Nothing Special   »   [go: up one dir, main page]

JP2019028041A - Rotation testing device - Google Patents

Rotation testing device Download PDF

Info

Publication number
JP2019028041A
JP2019028041A JP2017151182A JP2017151182A JP2019028041A JP 2019028041 A JP2019028041 A JP 2019028041A JP 2017151182 A JP2017151182 A JP 2017151182A JP 2017151182 A JP2017151182 A JP 2017151182A JP 2019028041 A JP2019028041 A JP 2019028041A
Authority
JP
Japan
Prior art keywords
lubricating oil
bearing
temperature
heating
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017151182A
Other languages
Japanese (ja)
Inventor
正 宗行
Tadashi Muneyuki
正 宗行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2017151182A priority Critical patent/JP2019028041A/en
Priority to KR1020180038528A priority patent/KR20190015077A/en
Publication of JP2019028041A publication Critical patent/JP2019028041A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Engines (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

To provide a rotation testing device in which a middle shaft for rotatably connecting a rotational body and a sample is rotatably supported by a bearing, the rotation testing device allowing suppression of a reduction of detection accuracy of torque that the sample generates by reducing an influence of a temperature change of lubricant on a loss in the bearing.SOLUTION: A testing device for a vehicle 1 includes: a dynamo 11; a middle shaft 31 for rotatably connecting a sample motor 2 and the dynamo 11 to each other; middle shaft bearing parts 32 and 33 for rotatably supporting the middle shaft 31; a torque detection unit 41 for detecting torque generated between the sample motor 2 and the dynamo 11; a lubricant supply device 20 for supplying lubricant to bearings 32a and 33a of the middle shaft bearing parts 32 and 33; and a lubricant heating unit 35 provided at the middle shaft bearing part 32 which is located at a sample motor 2 side, the lubricant heating unit heating the lubricant supplied from the lubricant supplying device 20 to the bearing 32a of the middle shaft bearing parts 32.SELECTED DRAWING: Figure 1

Description

本発明は、モータ等の供試体を回転させる回転試験装置に関する。   The present invention relates to a rotation test apparatus that rotates a specimen such as a motor.

モータ等の供試体を回転させる回転試験装置が知られている。このような回転試験装置として、例えば特許文献1に開示されるように、供試体に回転可能に連結されることにより、前記供試体を回転させる動力系の試験装置が知られている。この試験装置では、回転体と供試体とが中間軸を介して回転可能に連結されている。   2. Description of the Related Art A rotation test apparatus that rotates a specimen such as a motor is known. As such a rotation test apparatus, for example, as disclosed in Patent Document 1, a power system test apparatus that rotates the specimen by being rotatably connected to the specimen is known. In this test apparatus, a rotating body and a specimen are rotatably connected via an intermediate shaft.

ところで、上述のように中間軸を介して回転体と供試体とが回転可能に連結されている軸系では、一般的に、前記中間軸が軸受によって回転可能に支持されている。また、前記軸受には、外部から潤滑油が供給されている。   By the way, in the shaft system in which the rotating body and the specimen are rotatably connected via the intermediate shaft as described above, the intermediate shaft is generally rotatably supported by a bearing. The bearing is supplied with lubricating oil from the outside.

上述のように、回転する軸を回転可能に支持する軸受に対して潤滑油が供給される構成において、例えば特許文献2に開示されるように、前記潤滑油の温度を調整することにより、前記軸受の摺動損失を低減可能であることが知られている。この特許文献2に開示されている構成では、給油装置によって軸受に供給される潤滑油が貯留されたヘッドタンクの側面に、該ヘッドタンクの内部に貯留される潤滑油の温度を制御するオイルヒータが設けられている。   As described above, in the configuration in which the lubricating oil is supplied to the bearing that rotatably supports the rotating shaft, for example, as disclosed in Patent Document 2, the temperature of the lubricating oil is adjusted to adjust the temperature of the lubricating oil. It is known that the sliding loss of the bearing can be reduced. In the configuration disclosed in Patent Document 2, an oil heater that controls the temperature of the lubricating oil stored in the head tank on the side surface of the head tank in which the lubricating oil supplied to the bearing by the oil supply device is stored. Is provided.

特開2014−142317号公報JP 2014-142317 A 特開2011−122557号公報JP 2011-122557 A

前記特許文献1に開示される構成のように、回転体と供試体とが中間軸を介して回転可能に連結されている構成では、前記中間軸を安定して回転可能に支持するために、一般的に、前記中間軸を少なくとも2つの軸受によって回転可能に支持する必要がある。すなわち、前記中間軸の軸方向において、前記中間軸を回転体側の軸受と供試体側の軸受とで回転可能に支持することにより、前記中間軸を安定して回転可能に支持することができる。   In the configuration in which the rotating body and the specimen are rotatably connected via the intermediate shaft as in the configuration disclosed in Patent Document 1, in order to stably support the intermediate shaft in a rotatable manner, In general, the intermediate shaft needs to be rotatably supported by at least two bearings. That is, in the axial direction of the intermediate shaft, the intermediate shaft can be stably and rotatably supported by rotatably supporting the intermediate shaft with the bearing on the rotating body side and the bearing on the specimen side.

ところで、回転試験装置を用いて供試体を一定速度で回転させた状態で該供試体を駆動させることによって、該供試体が発生するトルクを検出する場合、回転試験装置の回転体及び中間軸に生じる損失は一定であることが望まれる。回転試験装置で発生する損失が変動すると、前記供試体が発生するトルクを精度良く検出できないからである。   By the way, when the torque generated by the specimen is detected by driving the specimen in a state where the specimen is rotated at a constant speed using the rotational testing apparatus, the rotational body and the intermediate shaft of the rotational testing apparatus are used. It is desirable that the resulting loss be constant. This is because if the loss generated in the rotation test apparatus fluctuates, the torque generated by the specimen cannot be accurately detected.

上述のように、中間軸を少なくとも2つの軸受によって回転可能に支持する構成の場合、前記中間軸の回転速度が一定であっても、前記軸受に供給される潤滑油の温度によっては、前記軸受で生じる損失にばらつきが生じる可能性がある。このように前記軸受で生じる損失にばらつきが生じた場合、前記供試体が発生するトルクを精度良く検出できない。   As described above, in the case of a configuration in which the intermediate shaft is rotatably supported by at least two bearings, even if the rotation speed of the intermediate shaft is constant, depending on the temperature of the lubricating oil supplied to the bearing, the bearing There is a possibility that the loss incurred will vary. As described above, when the loss generated in the bearing varies, the torque generated by the specimen cannot be accurately detected.

また、上述のように、少なくとも2つの軸受によって前記中間軸を回転体側及び供試体側で回転可能に支持する場合、一般的に、回転体側の軸受における潤滑油の温度と、供試体側の軸受における潤滑油の温度とは異なる。すなわち、回転体が回転した際に前記中間軸の軸方向内方に流れる空気の温度は、回転体側よりも供試体側の方が低い。そのため、供試体側の軸受における潤滑油は冷却されやすい。よって、供試体側の軸受及び回転体側の軸受に対して、前記特許文献2のように温度調整された潤滑油を供給した場合であっても、供試体側の軸受における潤滑油の温度は、回転体側の軸受における潤滑油の温度よりも低い。   In addition, as described above, when the intermediate shaft is rotatably supported by at least two bearings on the rotating body side and the specimen side, generally, the temperature of the lubricating oil in the bearing on the rotating body side and the bearing on the specimen side It is different from the temperature of the lubricating oil in That is, when the rotating body rotates, the temperature of the air flowing inward in the axial direction of the intermediate shaft is lower on the specimen side than on the rotating body side. Therefore, the lubricating oil in the bearing on the specimen side is easily cooled. Therefore, even when the lubricating oil adjusted in temperature as in Patent Document 2 is supplied to the bearing on the specimen side and the bearing on the rotating body side, the temperature of the lubricating oil in the bearing on the specimen side is: It is lower than the temperature of the lubricating oil in the bearing on the rotating body side.

このように、供試体側の軸受と回転体側の軸受とで潤滑油の温度が異なると、各軸受における潤滑油の粘性が異なるため、各軸受で生じる損失に差異が生じる。そうすると、回転試験装置の回転数を変更した場合等に、中間軸で発生する損失が変動して安定しない可能性があり、供試体が発生するトルクを精度良く検出できない。   As described above, when the temperature of the lubricating oil is different between the bearing on the specimen side and the bearing on the rotating body side, the viscosity of the lubricating oil in each bearing is different, resulting in a difference in loss generated in each bearing. Then, when the rotation speed of the rotation test apparatus is changed, the loss generated in the intermediate shaft may fluctuate and become unstable, and the torque generated by the specimen cannot be accurately detected.

本発明では、回転体と供試体とを回転可能に連結する中間軸が軸受によって回転可能に支持された回転試験装置において、前記軸受に生じる損失が潤滑油の温度変化によって受ける影響を低減することにより、前記供試体が発生するトルクの検出精度の低下を抑制可能な構成を得る。   According to the present invention, in a rotation test apparatus in which an intermediate shaft that rotatably connects a rotating body and a specimen is rotatably supported by a bearing, the influence of loss caused on the bearing due to a change in temperature of the lubricating oil is reduced. Thereby, the structure which can suppress the fall of the detection accuracy of the torque which the said test body generate | occur | produces is obtained.

本発明の一実施形態に係る回転試験装置は、供試体を回転させる回転体と、前記供試体と前記回転体との間に設けられ、前記供試体と前記回転体とを回転可能に連結する中間軸と、前記中間軸を回転可能に支持する軸受を有し、前記中間軸の軸方向に並んで配置された少なくとも2つの中間軸受部と、前記供試体と前記回転体との間に生じるトルクを検出してトルク信号として出力するトルク検出部と、前記少なくとも2つの中間軸受部の軸受に対して潤滑油をそれぞれ供給する潤滑油供給部と、前記少なくとも2つの中間軸受部のうち前記供試体側に位置する中間軸受部に設けられ、該中間軸受部の軸受に対して前記潤滑油供給部から供給される潤滑油を加熱する潤滑油加熱部と、を備える(第1の構成)。   A rotation test apparatus according to an embodiment of the present invention is provided between a rotating body that rotates a specimen and the specimen and the rotating body, and rotatably connects the specimen and the rotating body. An intermediate shaft and a bearing that rotatably supports the intermediate shaft are generated between at least two intermediate bearing portions arranged side by side in the axial direction of the intermediate shaft, and the specimen and the rotating body. A torque detection unit that detects torque and outputs it as a torque signal; a lubricant supply unit that supplies lubricant to the bearings of the at least two intermediate bearing units; and the supply of the at least two intermediate bearing units. A lubricating oil heating unit that is provided in an intermediate bearing portion located on the specimen side and heats the lubricating oil supplied from the lubricating oil supply unit to the bearing of the intermediate bearing portion (first configuration).

軸受に供給される潤滑油は、温度に応じて粘性が変化する。そのため、軸受で生じる損失は、潤滑油の温度に応じて変化する。具体的には、潤滑油の温度が高い場合には、潤滑油の温度が低い場合に比べて、潤滑油の粘性が低下するため、軸受で生じる損失が小さい。一方、潤滑油の温度が低い場合には、潤滑油の温度が高い場合に比べて、潤滑油の粘性が高くなるため、軸受で生じる損失が大きい。   The viscosity of the lubricating oil supplied to the bearing varies with temperature. Therefore, the loss generated in the bearing varies depending on the temperature of the lubricating oil. Specifically, when the temperature of the lubricating oil is high, since the viscosity of the lubricating oil is lower than when the temperature of the lubricating oil is low, the loss generated in the bearing is small. On the other hand, when the temperature of the lubricating oil is low, since the viscosity of the lubricating oil is higher than when the temperature of the lubricating oil is high, the loss generated in the bearing is large.

本発明者は、上述のような潤滑油の温度と軸受で生じる損失との関係について鋭意検討した結果、軸受に供給される潤滑油の温度と、潤滑油の温度変化に対して軸受で生じる損失の変化量との関係を見出した。   As a result of intensive studies on the relationship between the temperature of the lubricating oil and the loss generated in the bearing as described above, the present inventor has found that the temperature of the lubricating oil supplied to the bearing and the loss generated in the bearing with respect to the temperature change of the lubricating oil. We found a relationship with the amount of change.

図5に、潤滑油の各温度における前記変化量を示す。図5に示すように、潤滑油の温度が低い場合には、潤滑油の温度変化に対して軸受で生じる損失の変化量が大きい一方、潤滑油の温度が高い場合には、潤滑油の温度変化に対して軸受で生じる損失の変化量が小さい。よって、潤滑油の温度が高いと、潤滑油の温度が変化しても、軸受で生じる損失はあまり変化しない。図5の例では、例えば、潤滑油の温度を70度以上にすることにより、潤滑油の温度が低温の場合に比べて、軸受で生じる損失の変化を小さくすることができる。したがって、潤滑油の温度変化によって軸受で生じる損失のばらつきを抑制する観点から、潤滑油の温度を70度以上の高温にすることが好ましい。   FIG. 5 shows the amount of change at each temperature of the lubricating oil. As shown in FIG. 5, when the temperature of the lubricating oil is low, the amount of change in loss generated in the bearing with respect to the temperature change of the lubricating oil is large, while when the temperature of the lubricating oil is high, the temperature of the lubricating oil The amount of change in loss caused by the bearing with respect to the change is small. Therefore, if the temperature of the lubricating oil is high, even if the temperature of the lubricating oil changes, the loss generated in the bearing does not change much. In the example of FIG. 5, for example, by setting the temperature of the lubricating oil to 70 ° C. or more, it is possible to reduce the change in loss generated in the bearing as compared with the case where the temperature of the lubricating oil is low. Therefore, it is preferable to set the temperature of the lubricating oil to a high temperature of 70 ° C. or higher from the viewpoint of suppressing the variation in loss generated in the bearing due to the temperature change of the lubricating oil.

また、既述のように、供試体側に位置する中間軸受部の軸受は、回転体側に位置する中間軸受部の軸受に比べて、潤滑油の温度が低下しやすい。   Further, as described above, the temperature of the lubricating oil in the bearing of the intermediate bearing portion positioned on the specimen side is likely to be lower than that of the bearing of the intermediate bearing portion positioned on the rotating body side.

以上の点を踏まえ、上述の構成では、回転体と供試体とを回転可能に連結する中間軸を回転可能に支持する少なくとも2つの中間軸受部に供給する潤滑油の温度を70度以上にするとともに、供試体側に位置する中間軸受部の軸受に供給される潤滑油を、潤滑油加熱部によって加熱する。このように、供試体側に位置する中間軸受部の軸受に供給される潤滑油を潤滑油加熱部によって加熱することにより、供試体側に位置する中間軸受部で生じる前記潤滑油の温度低下を防止できる。   In view of the above points, in the above-described configuration, the temperature of the lubricating oil supplied to at least two intermediate bearing portions that rotatably support the intermediate shaft that rotatably connects the rotating body and the specimen is set to 70 degrees or more. At the same time, the lubricating oil supplied to the bearing of the intermediate bearing portion located on the specimen side is heated by the lubricating oil heating unit. Thus, the lubricating oil supplied to the bearing of the intermediate bearing part located on the specimen side is heated by the lubricating oil heating part, thereby reducing the temperature drop of the lubricating oil occurring in the intermediate bearing part located on the specimen side. Can be prevented.

これにより、供試体側に位置する中間軸受部の軸受で生じる損失が、該軸受に供給される潤滑油の温度変化によって、大きく変化することを防止できる。したがって、供試体が発生するトルクを精度良く検出することができる。   Thereby, it can prevent that the loss which arises in the bearing of the intermediate bearing part located in a test body side changes largely by the temperature change of the lubricating oil supplied to this bearing. Accordingly, the torque generated by the specimen can be detected with high accuracy.

なお、前記中間軸受部は、軸受と、該軸受を支持する部材の少なくとも一部とを含む。   The intermediate bearing portion includes a bearing and at least a part of a member that supports the bearing.

前記第1の構成において、前記中間軸及び前記少なくとも2つの中間軸受部は、前記中間軸の前記軸方向において、前記少なくとも2つの中間軸受部の軸受に対して前記潤滑油供給部から供給される潤滑油が中央側に移動するように構成されている(第2の構成)。   In the first configuration, the intermediate shaft and the at least two intermediate bearing portions are supplied from the lubricant supply portion to the bearings of the at least two intermediate bearing portions in the axial direction of the intermediate shaft. The lubricating oil is configured to move to the center side (second configuration).

中間軸の回転に伴い外気が該中間軸と中間軸受部との間に流入することにより、中間軸を回転可能に支持する中間軸受部の軸受に供給される潤滑油は、外に流れ出ることなく、中間軸の軸方向の中央側に移動する。潤滑油がこのように流れる場合、潤滑油とともに外気も前記軸方向の中央側に移動するため、潤滑油の温度は低下しやすい。よって、中間軸受部の軸受で生じる損失は、該軸受に供給される潤滑油の温度変化によって、変動しやすい。しかも、供試体側から前記中間軸と前記中間軸受部との間に流入する外気の温度は回転体側から前記中間軸と前記中間軸受部との間に流入する外気の温度に比べて低い。そのため、供試体側に位置する中間軸受部の潤滑油の温度は、回転体側に位置する中間軸受部の潤滑油に比べて、低下しやすい。   With the rotation of the intermediate shaft, the outside air flows between the intermediate shaft and the intermediate bearing portion, so that the lubricating oil supplied to the bearing of the intermediate bearing portion that rotatably supports the intermediate shaft does not flow out. Move to the center side in the axial direction of the intermediate shaft. When the lubricating oil flows in this manner, the outside air moves together with the lubricating oil to the center side in the axial direction, so that the temperature of the lubricating oil tends to decrease. Therefore, the loss generated in the bearing of the intermediate bearing portion is likely to fluctuate due to the temperature change of the lubricating oil supplied to the bearing. In addition, the temperature of the outside air flowing from the specimen side between the intermediate shaft and the intermediate bearing portion is lower than the temperature of the outside air flowing from the rotating body side between the intermediate shaft and the intermediate bearing portion. For this reason, the temperature of the lubricating oil in the intermediate bearing portion located on the specimen side tends to be lower than the lubricating oil in the intermediate bearing portion located on the rotating body side.

これに対し、上述の第1の構成を適用することにより、供試体側に位置する中間軸受部の軸受で生じる損失が、該軸受に供給される潤滑油の温度変化によって、大きく変化することを防止できる。したがって、供試体が発生するトルクを精度良く検出することができる。   On the other hand, by applying the first configuration described above, the loss generated in the bearing of the intermediate bearing portion located on the specimen side changes greatly due to the temperature change of the lubricating oil supplied to the bearing. Can be prevented. Accordingly, the torque generated by the specimen can be detected with high accuracy.

前記第1または第2の構成において、回転試験装置は、前記回転体と前記中間軸との連結部及び前記トルク検出部を覆うカバーをさらに備える。前記潤滑油加熱部は、前記2つの中間軸受部のうち前記中間軸の軸方向において前記カバーとは反対側に位置する中間軸受部に設けられ、該中間軸受部の軸受に対して前記潤滑油供給部から供給される潤滑油を加熱する(第3の構成)。   In the first or second configuration, the rotation test apparatus further includes a cover that covers the connecting portion between the rotating body and the intermediate shaft and the torque detecting portion. The lubricating oil heating part is provided in an intermediate bearing part located on the opposite side of the cover in the axial direction of the intermediate shaft of the two intermediate bearing parts, and the lubricating oil is provided to the bearing of the intermediate bearing part. The lubricating oil supplied from the supply unit is heated (third configuration).

このように、回転体と中間軸との連結部及びトルク検出部がカバーによって覆われている場合、前記中間軸を回転可能に支持する少なくとも2つの中間軸受部のうち前記回転体側に位置する中間軸受部は、近傍に前記カバーが位置する。そのため、前記中間軸受部の軸受に対して潤滑油供給部から供給される潤滑油の温度は、低下しにくい。一方、前記供試体はカバーによって覆われていないため、前記カバーとは反対側に位置する中間軸受部、すなわち、供試体側に位置する中間軸受部の軸受に対して潤滑油供給部から供給される潤滑油は、外気に触れやすい。よって、前記潤滑油の温度は、前記回転体側に位置する中間軸受部の軸受に対して供給される潤滑油に比べて低下しやすい。   Thus, when the connection part of a rotary body and an intermediate shaft and the torque detection part are covered with the cover, the intermediate | middle located in the said rotary body side among the at least 2 intermediate bearing parts which support the said intermediate shaft rotatably. The cover is located in the vicinity of the bearing portion. For this reason, the temperature of the lubricating oil supplied from the lubricating oil supply unit to the bearing of the intermediate bearing portion is unlikely to decrease. On the other hand, since the specimen is not covered with a cover, it is supplied from the lubricating oil supply section to the intermediate bearing portion located on the opposite side of the cover, that is, the bearing of the intermediate bearing portion located on the specimen side. Lubricating oil is easy to touch the outside air. Therefore, the temperature of the lubricating oil tends to be lower than the lubricating oil supplied to the bearing of the intermediate bearing portion located on the rotating body side.

これに対し、上述の構成のように、前記カバーとは反対側に位置する中間軸受部、すなわち、供試体側に位置する中間軸受部の軸受に対して供給される潤滑油を、潤滑油加熱部によって加熱することにより、前記供試体側に位置する中間軸受部の軸受に供給される潤滑油の温度低下を抑制できる。   On the other hand, as described above, the lubricating oil supplied to the bearing of the intermediate bearing portion located on the opposite side of the cover, that is, the intermediate bearing portion located on the specimen side, is heated with the lubricating oil. By heating by the part, it is possible to suppress the temperature drop of the lubricating oil supplied to the bearing of the intermediate bearing part located on the specimen side.

これにより、供試体側に位置する中間軸受部の軸受で生じる損失が、該軸受に供給される潤滑油の温度変化によって、大きく変化することを防止できる。したがって、供試体が発生するトルクを精度良く検出することができる。   Thereby, it can prevent that the loss which arises in the bearing of the intermediate bearing part located in a test body side changes largely by the temperature change of the lubricating oil supplied to this bearing. Accordingly, the torque generated by the specimen can be detected with high accuracy.

前記第1から第3の構成のうちいずれか一つの構成において、回転試験装置は、前記少なくとも2つの中間軸受部のうち前記潤滑油加熱部によって潤滑油が加熱される中間軸受部における前記潤滑油の温度を検出する潤滑油温度検出部と、前記回転体の回転速度を検出する回転速度検出部と、前記潤滑油温度検出部によって検出された前記潤滑油の温度と、前記回転体検出部によって検出された前記回転体の回転速度とを用いて、前記潤滑油加熱部による潤滑油の加熱を制御する加熱制御部と、をさらに備える(第4の構成)。   In any one of the first to third configurations, the rotation test apparatus includes the lubricating oil in the intermediate bearing portion in which the lubricating oil is heated by the lubricating oil heating portion of the at least two intermediate bearing portions. A lubricating oil temperature detecting unit for detecting the temperature of the rotating body, a rotating speed detecting unit for detecting the rotating speed of the rotating body, the temperature of the lubricating oil detected by the lubricating oil temperature detecting unit, and the rotating body detecting unit A heating control unit that controls heating of the lubricating oil by the lubricating oil heating unit using the detected rotation speed of the rotating body is further provided (fourth configuration).

これにより、供試体側に位置する中間軸受部の軸受に供給される潤滑油の温度を、潤滑油温度検出部によって検出された潤滑油の温度と、回転体の回転速度とに応じて、迅速に調整することができる。   As a result, the temperature of the lubricating oil supplied to the bearing of the intermediate bearing portion located on the specimen side can be quickly changed according to the lubricating oil temperature detected by the lubricating oil temperature detecting portion and the rotational speed of the rotating body. Can be adjusted.

ここで、軸受の潤滑油の温度は、中間軸の回転速度が高くなるほど、上昇する。前記潤滑油の温度が高くなりすぎると、前記潤滑油の粘性が大きく低下して軸受の特性や耐久性等に影響を与える。そのため、前記潤滑油の温度は、高くなりすぎないことが望まれる。   Here, the temperature of the lubricating oil of the bearing increases as the rotational speed of the intermediate shaft increases. If the temperature of the lubricating oil becomes too high, the viscosity of the lubricating oil is greatly reduced, affecting the characteristics and durability of the bearing. Therefore, it is desirable that the temperature of the lubricating oil does not become too high.

よって、上述のように、潤滑油の温度を、潤滑油温度検出部によって検出された潤滑油の温度と、回転体の回転速度とに応じて、調整することにより、軸受で生じる損失の変動を抑制可能な適正な温度範囲に迅速に調整することができる。   Therefore, as described above, by adjusting the temperature of the lubricating oil in accordance with the temperature of the lubricating oil detected by the lubricating oil temperature detection unit and the rotational speed of the rotating body, the fluctuation of the loss generated in the bearing can be reduced. The temperature can be quickly adjusted to an appropriate temperature range that can be suppressed.

前記第4の構成において、前記加熱制御部は、前記潤滑油温度検出部によって検出された前記潤滑油の温度と前記潤滑油の目標温度との差を減らすような加熱量を、前記回転体の回転速度に応じて補正し、補正された加熱量に基づいて、前記潤滑油加熱部による潤滑油の加熱を制御する(第5の構成)。   In the fourth configuration, the heating control unit sets a heating amount that reduces a difference between the temperature of the lubricating oil detected by the lubricating oil temperature detecting unit and a target temperature of the lubricating oil to the rotating body. Correction according to the rotation speed is performed, and heating of the lubricating oil by the lubricating oil heating unit is controlled based on the corrected heating amount (fifth configuration).

これにより、供試体側に位置する中間軸受部の軸受に供給される潤滑油の温度を、潤滑油の目標温度に迅速に調整することができる。   Thereby, the temperature of the lubricating oil supplied to the bearing of the intermediate bearing portion located on the specimen side can be quickly adjusted to the target temperature of the lubricating oil.

前記第4の構成において、前記加熱制御部は、前記少なくとも2つの中間軸受部のうち前記回転体側に位置する中間軸受部の軸受に供給される潤滑油の温度と、前記潤滑油温度検出部によって検出された前記潤滑油の温度との差が小さくなるような加熱量を、前記回転体の回転速度に応じて補正し、補正された加熱量に基づいて、前記潤滑油加熱部による潤滑油の加熱を制御する(第6の構成)。   In the fourth configuration, the heating control unit includes a temperature of lubricating oil supplied to a bearing of an intermediate bearing unit located on the rotating body side among the at least two intermediate bearing units, and the lubricating oil temperature detecting unit. The amount of heating so that the difference between the detected temperature of the lubricating oil is reduced is corrected according to the rotational speed of the rotating body, and based on the corrected amount of heating, the amount of lubricating oil by the lubricating oil heating unit is corrected. Heating is controlled (sixth configuration).

これにより、供試体側に位置する中間軸受部の軸受に供給される潤滑油の温度を、回転体側に位置する中間軸受部の軸受に供給される潤滑油の温度に近づけることができる。よって、中間軸の回転速度が変化した場合でも、前記中間軸を回転可能に支持する軸受で生じる損失の変動が、供試体側の中間軸受部と回転体側の中間軸受部とで大きく異なることを防止できる。よって、供試体が発生するトルクを精度良く検出することができる。   Thereby, the temperature of the lubricating oil supplied to the bearing of the intermediate bearing part located on the specimen side can be brought close to the temperature of the lubricating oil supplied to the bearing of the intermediate bearing part located on the rotating body side. Therefore, even when the rotational speed of the intermediate shaft changes, the fluctuation in loss caused by the bearing that rotatably supports the intermediate shaft is greatly different between the intermediate bearing portion on the specimen side and the intermediate bearing portion on the rotating body side. Can be prevented. Thus, the torque generated by the specimen can be detected with high accuracy.

本発明の一実施形態に係る回転試験装置によれば、供試体と回転体とを回転可能に連結する中間軸を回転可能に支持する少なくとも2つの中間軸受部のうち、前記供試体側に位置する中間軸受部に、該中間軸受部の軸受に対して供給される潤滑油を加熱する潤滑油加熱部が設けられている。これにより、前記供試体側に位置する中間軸受部の軸受で生じる損失が、該軸受に供給される潤滑油の温度変化によって、大きく変化することを防止できる。したがって、供試体が発生するトルクを精度良く検出することができる。   According to the rotation test apparatus according to an embodiment of the present invention, among the at least two intermediate bearing portions that rotatably support the intermediate shaft that rotatably connects the specimen and the rotating body, the rotational testing apparatus is located on the specimen side. The intermediate bearing portion is provided with a lubricating oil heating portion that heats the lubricating oil supplied to the bearing of the intermediate bearing portion. Thereby, it can prevent that the loss which arises in the bearing of the intermediate bearing part located in the said test body side changes largely by the temperature change of the lubricating oil supplied to this bearing. Accordingly, the torque generated by the specimen can be detected with high accuracy.

図1は、実施形態1に係る車両用試験装置の概略構成を示すブロック図である。FIG. 1 is a block diagram illustrating a schematic configuration of the vehicle test apparatus according to the first embodiment. 図2は、軸受支持部の構成及び中間軸受部の軸受に対して潤滑油を供給する様子を模式的に示す図である。FIG. 2 is a diagram schematically illustrating a configuration of the bearing support portion and a state in which the lubricating oil is supplied to the bearing of the intermediate bearing portion. 図3は、軸受支持部を供試モータ側から見た図である。FIG. 3 is a view of the bearing support portion as viewed from the test motor side. 図4は、加熱制御装置の制御ブロック図である。FIG. 4 is a control block diagram of the heating control device. 図5は、潤滑油温度と、潤滑油温度の変化に対して軸受で生じる損失の変化との関係を示す図である。FIG. 5 is a diagram showing the relationship between the lubricating oil temperature and the change in loss generated in the bearing with respect to the change in the lubricating oil temperature. 図6は、実施形態2に係る車両試験装置の図2相当図である。6 is a view corresponding to FIG. 2 of the vehicle test apparatus according to the second embodiment. 図7は、実施形態2に係る車両試験装置の図3相当図である。FIG. 7 is a view corresponding to FIG. 3 of the vehicle test apparatus according to the second embodiment.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the dimension of the structural member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each structural member, etc. faithfully.

<実施形態1>
(全体構成)
図1は、実施形態1に係る車両用試験装置1(回転試験装置)の概略構成を示すブロック図である。車両用試験装置1は、供試体である供試モータ2を回転させた状態で該供試モータ2の各種測定データを得るための試験装置である。
<Embodiment 1>
(overall structure)
FIG. 1 is a block diagram illustrating a schematic configuration of a vehicle test apparatus 1 (rotational test apparatus) according to the first embodiment. The vehicular test apparatus 1 is a test apparatus for obtaining various measurement data of the test motor 2 in a state in which the test motor 2 that is a specimen is rotated.

車両用試験装置1は、供試モータ2に駆動連結されるダイナモ11(回転体)と、供試モータ2とダイナモ11とを回転可能に連結する中間軸31と、供試モータ2に発生するトルクを検出するトルク計41(トルク検出部)とを備える。図1における符号3は、供試モータ2の駆動を制御するモータ制御装置である。   The vehicular test apparatus 1 is generated in a dynamo 11 (rotary body) that is drivingly connected to the test motor 2, an intermediate shaft 31 that rotatably connects the test motor 2 and the dynamo 11, and the test motor 2. And a torque meter 41 (torque detector) for detecting torque. Reference numeral 3 in FIG. 1 denotes a motor control device that controls driving of the test motor 2.

モータ制御装置3は、入力されるトルク指令に応じて供試モータ2に電力を供給することにより、供試モータ2のトルクを制御する。モータ制御装置3の構成は、従来のインバータなどの制御装置と同様の構成を有するため、詳しい説明を省略する。   The motor control device 3 controls the torque of the test motor 2 by supplying power to the test motor 2 in accordance with the input torque command. Since the configuration of the motor control device 3 has the same configuration as a control device such as a conventional inverter, detailed description thereof is omitted.

なお、本実施形態では、回転試験装置として、車両用試験装置1の例を挙げているが、他の用途の試験装置であってもよい。   In the present embodiment, an example of the vehicle test apparatus 1 is given as the rotation test apparatus, but a test apparatus for other applications may be used.

ダイナモ11は、電動モータであり、回転速度が制御される。ダイナモ11の構成は、一般的な電動モータと同様であるため、詳しい説明を省略する。ダイナモ11には、図示しない回転子の回転速度を検出するための回転速度センサ12(回転速度検出部)が設けられている。   The dynamo 11 is an electric motor, and the rotation speed is controlled. Since the configuration of the dynamo 11 is the same as that of a general electric motor, detailed description thereof is omitted. The dynamo 11 is provided with a rotation speed sensor 12 (rotation speed detector) for detecting the rotation speed of a rotor (not shown).

ダイナモ11の回転子は、中間軸31を介して供試モータ2の回転軸(図示省略)に接続されている。なお、特に図示しないが、ダイナモ11の回転子と中間軸31とは、両者にそれぞれ設けられたカップリング同士がボルトによって締結されることにより、駆動連結されている。また、中間軸31と供試モータ2の回転軸も、同様に、カップリング同士がボルトによって締結されることにより、駆動連結されている。   The rotor of the dynamo 11 is connected to the rotating shaft (not shown) of the test motor 2 via the intermediate shaft 31. Although not particularly shown, the rotor of the dynamo 11 and the intermediate shaft 31 are drivingly connected by coupling the couplings provided on both of them together with bolts. Similarly, the intermediate shaft 31 and the rotating shaft of the test motor 2 are also drive-coupled by coupling the couplings with bolts.

中間軸31には、ダイナモ11と供試モータ2との間に生じるトルクを検出するためのトルク計41が設けられている。このトルク計41は、中間軸31に生じるねじれ角の差を検出する。トルク計41では、検出したねじれ角の差から中間軸31に生じるトルクを求め、トルク信号として出力する。なお、トルク計41からねじれ角の差に対応する信号を出力して、制御装置等によってトルク値を算出してもよい。   The intermediate shaft 31 is provided with a torque meter 41 for detecting torque generated between the dynamo 11 and the test motor 2. The torque meter 41 detects a difference in torsion angle generated in the intermediate shaft 31. The torque meter 41 obtains torque generated in the intermediate shaft 31 from the detected difference in torsion angle and outputs it as a torque signal. A torque value may be calculated by a control device or the like by outputting a signal corresponding to the difference in torsion angle from the torque meter 41.

中間軸31は、軸方向の2箇所で、中間軸受部32,33によって回転可能に支持されている。中間軸受部32,33は、中間軸31において、トルク計41と供試モータ2との間の部分を回転可能に支持する。すなわち、中間軸受部32,33は、中間軸31における供試モータ2側を回転可能に支持する。トルク計41は、ダイナモ11と中間軸受部31,32との間に配置されている。   The intermediate shaft 31 is rotatably supported by intermediate bearing portions 32 and 33 at two locations in the axial direction. The intermediate bearing portions 32 and 33 rotatably support a portion between the torque meter 41 and the test motor 2 on the intermediate shaft 31. That is, the intermediate bearing portions 32 and 33 rotatably support the test motor 2 side in the intermediate shaft 31. The torque meter 41 is disposed between the dynamo 11 and the intermediate bearing portions 31 and 32.

中間軸受部32は、中間軸31の軸方向における供試モータ2側を回転可能に支持する。中間軸受部33は、中間軸31の軸方向において、中間軸受部32よりもダイナモ11側に位置する。   The intermediate bearing portion 32 rotatably supports the test motor 2 side in the axial direction of the intermediate shaft 31. The intermediate bearing portion 33 is located closer to the dynamo 11 than the intermediate bearing portion 32 in the axial direction of the intermediate shaft 31.

図2に示すように、中間軸受部32は、軸受32aを有する。中間軸受部33は、軸受33aを有する。   As shown in FIG. 2, the intermediate bearing portion 32 includes a bearing 32a. The intermediate bearing portion 33 has a bearing 33a.

軸受32a,33aは、軸受支持部34によって支持されている。軸受支持部34は、筒軸方向に中間軸31が貫通するとともに、軸受32a,33aを支持する円筒状の部材を有する。軸受支持部34の円筒状の部材のうち、軸受32a,33aを支持する部分が、中間軸受部32,33の一部を構成する。すなわち、中間軸受部32は、軸受32aと、軸受支持部34のうち軸受32aを支持する部分とを含む。中間軸受部33は、軸受33aと、軸受支持部34のうち軸受33aを支持する部分とを含む。なお、軸受支持部34は、後述のベース1aによって支持されている。   The bearings 32 a and 33 a are supported by a bearing support portion 34. The bearing support portion 34 includes a cylindrical member that supports the bearings 32a and 33a while the intermediate shaft 31 penetrates in the cylinder axis direction. Of the cylindrical member of the bearing support portion 34, the portions that support the bearings 32 a and 33 a constitute part of the intermediate bearing portions 32 and 33. In other words, the intermediate bearing portion 32 includes a bearing 32 a and a portion of the bearing support portion 34 that supports the bearing 32 a. The intermediate bearing portion 33 includes a bearing 33 a and a portion of the bearing support portion 34 that supports the bearing 33 a. The bearing support portion 34 is supported by a base 1a described later.

また、図1に示すように、中間軸31において、軸受支持部34とダイナモ11との間の部分は、カバー36によって覆われている。すなわち、ダイナモ11の回転子と中間軸31との連結部及びトルク計41は、カバー36によって覆われている。軸受支持部34は、そのダイナモ11側がカバー36と隣接している。   Further, as shown in FIG. 1, a portion of the intermediate shaft 31 between the bearing support portion 34 and the dynamo 11 is covered with a cover 36. That is, the connecting portion between the rotor of the dynamo 11 and the intermediate shaft 31 and the torque meter 41 are covered with the cover 36. The bearing support portion 34 is adjacent to the cover 36 on the dynamo 11 side.

車両用試験装置1において、ダイナモ11、トルク計41及び中間軸受部32,33は、ベース1aによって支持されている。また、供試モータ2は、ベース1a上に設けられたモータ固定部1bに固定されている。   In the vehicle test apparatus 1, the dynamo 11, the torque meter 41, and the intermediate bearing portions 32 and 33 are supported by a base 1a. Further, the test motor 2 is fixed to a motor fixing portion 1b provided on the base 1a.

図2に示すように、中間軸受部32,33の軸受32a,33aには潤滑油供給装置20によって、潤滑油が供給される。すなわち、軸受支持部34には、軸受32a,33aに対して潤滑油を供給するための潤滑油供給路(図示省略)が設けられている。図1から図3に、潤滑油供給装置20から軸受32a,33aへの潤滑油の流れを、一点鎖線で模式的に示す。なお、図2では、軸受32a,33aから潤滑油供給装置20への潤滑油の流れの記載を省略している。また、図3では、潤滑油供給装置20の記載を省略し、軸受32aの周辺における潤滑油の流れのみを図示している。   As shown in FIG. 2, the lubricating oil is supplied to the bearings 32 a and 33 a of the intermediate bearing portions 32 and 33 by the lubricating oil supply device 20. That is, the bearing support portion 34 is provided with a lubricating oil supply path (not shown) for supplying lubricating oil to the bearings 32a and 33a. 1 to 3 schematically show a flow of lubricating oil from the lubricating oil supply device 20 to the bearings 32a and 33a by a one-dot chain line. In FIG. 2, the description of the flow of the lubricating oil from the bearings 32a and 33a to the lubricating oil supply device 20 is omitted. In FIG. 3, the description of the lubricating oil supply device 20 is omitted, and only the flow of the lubricating oil around the bearing 32a is illustrated.

図2に示すように、中間軸受部32,33は、軸受32a,33aに対して、中間軸31の軸方向の外方から内方に向かって潤滑油が供給されるように構成されている。また、中間軸31は、軸方向において、中間軸受部32,33の外方に位置する部分の外径よりも内方に位置する部分の外径が大きい。これにより、中間軸31の回転中において、軸受32a,33aに供給された潤滑油は、軸受32a,33aに対して中間軸31の軸方向内方に流れる。   As shown in FIG. 2, the intermediate bearing portions 32 and 33 are configured such that lubricating oil is supplied to the bearings 32 a and 33 a from the outside in the axial direction of the intermediate shaft 31 toward the inside. . Further, the intermediate shaft 31 has a larger outer diameter at a portion positioned inward than an outer diameter at a portion positioned outward of the intermediate bearing portions 32 and 33 in the axial direction. Thereby, during the rotation of the intermediate shaft 31, the lubricating oil supplied to the bearings 32a and 33a flows inward in the axial direction of the intermediate shaft 31 with respect to the bearings 32a and 33a.

図1に示すように、車両用試験装置1は、中間軸受部32,33の軸受32a,33aに対して潤滑油をそれぞれ供給する潤滑油供給装置20を備える。潤滑油供給装置20は、潤滑油を吐出するポンプ21と、前記潤滑油の温度を調整する温度調整部22と、ポンプ21及び温度調整部22の駆動を制御する潤滑油制御部24とを備える。   As shown in FIG. 1, the vehicle test apparatus 1 includes a lubricating oil supply device 20 that supplies lubricating oil to bearings 32 a and 33 a of the intermediate bearing portions 32 and 33, respectively. The lubricating oil supply device 20 includes a pump 21 that discharges lubricating oil, a temperature adjusting unit 22 that adjusts the temperature of the lubricating oil, and a lubricating oil control unit 24 that controls driving of the pump 21 and the temperature adjusting unit 22. .

温度調整部22は、特に図示しないが、潤滑油の温度を調整可能なように、加熱器及び冷却器の少なくとも一方を有する。すなわち、温度調整部22は、潤滑油を加熱する加熱器のみを有していてもよいし、潤滑油を冷却する冷却器のみを有していてもよいし、加熱器及び冷却器の両方を有していてもよい。詳しい説明は省略するが、温度調整部22は、タンク内に高温で貯留された潤滑油を、冷却器を用いて冷却することにより、前記潤滑油の温度を所望の温度にしてもよい。   Although not specifically illustrated, the temperature adjusting unit 22 includes at least one of a heater and a cooler so that the temperature of the lubricating oil can be adjusted. That is, the temperature adjusting unit 22 may include only a heater that heats the lubricating oil, may include only a cooler that cools the lubricating oil, or both the heater and the cooler. You may have. Although detailed description is omitted, the temperature adjusting unit 22 may cool the lubricating oil stored in the tank at a high temperature by using a cooler so that the temperature of the lubricating oil becomes a desired temperature.

潤滑油制御部24は、ポンプ21の駆動を制御することにより、軸受32a,33aに供給される潤滑油の油量を調整するとともに、後述する潤滑油温度検出部38で検出された潤滑油の温度Tbに応じて温度調整部22の駆動を制御することにより、潤滑油の温度を調整する。   The lubricating oil control unit 24 adjusts the amount of lubricating oil supplied to the bearings 32a and 33a by controlling the driving of the pump 21, and the lubricating oil detected by the lubricating oil temperature detecting unit 38 to be described later. The temperature of the lubricating oil is adjusted by controlling the driving of the temperature adjusting unit 22 according to the temperature Tb.

詳しくは、潤滑油制御部24は、予め設定された油量の潤滑油が軸受32a,33aに供給されるようにポンプ21を駆動させるとともに、入力される潤滑油温度指令及びダイナモ11の回転速度Nに応じて、潤滑油の温度を調整する。   Specifically, the lubricating oil control unit 24 drives the pump 21 so that a predetermined amount of lubricating oil is supplied to the bearings 32a and 33a, and also inputs the lubricating oil temperature command and the rotational speed of the dynamo 11. The temperature of the lubricating oil is adjusted according to N.

上述の構成を有する潤滑油制御部24によって温度調整部22の駆動を制御することにより、潤滑油供給装置20から吐出される潤滑油は、所望の温度に調整される。所望の温度に調整された潤滑油は、軸受32a,33aに対して供給される。   By controlling the driving of the temperature adjusting unit 22 by the lubricating oil control unit 24 having the above-described configuration, the lubricating oil discharged from the lubricating oil supply device 20 is adjusted to a desired temperature. Lubricating oil adjusted to a desired temperature is supplied to the bearings 32a and 33a.

中間軸受部32には、軸受32aに供給される潤滑油を加熱するための潤滑油加熱部35が設けられている。図2及び図3に示すように、潤滑油加熱部35は、軸受支持部34の内部に、軸受32aを囲むように周方向に並んで配置された複数(本実施形態では8個)のヒータ35aを有する。各ヒータ35aは、棒状であり、中間軸31の軸方向に延びるように軸受支持部34内に配置されている。各ヒータ35aは、加熱制御装置50(加熱制御部)によって加熱制御される。   The intermediate bearing portion 32 is provided with a lubricating oil heating portion 35 for heating the lubricating oil supplied to the bearing 32a. As shown in FIGS. 2 and 3, the lubricating oil heating unit 35 includes a plurality of (eight in the present embodiment) heaters arranged in the circumferential direction so as to surround the bearing 32 a inside the bearing support 34. 35a. Each heater 35 a has a rod shape and is disposed in the bearing support portion 34 so as to extend in the axial direction of the intermediate shaft 31. Each heater 35a is controlled to be heated by a heating control device 50 (heating control unit).

なお、ヒータ35aの形状は、軸受32aに供給される潤滑油を加熱可能な形状であれば、棒状以外の形状であってもよい。また、潤滑油加熱部35は、軸受32aに供給される潤滑油を加熱可能な構成であれば、ヒータ以外の加熱装置を有していてもよい。   The shape of the heater 35a may be a shape other than a rod shape as long as the lubricating oil supplied to the bearing 32a can be heated. Further, the lubricating oil heating unit 35 may have a heating device other than the heater as long as the lubricating oil supplied to the bearing 32a can be heated.

図2に示すように、中間軸受部32には、軸受32aの潤滑油の温度Tbsを検出する潤滑油温度検出部37が設けられている。また、中間軸受部33には、軸受33aの潤滑油の温度Tbを検出する潤滑油温度検出部38が設けられている。   As shown in FIG. 2, the intermediate bearing portion 32 is provided with a lubricating oil temperature detector 37 that detects the temperature Tbs of the lubricating oil of the bearing 32 a. Further, the intermediate bearing portion 33 is provided with a lubricating oil temperature detecting portion 38 for detecting the lubricating oil temperature Tb of the bearing 33a.

加熱制御装置50は、潤滑油温度指令Tbref(目標温度)及び中間軸31の回転速度に基づいて、軸受32aに供給される潤滑油を加熱する。加熱制御装置50は、潤滑油温度検出部37によって検出された潤滑油の温度Tbsを潤滑油温度指令Tbrefに近づけるとともに、中間軸31の回転速度、すなわち回転速度センサ12から出力された回転速度Nも考慮して、加熱制御を行う。   The heating control device 50 heats the lubricating oil supplied to the bearing 32 a based on the lubricating oil temperature command Tbref (target temperature) and the rotation speed of the intermediate shaft 31. The heating control device 50 brings the lubricating oil temperature Tbs detected by the lubricating oil temperature detection unit 37 closer to the lubricating oil temperature command Tbref, and the rotational speed N of the intermediate shaft 31, that is, the rotational speed N output from the rotational speed sensor 12. In consideration of the above, heating control is performed.

具体的には、加熱制御装置50は、温度差算出部51と、温度補正部52と、加熱量演算部53とを有する。温度差算出部51は、潤滑油温度検出部37によって検出された潤滑油の温度Tbsと潤滑油温度指令Tbrefとの差を算出する。すなわち、温度差算出部51は、軸受32aの潤滑油の温度Tbsを潤滑油温度指令Tbrefに合わせるために必要な温度上昇分を算出する。   Specifically, the heating control device 50 includes a temperature difference calculation unit 51, a temperature correction unit 52, and a heating amount calculation unit 53. The temperature difference calculating unit 51 calculates the difference between the lubricating oil temperature Tbs detected by the lubricating oil temperature detecting unit 37 and the lubricating oil temperature command Tbref. That is, the temperature difference calculation unit 51 calculates a temperature increase necessary for adjusting the temperature Tbs of the lubricating oil of the bearing 32a to the lubricating oil temperature command Tbref.

温度補正部52は、回転速度センサ12から出力された回転速度Nに対応した潤滑油の温度の補正テーブルを有し、前記温度差算出部51によって算出された温度差を、前記補正テーブルを用いて補正する。   The temperature correction unit 52 includes a correction table for the temperature of the lubricating oil corresponding to the rotation speed N output from the rotation speed sensor 12, and the temperature difference calculated by the temperature difference calculation unit 51 is used as the correction table. To correct.

ここで、軸受32aに供給された潤滑油の温度は、中間軸31の回転速度Nに応じて変化する。すなわち、軸受32aに供給された潤滑油の温度は、中間軸31の回転速度が大きい場合、中間軸31の回転速度が小さい場合に比べて高くなる。よって、軸受32aに供給される潤滑油の温度を所望の温度にするためにヒータ35aで必要な加熱量は、中間軸31の回転速度Nに応じて変わる。   Here, the temperature of the lubricating oil supplied to the bearing 32 a changes according to the rotational speed N of the intermediate shaft 31. That is, the temperature of the lubricating oil supplied to the bearing 32a is higher when the rotation speed of the intermediate shaft 31 is higher than when the rotation speed of the intermediate shaft 31 is low. Therefore, the amount of heating necessary for the heater 35a to change the temperature of the lubricating oil supplied to the bearing 32a to a desired temperature varies depending on the rotational speed N of the intermediate shaft 31.

温度補正部52では、上述のように中間軸31の回転速度に応じて変化するヒータ35aで必要な加熱量を求めるために、温度差算出部51で算出された温度差に、前記回転速度に応じた補正量を加算する。   In the temperature correction unit 52, in order to obtain the heating amount necessary for the heater 35a that changes according to the rotation speed of the intermediate shaft 31 as described above, the temperature difference calculated by the temperature difference calculation unit 51 is set to the rotation speed. Add the correct correction amount.

加熱量演算部53は、温度補正部52によって得られた温度差の補正値から、ヒータ35aの加熱量(加熱制御量)を算出し、該加熱量に応じた制御信号を生成する。加熱量演算部53で生成された制御信号に応じて、ヒータ35aは加熱制御される。   The heating amount calculation unit 53 calculates the heating amount (heating control amount) of the heater 35a from the correction value of the temperature difference obtained by the temperature correction unit 52, and generates a control signal corresponding to the heating amount. In response to the control signal generated by the heating amount calculation unit 53, the heater 35a is controlled to be heated.

加熱制御装置50の具体的な制御ブロック図を図4に示す。図4に示すように、温度差算出部51は、潤滑油温度検出部37によって検出された潤滑油の温度Tbsと潤滑油温度指令Tbrefとの温度差を算出する減算器51aと、減算器51aによって算出された温度差を用いてPID演算を行う演算器51bとを有する。すなわち、温度差算出部51は、ヒータ35aの加熱制御において、中間軸受部32の軸受32aにおける潤滑油の温度Tbsと潤滑油温度指令Tbrefとの温度差をフィードバックする。   A specific control block diagram of the heating control device 50 is shown in FIG. As shown in FIG. 4, the temperature difference calculation unit 51 includes a subtractor 51a that calculates a temperature difference between the lubricant temperature Tbs detected by the lubricant temperature detection unit 37 and the lubricant temperature command Tbref, and a subtractor 51a. And a calculator 51b that performs PID calculation using the temperature difference calculated by the above. That is, the temperature difference calculation unit 51 feeds back the temperature difference between the lubricating oil temperature Tbs and the lubricating oil temperature command Tbref in the bearing 32a of the intermediate bearing 32 in the heating control of the heater 35a.

温度補正部52は、回転速度センサ12から出力された回転速度Nに基づいてテーブルから温度補正量を算出する補正量演算部52aと、補正量演算部52aで算出された温度補正量を、温度差算出部51の演算器51bで算出された結果に加算する加算器52bとを有する。すなわち、温度補正部52は、ヒータ35aの加熱制御において、回転速度Nに応じた温度補正量を用いて、温度差算出部51で算出されたフィードバック量を補正する。   The temperature correction unit 52 calculates the temperature correction amount from the table based on the rotation speed N output from the rotation speed sensor 12, and the temperature correction amount calculated by the correction amount calculation unit 52a as the temperature correction amount. And an adder 52b for adding to the result calculated by the calculator 51b of the difference calculating unit 51. That is, the temperature correction unit 52 corrects the feedback amount calculated by the temperature difference calculation unit 51 using the temperature correction amount corresponding to the rotation speed N in the heating control of the heater 35a.

これにより、加熱制御装置50は、中間軸31の回転速度Nを考慮しつつ、中間軸受32の軸受32aにおける潤滑油の温度Tbsを潤滑油温度指令Tbrefに近づけるように、ヒータ35aの加熱制御を行うことができる。   Thus, the heating control device 50 controls the heating of the heater 35a so that the temperature Tbs of the lubricating oil in the bearing 32a of the intermediate bearing 32 approaches the lubricating oil temperature command Tbref while considering the rotational speed N of the intermediate shaft 31. It can be carried out.

ここで、中間軸31の回転速度が一定の場合、軸受32a,33aにおける潤滑油の温度が変化すると、該潤滑油の粘性が変化する。そのため、前記潤滑油の温度が変化すると、軸受32a,33aで生じる損失が変化する。よって、前記潤滑油の温度が変化すると、車両用試験装置1によって、供試モータ2の出力トルクを精度良く検出できないため、供試モータ2の効率を精度良く計測できない。   Here, when the rotation speed of the intermediate shaft 31 is constant, the viscosity of the lubricating oil changes when the temperature of the lubricating oil in the bearings 32a and 33a changes. Therefore, when the temperature of the lubricating oil changes, the loss generated in the bearings 32a and 33a changes. Therefore, when the temperature of the lubricating oil changes, the vehicle test apparatus 1 cannot accurately detect the output torque of the test motor 2, and thus the efficiency of the test motor 2 cannot be measured with high accuracy.

本発明者は、潤滑油の温度と軸受に生じる損失との関係について鋭意検討した結果、潤滑油の温度変化に対して軸受に生じる損失の変化が、図5に一例を示すように、潤滑油の温度によって変化する点を見出した。すなわち、本発明者は、潤滑油の温度が比較的高温の場合には、潤滑油の温度変化に対して軸受に生じる損失の変化DT(=軸受に生じる損失の変化/潤滑油の温度変化)が小さくなることを見出した。具体的には、図5に示すように、潤滑油の温度が70度以上の場合には、それよりも温度が低い場合に比べて、潤滑油の温度変化に対して軸受に生じる損失の変化量は小さくなる。したがって、中間軸受32,33の軸受32a,33aにおける潤滑油の温度は、70度以上が好ましい。なお、軸受における潤滑油の温度は、潤滑油の劣化や軸受の耐久性等を考慮すると、95度以下が好ましい。   As a result of intensive studies on the relationship between the temperature of the lubricating oil and the loss generated in the bearing, the present inventor has shown that the change in the loss generated in the bearing with respect to the change in the temperature of the lubricating oil is as shown in FIG. The point which changes with the temperature of was found. That is, when the temperature of the lubricating oil is relatively high, the inventor of the present invention changes the loss DT generated in the bearing with respect to the temperature change of the lubricating oil (= change in loss generated in the bearing / temperature change in the lubricating oil). Was found to be smaller. Specifically, as shown in FIG. 5, when the temperature of the lubricating oil is 70 ° C. or higher, the change in loss generated in the bearing with respect to the temperature change of the lubricating oil, compared to the case where the temperature is lower than that. The amount is smaller. Therefore, the temperature of the lubricating oil in the bearings 32a and 33a of the intermediate bearings 32 and 33 is preferably 70 degrees or more. Note that the temperature of the lubricating oil in the bearing is preferably 95 degrees or less in consideration of the deterioration of the lubricating oil and the durability of the bearing.

そのため、本実施形態の車両試験装置1では、潤滑油温度指令は、軸受32a,33aに供給される潤滑油の温度が70度以上になるような温度指令である。   Therefore, in the vehicle test apparatus 1 of the present embodiment, the lubricant temperature command is a temperature command such that the temperature of the lubricant supplied to the bearings 32a and 33a is 70 degrees or higher.

ところで、車両試験装置1の中間軸受部32,33では、中間軸31が回転した状態において、図2に示すように、軸受32a,33aに供給された潤滑油は、外気とともに中間軸31の軸方向の内方に移動する。これにより、前記潤滑油は外気によって冷却されるため、前記潤滑油の温度が低下しやすい。   By the way, in the intermediate bearing portions 32 and 33 of the vehicle test apparatus 1, in the state where the intermediate shaft 31 is rotated, the lubricating oil supplied to the bearings 32a and 33a is combined with the outside air as the shaft of the intermediate shaft 31 as shown in FIG. Move inward in the direction. Thereby, since the said lubricating oil is cooled with external air, the temperature of the said lubricating oil tends to fall.

特に、中間軸受部32,33のうち供試モータ2側に位置する中間軸受部32は、ダイナモ11側にカバー36が配置されている中間軸受部33に比べて、潤滑油が外気と触れやすく、該潤滑油の温度が低下しやすい。よって、供試モータ2側に位置する中間軸受部32に供給された潤滑油の温度は、ダイナモ11側に位置する中間軸受部33に供給された潤滑油の温度よりも低下しやすい。   In particular, the intermediate bearing portion 32 located on the test motor 2 side of the intermediate bearing portions 32 and 33 is more easily contacted with the outside air than the intermediate bearing portion 33 in which the cover 36 is disposed on the dynamo 11 side. The temperature of the lubricating oil tends to decrease. Therefore, the temperature of the lubricating oil supplied to the intermediate bearing portion 32 located on the test motor 2 side is likely to be lower than the temperature of the lubricating oil supplied to the intermediate bearing portion 33 located on the dynamo 11 side.

これに対し、本実施形態のように、供試モータ2側に位置する中間軸受部32の軸受32aに供給される潤滑油を、潤滑油加熱部35のヒータ35aによって加熱することにより、中間軸受部32,33の軸受32a,33aにおける潤滑油の温度差を低減できる。しかも、前記潤滑油の温度を、中間軸受32,33の軸受32a,33aで生じる損失が潤滑油の温度の影響を受けにくいような比較的高温にすることができる。   On the other hand, as in the present embodiment, the lubricating oil supplied to the bearing 32a of the intermediate bearing portion 32 located on the test motor 2 side is heated by the heater 35a of the lubricating oil heating portion 35, whereby the intermediate bearing. The temperature difference of the lubricating oil in the bearings 32a and 33a of the parts 32 and 33 can be reduced. In addition, the temperature of the lubricating oil can be set to a relatively high temperature so that the loss generated in the bearings 32a and 33a of the intermediate bearings 32 and 33 is not easily affected by the temperature of the lubricating oil.

これにより、車両試験装置1の回転数が急激に変化した場合や車両試験装置1の始動時でも、潤滑油の温度変化の影響によって中間軸受32,33の軸受32a,33aに生じる損失が大きく変化することを抑制できる。したがって、車両試験装置1によって、供試モータ2の効率を迅速且つ精度良く測定することができる。   As a result, even when the rotational speed of the vehicle test apparatus 1 changes abruptly or when the vehicle test apparatus 1 is started, the loss generated in the bearings 32a and 33a of the intermediate bearings 32 and 33 greatly changes due to the influence of the temperature change of the lubricating oil. Can be suppressed. Therefore, the vehicle test apparatus 1 can quickly and accurately measure the efficiency of the test motor 2.

<実施形態2>
図6に、実施形態2に係る車両試験装置の軸受支持部の拡大図を示す。図6に示すように、実施形態2の構成は、加熱制御装置150に、潤滑油温度検出部37,38の出力、すなわち、中間軸受32,33の軸受32a,33aにおける潤滑油の温度Tbs,Tbが入力される点で、実施形態1の構成と異なる。以下では、実施形態1と同一の構成には同一の符号を付して説明を省略し、実施形態1と異なる構成についてのみ説明する。
<Embodiment 2>
FIG. 6 shows an enlarged view of the bearing support portion of the vehicle test apparatus according to the second embodiment. As shown in FIG. 6, the configuration of the second embodiment causes the heating controller 150 to output the lubricating oil temperature detection units 37 and 38, that is, the lubricating oil temperature Tbs in the bearings 32 a and 33 a of the intermediate bearings 32 and 33, It differs from the configuration of the first embodiment in that Tb is input. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only components different from those in the first embodiment are described.

図7に、加熱制御装置150の制御ブロック図を示す。図6及び図7に示すように、加熱制御装置150の温度差算出部151には、中間軸受部32,33の軸受32a,33aにおける潤滑油の温度Tbs,Tbが入力される。潤滑油の温度Tbs,Tbは、潤滑油温度検出部37,38によって検出される。温度差算出部151では、中間軸受部32の軸受32aにおける潤滑油の温度Tbsと中間軸受部33の軸受33aにおける潤滑油の温度Tbとの温度差を、減算器151aによって求めた後、実施形態1と同様、演算器51bによって、前記温度差をPID演算する。   FIG. 7 shows a control block diagram of the heating control device 150. As shown in FIGS. 6 and 7, the temperature difference calculation unit 151 of the heating control device 150 receives the temperatures Tbs and Tb of the lubricating oil in the bearings 32 a and 33 a of the intermediate bearing units 32 and 33. Lubricating oil temperatures Tbs and Tb are detected by lubricating oil temperature detectors 37 and 38. In the temperature difference calculation unit 151, after the temperature difference between the temperature Tbs of the lubricating oil in the bearing 32 a of the intermediate bearing portion 32 and the temperature Tb of the lubricating oil in the bearing 33 a of the intermediate bearing portion 33 is obtained by the subtractor 151 a, 1, the temperature difference is subjected to PID calculation by the calculator 51 b.

温度差算出部151で算出された結果は、実施形態1と同様、温度補正部52によって、中間軸31の回転速度に応じた補正値により補正される。その後、加熱量演算部53は、温度補正部52によって補正された値に基づいて加熱量を演算して、ヒータ35aを加熱制御するための制御信号を生成する。ヒータ35aは、加熱量演算部53で生成された制御信号に応じて加熱制御される。   The result calculated by the temperature difference calculation unit 151 is corrected by the temperature correction unit 52 with a correction value corresponding to the rotation speed of the intermediate shaft 31 as in the first embodiment. Thereafter, the heating amount calculation unit 53 calculates a heating amount based on the value corrected by the temperature correction unit 52, and generates a control signal for controlling the heating of the heater 35a. The heater 35 a is controlled to be heated according to the control signal generated by the heating amount calculation unit 53.

本実施形態では、加熱制御装置150は、潤滑油温度検出部37,38によって検出された潤滑油の温度Tbs,Tbの温度差を用いて、ヒータ35aの制御信号を生成する。これにより、供試モータ2側の中間軸受部32の軸受32aにおける潤滑油の温度が、ダイナモ11側の中間軸受部33の軸受33aにおける潤滑油の温度に近づくように、ヒータ35aの駆動が制御される。   In the present embodiment, the heating control device 150 generates a control signal for the heater 35a using the temperature difference between the lubricating oil temperatures Tbs and Tb detected by the lubricating oil temperature detectors 37 and 38. Thereby, the drive of the heater 35a is controlled so that the temperature of the lubricating oil in the bearing 32a of the intermediate bearing portion 32 on the side of the test motor 2 approaches the temperature of the lubricating oil in the bearing 33a of the intermediate bearing portion 33 on the dynamo 11 side. Is done.

よって、供試モータ2側の中間軸受部32の軸受32aにおける潤滑油の温度と、ダイナモ11側の中間軸受部33の軸受33aにおける潤滑油の温度とを、軸受で生じる損失の変化が比較的小さい温度に合わせることが可能になる。よって、車両用試験装置の回転数が変わった場合等でも、軸受32a,33aで生じる損失の変化を抑制することができ、供試モータ2の効率を迅速に且つ精度良く測定することができる。   Therefore, the change in loss caused by the bearing is relatively different between the temperature of the lubricating oil in the bearing 32a of the intermediate bearing portion 32 on the test motor 2 side and the temperature of the lubricating oil in the bearing 33a of the intermediate bearing portion 33 on the dynamo 11 side. It becomes possible to adjust to a small temperature. Therefore, even when the rotational speed of the vehicular test apparatus is changed, it is possible to suppress a change in loss caused by the bearings 32a and 33a, and to measure the efficiency of the test motor 2 quickly and accurately.

(その他の実施形態)
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
(Other embodiments)
While the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented without departing from the spirit of the invention.

前記各実施形態では、モータ制御装置3は、入力されるトルク指令に応じて供試モータ2に電力を供給することにより、供試モータ2のトルクを制御する。また、ダイナモ11の回転速度が制御される。しかしながら、供試モータの回転数が制御され、ダイナモのトルクが制御されてもよい。   In each said embodiment, the motor control apparatus 3 controls the torque of the test motor 2 by supplying electric power to the test motor 2 according to the input torque command. Further, the rotational speed of the dynamo 11 is controlled. However, the rotational speed of the test motor may be controlled, and the dynamo torque may be controlled.

前記各実施形態では、中間軸受部32,33のうち、供試体側に位置する中間軸受部32に、軸受32aに供給される潤滑油を加熱するための潤滑油加熱部35が設けられている。しかしながら、複数の中間軸受部のうち、軸受の潤滑油の温度が低下しやすい中間軸受部に、潤滑油加熱部を設けてもよい。   In each of the above-described embodiments, the lubricating oil heating part 35 for heating the lubricating oil supplied to the bearing 32a is provided in the intermediate bearing part 32 located on the specimen side among the intermediate bearing parts 32 and 33. . However, among the plurality of intermediate bearing portions, the lubricating oil heating portion may be provided in the intermediate bearing portion in which the temperature of the lubricating oil in the bearing tends to decrease.

前記各実施形態では、中間軸31は、中間軸受部32,33によって回転可能に支持されている。しかしながら、中間軸31は、3つ以上の中間軸受部によって回転可能に支持されてもよい。この場合には、複数の中間軸受部のうち、軸受の潤滑油の温度が低下しやすい中間軸受部に、潤滑油加熱部を設けることが好ましい。   In each of the above-described embodiments, the intermediate shaft 31 is rotatably supported by the intermediate bearing portions 32 and 33. However, the intermediate shaft 31 may be rotatably supported by three or more intermediate bearing portions. In this case, it is preferable to provide the lubricating oil heating part in the intermediate bearing part among the plurality of intermediate bearing parts, in which the temperature of the lubricating oil in the bearing tends to decrease.

前記各実施形態では、中間軸受部32,33は、それぞれ、軸受32a,33aを有する。しかしながら、中間軸受部は、それぞれ2つ以上の軸受を有していてもよい。   In each said embodiment, the intermediate bearing parts 32 and 33 have the bearings 32a and 33a, respectively. However, each of the intermediate bearing portions may have two or more bearings.

前記各実施形態では、中間軸受部32には、8つのヒータ35aが設けられている。しかしながら、中間軸受部32に設けられるヒータの数は、軸受32aに供給される潤滑油を加熱可能な数であれば、8つ以外でもよい。   In each of the above embodiments, the intermediate bearing portion 32 is provided with eight heaters 35a. However, the number of heaters provided in the intermediate bearing portion 32 may be other than eight as long as the lubricating oil supplied to the bearing 32a can be heated.

前記各実施形態では、中間軸31の一部は、カバー36によって覆われている。しかしながら、中間軸31をカバー36によって覆わなくてもよい。   In each of the embodiments, a part of the intermediate shaft 31 is covered with the cover 36. However, the intermediate shaft 31 may not be covered with the cover 36.

前記各実施形態では、中間軸受部32,33の軸受32a,33aでは、供給された潤滑油が、中間軸31の軸方向の内方に向かって流れる。しかしながら、軸受に流れる潤滑油は、中間軸31の軸方向の外方に向かって流れてもよいし、前記軸方向に流れることなくそのまま下方に流れてもよい。   In each of the embodiments described above, the supplied lubricating oil flows inward in the axial direction of the intermediate shaft 31 in the bearings 32 a and 33 a of the intermediate bearing portions 32 and 33. However, the lubricating oil flowing in the bearing may flow outward in the axial direction of the intermediate shaft 31 or may flow downward as it is without flowing in the axial direction.

前記各実施形態では、加熱制御装置50,150は、中間軸31の回転速度Nを考慮して、ヒータ35aの加熱量を求めている。しかしながら、加熱制御装置は、ヒータ35aの加熱量を求める際に、中間軸31の回転速度Nを考慮しなくてもよい。また、加熱制御装置は、ヒータ35aの加熱量を求める際に、中間軸31の回転速度N以外のパラメータ(外気温度など)を考慮してもよい。さらに、加熱制御装置50,150は、中間軸受部32の軸受32aにおける潤滑油の温度が予め設定された温度になるように、ヒータ35aを加熱制御してもよい。   In each of the embodiments described above, the heating control devices 50 and 150 obtain the heating amount of the heater 35a in consideration of the rotational speed N of the intermediate shaft 31. However, the heating control device does not have to consider the rotational speed N of the intermediate shaft 31 when obtaining the heating amount of the heater 35a. Further, the heating control device may consider parameters (such as the outside air temperature) other than the rotation speed N of the intermediate shaft 31 when determining the heating amount of the heater 35a. Furthermore, the heating control devices 50 and 150 may control the heating of the heater 35a so that the temperature of the lubricating oil in the bearing 32a of the intermediate bearing portion 32 becomes a preset temperature.

本発明による回転試験装置は、ダイナモと供試体とが中間軸によって回転可能に連結されるとともに、前記中間軸が軸受によって回転可能に支持される構成に利用可能である。   The rotation test apparatus according to the present invention can be used for a configuration in which a dynamo and a specimen are rotatably connected by an intermediate shaft, and the intermediate shaft is rotatably supported by a bearing.

1 車両用試験装置(回転試験装置)
2 供試モータ(供試体)
11 ダイナモ(回転体)
12 回転速度センサ(回転速度検出部)
20 潤滑油供給装置(潤滑油供給部)
21 ポンプ
22 温度調整部
24 潤滑油制御部
31 中間軸
32、33 中間軸受部
32a、33a 軸受
34 軸受支持部
35 潤滑油加熱部
35a ヒータ
36 カバー
37、38 潤滑油温度検出部
41 トルク検出部
50、150 加熱制御装置(加熱制御部)
51、151 温度差算出部
52 温度補正部
53 加熱量演算部
1 Vehicle testing equipment (rotational testing equipment)
2 Test motor (specimen)
11 Dynamo (Rotating body)
12 Rotational speed sensor (Rotational speed detector)
20 Lubricating oil supply device (lubricating oil supply unit)
21 Pump 22 Temperature adjusting unit 24 Lubricating oil control unit 31 Intermediate shafts 32 and 33 Intermediate bearing units 32a and 33a Bearing 34 Bearing support unit 35 Lubricating oil heating unit 35a Heater 36 Covers 37 and 38 Lubricating oil temperature detecting unit 41 Torque detecting unit 50 , 150 Heating control device (heating control unit)
51, 151 Temperature difference calculation unit 52 Temperature correction unit 53 Heating amount calculation unit

Claims (6)

供試体を回転させる回転体と、
前記供試体と前記回転体との間に設けられ、前記供試体と前記回転体とを回転可能に連結する中間軸と、
前記中間軸を回転可能に支持する軸受を有し、前記中間軸の軸方向に並んで配置された少なくとも2つの中間軸受部と、
前記供試体と前記回転体との間に生じるトルクを検出してトルク信号として出力するトルク検出部と、
前記少なくとも2つの中間軸受部の軸受に対して潤滑油をそれぞれ供給する潤滑油供給部と、
前記少なくとも2つの中間軸受部のうち前記供試体側に位置する中間軸受部に設けられ、該中間軸受部の軸受に対して前記潤滑油供給部から供給される潤滑油を加熱する潤滑油加熱部と、
を備える、回転試験装置。
A rotating body that rotates the specimen;
An intermediate shaft that is provided between the specimen and the rotating body and rotatably connects the specimen and the rotating body;
A bearing for rotatably supporting the intermediate shaft, and at least two intermediate bearing portions arranged side by side in the axial direction of the intermediate shaft;
A torque detector that detects torque generated between the specimen and the rotating body and outputs a torque signal;
A lubricating oil supply section that respectively supplies lubricating oil to the bearings of the at least two intermediate bearing sections;
Lubricating oil heating section that is provided in an intermediate bearing section located on the specimen side of the at least two intermediate bearing sections and that heats the lubricating oil supplied from the lubricating oil supply section to the bearing of the intermediate bearing section When,
A rotation test apparatus.
請求項1に記載の回転試験装置において、
前記中間軸及び前記少なくとも2つの中間軸受部は、前記中間軸の前記軸方向において、前記少なくとも2つの中間軸受部の軸受に対して前記潤滑油供給部から供給される潤滑油が中央側に移動するように構成されている、回転試験装置。
The rotation test apparatus according to claim 1,
In the axial direction of the intermediate shaft, the intermediate shaft and the at least two intermediate bearing portions move the lubricating oil supplied from the lubricating oil supply portion to the bearings of the at least two intermediate bearing portions toward the center side. A rotation testing device configured to:
請求項1または2に記載の回転試験装置において、
前記回転体と前記中間軸との連結部及び前記トルク検出部を覆うカバーをさらに備え、
前記潤滑油加熱部は、前記2つの中間軸受部のうち前記中間軸の軸方向において前記カバーとは反対側に位置する中間軸受部に設けられ、該中間軸受部の軸受に対して前記潤滑油供給部から供給される潤滑油を加熱する、回転試験装置。
The rotation test apparatus according to claim 1 or 2,
A cover that covers the connecting portion between the rotating body and the intermediate shaft and the torque detector;
The lubricating oil heating part is provided in an intermediate bearing part located on the opposite side of the cover in the axial direction of the intermediate shaft of the two intermediate bearing parts, and the lubricating oil is provided to the bearing of the intermediate bearing part. A rotation test device that heats lubricating oil supplied from a supply unit.
請求項1から3のいずれか一つに記載の回転試験装置において、
前記少なくとも2つの中間軸受部のうち前記潤滑油加熱部によって潤滑油が加熱される中間軸受部における前記潤滑油の温度を検出する潤滑油温度検出部と、
前記回転体の回転速度を検出する回転速度検出部と、
前記潤滑油温度検出部によって検出された前記潤滑油の温度と、前記回転速度検出部によって検出された前記回転体の回転速度とを用いて、前記潤滑油加熱部による潤滑油の加熱を制御する加熱制御部と、
をさらに備える、回転試験装置。
In the rotation test device according to any one of claims 1 to 3,
A lubricating oil temperature detection unit for detecting a temperature of the lubricating oil in the intermediate bearing unit in which the lubricating oil is heated by the lubricating oil heating unit among the at least two intermediate bearing units;
A rotational speed detector for detecting the rotational speed of the rotating body;
The heating of the lubricating oil by the lubricating oil heating unit is controlled using the temperature of the lubricating oil detected by the lubricating oil temperature detecting unit and the rotational speed of the rotating body detected by the rotational speed detecting unit. A heating control unit;
A rotation test apparatus further comprising:
請求項4に記載の回転試験装置において、
前記加熱制御部は、前記潤滑油温度検出部によって検出された前記潤滑油の温度と前記潤滑油の目標温度との差を減らすような加熱量を、前記回転体の回転速度に応じて補正し、補正された加熱量に基づいて、前記潤滑油加熱部による潤滑油の加熱を制御する、回転試験装置。
The rotation test apparatus according to claim 4, wherein
The heating control unit corrects a heating amount so as to reduce a difference between the temperature of the lubricating oil detected by the lubricating oil temperature detecting unit and a target temperature of the lubricating oil according to a rotation speed of the rotating body. A rotation test apparatus that controls heating of the lubricating oil by the lubricating oil heating unit based on the corrected heating amount.
請求項4に記載の回転試験装置において、
前記加熱制御部は、前記少なくとも2つの中間軸受部のうち前記回転体側に位置する中間軸受部の軸受に供給される潤滑油の温度と、前記潤滑油温度検出部によって検出された前記潤滑油の温度との差が小さくなるような加熱量を、前記回転体の回転速度に応じて補正し、補正された加熱量に基づいて、前記潤滑油加熱部による潤滑油の加熱を制御する、回転試験装置。
The rotation test apparatus according to claim 4, wherein
The heating control unit includes the temperature of the lubricating oil supplied to the bearing of the intermediate bearing portion located on the rotating body side of the at least two intermediate bearing portions, and the lubricating oil detected by the lubricating oil temperature detection unit. A rotation test that corrects the amount of heating so as to reduce the difference from the temperature according to the rotation speed of the rotating body, and controls the heating of the lubricating oil by the lubricating oil heating unit based on the corrected amount of heating. apparatus.
JP2017151182A 2017-08-04 2017-08-04 Rotation testing device Pending JP2019028041A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017151182A JP2019028041A (en) 2017-08-04 2017-08-04 Rotation testing device
KR1020180038528A KR20190015077A (en) 2017-08-04 2018-04-03 Rotating test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151182A JP2019028041A (en) 2017-08-04 2017-08-04 Rotation testing device

Publications (1)

Publication Number Publication Date
JP2019028041A true JP2019028041A (en) 2019-02-21

Family

ID=65366891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151182A Pending JP2019028041A (en) 2017-08-04 2017-08-04 Rotation testing device

Country Status (2)

Country Link
JP (1) JP2019028041A (en)
KR (1) KR20190015077A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907202A (en) * 2019-11-27 2020-03-24 合肥百川自动化科技有限公司 Duplex torsion fatigue experiment equipment for automobile steering intermediate shaft
JP2021071429A (en) * 2019-11-01 2021-05-06 シンフォニアテクノロジー株式会社 Rotation testing device
KR20210101036A (en) * 2020-02-07 2021-08-18 엘지전자 주식회사 Apparatus for Testing Air Foil Bearings
WO2021205511A1 (en) * 2020-04-06 2021-10-14 三菱重工機械システム株式会社 Rolling resistance measurement device, rolling resistance measurement method, and program
WO2022054564A1 (en) 2020-09-11 2022-03-17 シンフォニアテクノロジー株式会社 Lubricating oil supply device and rotation test apparatus equipped therewith

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071429A (en) * 2019-11-01 2021-05-06 シンフォニアテクノロジー株式会社 Rotation testing device
JP7376778B2 (en) 2019-11-01 2023-11-09 シンフォニアテクノロジー株式会社 Rotating test equipment
CN110907202A (en) * 2019-11-27 2020-03-24 合肥百川自动化科技有限公司 Duplex torsion fatigue experiment equipment for automobile steering intermediate shaft
KR20210101036A (en) * 2020-02-07 2021-08-18 엘지전자 주식회사 Apparatus for Testing Air Foil Bearings
KR102320557B1 (en) 2020-02-07 2021-11-01 엘지전자 주식회사 Apparatus for Testing Air Foil Bearings
WO2021205511A1 (en) * 2020-04-06 2021-10-14 三菱重工機械システム株式会社 Rolling resistance measurement device, rolling resistance measurement method, and program
TWI767252B (en) * 2020-04-06 2022-06-11 日商三菱重工機械系統股份有限公司 Rolling resistance measuring device, rolling resistance measuring method and program
WO2022054564A1 (en) 2020-09-11 2022-03-17 シンフォニアテクノロジー株式会社 Lubricating oil supply device and rotation test apparatus equipped therewith
KR20230063357A (en) 2020-09-11 2023-05-09 신포니아 테크놀로지 가부시끼가이샤 Lubricating oil supply device and rotation test device having the same
EP4212768A4 (en) * 2020-09-11 2024-10-09 Sinfonia Technology Co Ltd Lubricating oil supply device and rotation test apparatus equipped therewith

Also Published As

Publication number Publication date
KR20190015077A (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP2019028041A (en) Rotation testing device
CN116399232B (en) Coordinate measuring apparatus for maintaining thermal balance
US6508614B1 (en) Spindle device and machine tool utilizing the same
US8303185B2 (en) Bearing play adjustment
JPWO2012141170A1 (en) Rotational torsion testing machine
KR20160016895A (en) Automatic suppression device for cyclic disturbance
CN105605697B (en) The method for noise reduction control and noise reduction control device of air conditioner and air conditioner
JP5884415B2 (en) Torque measuring device
JP5214572B2 (en) Engine coolant control device and engine bench test system
JP5997597B2 (en) Magnetic bearing device and method for reducing vibration caused by magnetic bearing device
JP2010105131A (en) Thermal displacement correction method for screw feeding device and screw feeding device
JP5942543B2 (en) Specimen test equipment
JP7376778B2 (en) Rotating test equipment
CN108917790A (en) A kind of hot dynamic poise device of inertia type instrument motor and method
JP6191729B2 (en) Specimen test equipment
JP6554515B2 (en) Vibration detection method for machine tools
JP2010060533A (en) Method and facilities for imbalance measurement of rotary machine
RU2528620C2 (en) Method to correct slow loosening by heating and fast cooling
JP6961513B2 (en) Bearing monitoring device and rotating machine equipped with this bearing monitoring device
JP2016089753A (en) Shaft center position control device, rotary machine system, shaft center position control method and program
JP2000263377A (en) Metal mold machining device
JP2014102154A (en) Engine cooling water temperature control device and method
JP6267995B2 (en) Bearing device, rotating machine, and method of exciting rotating shaft
JP7126342B2 (en) Oil supply amount adjusting device for journal bearing, journal bearing device, rotating machine, and method for adjusting oil supply amount for journal bearing
JP2014521977A (en) Maintaining the measurement gap in the rheometer