for every point or area and for every said estimation method.
また、請求項に記載の発明は、情報送信装置であって、移動体の推定された位置を示す位置情報と、前記位置の推定精度を示す精度情報と、前記位置を推定した時点を含む所定期間における前記推定精度の平均及び標準偏差の情報と、前記位置の推定に用いた推定方式を示す方式情報と、を情報処理装置へ送信する送信部を有する。 The invention described in the claims is an information transmission apparatus, and includes a position information indicating an estimated position of a moving object, accuracy information indicating an estimation accuracy of the position, and a predetermined time including the time when the position is estimated. It has a transmission part which transmits the information of the average and standard deviation of the said estimation precision in a period, and the system information which shows the estimation system used for the estimation of the said position to information processing apparatus.
また、請求項に記載の発明は、情報送信装置が実行する制御方法であって、移動体の推定された位置を示す位置情報と、前記位置の推定精度を示す精度情報と、前記位置を推定した時点を含む所定期間における前記推定精度の平均及び標準偏差の情報と、前記位置の推定に用いた推定方式を示す方式情報と、を情報処理装置へ送信する送信工程を有する。 Further, the invention described in the claims is a control method executed by the information transmitting apparatus, the position information indicating the estimated position of the moving object, the accuracy information indicating the estimation accuracy of the position, and the position estimation. A transmission step of transmitting to the information processing apparatus information on the average and standard deviation of the estimation accuracy in a predetermined period including the time point and the method information indicating the estimation method used for the estimation of the position.
本発明の好適な実施形態によれば、移動体の位置推定の精度に関する情報を収集する情報処理装置に送信されるデータのデータ構造であって、移動体の推定された位置を示す位置情報と、前記位置の推定精度を示す精度情報と、前記位置を推定した時点を含む所定期間における前記推定精度の平均及び標準偏差の情報と、前記位置の推定に用いた推定方式を示す方式情報と、を含み、地点又はエリアごと、かつ、前記推定方式ごとの位置推定の推奨値を前記情報処理装置が算出するのに用いられるデータのデータ構造である。情報処理装置は、このようなデータ構造を有するデータを受信することで、位置推定の推定方式ごとの位置推定の推奨値を好適に算出することができる。 According to a preferred embodiment of the present invention, there is provided a data structure of data transmitted to an information processing apparatus that collects information related to the accuracy of position estimation of a moving body, the position information indicating the estimated position of the moving body; Accuracy information indicating the estimation accuracy of the position, information on the average and standard deviation of the estimation accuracy in a predetermined period including the time when the position was estimated, and method information indicating an estimation method used for the estimation of the position; Is a data structure of data used for the information processing apparatus to calculate a recommended value for position estimation for each point or area and for each estimation method. By receiving data having such a data structure, the information processing apparatus can suitably calculate a recommended value for position estimation for each estimation method for position estimation.
上記データ構造の一態様では、前記方向ごとの前記精度情報と、前記方向ごとの前記平均及び前記標準偏差の情報とを含む。このようなデータ構造を有するデータを受信することで、位置推定の推定方式ごとの位置推定の推奨値を、移動体を基準とした方向ごとに好適に算出することができる。好適には、上記データ構造は、前記方位に対する前記精度情報と、前記方位に対する前記平均及び前記標準偏差の情報とをさらに含むとよい。 In one mode of the data structure, the accuracy information for each direction and the average and standard deviation information for each direction are included. By receiving data having such a data structure, it is possible to suitably calculate a recommended value for position estimation for each position estimation estimation method for each direction based on the moving object. Preferably, the data structure may further include the accuracy information with respect to the azimuth and the average and standard deviation information with respect to the azimuth.
本発明の他の好適な実施形態によれば、情報送信装置は、移動体の推定された位置を示す位置情報と、前記位置の推定精度を示す精度情報と、前記位置を推定した時点を含む所定期間における前記推定精度の平均及び標準偏差の情報と、前記位置の推定に用いた推定方式を示す方式情報と、を情報処理装置へ送信する送信部を有する。情報送信装置は、このようなデータ構造を有するデータを情報処理装置に送信することで、位置推定の推定方式ごとの位置推定の推奨値の算出に必要なデータを情報処理装置に好適に収集させることができる。 According to another preferred embodiment of the present invention, the information transmission device includes position information indicating the estimated position of the moving object, accuracy information indicating the estimation accuracy of the position, and a time point when the position is estimated. It has a transmission part which transmits the information of the said estimation precision average and standard deviation in a predetermined period, and the system information which shows the estimation system used for the said position estimation to an information processing apparatus. The information transmitting apparatus transmits data having such a data structure to the information processing apparatus, so that the information processing apparatus suitably collects data necessary for calculating a recommended value for position estimation for each position estimation estimation method. be able to.
本発明の他の好適な実施形態によれば、情報送信装置が実行する制御方法であって、移動体の推定された位置を示す位置情報と、前記位置の推定精度を示す精度情報と、前記位置を推定した時点を含む所定期間における前記推定精度の平均及び標準偏差の情報と、前記位置の推定に用いた推定方式を示す方式情報と、を情報処理装置へ送信する送信工程を有する。情報送信装置は、この制御方法を実行することで、位置推定の推定方式ごとの位置推定の推奨値の算出に必要なデータを情報処理装置に好適に収集させることができる。 According to another preferred embodiment of the present invention, there is provided a control method executed by the information transmitting apparatus, the position information indicating the estimated position of the moving object, the accuracy information indicating the estimated accuracy of the position, A transmission step of transmitting to the information processing apparatus information on the average accuracy and standard deviation of the estimation accuracy in a predetermined period including the time when the position is estimated, and method information indicating the estimation method used for the position estimation; By executing this control method, the information transmitting apparatus can cause the information processing apparatus to appropriately collect data necessary for calculating the recommended position estimation value for each estimation method of position estimation.
本発明の他の好適な実施形態によれば、プログラムは、上記記載の制御方法を、コンピュータにより実行させる。コンピュータは、このプログラムを実行することで、上記記載の情報送信装置として機能する。好適には、上記プログラムは、記憶媒体に記憶される。 According to another preferred embodiment of the present invention, a program causes a computer to execute the control method described above. The computer functions as the information transmission device described above by executing this program. Preferably, the program is stored in a storage medium.
以下、図面を参照して本発明の好適な実施例について説明する。なお、任意の記号の上に「^」または「−」が付された文字を、本明細書では便宜上、「A^」または「A−」(「A」は任意の文字)と表す。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. For convenience, a character with “^” or “−” attached to an arbitrary symbol is represented as “A ^ ” or “A − ” (“A” is an arbitrary character) in this specification.
[運転支援システムの概要]
図1は、本実施例に係る運転支援システムの概略構成である。運転支援システムは、移動体である各車両と共に移動する車載機1と、各車載機1とネットワークを介して通信を行うサーバ装置6とを備える。そして、運転支援システムは、各車載機1から送信された情報に基づき、サーバ装置6が保有する配信用の地図である配信地図DB20を更新する。なお、以後において、「地図」とは、従来の経路案内用の車載機が参照するデータに加えて、ADAS(Advanced Driver Assistance System)や自動運転に用いられるデータも含むものとする。
[Outline of driving support system]
FIG. 1 is a schematic configuration of a driving support system according to the present embodiment. The driving support system includes an in-vehicle device 1 that moves together with each vehicle that is a moving body, and a server device 6 that communicates with each in-vehicle device 1 via a network. And a driving assistance system updates distribution map DB20 which is a map for distribution which the server apparatus 6 holds based on the information transmitted from each vehicle equipment 1. FIG. In the following, the “map” includes data used for ADAS (Advanced Driver Assistance System) and automatic driving in addition to data referred to by a conventional in-vehicle device for route guidance.
車載機1は、ライダ2、ジャイロセンサ3、車速センサ4、及びGPS受信機5と電気的に接続し、これらの出力に基づき、所定のオブジェクトの検出、及び、車載機1が搭載される車両の位置(「自車位置」とも呼ぶ。)の推定などを行う。そして、車載機1は、自車位置の推定結果に基づき、設定された目的地への経路に沿って走行するように、車両の自動運転制御などを行う。車載機1は、道路データ及び道路付近に設けられた目印となる地物や区画線等(「ランドマーク」とも呼ぶ。)に関する情報などが登録された地図データベース(DB:DataBase)10を記憶する。そして、車載機1は、この地図DB10に基づき、ライダ2等の出力と照合させて自車位置の推定を行う。また、車載機1は、検出したオブジェクトに関する情報を含むアップロード情報「Iu」をサーバ装置6へ送信する。車載機1は、情報処理装置及び情報送信装置の一例である。 The in-vehicle device 1 is electrically connected to the lidar 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5, and based on these outputs, a predetermined object is detected and the vehicle in which the in-vehicle device 1 is mounted. The position of the vehicle (also referred to as “the vehicle position”) is estimated. And the vehicle equipment 1 performs automatic driving | operation control etc. of a vehicle so that it drive | works along the path | route to the set destination based on the estimation result of the own vehicle position. The in-vehicle device 1 stores a map database (DB: DataBase) 10 in which information related to road data and landmarks, marking lines, etc. (also referred to as “landmarks”) provided near the road are registered. . And the vehicle equipment 1 estimates the own vehicle position by collating with the output of the lidar 2 etc. based on this map DB10. The in-vehicle device 1 transmits upload information “Iu” including information on the detected object to the server device 6. The in-vehicle device 1 is an example of an information processing device and an information transmission device.
ライダ2は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群情報を生成する。この場合、ライダ2は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光が物体で反射した反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、点群データであり、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される、その照射方向での物体までの距離とに基づき生成される。ライダ2、ジャイロセンサ3、車速センサ4、GPS受信機5は、それぞれ、出力データを車載機1へ供給する。 The lidar 2 emits a pulse laser in a predetermined angle range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group information. In this case, the lidar 2 includes an irradiation unit that irradiates laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) reflected by the object, and a light reception signal output by the light receiving unit. And an output unit for outputting scan data based on. The scan data is point cloud data, and is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the distance to the object in the irradiation direction specified based on the light reception signal. The rider 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5 each supply output data to the in-vehicle device 1.
サーバ装置6は、各車載機1からアップロード情報Iuを受信して記憶する。サーバ装置6は、例えば、収集したアップロード情報Iuに基づき、配信地図DB20を更新する。また、サーバ装置6は、配信地図DB20の更新情報を含むダウンロード情報Idを各車載機1へ送信する。サーバ装置6は、情報処理装置及び地図データ生成装置の一例である。 The server device 6 receives the upload information Iu from each in-vehicle device 1 and stores it. For example, the server device 6 updates the distribution map DB 20 based on the collected upload information Iu. In addition, the server device 6 transmits download information Id including update information of the distribution map DB 20 to each in-vehicle device 1. The server device 6 is an example of an information processing device and a map data generation device.
図2(A)は、車載機1の機能的構成を示すブロック図である。車載機1は、主に、インターフェース11と、記憶部12と、通信部13と、入力部14と、制御部15と、情報出力部16と、を有する。これらの各要素は、バスラインを介して相互に接続されている。 FIG. 2A is a block diagram illustrating a functional configuration of the in-vehicle device 1. The in-vehicle device 1 mainly includes an interface 11, a storage unit 12, a communication unit 13, an input unit 14, a control unit 15, and an information output unit 16. Each of these elements is connected to each other via a bus line.
インターフェース11は、ライダ2、ジャイロセンサ3、車速センサ4、及びGPS受信機5などのセンサから出力データを取得し、制御部15へ供給する。 The interface 11 acquires output data from sensors such as the lidar 2, the gyro sensor 3, the vehicle speed sensor 4, and the GPS receiver 5, and supplies the output data to the control unit 15.
記憶部12は、制御部15が実行するプログラムや、制御部15が所定の処理を実行するのに必要な情報を記憶する。本実施例では、記憶部12は、方式推奨情報IRと、ランドマーク情報ILと、ボクセルデータIBとを含む地図DB10を記憶する。方式推奨情報IRは、車載機1が実行可能な各自車位置推定方式の推奨度を示す値(単に「推奨値」とも呼ぶ。)を地点又はエリアごとに示した情報である。方式推奨情報IRは、推奨値情報の一例である。ランドマーク情報ILは、ランドマークとなる各オブジェクトに関する情報であって、各オブジェクトの位置、大きさ、形状などの属性情報を含む。ランドマークは、例えば、道路脇に周期的に並んでいるキロポスト、100mポスト、デリニエータ、交通インフラ設備(例えば標識、方面看板、信号)、電柱、街灯などの地物及び区画線等である。ランドマーク情報ILは、後述するランドマークベース位置推定において用いられる。ボクセルデータIBは、3次元空間を複数の領域に分割した場合の単位領域(「ボクセル」とも呼ぶ。)ごとの静止構造物の計測位置を示す点群データに関する情報である。 The storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process. In the present embodiment, the storage unit 12 stores a map DB 10 including method recommendation information IR, landmark information IL, and voxel data IB. The method recommendation information IR is information indicating a recommendation level (also simply referred to as “recommended value”) for each vehicle position estimation method that can be executed by the in-vehicle device 1 for each point or area. The system recommendation information IR is an example of recommended value information. The landmark information IL is information relating to each object that is a landmark, and includes attribute information such as the position, size, and shape of each object. The landmark is, for example, a kilometer post, a 100 m post, a delineator, a traffic infrastructure facility (for example, a sign, a direction signboard, a signal), a telephone pole, a streetlight, or the like that is periodically arranged along the road. The landmark information IL is used in landmark base position estimation described later. The voxel data IB is information on point cloud data indicating the measurement position of the stationary structure for each unit region (also referred to as “voxel”) when the three-dimensional space is divided into a plurality of regions.
通信部13は、制御部15の制御に基づき、アップロード情報Iuの送信及びダウンロード情報Idの受信などを行う。入力部14は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等である。情報出力部16は、例えば、制御部15の制御に基づき出力を行うディスプレイやスピーカ等である。 The communication unit 13 transmits the upload information Iu and receives the download information Id based on the control of the control unit 15. The input unit 14 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate. The information output unit 16 is, for example, a display or a speaker that outputs based on the control of the control unit 15.
制御部15は、プログラムを実行するCPUなどを含み、車載機1の全体を制御する。本実施例では、制御部15は、自車位置推定部17と、アップロード制御部18と、自動運転制御部19と、を有する。 The control unit 15 includes a CPU that executes a program, and controls the entire vehicle-mounted device 1. In the present embodiment, the control unit 15 includes a host vehicle position estimation unit 17, an upload control unit 18, and an automatic driving control unit 19.
自車位置推定部17は、複数の自車位置推定方式を選択的に又は組み合わせて実行することで、高精度な自車位置の推定を行う。本実施例では、一例として、自車位置推定部17は、ランドマーク情報を用いた位置推定(「ランドマークベース位置推定」とも呼ぶ。)と、ボクセルデータを用いた位置推定(「点群ベース位置推定」とも呼ぶ。)と、全球測位衛星システム(GNSS:Global Navigation Satellite System)を用いた位置推定(「GNSSベース位置推定」とも呼ぶ。)とを選択的に又は組み合わせて実行する。自車位置推定部17は、ランドマークベース位置推定及び点群ベース位置推定ではライダ2の出力に基づき自車位置推定を行い、GNSSベース位置推定ではGPS受信機5の出力に基づき自車位置推定を行う。本実施例では、後述するように、自車位置推定部17は、方式推奨情報IRを参照し、実行すべき位置推定方式を決定する。 The own vehicle position estimation unit 17 performs the estimation of the own vehicle position with high accuracy by executing a plurality of own vehicle position estimation methods selectively or in combination. In this embodiment, as an example, the vehicle position estimation unit 17 performs position estimation using landmark information (also referred to as “landmark base position estimation”) and position estimation using voxel data (“point cloud base”). The position estimation using a global positioning satellite system (GNSS: Global Positioning Satellite System) (also referred to as “GNSS base position estimation”) is performed selectively or in combination. The vehicle position estimation unit 17 performs vehicle position estimation based on the output of the lidar 2 in the landmark base position estimation and the point cloud base position estimation, and the vehicle position estimation based on the output of the GPS receiver 5 in the GNSS base position estimation. I do. In the present embodiment, as will be described later, the vehicle position estimation unit 17 refers to the method recommendation information IR and determines the position estimation method to be executed.
さらに、自車位置推定部17は、自車位置を推定すると共に、推定した自車位置の推定精度に関する情報(「精度情報」とも呼ぶ。)を生成して記憶部12等に記憶する。ランドマークベース位置推定及び点群ベース位置推定の詳細とこれらの精度情報の生成方法については後述する。 Furthermore, the own vehicle position estimation unit 17 estimates the own vehicle position, generates information related to the estimated accuracy of the own vehicle position (also referred to as “accuracy information”), and stores it in the storage unit 12 or the like. Details of the landmark-based position estimation and the point cloud-based position estimation and the method of generating the accuracy information will be described later.
アップロード制御部18は、ライダ2などの外界センサの出力に基づき所定のオブジェクトを検出した場合などに、検出したオブジェクトなどに関する情報を含むアップロード情報Iuを生成し、アップロード情報Iuをサーバ装置6へ送信する。また、本実施例では、アップロード制御部18は、実行した自車位置推定に関する情報(「位置推定関連情報」とも呼ぶ。)を、推定した位置情報と共にアップロード情報Iuに含めてサーバ装置6へ送信する。位置推定関連情報は、自車位置推定部17が推定した位置情報と、自車位置推定部17が実行した位置推定の精度情報と、当該精度情報の値の平均及び標準偏差の情報と、実行した自車位置推定方式を示す識別情報(「方式情報」とも呼ぶ。)とを含む。なお、上述の平均及び標準偏差は、自車位置推定部17が過去所定時間以内に算出した自車位置推定の精度情報の値の平均及び標準偏差である。アップロード制御部18は、「送信部」及びプログラムを実行する「コンピュータ」の一例である。 The upload control unit 18 generates upload information Iu including information related to the detected object when a predetermined object is detected based on the output of an external sensor such as the lidar 2, and transmits the upload information Iu to the server device 6. To do. Further, in the present embodiment, the upload control unit 18 includes information related to the executed vehicle position estimation (also referred to as “position estimation related information”) in the upload information Iu together with the estimated position information and transmits the information to the server device 6. To do. The position estimation related information includes position information estimated by the vehicle position estimation unit 17, accuracy information of position estimation performed by the vehicle position estimation unit 17, information on the average and standard deviation of the accuracy information, and execution. Identification information (also referred to as “method information”) indicating the own vehicle position estimation method. The average and standard deviation described above are the average and standard deviation of the accuracy information values of the vehicle position estimation calculated by the vehicle position estimation unit 17 within the past predetermined time. The upload control unit 18 is an example of a “transmission unit” and a “computer” that executes a program.
自動運転制御部19は、地図DB10を参照し、設定された経路と、自車位置推定部17が推定した自車位置とに基づき、自動運転制御に必要な信号を車両に送信する。自動運転制御部19は、設定された経路に基づき、目標軌道を設定し、自車位置推定部17が推定した自車位置が目標軌道から所定幅以内のずれ幅となるように、車両に対してガイド信号を送信して車両の位置を制御する。 The automatic driving control unit 19 refers to the map DB 10 and transmits a signal necessary for automatic driving control to the vehicle based on the set route and the own vehicle position estimated by the own vehicle position estimating unit 17. Based on the set route, the automatic driving control unit 19 sets a target track, and the vehicle position estimated by the host vehicle position estimating unit 17 is set to a vehicle within a predetermined width from the target track. Then, a guide signal is transmitted to control the position of the vehicle.
図2(B)は、サーバ装置6の機能的構成を示すブロック図である。サーバ装置6は、主に、通信部61と、記憶部62と、制御部65とを有する。これらの各要素は、バスラインを介して相互に接続されている。 FIG. 2B is a block diagram showing a functional configuration of the server device 6. The server device 6 mainly includes a communication unit 61, a storage unit 62, and a control unit 65. Each of these elements is connected to each other via a bus line.
通信部61は、制御部65の制御に基づき、アップロード情報Iuの受信及びダウンロード情報Idの送信などを行う。記憶部62は、制御部65が実行するプログラムや、制御部65が所定の処理を実行するのに必要な情報を記憶する。本実施例では、記憶部62は、地図DB10と同様のデータ構造を有する配信地図DB20と、各車載機1から受信したアップロード情報Iuに基づく精度情報のデータベースである精度情報DB27と、を記憶する。 The communication unit 61 receives the upload information Iu and transmits the download information Id based on the control of the control unit 65. The storage unit 62 stores a program executed by the control unit 65 and information necessary for the control unit 65 to execute a predetermined process. In the present embodiment, the storage unit 62 stores a distribution map DB 20 having the same data structure as the map DB 10 and an accuracy information DB 27 that is a database of accuracy information based on the upload information Iu received from each vehicle-mounted device 1. .
制御部65は、プログラムを実行するCPUなどを含み、サーバ装置6の全体を制御する。本実施例では、制御部65は、通信部61により各車載機1から受信したアップロード情報Iuに含まれる位置推定関連情報に基づき精度情報DB27を更新する処理、精度情報DB27に基づき方式推奨情報IRを生成する処理、及び生成した方式推奨情報IRなどの地図更新情報を通信部61により各車載機1へ送信する処理などを行う。制御部65は、「生成部」の一例である。 The control unit 65 includes a CPU that executes a program and controls the entire server device 6. In the present embodiment, the control unit 65 updates the accuracy information DB 27 based on the position estimation related information included in the upload information Iu received from each in-vehicle device 1 by the communication unit 61, and the system recommended information IR based on the accuracy information DB 27. And a process of transmitting map update information such as the generated method recommendation information IR to each in-vehicle device 1 by the communication unit 61. The control unit 65 is an example of a “generation unit”.
[自車位置推定方式の具体例]
以下では、自車位置推定方式の具体例として、ランドマークベース位置推定、点群ベース位置推定、及びGNSSベース位置推定の概要について説明する。
[Specific example of vehicle position estimation method]
Below, the outline | summary of landmark base position estimation, point cloud base position estimation, and GNSS base position estimation is demonstrated as a specific example of the own vehicle position estimation system.
(1)ランドマークベース位置推定
ランドマークベース位置推定では、自車位置推定部17は、ランドマークに対するライダ2による距離及び角度の計測値と、地図DB10から抽出したランドマークの位置情報とに基づき、ジャイロセンサ3、車速センサ4、及び/又はGPS受信機5の出力データから推定した自車位置を補正する。本実施例では、一例として、自車位置推定部17は、ジャイロセンサ3、車速センサ4等の出力データから自車位置を予測する予測ステップと、直前の予測ステップで算出した自車位置の予測値を補正する計測更新ステップとを交互に実行する。これらのステップで用いる状態推定フィルタは、ベイズ推定を行うように開発された様々のフィルタが利用可能であり、例えば、拡張カルマンフィルタ、アンセンテッドカルマンフィルタ、パーティクルフィルタなどが該当する。以後では、自車位置推定部17は、ランドマークベース位置推定の代表例として、拡張カルマンフィルタを用いた自車位置推定を行う例について説明する。
(1) Landmark Base Position Estimation In the landmark base position estimation, the vehicle position estimation unit 17 is based on the distance and angle measurement values obtained by the lidar 2 with respect to the landmark and the landmark position information extracted from the map DB 10. The vehicle position estimated from the output data of the gyro sensor 3, the vehicle speed sensor 4, and / or the GPS receiver 5 is corrected. In the present embodiment, as an example, the vehicle position estimation unit 17 predicts the vehicle position calculated in the prediction step of predicting the vehicle position from the output data of the gyro sensor 3, the vehicle speed sensor 4, and the like, and the prediction step immediately before. The measurement update step for correcting the value is executed alternately. Various filters developed to perform Bayesian estimation can be used as the state estimation filter used in these steps, and examples thereof include an extended Kalman filter, an unscented Kalman filter, and a particle filter. Hereinafter, an example in which the vehicle position estimation unit 17 performs vehicle position estimation using an extended Kalman filter will be described as a representative example of landmark-based position estimation.
図3は、推定すべき自車位置を2次元直交座標で表した図である。図3に示すように、xyの2次元直交座標上で定義された平面での自車位置は、座標「(x、y)」、自車の方位(ヨー角)「ψ」により表される。ここでは、ヨー角ψは、車の進行方向とx軸とのなす角として定義されている。なお、本実施例では、上述の座標(x、y)及びヨー角ψに加えて、x軸及びy軸に垂直なz軸の座標を勘案した4変数(x、y、z、ψ)を自車位置の状態変数とした自車位置推定を行う。なお、一般的な道路は勾配が緩やかであるため、車両のピッチ角及びロール角については本実施例では原則的に無視するものとする。 FIG. 3 is a diagram showing the vehicle position to be estimated in two-dimensional orthogonal coordinates. As shown in FIG. 3, the vehicle position on the plane defined on the two-dimensional orthogonal coordinates of xy is represented by coordinates “(x, y)” and the direction (yaw angle) “ψ” of the vehicle. . Here, the yaw angle ψ is defined as an angle formed by the traveling direction of the vehicle and the x-axis. In this embodiment, in addition to the above-mentioned coordinates (x, y) and yaw angle ψ, four variables (x, y, z, ψ) taking into account the z-axis coordinates perpendicular to the x-axis and the y-axis are used. The vehicle position is estimated using the state variable of the vehicle position. Since a general road has a gentle slope, the pitch angle and roll angle of the vehicle are basically ignored in this embodiment.
図4は、予測ステップと計測更新ステップとの概略的な関係を示す図である。また、図5は、自車位置推定部17の機能ブロックの一例を示す。図4に示すように、予測ステップと計測更新ステップとを繰り返すことで、自車位置を示す状態変数ベクトル「X」の推定値の算出及び更新を逐次的に実行する。また、図5に示すように、自車位置推定部17は、予測ステップを実行する位置予測部21と、計測更新ステップを実行する位置推定部22とを有する。位置予測部21は、デッドレコニングブロック23及び位置予測ブロック24を含み、位置推定部22は、ランドマーク探索・抽出ブロック25及び位置補正ブロック26を含む。なお、図4では、計算対象となる基準時刻(即ち現在時刻)「k」の状態変数ベクトルを、「X−(k)」または「X^(k)」と表記している。ここで、予測ステップで推定された暫定的な推定値(予測値)には当該予測値を表す文字の上に「−」を付し、計測更新ステップで更新された,より精度の高い推定値には当該値を表す文字の上に「^」を付す。 FIG. 4 is a diagram illustrating a schematic relationship between the prediction step and the measurement update step. FIG. 5 shows an example of functional blocks of the vehicle position estimation unit 17. As shown in FIG. 4, by repeating the prediction step and the measurement update step, calculation and update of the estimated value of the state variable vector “X” indicating the vehicle position are sequentially executed. Moreover, as shown in FIG. 5, the own vehicle position estimation part 17 has the position estimation part 21 which performs a prediction step, and the position estimation part 22 which performs a measurement update step. The position prediction unit 21 includes a dead reckoning block 23 and a position prediction block 24, and the position estimation unit 22 includes a landmark search / extraction block 25 and a position correction block 26. In FIG. 4, the calculated subject to the reference time (ie current time) the state variable vector of "k", - denoted as "X (k)" or "X ^ (k)". Here, the provisional estimated value (predicted value) estimated in the predicting step is appended with “ - ” on the character representing the predicted value, and the estimated value with higher accuracy updated in the measurement updating step. Is appended with “ ^ ” on the character representing the value.
予測ステップでは、デッドレコニングブロック23は、車両の移動速度「v」と角速度「ω」(これらをまとめて「制御値u(k)=(v(k)、ω(k))T」と表記する。)を用い、前回時刻からの移動距離と方位変化を求める。制御部15の位置予測ブロック24は、直前の計測更新ステップで算出された時刻k−1の状態変数ベクトルX^(k−1)に対し、求めた移動距離と方位変化を加えて、時刻kの自車位置の予測値(「予測位置」とも呼ぶ。)X−(k)を算出する。また、これと同時に、予測位置X−(k)の誤差分布に相当する共分散行列「P−(k)」を、直前の計測更新ステップで算出された時刻k−1での共分散行列「P^(k−1)」から算出する。 In the prediction step, the dead reckoning block 23 describes the vehicle moving speed “v” and the angular speed “ω” (collectively “control value u (k) = (v (k), ω (k)) T ”. ) To obtain the movement distance and azimuth change from the previous time. The position prediction block 24 of the control unit 15 adds the obtained movement distance and azimuth change to the state variable vector X ^ (k-1) at the time k-1 calculated in the immediately previous measurement update step, so that the time k A predicted value (also referred to as “predicted position”) of the own vehicle position X − (k) is calculated. At the same time, the covariance matrix “P − (k)” corresponding to the error distribution at the predicted position X − (k) is replaced with the covariance matrix “at time k−1 calculated in the immediately preceding measurement update step”. P ^ (k-1) ".
計測更新ステップでは、ランドマーク探索・抽出ブロック25は、地図DB10のランドマーク情報ILに登録されたランドマークの位置ベクトルとライダ2のスキャンデータとの対応付けを行う。そして、ランドマーク探索・抽出ブロック25は、この対応付けができた場合に、対応付けができたランドマークのライダ2による計測値「Z(k)」と、予測位置X−(k)及び地図DB10に登録されたランドマークの位置ベクトルを用いてライダ2による計測処理をモデル化して求めたランドマークの計測値(「計測予測値」と呼ぶ。)「Z−(k)」とをそれぞれ取得する。計測値Z(k)は、時刻kにライダ2が計測したランドマークの距離及びスキャン角度から、車両の進行方向と横方向を軸とした成分に変換した車両の座標系(「車両座標系」とも呼ぶ。)におけるベクトル値である。そして、位置補正ブロック26は、以下の式(1)に示すように、計測値Z(k)と計測予測値Z−(k)との差分値にカルマンゲイン「K(k)」を乗算し、これを予測位置X−(k)に加えることで、更新された状態変数ベクトル(「推定位置」とも呼ぶ。)X^(k)を算出する。 In the measurement update step, the landmark search / extraction block 25 associates the landmark position vector registered in the landmark information IL of the map DB 10 with the scan data of the lidar 2. Then, the landmark search / extraction block 25, when this association is possible, the measured value “Z (k)” by the lidar 2 of the landmark that has been associated, the predicted position X − (k), and the map Landmark measurement values (referred to as “measurement prediction values”) “Z − (k)” obtained by modeling the measurement processing by the lidar 2 using the landmark position vectors registered in the DB 10 are acquired. To do. The measured value Z (k) is a vehicle coordinate system ("vehicle coordinate system") converted from a landmark distance and a scan angle measured by the rider 2 at time k into components with the vehicle traveling direction and the lateral direction as axes. Vector value). Then, the position correction block 26 multiplies the difference value between the measured value Z (k) and the measured predicted value Z − (k) by the Kalman gain “K (k)” as shown in the following equation (1). By adding this to the predicted position X − (k), an updated state variable vector (also referred to as “estimated position”) X ^ (k) is calculated.
このように、予測ステップと計測更新ステップが繰り返し実施され、予測位置X−(k)と推定位置X^(k)が逐次的に計算されることにより、もっとも確からしい自車位置が計算される。 As described above, the prediction step and the measurement update step are repeatedly performed, and the predicted position X − (k) and the estimated position X ^ (k) are sequentially calculated, so that the most likely vehicle position is calculated. .
ここで、位置推定の精度は、共分散行列Pの対角要素の値で判断することができる。ここで、時刻「k」のランドマークに対する計測値に基づき算出される共分散行列をP(k)とすると、共分散行列P(k)は、以下の式(2)により表される。 Here, the accuracy of position estimation can be determined by the value of the diagonal element of the covariance matrix P. Here, when the covariance matrix calculated based on the measured value for the landmark at time “k” is P (k), the covariance matrix P (k) is expressed by the following equation (2).
なお、状態変数x、y、zが地図において採用されるグローバル座標系である場合は、以下の式(3)に示すように、現在の推定方位角ψを用いた行列「Cψ(k)」を用いた演算によって車両座標系(X、Y、Z)に変換する。 When the state variables x, y, and z are the global coordinate system adopted in the map, the matrix “C ψ (k) using the current estimated azimuth angle ψ as shown in the following equation (3). Is converted into the vehicle coordinate system (X, Y, Z).
行列Cψ(k)は以下の式(4)により示される。 The matrix C ψ (k) is expressed by the following equation (4).
(2)点群ベース位置推定
次に、ボクセルデータIBを用いた点群ベース位置推定について説明する。点群ベース位置推定で用いるボクセルデータIBは、各ボクセル内の静止構造物の計測された点群データを正規分布により表したデータを含み、NDT(Normal Distributions Transform)を用いたスキャンマッチングに用いられる。
図6は、点群ベース位置推定における自車位置推定部17の一例を示している。図5に示したランドマークベース位置推定における自車位置推定部17との違いは、ランドマーク探索・抽出部25の代わりに、ライダ2より得られた点群データと地図DBから取得したボクセルを対応付けする処理として、点群データ対応付けブロック27が設けられていることである。
(2) Point cloud base position estimation Next, point cloud base position estimation using the voxel data IB will be described. The voxel data IB used in the point cloud-based position estimation includes data representing the point cloud data measured for stationary structures in each voxel by a normal distribution, and is used for scan matching using NDT (Normal Distributions Transform). .
FIG. 6 shows an example of the vehicle position estimation unit 17 in the point cloud base position estimation. The difference from the vehicle position estimation unit 17 in the landmark base position estimation shown in FIG. 5 is that the point cloud data obtained from the lidar 2 and the voxel acquired from the map DB are used instead of the landmark search / extraction unit 25. The point cloud data correlation block 27 is provided as the correlation process.
図7は、ボクセルデータIBの概略的なデータ構造の一例を示す。ボクセルデータIBは、ボクセル内の点群を正規分布で表現する場合のパラメータの情報を含み、本実施例では、図7に示すように、ボクセルIDと、ボクセル座標と、平均ベクトルと、共分散行列とを含む。ここで、「ボクセル座標」は、各ボクセルの中心位置などの基準となる位置の絶対的な3次元座標を示す。なお、各ボクセルは、空間を格子状に分割した立方体であり、予め形状及び大きさが定められているため、ボクセル座標により各ボクセルの空間を特定することが可能である。ボクセル座標は、ボクセルIDとして用いられてもよい。 FIG. 7 shows an example of a schematic data structure of the voxel data IB. The voxel data IB includes information on parameters when the point cloud in the voxel is expressed by a normal distribution. In this embodiment, as shown in FIG. 7, the voxel ID, voxel coordinates, average vector, and covariance are included. Including matrix. Here, “voxel coordinates” indicate absolute three-dimensional coordinates of a reference position such as the center position of each voxel. Each voxel is a cube obtained by dividing the space into a lattice shape, and since the shape and size are determined in advance, the space of each voxel can be specified by the voxel coordinates. The voxel coordinates may be used as a voxel ID.
「平均ベクトル」及び「共分散行列」は、対象のボクセル内での点群を正規分布で表現する場合のパラメータに相当する平均ベクトル及び共分散行列を示し、任意のボクセル「n」内の任意の点「i」の座標をXn(i)=[xn(i)、yn(i)、zn(i)]Tと定義し、ボクセルn内での点群数を「Nn」とすると、ボクセルnでの平均ベクトル「μn」及び共分散行列「Vn」は、それぞれ以下の式(5)及び式(6)により表される。 “Average vector” and “covariance matrix” indicate an average vector and a covariance matrix corresponding to parameters when the point group in the target voxel is expressed by a normal distribution, and an arbitrary vector in any voxel “n” Is defined as X n (i) = [x n (i), y n (i), z n (i)] T, and the number of point groups in voxel n is defined as “N n ”, The mean vector“ μ n ”and the covariance matrix“ V n ”at voxel n are expressed by the following equations (5) and (6), respectively.
また、ライダ2により得られた点群データに対して、マッチングさせるべきボクセルとの対応付けを行い、対応するボクセルnでの任意の点の座標をXL(i)=[xn(i)、yn(i)、zn(i)]Tとすると、ボクセルnでのXL(i)の平均値「L´n」は、以下の式(7)により表される。 Further, the point cloud data obtained by the lidar 2 is associated with a voxel to be matched, and the coordinates of an arbitrary point in the corresponding voxel n are expressed as X L (i) = [x n (i) , Y n (i), z n (i)] Assuming T , the average value “L ′ n ” of X L (i) at voxel n is expressed by the following equation (7).
d(k)=−E(k)
d (k) = − E (k)
なお、上記の式では、ランドマークベース位置推定で算出する共分散行列Pの対角要素の平方根「σx(k)」、「σy(k)」、「σz(k)」、「σψ(k)」と同様、位置推定精度が良好なほど小さくなるように、点群ベース位置推定の精度情報の値d(k)が定義されている。 In the above equation, the square roots “σ x (k)”, “σ y (k)”, “σ z (k)”, “σ” of the diagonal elements of the covariance matrix P calculated by landmark-based position estimation Similar to “σ ψ (k)”, the accuracy information value d (k) of the point cloud base position estimation is defined so as to be smaller as the position estimation accuracy is better.
(3)GNSSベース位置推定
自車位置推定部17は、GNSSベース位置推定では、GPS受信機5の出力に基づき自車位置推定を行う。また、自車位置推定部17は、GNSSベース位置推定を実行する場合、例えば、GPS受信機5から得られるDOP(Dilution Of Precision)を精度情報の値d(k)として取得する。他の例では、自車位置推定部17は、所定時間内にGPS受信機5から取得した緯度、経度、高度の各々の標準偏差の値を、緯度、経度、高度の各々に対する精度情報の値d(k)として取得する。なおGPS受信機5は、GPSだけでなく、GLONASS、Galileo、準天頂衛星(QZSS)等も測位できる受信機であっても良い。
(3) The GNSS base position estimation own vehicle position estimation unit 17 estimates the own vehicle position based on the output of the GPS receiver 5 in the GNSS base position estimation. Further, when executing the GNSS base position estimation, the host vehicle position estimation unit 17 acquires, for example, DOP (Division Of Precision) obtained from the GPS receiver 5 as the accuracy information value d (k). In another example, the vehicle position estimation unit 17 uses the standard deviation values of latitude, longitude, and altitude acquired from the GPS receiver 5 within a predetermined period of time as values of accuracy information for each of latitude, longitude, and altitude. Obtained as d (k). The GPS receiver 5 may be a receiver capable of positioning not only GPS but also GLONASS, Galileo, quasi-zenith satellite (QZSS), and the like.
[方式推奨情報]
図8は、方式推奨情報IRのデータ構造の一例を示す。図8に示す方式推奨情報IRは、「位置」及び「推奨値」の項目を含み、「位置」は、「車線リンクID」、「CRP(Common Reference Point)」、「CRPからの距離」の各サブ項目を含む。また、「推奨値」は、ランドマークベース位置推定に対応する「ランドマークベース」、点群ベース位置推定に対応する「点群ベース」及び、GNSSベース位置推定に対応する「GNSSベース」の各サブ項目を含む。なお、推奨値は、0から1までの値域を有している。
[Method recommended information]
FIG. 8 shows an example of the data structure of the method recommendation information IR. The method recommendation information IR shown in FIG. 8 includes items of “position” and “recommended value”, and “position” includes “lane link ID”, “CRP (Common Reference Point)”, and “distance from CRP”. Contains each sub-item. The “recommended value” includes “landmark base” corresponding to landmark base position estimation, “point cloud base” corresponding to point cloud base position estimation, and “GNSS base” corresponding to GNSS base position estimation. Contains sub-items. The recommended value has a value range from 0 to 1.
ここで「車線リンクID」は、対象の地点が属する車線に対して割り当てられた車線リンクIDを示し、「CRP」は、対象の地点が属する車線において基準となる基準点(参照点)を示し、「CRPからの距離」は、「CRP」において規定された基準点から対象の地点までの距離を示す。ここでは、「CRP」に指定される基準点として、対象の地点が属する車線の始点に相当するノードのノードID(「N1」、「N4」、「N5」、「N9」)が指定されている。そして、「位置」は、例えば、「車線リンクID」、「CRP」、「CRPからの距離」の組合せにより、所定間隔ごとの地点を車線ごとに指し示している。 Here, “lane link ID” indicates a lane link ID assigned to the lane to which the target point belongs, and “CRP” indicates a reference point (reference point) serving as a reference in the lane to which the target point belongs. “Distance from CRP” indicates the distance from the reference point defined in “CRP” to the target point. Here, the node ID (“N1”, “N4”, “N5”, “N9”) of the node corresponding to the start point of the lane to which the target point belongs is specified as the reference point specified in “CRP”. Yes. The “position” indicates, for example, a point at a predetermined interval for each lane by a combination of “lane link ID”, “CRP”, and “distance from CRP”.
また、「推奨値」の「ランドマークベース」には、「進行方向」、「横方向」、「高さ方向」、「方位」の各サブ項目が設けられ、各サブ項目に対応する状態変数の精度向上に対する有効性を示す推奨値が規定されている。また、「推奨値」の「点群ベース」には、マッチングによる精度向上に対する有効性を示す推奨値が規定されている。同様に、「推奨値」の「GNSSベース」には、「緯度」、「経度」、「高度」の各サブ項目が設けられ、緯度、経度、高度のそれぞれの精度向上に対する有効性を示す推奨値が規定されている。 The “Recommended Value” “Landmark Base” has sub-items “traveling direction”, “lateral direction”, “height direction”, and “azimuth”, and state variables corresponding to the sub-items. The recommended value indicating the effectiveness for improving the accuracy is specified. In the “point group base” of “recommended value”, a recommended value indicating the effectiveness for accuracy improvement by matching is defined. Similarly, “GNSS base” of “recommended value” is provided with sub-items of “latitude”, “longitude”, and “altitude”, and a recommendation indicating the effectiveness for improving accuracy of latitude, longitude, and altitude. Value is specified.
このように、図8に示す方式推奨情報IRでは、「位置」において規定された地点ごとに、ランドマークベース位置推定、点群ベース位置推定、及びGNSSベース位置推定の夫々に対し、0から1の値域となる推奨値が規定されている。 As described above, in the system recommendation information IR shown in FIG. 8, for each of the points defined in the “position”, 0 to 1 for each of the landmark base position estimation, the point group base position estimation, and the GNSS base position estimation. The recommended value that is the range of is specified.
ここで、それぞれの位置推定方式には、当該方式の実行に適したエリアと適さないエリアが存在するため、エリアごとに各方式に対する推奨値は異なっている。例えば、高速道路では,白線や方面看板やキロポストなどの道路標識が整備されており,ランドマークが高確率で検出できるため,高速道路ではランドマークベース位置推定に対する推奨値が高くなる。一方、市街地の一般道路では,白線が劣化している箇所もあり,また他車両も多くオクルージョンによってランドマークが検出できないことがあるため、ランドマークベース位置推定に対する推奨値が低くなる。一方、このような市街地の一般道路では,道路周辺に建物等の構造物があり空間的な特徴点が多いため、点群ベース位置推定に対する推奨値が高くなる。また、郊外の道路では,ランドマークが少なく,かつ道路周辺に構造物も少ないような場所が多いため、ランドマークベース位置推定及び点群ベース位置推定に対する推奨値が低くなる。一方、このような郊外の道路では、上空が開けているので,マルチパスの無い良好な環境でGNSSを受信しやすいため、GNSSベース位置推定に対する推奨値が高くなる。 Here, each location estimation method includes an area suitable for execution of the method and an unsuitable area, and therefore the recommended value for each method is different for each area. For example, on highways, road signs such as white lines, direction signs, and kiloposts are provided, and landmarks can be detected with high probability, so the recommended value for landmark-based position estimation is high on highways. On the other hand, on general roads in urban areas, there are places where the white line has deteriorated, and there are many other vehicles, and landmarks may not be detected due to occlusion, so the recommended value for landmark base position estimation is low. On the other hand, in such a general road in an urban area, there are structures such as buildings around the road and there are many spatial feature points, so the recommended value for the point cloud base position estimation is high. In addition, since there are many places on the suburban road where there are few landmarks and there are few structures around the road, the recommended values for landmark base position estimation and point cloud base position estimation are low. On the other hand, on such a suburban road, since the sky is open, it is easy to receive GNSS in a good environment without multipath, so the recommended value for GNSS base position estimation becomes high.
また、図8では、車線ごとに各自車位置推定方式の推奨値が規定されている。これにより、例えば、道路左側の道路標識や構造物を検出する際に他車両によるオクルージョンが発生しない左側車線でのランドマークベース位置推定や点群ベース位置推定に対する推奨値を高くし、マルチパスの可能性が高まる左側車線でのGNSSベース位置推定に対する推奨値を下げるといった車線ごとの推奨値の設定が可能となる。 In FIG. 8, recommended values for each vehicle position estimation method are defined for each lane. As a result, for example, when detecting road signs and structures on the left side of the road, the recommended value for landmark base position estimation and point cloud base position estimation in the left lane where no occlusion by other vehicles occurs is increased, and multipath It is possible to set a recommended value for each lane such as lowering the recommended value for GNSS base position estimation in the left lane where the possibility increases.
そして、自車位置推定部17は、図8に示すデータ構造を有する方式推奨情報IRを参照することで、実行すべき自車位置推定方式を好適に決定することが可能である。例えば、自車位置推定部17は、方式推奨情報IRの「位置」において規定された地点であって、1時刻前に推定した自車位置が属する車線上にある最も近い地点に対応する方式推奨情報IRのレコードを抽出し、抽出したレコードの各ランドマークベース位置推定、点群ベース位置推定、及びGNSSベース位置推定の各推奨値に基づき、自車位置推定方式を決定する。 And the own vehicle position estimation part 17 can determine suitably the own vehicle position estimation system which should be performed with reference to the system recommendation information IR which has the data structure shown in FIG. For example, the vehicle position estimation unit 17 is a method recommendation corresponding to the closest point on the lane to which the vehicle position estimated one time ago is a point specified in the “position” of the method recommendation information IR. A record of information IR is extracted, and a vehicle position estimation method is determined based on each recommended value of each landmark-based position estimation, point cloud-based position estimation, and GNSS-based position estimation of the extracted record.
この場合、第1の例では、自車位置推定部17は、その地点について規定された、推奨値が最も高い自車位置推定方式に基づき、自車位置推定を実行する。即ち、この場合、自車位置推定部17は、推奨値が最も高い自車位置推定方式のみを選択的に実行することで、自車位置を推定する。なお、ランドマークベース位置推定やGNSSベース位置推定などの自車位置推定方式のように、推定するパラメータごとに推奨値が複数存在する場合、それらの推奨値のうち最も高い推奨値を、当該自車位置推定方式の推奨値の代表値として用いてもよく、それらの推奨値の平均値又は中央値を、当該自車位置推定方式の推奨値の代表値として用いてもよい。また、自車位置推定部17は、ランドマークベース位置推定の場合、自車の現在の位置推定精度に基づき、進行方向、横方向、高さ方向、方位のうち最も重視すべき状態変数(例えば最も推定精度が低い状態変数)に対応する推奨値を、当該自車位置推定方式の推奨値の代表値として用いてもよい。 In this case, in the first example, the host vehicle position estimation unit 17 performs host vehicle position estimation based on the host vehicle position estimation method having the highest recommended value specified for the point. That is, in this case, the host vehicle position estimation unit 17 estimates the host vehicle position by selectively executing only the host vehicle position estimation method having the highest recommended value. Note that when there are multiple recommended values for each parameter to be estimated, as in the vehicle position estimation method such as landmark-based position estimation or GNSS-based position estimation, the highest recommended value among the recommended values You may use as a representative value of the recommended value of a vehicle position estimation system, and you may use the average value or median value of those recommended values as a representative value of the recommended value of the said own vehicle position estimation system. Further, in the case of landmark-based position estimation, the own vehicle position estimation unit 17 is based on the current position estimation accuracy of the own vehicle, and is the state variable (for example, most important among the traveling direction, the lateral direction, the height direction, and the direction). The recommended value corresponding to the state variable having the lowest estimation accuracy may be used as a representative value of the recommended value of the vehicle position estimation method.
第2の例では、自車位置推定部17は、方式推奨情報IRに規定された全ての自車位置推定方式(推奨値が0の方式を除く)を実行し、各自車位置推定方式により得られた位置推定結果を、それぞれの自車位置推定方式に対応する推奨値により重み付け平均することで、最終的な位置推定結果を算出する。なお、第1の例と第2の例のいずれを採用するかは、例えば、自車位置推定部17として機能するCPUの能力に応じて決定される。 In the second example, the own vehicle position estimation unit 17 executes all the own vehicle position estimation methods (except for the method whose recommended value is 0) defined in the method recommendation information IR, and obtains the vehicle position estimation method by each vehicle position estimation method. The final position estimation result is calculated by weighting and averaging the obtained position estimation results using recommended values corresponding to the respective vehicle position estimation methods. Whether to adopt the first example or the second example is determined according to, for example, the ability of the CPU functioning as the vehicle position estimation unit 17.
また、自動運転制御部19は、方式推奨情報IRを参照して車両の目標軌道を決定してもよい。例えば、自動運転制御部19は、現在実行している位置推定方式の推奨値を現在走行中の道路に含まれる車線ごとに比較し、最も推奨値が高い車線を走行するように車両の目標軌道を決定する。他の例では、自動運転制御部19は、経路探索処理において、推奨値が低い道路ほど当該道路を通るコストを高く設定することで、推奨値の低い道路を走行経路として設定しにくくしてもよい。さらに別の例では、自動運転制御部19は、推奨値が低い道路を走行する際に、車両の走行速度を下げることで、ランドマーク等のライダ2による計測精度を向上させてもよい。 Further, the automatic operation control unit 19 may determine the target track of the vehicle with reference to the method recommendation information IR. For example, the automatic driving control unit 19 compares the recommended value of the currently executed position estimation method for each lane included in the currently traveling road, and the target trajectory of the vehicle so as to travel in the lane having the highest recommended value. To decide. In another example, in the route search process, the automatic driving control unit 19 sets a higher cost for a road with a lower recommended value so that it is difficult to set a road with a lower recommended value as a travel route. Good. In yet another example, the automatic operation control unit 19 may improve the measurement accuracy by the lidar 2 such as a landmark by reducing the traveling speed of the vehicle when traveling on a road with a low recommended value.
[アップロード情報]
次に、車載機1が送信するアップロード情報Iuについて説明する。
[Upload information]
Next, the upload information Iu transmitted by the in-vehicle device 1 will be described.
図9は、車載機1が送信するアップロード情報Iuのデータ構造の概要を示す図である。図9に示すように、アップロード情報Iuは、ヘッダ情報と、走行経路情報と、イベント情報と、メディア情報とを含む。 FIG. 9 is a diagram showing an outline of the data structure of the upload information Iu transmitted by the in-vehicle device 1. As shown in FIG. 9, the upload information Iu includes header information, travel route information, event information, and media information.
ヘッダ情報は、「バージョン」、「送信元」、「車両メタデータ」の各項目を含む。車載機1は、「バージョン」に、使用されるアップロード情報Iuのデータ構造のバージョンの情報を指定し、「送信元」には、アップロード情報Iuを送信する会社名(車両のOEM名又はシステムベンダー名)の情報を指定する。また、車載機1は、「車両メタデータ」に、車両の属性情報(例えば車両種別、車両ID、車幅、車高等)を指定する。走行経路情報は、「位置推定」の項目を含む。車載機1は、この「位置推定」には、位置推定時刻を示すタイムスタンプ情報の他、推定した車両の位置を示す緯度、経度、標高の情報、及びこれらの推定精度に関する情報などを指定する。 The header information includes items of “version”, “transmission source”, and “vehicle metadata”. The in-vehicle device 1 designates information on the version of the data structure of the upload information Iu used in “Version”, and the name of the company (OEM name or system vendor of the vehicle that transmits the upload information Iu) in “Sender” Name) information. Further, the in-vehicle device 1 specifies vehicle attribute information (for example, vehicle type, vehicle ID, vehicle width, vehicle height, etc.) in “vehicle metadata”. The travel route information includes an item “position estimation”. The in-vehicle device 1 designates, for this “position estimation”, the time stamp information indicating the position estimation time, the latitude, longitude, altitude information indicating the estimated vehicle position, and information regarding the estimation accuracy. .
イベント情報は、「オブジェクト認識イベント」の項目を含む。車載機1は、オブジェクト認識イベントを検知した場合に、その検知結果となる情報を「オブジェクト認識イベント」に指定する。メディア情報は、ライダ2などの外界センサの出力データ(検出情報)である生データを送信する際に使用されるデータタイプである。 The event information includes an item “object recognition event”. When the vehicle-mounted device 1 detects an object recognition event, it designates information as a detection result as an “object recognition event”. The media information is a data type used when transmitting raw data that is output data (detection information) of an external sensor such as the lidar 2.
本実施例では、車載機1は、アップロード情報Iuに位置推定関連情報を含めてサーバ装置6へ送信する。この場合、車載機1は、例えば、「位置推定」の項目に位置推定関連情報の各情報を指定してもよく、イベント情報として位置推定関連情報を通知するための項目を新たに設け、当該項目に位置推定関連情報の各情報を指定してもよい。これにより、車載機1は、推定した車両の位置情報と共に、位置推定関連情報を好適にサーバ装置6に通知することができる。 In the present embodiment, the in-vehicle device 1 includes the position estimation related information in the upload information Iu and transmits it to the server device 6. In this case, for example, the in-vehicle device 1 may designate each piece of information on the position estimation related information in the item “position estimation”, and newly provide an item for notifying the position estimation related information as event information. Each item of position estimation related information may be specified in the item. Thereby, the vehicle equipment 1 can suitably notify the server apparatus 6 of the position estimation related information together with the estimated position information of the vehicle.
[方式推定情報の生成]
次に、サーバ装置6が実行する方式推奨情報IRの生成方法について説明する。
[Generation of method estimation information]
Next, a method for generating method recommendation information IR executed by the server device 6 will be described.
(1)標準化精度情報の算出
まず、サーバ装置6は、車載機1から位置推定関連情報を含むアップロード情報Iuを受信した場合、位置推定関連情報に含まれる精度情報と、精度情報の平均及び標準偏差の情報とに基づき、平均0及び標準偏差1に正規化(標準化)された精度情報(「標準化精度情報」とも呼ぶ。)を算出する。ここで、位置推定関連情報に含まれる精度情報を「d(k)」、平均を「μ(k)」、標準偏差を「σ(k)」とすると、サーバ装置6は、標準化精度情報の値「S(k)」を以下の式(12)により算出する。
(1) Calculation of standardized accuracy information First, when the server device 6 receives the upload information Iu including the position estimation related information from the in-vehicle device 1, the accuracy information included in the position estimation related information, and the average and standard of the accuracy information On the basis of the deviation information, accuracy information (also referred to as “standardized accuracy information”) that is normalized (standardized) to mean 0 and standard deviation 1 is calculated. Here, when the accuracy information included in the position estimation related information is “d (k)”, the average is “μ (k)”, and the standard deviation is “σ (k)”, the server device 6 has the standardized accuracy information. The value “S (k)” is calculated by the following equation (12).
図10(A)は、ある地点において異なる車両に搭載された車載機1がそれぞれ異なる自車位置推定方式で自車位置推定を行った場合に得られる精度情報の値d1(k)、d2(k)の推移を示した図である。ここで、グラフG1により示される精度情報の値d1(k)は、平均「μ1(k)」、標準偏差「σ1(k)」の分布となり、グラフG2により示される精度情報の値d2(k)は、平均「μ2(k)」、標準偏差「σ2(k)」の分布となっている。このように、精度情報は、実行する自車位置推定方式及び使用するセンサの精度などに起因して平均及び標準偏差が異なるものとなる。 FIG. 10A shows accuracy information values d 1 (k) and d obtained when vehicle-mounted devices 1 mounted on different vehicles at a certain point perform vehicle position estimation using different vehicle position estimation methods. It is the figure which showed transition of 2 (k). Here, the accuracy information value d 1 (k) indicated by the graph G1 has a mean “μ 1 (k)” and standard deviation “σ 1 (k)” distribution, and the accuracy information value indicated by the graph G2 d 2 (k) has a distribution of an average “μ 2 (k)” and a standard deviation “σ 2 (k)”. As described above, the accuracy information differs in average and standard deviation due to the vehicle position estimation method to be executed and the accuracy of the sensor to be used.
図10(B)は、精度情報の値d1(k)を式(12)に基づき標準化した標準化精度情報の値S1(k)の推移と、精度情報の値d2(k)を式(12)に基づき標準化した標準化精度情報の値S2(k)の推移とを示した図である。ここで、グラフG3により示される標準化精度情報の値S1(k)と、グラフG4により示される標準化精度情報の値S2(k)とは、共に平均0及び標準偏差1の分布となっている。このように、式(12)に基づき標準化精度情報を算出することで、異なる分布となる精度情報を同じ軸により取り扱うことが可能となる。 FIG. 10B shows the transition of the standardized accuracy information value S 1 (k) obtained by standardizing the accuracy information value d 1 (k) based on the equation (12), and the accuracy information value d 2 (k). is a diagram showing changes and value S 2 of the standardized standardized accuracy information (k) based on (12). Here, the value S 1 (k) of the standardization accuracy information indicated by the graph G3 and the value S 2 (k) of the standardization accuracy information indicated by the graph G4 are both distributions of mean 0 and standard deviation 1. Yes. Thus, by calculating the standardized accuracy information based on Expression (12), it is possible to handle accuracy information having different distributions by the same axis.
従って、本実施例では、サーバ装置6は、車載機1から受信したアップロード情報Iuに含まれる位置推定関連情報の精度情報、平均及び標準偏差の情報を標準化精度情報に変換し、変換した標準化精度情報を、位置推定関連情報に含まれる方式情報及び位置情報と関連付けて精度情報DB27に記憶する。したがって、標準化精度情報に対し、位置「p」をパラメータとした値S(p)として扱うことが可能となる。なお、サーバ装置6は、アップロード情報Iuの受信時に標準化精度情報を算出する代わりに、推奨値の算出時において標準化精度情報を算出してもよい。この場合、精度情報DB27には、車載機1から受信したアップロード情報Iuに含まれる位置推定関連情報が記録される。 Therefore, in the present embodiment, the server device 6 converts the accuracy information of the position estimation related information, the average information, and the standard deviation information included in the upload information Iu received from the in-vehicle device 1 into the standardization accuracy information, and the converted standardization accuracy The information is stored in the accuracy information DB 27 in association with the method information and the position information included in the position estimation related information. Therefore, the standardized accuracy information can be handled as a value S (p) using the position “p” as a parameter. Note that the server device 6 may calculate the standardization accuracy information when calculating the recommended value instead of calculating the standardization accuracy information when receiving the upload information Iu. In this case, the position estimation related information included in the upload information Iu received from the in-vehicle device 1 is recorded in the accuracy information DB 27.
(2)推奨値の算出
次に、方式推奨情報IRに含まれる、地点ごと且つ自車位置推定方式ごとの推定値の算出方法について説明する。
(2) Calculation of Recommended Value Next, a method for calculating an estimated value for each point and for each vehicle position estimation method included in the method recommendation information IR will be described.
サーバ装置6は、まず、方式推奨情報IRの更新タイミングにおいて、精度情報DB27に記録された標準化精度情報を、地点pごと且つ自車位置推定方式ごとに平均化した値「S−(p)」を算出する。この場合、サーバ装置6は、標準化精度情報に関連付けられた位置情報に基づき、図8に示す方式推奨情報IRの項目「位置」により特定される地点ごとに標準化精度情報を分類すると共に、標準化精度情報に関連付けられた方式情報に基づき、自車位置推定方式ごとに標準化精度情報を分類する。そして、サーバ装置6は、地点ごと且つ自車位置推定方式ごとに分類された標準化精度情報の値を、それぞれ平均化することで、地点ごと且つ自車位置推定方式ごとに平均値S−(p)を算出する。 First, the server device 6 averages the standardized accuracy information recorded in the accuracy information DB 27 at the update timing of the method recommendation information IR for each point p and for each vehicle position estimation method “S − (p)”. Is calculated. In this case, the server device 6 classifies the standardization accuracy information for each point specified by the item “position” of the method recommendation information IR shown in FIG. 8 based on the location information associated with the standardization accuracy information, and also performs standardization accuracy. Based on the method information associated with the information, the standardized accuracy information is classified for each vehicle position estimation method. Then, the server device 6, the value of the standard-precision information classified for each and vehicle position estimation scheme for each point, by respectively averaging, the average value for each and vehicle position estimation scheme for each point S - (p ) Is calculated.
なお、サーバ装置6は、自車位置推定方式がランドマークベース位置推定の場合には、状態変数(進行方向、横方向、高さ方向、方位)ごとに標準化精度情報の値S(p)を平均化する。GNSSベース位置推定についても同様に、サーバ装置6は、緯度、経度、高度ごとに標準化精度情報の値S(p)を平均化する。 When the vehicle position estimation method is landmark-based position estimation, the server device 6 calculates the standardized accuracy information value S (p) for each state variable (traveling direction, lateral direction, height direction, direction). Average. Similarly, for the GNSS base position estimation, the server device 6 averages the value S (p) of the standardized accuracy information for each latitude, longitude, and altitude.
図11(A)は、複数の車載機1のアップロード情報Iuに基づき算出されたランドマークベース位置推定の進行方向の標準化精度情報の値Sx(p)の推移と、これらを平均化した値S− x(p)の推移とを示す。また、図11(B)は、複数の車載機1のアップロード情報Iuに基づき算出されたランドマークベース位置推定の横方向の標準化精度情報の値Sy(p)の推移と、これらを平均化した値S− y(p)の推移とを示す。さらに、図11(C)は、複数の車載機1のアップロード情報Iuに基づき算出された点群ベース位置推定の標準化精度情報の値S(p)の推移と、これらを平均化した値S−(p)との推移とを示す。 FIG. 11A shows the transition of the standardized accuracy information value S x (p) in the traveling direction of the landmark-based position estimation calculated based on the upload information Iu of the plurality of in-vehicle devices 1 and a value obtained by averaging these values. The transition of S − x (p) is shown. FIG. 11B shows the transition of the standardized accuracy information value S y (p) in the lateral direction of the landmark base position estimation calculated based on the upload information Iu of the plurality of in-vehicle devices 1 and averages these values. Of the measured value S − y (p). Further, FIG. 11C shows the transition of the value S (p) of the standardization accuracy information of the point cloud base position estimation calculated based on the upload information Iu of the plurality of in-vehicle devices 1, and the value S − averaged of these. (P) and transition.
次に、サーバ装置6は、地点ごと且つ自車位置推定方式ごとに算出した平均値S−(p)に基づき、各地点における自車位置推定方式ごとの推奨値「r(p)」を設定する。ここで、サーバ装置6は、平均値S−(p)が小さいほど、その場所の推定位置精度が良いため、推奨値r(p)が大きくなるようにする。言い換えると、サーバ装置6は、平均値S−(p)が大きいほど、その場所の推定位置精度が悪いため、推奨値r(p)を小さくする。 Next, the server device 6 sets a recommended value “r (p)” for each vehicle position estimation method at each point based on the average value S − (p) calculated for each point and for each vehicle position estimation method. To do. Here, the smaller the average value S − (p), the better the estimated position accuracy of the place, so the server device 6 increases the recommended value r (p). In other words, the server device 6 decreases the recommended value r (p) because the estimated position accuracy of the place is worse as the average value S − (p) is larger.
例えば、サーバ装置6は、一例として、以下の式(13)〜式(15)のいずれかを参照して推奨値r(p)を算出することにより、平均値S−(p)が負の方向に大きいほど推奨値r(p)を1に近付け、平均値S−(p)が大きいほど推奨値r(p)を0に近付けるように生成することができる。 For example, as an example, the server device 6 calculates the recommended value r (p) with reference to any of the following formulas (13) to (15), so that the average value S − (p) is negative. The recommended value r (p) can be generated closer to 1 as the direction is larger, and the recommended value r (p) is closer to 0 as the average value S − (p) is larger.
また、サーバ装置6は、式(13)〜式(15)に係数cを導入した以下の式(16)〜式(18)のいずれかを用いることで、平均値S−(p)から推奨値r(p)への変換割合を好適に調整することが可能である。 Further, the server device 6, by using either equation (13) the following formula was introduced coefficient c on to Formula (15) (16) to (18), an average value S - Recommended from (p) It is possible to suitably adjust the conversion ratio to the value r (p).
図12(B)は、係数cを0.5に設定した場合の式(16)〜式(18)に基づく平均値S−(p)と推奨値r(p)との対応関係を示す。ここで、グラフG8は、式(16)に基づく平均値S−(p)と推奨値r(p)との対応関係を示し、グラフG9は、式(17)に基づく平均値S−(p)と推奨値r(p)との対応関係を示し、グラフG10は、式(18)に基づく平均値S−(p)と推奨値r(p)との対応関係を示す。図12(B)に示すように、式(16)〜式(18)のいずれかを参照して平均値S−(p)から推奨値r(p)を決定した場合、式(13)〜式(15)のいずれかを参照して平均値S−(p)から推奨値r(p)を決定した場合と比べて、平均値S−(p)から推奨値r(p)への変換割合が異なっている。このように、係数cを調整することで、平均値S−(p)から推奨値r(p)への変換割合を好適に調整することができる。 FIG. 12B shows the correspondence between the average value S − (p) based on the equations (16) to (18) and the recommended value r (p) when the coefficient c is set to 0.5. Here, the graph G8 shows the correspondence between the average value S − (p) based on the formula (16) and the recommended value r (p), and the graph G9 shows the average value S − (p based on the formula (17). ) And the recommended value r (p), and the graph G10 shows the correspondence between the average value S − (p) based on the equation (18) and the recommended value r (p). As shown in FIG. 12B, when the recommended value r (p) is determined from the average value S − (p) with reference to any one of the equations (16) to (18), the equations (13) to (13) as compared with the case of determining the recommended value r (p) from (p), the average value S - - formula average with reference to any one of (15) S conversion of (p) to the recommended value r (p) The ratio is different. In this way, by adjusting the coefficient c, the conversion ratio from the average value S − (p) to the recommended value r (p) can be suitably adjusted.
[処理フロー]
図13は、アップロード情報Iuおよびダウンロード情報Idの送受信に関する処理の概要を示すフローチャートの一例である。
[Processing flow]
FIG. 13 is an example of a flowchart showing an outline of processing related to transmission / reception of upload information Iu and download information Id.
まず、車載機1は、自車位置推定を行い、精度情報の算出及び記憶部12への記憶を行う(ステップS101)。例えば、この場合、車載機1は、方式推奨情報IRのレコードに含まれる地点のうち、1時刻前に推定した自車位置が属する車線上にある最も近い地点に対応する各自車位置推定方式の推奨値に基づき、実行すべき自車位置推定方式を決定する。また、車載機1は、自車位置推定と共に精度情報を算出し、記憶部12へ記憶する。次に、車載機1は、アップロード情報Iuの送信タイミングであるか否か判定する(ステップS102)。そして、車載機1は、アップロード情報Iuの送信タイミングではない場合(ステップS102;No)、引き続きステップS101の処理を実行する。 First, the vehicle-mounted device 1 estimates its own vehicle position, calculates accuracy information, and stores it in the storage unit 12 (step S101). For example, in this case, the in-vehicle device 1 uses each vehicle position estimation method corresponding to the nearest point on the lane to which the vehicle position estimated one hour before belongs among the points included in the record of the method recommendation information IR. Based on the recommended value, the vehicle position estimation method to be executed is determined. The in-vehicle device 1 calculates accuracy information together with the vehicle position estimation and stores the accuracy information in the storage unit 12. Next, the in-vehicle device 1 determines whether it is the transmission timing of the upload information Iu (step S102). And when the vehicle equipment 1 is not the transmission timing of upload information Iu (step S102; No), the process of step S101 is continued.
一方、車載機1は、アップロード情報Iuの送信タイミングであると判断した場合(ステップS102;Yes)、記憶部12に記憶された過去所定時間内での精度情報の値の平均及び標準偏差を算出する。そして、車載機1は、直前のステップS101で算出した精度情報と上述の平均及び標準偏差とを、ステップS101で実行した自車位置推定方式を示す方式情報及び推定した位置情報と共にアップロード情報Iuに含めてサーバ装置6へ送信する(ステップS103)。なお、車載機1は、ステップS101において複数の自車位置推定方式を実行していた場合には、例えば、それぞれの自車位置推定方式についての精度情報、平均、標準偏差を含むアップロード情報Iuをサーバ装置6へ送信するとよい。 On the other hand, when the in-vehicle device 1 determines that it is the transmission timing of the upload information Iu (step S102; Yes), the average and standard deviation of the accuracy information values stored in the storage unit 12 within the past predetermined time are calculated. To do. The in-vehicle device 1 adds the accuracy information calculated in the immediately preceding step S101 and the above average and standard deviation to the upload information Iu together with the method information indicating the own vehicle position estimation method executed in step S101 and the estimated position information. The information is transmitted to the server device 6 (step S103). In addition, when the vehicle equipment 1 was performing the several own vehicle position estimation system in step S101, for example, the upload information Iu including the accuracy information, the average, and the standard deviation about each own vehicle position estimation system is obtained. It may be transmitted to the server device 6.
次に、車載機1からアップロード情報Iuを受信したサーバ装置6は、アップロード情報Iuに含まれる精度情報、平均、標準偏差から式(12)に基づき標準化精度情報を算出し、算出した標準化精度情報を方式情報及び位置情報と共に精度情報DB27に記憶する(ステップS201)。 Next, the server device 6 that has received the upload information Iu from the in-vehicle device 1 calculates standardization accuracy information based on the formula (12) from the accuracy information, average, and standard deviation included in the upload information Iu, and calculates the standardization accuracy information. Is stored in the accuracy information DB 27 together with the method information and the position information (step S201).
次に、サーバ装置6は、配信地図DB20の更新タイミングか否か判定する(ステップS202)。そして、サーバ装置6は、配信地図DB20の更新タイミングではない場合(ステップS202;No)、引き続き車載機1からアップロード情報Iuを受信してステップS201の処理を実行する。 Next, the server device 6 determines whether or not it is the update timing of the distribution map DB 20 (step S202). And when it is not the update timing of distribution map DB20 (step S202; No), the server apparatus 6 receives the upload information Iu from the vehicle equipment 1, and performs the process of step S201.
一方、サーバ装置6は、配信地図DB20の更新タイミングであると判断した場合(ステップS202;Yes)、精度情報DB27を参照し、地点ごと且つ自車位置推定方式ごとに推奨値を算出する(ステップS203)。この場合、例えば、サーバ装置6は、地点ごと且つ自車位置推定方式ごとに標準化精度情報を平均化し、式(13)〜式(18)のいずれかに基づき、地点ごと且つ自車位置推定方式ごとに推奨値を算出する。これにより、サーバ装置6は、好適に方式推奨情報IRを生成する。そして、サーバ装置6は、生成した方式推奨情報IRに基づき配信地図DB20の更新を行う(ステップS204)。そして、サーバ装置6は、生成した方式推奨情報IRを含むダウンロード情報Idを各車載機1へ送信する(ステップS205)。 On the other hand, when determining that it is the update timing of the distribution map DB 20 (step S202; Yes), the server device 6 refers to the accuracy information DB 27 and calculates a recommended value for each point and for each vehicle position estimation method (step). S203). In this case, for example, the server device 6 averages the standardized accuracy information for each point and for each vehicle position estimation method, and for each point and for each vehicle position estimation method based on any one of Equations (13) to (18). A recommended value is calculated for each. Thereby, the server device 6 suitably generates the method recommendation information IR. Then, the server device 6 updates the distribution map DB 20 based on the generated method recommendation information IR (step S204). Then, the server device 6 transmits download information Id including the generated method recommendation information IR to each in-vehicle device 1 (step S205).
車載機1は、ダウンロード情報Idを受信した場合(ステップS104;Yes)、当該ダウンロード情報Idを用いて地図DB10を更新する(ステップS105)。これにより、地図DB10には、最新の方式推奨情報IRが記録される。一方、車載機1は、サーバ装置6からダウンロード情報Idを受信していない場合(ステップS104;No)、ステップS101へ処理を戻す。 When receiving the download information Id (step S104; Yes), the in-vehicle device 1 updates the map DB 10 using the download information Id (step S105). As a result, the latest method recommendation information IR is recorded in the map DB 10. On the other hand, when the in-vehicle device 1 has not received the download information Id from the server device 6 (step S104; No), the process returns to step S101.
[変形例]
以下、実施例に好適な変形例について説明する。以下の変形例は、組み合わせてこれらの実施例に適用してもよい。
[Modification]
Hereinafter, modified examples suitable for the embodiments will be described. The following modifications may be applied to these embodiments in combination.
(変形例1)
図8に示す方式推奨情報IRは、各自車位置推定方式の推奨値が地点ごとに記録されていた。これに代えて、方式推奨情報IRは、各自車位置推定方式の推奨値が区間ごとに記録されていてもよい。この場合、例えば、方式推奨情報IRの「位置」には、対象となる区間の始点及び終点の位置を示す情報がそれぞれ指定される。他の例では、方式推奨情報IRの「位置」には、車線又は道路を表すリンクIDのみが指定されていてもよい。
(Modification 1)
In the method recommendation information IR shown in FIG. 8, the recommended value of each vehicle position estimation method is recorded for each point. Instead, the recommended value of each vehicle position estimation method may be recorded for each section in the method recommendation information IR. In this case, for example, information indicating the position of the start point and the end point of the target section is specified in the “position” of the method recommendation information IR. In another example, only a link ID representing a lane or a road may be specified in the “position” of the system recommendation information IR.
(変形例2)
図8に示す方式推奨情報IRは、各自車位置推定方式の推奨値が設定される地点が、車線と関連付けてCRPからの距離として定義されていた。これに代えて、地点を緯度経度情報で表してもよい。この場合、車載機1は、実行すべき自車位置推定方式の決定にあたっては、直前に推定した自車位置に最も近い、方式推奨情報IRのレコードに含まれる地点に対応する各自車位置推定方式の推奨値に基づき、実行すべき自車位置推定方式を決定するとよい。
(Modification 2)
In the method recommendation information IR shown in FIG. 8, a point where a recommended value for each vehicle position estimation method is set is defined as a distance from the CRP in association with the lane. Instead, the point may be represented by latitude and longitude information. In this case, when determining the vehicle position estimation method to be executed, the in-vehicle device 1 determines each vehicle position estimation method corresponding to the point included in the record of the method recommendation information IR that is closest to the vehicle position estimated immediately before. The vehicle position estimation method to be executed may be determined based on the recommended value.
(変形例3)
図1に示す運転支援システムの構成は一例であり、本発明が適用可能な運転支援システムの構成は図1に示す構成に限定されない。例えば、運転支援システムは、車載機1を有する代わりに、車両の電子制御装置が車載機1の自車位置推定部17、アップロード制御部18、及び自動運転制御部19の処理を実行してもよい。この場合、地図DB10は、例えば車両内の記憶部に記憶され、車両の電子制御装置は、サーバ装置6とのアップロード情報Iu及びダウンロード情報Idの授受を、車載機1を介して又は図示しない通信部を介して行ってもよい。
(Modification 3)
The configuration of the driving support system shown in FIG. 1 is an example, and the configuration of the driving support system to which the present invention is applicable is not limited to the configuration shown in FIG. For example, in the driving support system, instead of having the in-vehicle device 1, the electronic control device of the vehicle executes the processes of the own vehicle position estimation unit 17, the upload control unit 18, and the automatic driving control unit 19 of the in-vehicle device 1. Good. In this case, the map DB 10 is stored in, for example, a storage unit in the vehicle, and the electronic control device of the vehicle exchanges upload information Iu and download information Id with the server device 6 via the in-vehicle device 1 or communication (not shown). You may go through the part.
1 車載機
2 ライダ
3 ジャイロセンサ
4 車速センサ
5 GPS受信機
6 サーバ装置
10 地図DB
20 配信地図DB
DESCRIPTION OF SYMBOLS 1 In-vehicle apparatus 2 Rider 3 Gyro sensor 4 Vehicle speed sensor 5 GPS receiver 6 Server apparatus 10 Map DB
20 Distribution map DB
Claims (7)
移動体の推定された位置を示す位置情報と、
前記位置の推定精度を示す精度情報と、
前記位置を推定した時点を含む所定期間における前記推定精度の平均及び標準偏差の情報と、
前記位置の推定に用いた推定方式を示す方式情報と、を含み、
地点又はエリアごと、かつ、前記推定方式ごとの位置推定の推奨値を前記情報処理装置が算出するのに用いられるデータのデータ構造。 A data structure of data transmitted to an information processing apparatus that collects information on the accuracy of position estimation of a moving object,
Position information indicating the estimated position of the moving object;
Accuracy information indicating the estimated accuracy of the position;
Information of the average and standard deviation of the estimation accuracy in a predetermined period including the time when the position is estimated;
Including method information indicating an estimation method used for estimating the position,
A data structure of data used for the information processing device to calculate a recommended value for position estimation for each point or area and for each estimation method.
を有する情報送信装置。 Position information indicating the estimated position of the moving object, accuracy information indicating the estimation accuracy of the position, information on the average and standard deviation of the estimation accuracy in a predetermined period including the time point when the position is estimated, and An information transmission device having a transmission unit that transmits method information indicating an estimation method used for estimation to an information processing device.
移動体の推定された位置を示す位置情報と、前記位置の推定精度を示す精度情報と、前記位置を推定した時点を含む所定期間における前記推定精度の平均及び標準偏差の情報と、前記位置の推定に用いた推定方式を示す方式情報と、を情報処理装置へ送信する送信工程
を有する制御方法。 A control method executed by the information transmitting apparatus,
Position information indicating the estimated position of the moving object, accuracy information indicating the estimation accuracy of the position, information on the average and standard deviation of the estimation accuracy in a predetermined period including the time point when the position is estimated, and The control method which has the transmission process which transmits the system information which shows the estimation system used for estimation to information processing apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018060505A JP2019174191A (en) | 2018-03-27 | 2018-03-27 | Data structure, information transmitting device, control method, program, and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018060505A JP2019174191A (en) | 2018-03-27 | 2018-03-27 | Data structure, information transmitting device, control method, program, and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019174191A true JP2019174191A (en) | 2019-10-10 |
Family
ID=68170186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018060505A Pending JP2019174191A (en) | 2018-03-27 | 2018-03-27 | Data structure, information transmitting device, control method, program, and storage medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019174191A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021148581A (en) * | 2020-03-18 | 2021-09-27 | 株式会社デンソー | Vehicle position identification device and vehicle position identification method |
CN114729815A (en) * | 2019-11-13 | 2022-07-08 | 梅赛德斯-奔驰集团股份公司 | Method for recognizing a distance traveled |
JP2023518910A (en) * | 2020-03-31 | 2023-05-08 | メルセデス・ベンツ グループ アクチェンゲゼルシャフト | Vehicle Landmark-Based Localization Methods |
-
2018
- 2018-03-27 JP JP2018060505A patent/JP2019174191A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114729815A (en) * | 2019-11-13 | 2022-07-08 | 梅赛德斯-奔驰集团股份公司 | Method for recognizing a distance traveled |
JP2023502632A (en) * | 2019-11-13 | 2023-01-25 | メルセデス・ベンツ グループ アクチェンゲゼルシャフト | Methods for Approving Driving Routes |
JP7348398B2 (en) | 2019-11-13 | 2023-09-20 | メルセデス・ベンツ グループ アクチェンゲゼルシャフト | Method for approving driving routes |
JP2021148581A (en) * | 2020-03-18 | 2021-09-27 | 株式会社デンソー | Vehicle position identification device and vehicle position identification method |
JP7342753B2 (en) | 2020-03-18 | 2023-09-12 | 株式会社デンソー | Vehicle location identification device and vehicle location identification method |
JP2023518910A (en) * | 2020-03-31 | 2023-05-08 | メルセデス・ベンツ グループ アクチェンゲゼルシャフト | Vehicle Landmark-Based Localization Methods |
JP7400122B2 (en) | 2020-03-31 | 2023-12-18 | メルセデス・ベンツ グループ アクチェンゲゼルシャフト | Vehicle landmark-based localization method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024050990A (en) | Determination device | |
CN106352867B (en) | Method and device for determining the position of a vehicle | |
JP6325806B2 (en) | Vehicle position estimation system | |
JP5162849B2 (en) | Fixed point position recorder | |
WO2017060947A1 (en) | Estimation apparatus, control method, program, and storage medium | |
WO2015173034A1 (en) | Method and system for determining a position relative to a digital map | |
JP7155284B2 (en) | Measurement accuracy calculation device, self-position estimation device, control method, program and storage medium | |
JP6806891B2 (en) | Information processing equipment, control methods, programs and storage media | |
JP6980010B2 (en) | Self-position estimator, control method, program and storage medium | |
JP6589570B2 (en) | Center processing apparatus, map generation system, and program | |
JP2023054314A (en) | Information processing device, control method, program, and storage medium | |
JP2022176322A (en) | Self-position estimation device, control method, program, and storage medium | |
JP2023164553A (en) | Position estimation device, estimation device, control method, program and storage medium | |
JP2023174739A (en) | Data structure, information processing device, and map data generator | |
JP2019174191A (en) | Data structure, information transmitting device, control method, program, and storage medium | |
JP2017072423A (en) | Estimation device, control method, program, and storage medium | |
JP2023118751A (en) | Self-position estimation device | |
WO2019188820A1 (en) | Information transmission device, data structure, control method, program, and storage medium | |
WO2019188874A1 (en) | Data structure, information processing device, and map data generation device | |
JP2019174675A (en) | Data structure, map data generator, control method, program, and storage medium | |
WO2019188877A1 (en) | Information transmission device, data structure, control method, program, and storage medium | |
WO2018212290A1 (en) | Information processing device, control method, program and storage medium | |
US20240053491A1 (en) | Error characterization for gnss-based position estimates on constrained routes |