Nothing Special   »   [go: up one dir, main page]

JP2019077930A - Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material - Google Patents

Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material Download PDF

Info

Publication number
JP2019077930A
JP2019077930A JP2017207430A JP2017207430A JP2019077930A JP 2019077930 A JP2019077930 A JP 2019077930A JP 2017207430 A JP2017207430 A JP 2017207430A JP 2017207430 A JP2017207430 A JP 2017207430A JP 2019077930 A JP2019077930 A JP 2019077930A
Authority
JP
Japan
Prior art keywords
phase
intermetallic compound
powder
vol
hard phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017207430A
Other languages
Japanese (ja)
Inventor
宏季 田中
Hiroki Tanaka
宏季 田中
正貴 大坪
Masaki Otsubo
正貴 大坪
寛人 下村
Hiroto Shimomura
寛人 下村
泰幸 金野
Yasuyuki Konno
泰幸 金野
隆幸 高杉
Takayuki Takasugi
隆幸 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Nippon Tungsten Co Ltd
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd, Osaka University NUC, Osaka Prefecture University PUC filed Critical Nippon Tungsten Co Ltd
Priority to JP2017207430A priority Critical patent/JP2019077930A/en
Publication of JP2019077930A publication Critical patent/JP2019077930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a corrosion resistant abrasion resistant material suitable for use in a corrosion resistant abrasion resistant component such as a cylindrical sleeve for pump shaft or the like, a corrosion resistant abrasion resistant mold, a corrosion resistant abrasion resistant tool or the like, and a manufacturing method therefor.SOLUTION: A hard phase dispersed nickel group intermetallic compound composite sintered material containing a first phase of 35 vol.% to 80 vol.% and a second phase of 20 vol.% to 65 vol.% is obtained by mixing a hard powder (the first phase) consisting of solid solution body of Ti, Mo and/or carbide, nitride or carbonitride of W, and a material (the second phase) containing 75 at.% to 85 at.% of nickel (Ni), 8 at.% to 13 at.% of silicon (Si) and 3 at.% to 13 at.% of titanium (Ti) and becoming a binding material of the hard powder to manufacture a mixed powder or an alloy powder, and heating and sintering the mixed powder or the alloy powder with adding pressure.SELECTED DRAWING: None

Description

本発明は、硬質相分散ニッケル基金属間化合物複合焼結材料、その製造方法およびその材料を用いた耐食耐摩耗部品に関する。   The present invention relates to a hard phase-dispersed nickel-based intermetallic compound composite sintered material, a method for producing the same, and a corrosion-resistant wear-resistant part using the material.

ポンプ軸用の円筒状スリーブ等の耐食耐摩耗摺動部品、耐食耐摩耗金型および耐食耐摩耗工具等の材料として、高硬度で耐食性、耐摩耗性に優れるWC−Ni系の超硬材料が使用されている。
しかし、海水を含む使用環境や、酸性水溶液中での耐食性は十分とは言えず、その適用範囲はごく狭い範囲に限定されている。
As materials for corrosion resistant sliding parts such as cylindrical sleeves for pump shaft, corrosion resistant wear molds and corrosion resistant wear tools etc., WC-Ni cemented carbide with high hardness and excellent corrosion resistance and wear resistance It is used.
However, the use environment including seawater and the corrosion resistance in an acidic aqueous solution are not sufficient, and the application range is limited to a very narrow range.

ここで、耐食性に優れる材料として、Ni(Si, Ti) 系金属間化合物が開発されており(特許文献1、2および非特許文献1〜4)、Ni(Si, Ti)合金の塩酸、硫酸、硝酸等に対する耐腐食性がステンレスやNiとの比較で示されているが、Ni(Si, Ti)単体では、超硬材料が適用される耐食耐摩耗部材の代用としては硬さが低く、耐摩耗性が十分では無かった。 Here, Ni 3 (Si, Ti) -based intermetallic compounds have been developed as materials excellent in corrosion resistance (patent documents 1 and 2 and non-patent documents 1 to 4), and hydrochloric acid of Ni 3 (Si, Ti) alloy The corrosion resistance against sulfuric acid, nitric acid, etc. is shown in comparison with stainless steel and Ni, but Ni 3 (Si, Ti) alone has hardness as a substitute for the corrosion resistant wear resistant member to which a cemented carbide material is applied. And the wear resistance was not sufficient.

また、耐食性、耐摩耗性の問題点を解決すべく特許文献3では、Ni(Si, Ti)とTi系硬質材料(炭化物、窒化物、炭窒化物、酸化物および硼化物)とを組み合わせた材料が提案されている。TiCが10〜90vol%、好ましくは10〜60vol%含まれた、高温特性に優れる材料として、Ti系硬質材料とNi(Si, Ti)相比が広範に記載されている。
しかし、TiC等の硬質材料と比較するとNi(Si, Ti)相は腐食されやすく、また、室温近辺での使用においては、Ni(Si, Ti)相比が多いと、材料そのものの硬度が不足し、摩耗による消耗が激しく、耐食性・耐摩耗性の点で十分な材料では無かった。
Moreover, in order to solve the problems of corrosion resistance and wear resistance, Patent Document 3 combines Ni 3 (Si, Ti) with a Ti-based hard material (carbide, nitride, carbonitride, oxide and boride). Materials have been proposed. A Ti-based hard material and a Ni 3 (Si, Ti) phase ratio are widely described as a material excellent in high temperature properties, containing 10 to 90 vol%, preferably 10 to 60 vol% of TiC.
However, compared to hard materials such as TiC, the Ni 3 (Si, Ti) phase is easily corroded, and when used near room temperature, if the Ni 3 (Si, Ti) phase ratio is high, the hardness of the material itself And wear and tear due to wear, which are not sufficient materials in terms of corrosion resistance and wear resistance.

公開平3−274242Public disclosure 3-274242 特開平5−320794JP-A-5-320794 特開2014−169471JP 2014-169471

Sanat Wagle et al., Corrosion Science 53 (2011), 2514-2517Sanat Wagle et al., Corrosion Science 53 (2011), 2514-2517 Gadang Priyotomo et al., Applied Surface Science 257 (2011), 8268-8274Gadang Priyotomo et al., Applied Surface Science 257 (2011), 8268-8274 Sanat Wagle et al., Corrosion Science 55 (2012), 140-144Sanat Wagle et al., Corrosion Science 55 (2012), 140-144 Gadang Priyotomo et al., Corrosion Science 60 (2012), 10-17Gadang Priyotomo et al., Corrosion Science 60 (2012), 10-17

前記のように、ポンプ軸用の円筒状スリーブ等の耐食耐摩耗摺動部品、耐食耐摩耗金型および耐食耐摩耗工具等の材料として、高硬度で耐食性、耐摩耗性に優れるWC−Ni系の超硬材料が利用されている。
このWC−Ni系超硬材料は、WC−Co系超硬材料よりも耐食性が優れるものの、海水を含んだ環境、例えば河川の河口近くとなる汽水域での耐食性や、酸性溶液を含んだ被加工物の加工において、腐食摩耗が課題であった。
As mentioned above, WC-Ni-based materials having high hardness and excellent corrosion resistance and wear resistance as materials for corrosion resistant wear and sliding parts such as cylindrical sleeves for pump shafts, corrosion resistant wear molds and corrosion resistant wear tools and the like Carbide materials are used.
Although this WC-Ni-based cemented carbide material is superior in corrosion resistance to WC-Co-based cemented carbide material, it has corrosion resistance in an environment including seawater, for example, a brackish water area near the river mouth, and an acid solution Corrosive wear has been a problem in the processing of workpieces.

そこで本発明は、ポンプ軸用の円筒状スリーブ等の耐食耐摩耗摺動部品、耐食耐摩耗金型および耐食耐摩耗工具等に使用するのに適した耐食性、耐摩耗性材料とその製造方法を提供することを目的とする。   Therefore, the present invention relates to a corrosion-resistant and wear-resistant material suitable for use in corrosion-resistant wear-sliding parts such as cylindrical sleeves for pump shafts, corrosion-resistant wear-resistant molds and corrosion-resistant wear-resistant tools, etc. Intended to be provided.

本発明の態様1にかかる硬質相分散ニッケル基金属間化合物複合焼結材料は、第一相が、Ti、Moの固溶体および/もしくはWの炭化物、窒化物または炭窒化物からなる硬質相であり、第二相が、75at%〜85at%のニッケル(Ni)、8at%〜13at%のシリコン(Si)、3at%〜13at%のチタン(Ti)とを含んでなり、この第二相は、主に結晶構造がL1型であるNi(Si, Ti)金属間化合物からなり、硬質相分散ニッケル基金属間化合物複合焼結材料の中に、第一相が35vol%〜80vol%、第二相が20vol%〜65vol%含有されていることを特徴とする。 The hard phase-dispersed nickel-based intermetallic compound composite sintered material according to aspect 1 of the present invention is a hard phase wherein the first phase is a solid solution of Ti, Mo and / or a carbide, nitride or carbonitride of W. The second phase comprises 75 at% to 85 at% nickel (Ni), 8 at% to 13 at% silicon (Si), and 3 at% to 13 at% titanium (Ti), the second phase comprising consists mainly Ni 3 crystal structure is a L1 2 type (Si, Ti) intermetallic compound, in the hard phase dispersed nickel-based intermetallic compound composite sintered material, the first phase is 35vol% ~80vol%, the It is characterized by containing 20 vol%-65 vol% of two phases.

本発明の態様2は、態様1に記載の硬質相分散ニッケル基金属間化合物複合焼結材料において、前記第二相が、更にボロン(B)を含み、Ni(Si, Ti)金属間化合物相の質量に対して10mass ppm〜1000mass ppmを含有することを特徴とする。 A second aspect of the present invention is the hard phase-dispersed nickel-based intermetallic compound composite sintered material according to the first aspect, wherein the second phase further contains boron (B), and the Ni 3 (Si, Ti) intermetallic compound It is characterized by containing 10 mass ppm-1000 mass ppm with respect to the mass of a phase.

本発明の態様3は、態様1に記載の硬質相分散ニッケル基金属間化合物複合焼結材料を製造する方法であって、Ti、Moの固溶体および/もしくはWの炭化物、窒化物または炭窒化物からなる硬質粉末と、75at%〜85at%のニッケル(Ni)、8at%〜13at%のシリコン(Si)、3at%〜13at%のチタン(Ti)を含み前記硬質粉末の結合材料となる材料とを混合して、混合粉末または合金粉末を作製する混合工程と、前記混合工程で作製した混合粉末または合金粉末に圧力を付与した状態で、加熱し焼結する焼結工程とを含むことを特徴とする。
本発明の態様4は、態様3に記載の硬質相分散ニッケル基金属間化合物複合焼結材料を製造する方法において、前記混合工程で、更にボロン(B)を、前記結合材料となる材料の質量に対して10mass ppm〜1000mass ppmを添加することを特徴とする。
Aspect 3 of the present invention is a method for producing a hard phase-dispersed nickel-based intermetallic compound composite sintered material according to aspect 1, comprising a solid solution of Ti, Mo and / or a carbide, nitride or carbonitride of W. And 75 at% to 85 at% of nickel (Ni), 8 at% to 13 at% of silicon (Si), and 3 at% to 13 at% of titanium (Ti). And a sintering step of heating and sintering the mixed powder or alloy powder produced in the mixing step while applying pressure to the mixed powder or alloy powder. I assume.
A fourth aspect of the present invention is the method for producing a hard phase-dispersed nickel-based intermetallic compound composite sintered material according to the third aspect, wherein boron (B) is further added to the mass of the material to be the bonding material in the mixing step. And 10 mass ppm to 1000 mass ppm.

本発明の態様5にかかる摺動部品は、態様1または態様2に記載の硬質相分散ニッケル基金属間化合物複合焼結材料から構成されていることを特徴とする。
本発明の態様6にかかる金型は、態様1または態様2に記載の硬質相分散ニッケル基金属間化合物複合焼結材料から構成されていることを特徴とする。
本発明の態様7にかかる工具は、態様1または態様2に記載の硬質相分散ニッケル基金属間化合物複合焼結材料から構成されていることを特徴とする。
The sliding component according to aspect 5 of the present invention is characterized by being composed of the hard phase-dispersed nickel-based intermetallic compound composite sintered material according to aspect 1 or aspect 2.
A mold according to aspect 6 of the present invention is characterized by being composed of the hard phase-dispersed nickel-based intermetallic compound composite sintered material according to aspect 1 or aspect 2.
The tool according to aspect 7 of the present invention is characterized by being composed of the hard phase-dispersed nickel-based intermetallic compound composite sintered material according to aspect 1 or aspect 2.

従来のWC−Ni系超硬材料よりも耐食耐摩耗性に優れる材料ならびに、これを使用した摺動部品、金型、工具あるいはその他の部材を提供することができる。   It is possible to provide a material that is superior in corrosion resistance and wear resistance to conventional WC-Ni-based cemented carbide materials, as well as sliding parts, dies, tools or other members using the same.

本発明のWC-Ni3(Si,Ti)系材料中の金属間化合物Ni3(Si, Ti)の体積百分率と硬度との関係を示す図である。 WC-Ni 3 (Si, Ti ) of the present invention is a diagram showing the relationship between volume percentage and hardness of the intermetallic compounds in the material Ni 3 (Si, Ti). 本発明のWC-Ni3(Si,Ti)系材料中のNi3(Si,Ti)の体積百分率とIF法(Indentation Fracture法)による破壊靭性値との関係を示す図である。 WC-Ni 3 (Si, Ti ) of the present invention is a diagram showing the relationship between the fracture toughness value due to Ni 3 in material (Si, Ti) volume percent and IF method (Indentation Fracture method). 腐食試験で得られた各材料の腐食速度(g/m/day)の結果を示す図である。It is a figure which shows the result of the corrosion rate (g / m < 2 > / day) of each material obtained by the corrosion test. 本発明の(Ti,Mo)(C,N)-Ni3(Si,Ti)材料中のNi3(Si,Ti)の体積百分率と硬さとの関係を示す図である。Of the present invention is a diagram showing the relationship between volume percentage and hardness of the (Ti, Mo) (C, N) -Ni 3 (Si, Ti) Ni 3 (Si, Ti) in the material. 本発明の(Ti,Mo)(C,N)−Ni3(Si,Ti)材料中のNi3(Si,Ti)の体積百分率とIF法による破壊靭性値との関係を示す図である。(Ti, Mo) (C, N) of the present invention is a diagram showing the relationship between the fracture toughness value due to volume percentages and IF method -Ni 3 (Si, Ti) Ni 3 in the material (Si, Ti). 腐食試験で得られた各材料の腐食速度(g/m/day)の結果を示す図である。It is a figure which shows the result of the corrosion rate (g / m < 2 > / day) of each material obtained by the corrosion test.

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

先ず、本明細書で用いるいくつかの用語や測定方法等について説明する。
「Ti、Moの固溶体および/もしくはW」とは、「Ti、Mo、Wの固溶体」、「Ti、Moの固溶体」または「W」を表す。
「硬質相」については、本発明の硬質相分散ニッケル基金属間化合物複合焼結材料の複合材料としてのHV硬さが、相手材にもよるが耐摩耗性が要求されるシールリング等の摺動製品では少なくとも800kgf/mm2以上となるような硬さの硬質相であればよい。
「第二相が主に結晶構造がL1型であるNi(Si, Ti)金属間化合物からなる」とは、75at%〜85at%のニッケル(Ni)と、8at%〜13at%のシリコン(Si)と、3at%〜13at%のチタン(Ti)とを含んでなる第二相のうち、その大半(少なくとも体積比で50%以上、好ましくは体積比で80%以上)は、結晶構造がL1型であるNi(Si, Ti)金属間化合物からなるものの、これ以外のNi16TiSi等の化合物が一部形成される場合があるため、このような記載とした。
第二相あるいはNi(Si,Ti)金属間化合物の体積百分率については、視野が100μm×100μm以上の断面組織観察(光学顕微鏡観察、走査型電子顕微鏡観察、EPMA)において、画像解析等により平均面積百分率=体積百分率の関係式より求める。
Ni(Si,Ti)金属間化合物は、L1型の結晶構造を有する限り、原子比でNiの量と、SiおよびTiの合計量との比率が3:1である化学量論組成にある場合だけでなく、化学量論組成から外れた組成を有していてもよい。
「Ni基(ニッケル基)」とは、含有されるそれぞれの元素の中でNiの量が最も多いことを意味し、好ましくは原子比(at%)で50%以上のNiを含み、より好ましくは原子比(at%)で60%以上のNiを含む。
以下、本発明の実施形態を詳述する。
本発明にかかる複合焼結材料の製造方法では、加圧下で焼結を行う焼結法を用いることを特徴の一つとしており、焼結の前に所定の組成を有する焼結用粉末を作製する。
この焼結用粉末には、硬質相である第一相を形成する材料と、金属間化合物を主相とする第二相を形成する材料とが含まれている。
第二相を形成する材料について、例えば、Ni粉末、Si粉末、Ti粉末、必要に応じてB粉末などの元素粉末を原料粉末としてもよいし、これらを予め所定の組成を有する溶湯(溶融合金)をアトマイズする等により得た合金粉末であってもよい。さらには、元素粉末と合金粉末とを混合した混合粉末であってもよい。
また、第一相となる硬質相については、例えば、市販の10μm未満である、WC粉末、あるいは(Ti,Mo)(C、N)粉末等を原料粉末として使用すればよい。
混合粉末を得る際の原料粉末の混合は、乳鉢と乳棒等当該技術分野で用いられる任意の方法を用いてよいが、好ましくはボールミル、アトライター、ビーズミルといった粉砕効果が高く、かつ均一な粉末分散・混合ができる方法を用いて混合する。
なお、混合溶媒としてはアルコールを用いて湿式混合することができる。
First, some terms, measurement methods, and the like used in the present specification will be described.
The “solid solution and / or W of Ti, Mo” represents “solid solution of Ti, Mo, W”, “solid solution of Ti, Mo” or “W”.
With regard to the “hard phase”, the HV hardness as the composite material of the hard phase-dispersed nickel-based intermetallic compound composite sintering material of the present invention is a slide such as a seal ring which is required to have wear resistance although it depends In the case of a moving product, it may be a hard phase having a hardness of at least 800 kgf / mm 2 or more.
“The second phase is mainly composed of Ni 3 (Si, Ti) intermetallic compound whose crystal structure is L 1 2 type” means 75 at% to 85 at% nickel (Ni) and 8 at% to 13 at% silicon Of the second phase comprising (Si) and 3 at% to 13 at% titanium (Ti), the majority (at least 50% or more by volume, preferably 80% or more by volume) has a crystal structure Although it is composed of a Ni 3 (Si, Ti) intermetallic compound of L 12 type, some compounds such as Ni 16 Ti 6 Si 7 may be formed in some cases other than this.
The volume percentage of the second phase or Ni 3 (Si, Ti) intermetallic compound is averaged by image analysis or the like in cross-sectional structure observation (optical microscope observation, scanning electron microscope observation, EPMA) with a field of view of 100 μm × 100 μm or more. It calculates | requires from the relational expression of area percentage = volume percentage.
Ni 3 (Si, Ti) intermetallic compound so long as it has an L1 2 type crystal structure, the amount of Ni in the atomic ratio, the ratio of the total amount of Si and Ti 3: stoichiometric composition of 1 As well as in some cases, it may have a composition out of the stoichiometric composition.
"Ni-based (nickel-based)" means that the amount of Ni is the largest among the respective elements contained, preferably containing 50% or more of Ni in atomic ratio (at%), more preferably Contains 60% or more of Ni in atomic ratio (at%).
Hereinafter, embodiments of the present invention will be described in detail.
One of the features of the method for producing a composite sintered material according to the present invention is to use a sintering method in which sintering is performed under pressure, and a sintering powder having a predetermined composition is produced before sintering. Do.
The sintering powder contains a material that forms a first phase that is a hard phase, and a material that forms a second phase that has an intermetallic compound as a main phase.
With respect to the material forming the second phase, for example, elemental powders such as Ni powder, Si powder, Ti powder, and as necessary, B powder may be used as raw material powders, or they may be molten metals having a predetermined composition (molten alloy The alloy powder may be obtained by atomizing or the like. Furthermore, it may be a mixed powder obtained by mixing an elemental powder and an alloy powder.
Further, for the hard phase to be the first phase, for example, WC powder or (Ti, Mo) (C, N) powder or the like which is less than 10 μm commercially available may be used as a raw material powder.
The raw material powder may be mixed using any method used in this technical field such as mortar and pestle when obtaining mixed powder, but preferably powder dispersion with high pulverizing effect such as ball mill, attritor, bead mill and uniform Mix using methods that allow mixing.
In addition, it can wet-mix using alcohol as a mixed solvent.

焼結用粉末の組成は、後述する焼結後またはその後必要に応じて適宜実施する熱処理後の第一相と第二相を組み合わせた組成と実質的に同じである。
すなわち、ここで焼結用粉末の組成を規定することは、焼結体の主相の組成を規定することである。
したがって、焼結用粉末(主相)の組成は、Ti、Moの固溶体および/もしくはWの炭化物、窒化物または炭窒化物からなる硬質相を第一相として35vol%〜80vol%含み、75at%〜85at%のニッケル(Ni)と、8at%〜13at%のシリコン(Si)と、3at%〜13at%のチタン(Ti)と、または更にボロン(B)を前記結合材料として形成されるNi(Si, Ti)金属間化合物相の質量に対して10mass ppm〜1000mass ppmを含んでなる第二相を20vol%〜65vol%含む。
残部は、不可避不純物からなる。
なお、ボロン(B)粉末については、硬さ、強度、靱性、耐酸化性、耐食性を向上させるため、特に多結晶体における粒界割れ抑制に効果があるので必要に応じ添加するが、Ni(Si, Ti)金属間化合物相の質量に対して10mass ppm未満では、硬さ、強度、靱性、耐酸化性、耐食性、粒界割れ抑制の向上は図れない、1000mass ppmより多くなると靱性や焼結性が低下するので、Ni(Si, Ti)金属間化合物相の質量に対して10mass ppm以上1000mass ppm以下が適当である。
The composition of the powder for sintering is substantially the same as the composition combining the first phase and the second phase after heat treatment, which will be described later, or after that, if necessary, as appropriate.
That is, defining the composition of the sintering powder here is defining the composition of the main phase of the sintered body.
Therefore, the composition of the powder for sintering (main phase) contains 35 vol% to 80 vol% of a hard phase consisting of a solid solution of Ti, Mo and / or a carbide, nitride or carbonitride of W as a first phase, 75 at% and ~85At% of nickel (Ni), and 8at% ~13at% of silicon (Si), Ni 3 formed with 3at% ~13at% of titanium (Ti), or further a boron (B) as the binding material It contains 20 vol% to 65 vol% of a second phase comprising 10 mass ppm to 1000 mass ppm based on the mass of the (Si, Ti) intermetallic compound phase.
The remainder consists of unavoidable impurities.
Boron (B) powder is effective to suppress intergranular cracking particularly in polycrystals in order to improve hardness, strength, toughness, oxidation resistance and corrosion resistance, so it is added as necessary, but Ni 3 If the amount is less than 10 mass ppm with respect to the mass of the (Si, Ti) intermetallic compound phase, hardness, strength, toughness, oxidation resistance, corrosion resistance, inhibition of intergranular cracking can not be improved, and if more than 1000 mass ppm, toughness or calcined Since the binding property is reduced, 10 mass ppm or more and 1000 mass ppm or less are appropriate with respect to the mass of the Ni 3 (Si, Ti) intermetallic compound phase.

焼結は、例えば、焼結用粉末をダイに入れてパンチにて圧力を付与して成形体(圧粉体)を得た後、所定の焼結温度に加熱する、一般的な粉末冶金による焼結法により行ってもよい。
本発明にかかる製造方法では、粉末冶金による焼結法を用いることで、容易に最終製品の形状またはこれに近い形状(ニアネットシェイプ)を有する焼結体を得ることができる。すなわち高い寸法精度で焼結体を製造できる。
Sintering is carried out, for example, by general powder metallurgy in which a powder for sintering is put into a die and pressure is applied by a punch to obtain a compact (green compact) and then heated to a predetermined sintering temperature You may carry out by the sintering method.
In the manufacturing method according to the present invention, it is possible to easily obtain a sintered body having a shape of a final product or a shape close to the shape (near net shape) by using a sintering method based on powder metallurgy. That is, the sintered body can be manufactured with high dimensional accuracy.

焼結用粉末に圧力を付与しながら焼結すること(加圧焼結)が好ましい。得られる焼結体のかさ密度を高くすることができ、溶製材の密度(真密度)により近づけることができるからである。
なお、「焼結用粉末に圧力を付与する」とは、成形体を得た後に焼結を行う場合、成形体に圧力を付与することにより、成形体中の焼結用粉末に圧力が付与されることを含む。
It is preferable to sinter while applying pressure to the sintering powder (pressure sintering). This is because the bulk density of the obtained sintered body can be increased, and the density (true density) of the molten material can be made closer.
In the case of applying pressure to the powder for sintering, when sintering is performed after obtaining the formed body, pressure is applied to the powder for sintering in the formed body by applying pressure to the formed body. Including being done.

このような、焼結用粉末に圧力を付与しながら焼結する方法(加圧焼結法)の好ましい例としてホットプレスを挙げることができる。
また、ホットプレス以外の例として真空焼結後に熱間静水圧成形(HIP処理)またはガス圧焼結を行う方法などがある。
A hot press can be mentioned as a preferable example of the method (pressure-sintering method) to sinter while giving pressure to such a powder for sintering.
In addition, as an example other than hot pressing, there is a method of performing hot isostatic pressing (HIP treatment) or gas pressure sintering after vacuum sintering.

ホットプレス法による加圧焼結は、以下のように行ってよい。
例えば黒鉛よりなるダイに設けた上下方向に延在する貫通穴に下方から下パンチを挿入し、貫通穴の内部でかつ下パンチの上部に上述の焼結用粉末または焼結用粉末を含む粉末を配置する。
その後貫通穴の上方から上パンチを挿入し、焼結用粉末に所定の圧力が付与されるように上パンチと下パンチに応力を付与する。
そして、焼結用粉末に所定の圧力が付与された状態で、例えばダイを加熱する等により焼結用粉末を加熱し焼結する。
また、ダイの貫通穴内部でかつ下パンチの上部に焼結用粉末または焼結用粉末を含む粉末を配置することに代えて、焼結用粉末または焼結用粉末を含む粉末を用いて作製した成形体を配置してもよい。
The pressure sintering by the hot pressing method may be performed as follows.
For example, a lower punch is inserted from below into a vertically extending through hole provided in a die made of graphite, and the above-mentioned sintering powder or powder containing the above-mentioned sintering powder inside the through hole and above the lower punch Place.
Thereafter, the upper punch is inserted from above the through hole, and stress is applied to the upper and lower punches so that a predetermined pressure is applied to the sintering powder.
Then, in a state where a predetermined pressure is applied to the sintering powder, the sintering powder is heated and sintered, for example, by heating a die.
Also, instead of placing the sintering powder or the powder containing the sintering powder inside the through hole of the die and above the lower punch, using the powder containing the sintering powder or the powder for sintering The formed body may be arranged.

ホットプレス法を用いる際の焼結温度、昇温速度、焼結時間、焼結用粉末(または成形体)を加圧する応力、焼結雰囲気などの焼結条件は、用いる焼結用粉末の組成、得ようとする焼結体の特性に応じて適宜調整すればよい。
以下に好適な条件を例示する。
The sintering conditions such as sintering temperature, temperature rising rate, sintering time, stress for pressing the sintering powder (or molded body) when using the hot press method, sintering conditions such as sintering atmosphere, are the composition of the sintering powder to be used According to the characteristics of the sintered body to be obtained, it may be appropriately adjusted.
Preferred conditions are exemplified below.

焼結温度は、好ましくは750℃〜1150℃である。750℃未満であれば、焼結が不十分で緻密な焼結体が得られない場合があり、1150℃より高いと粒成長を起こし硬度が低く、耐摩耗性が不十分となる場合があるからである。この温度範囲であればL1結晶構造のNi(Si, Ti)相を得ることができる。より好ましくは、焼結温度は950℃〜1150℃である。より確実にNi(Si, Ti)金属間化合物を形成し、より緻密な焼結体が得られ、高温でより高い硬さを得ることができるからである。 The sintering temperature is preferably 750 ° C to 1150 ° C. If it is less than 750 ° C., sintering may not be sufficient and a dense sintered body may not be obtained, and if it is higher than 1150 ° C., grain growth may occur to lower hardness and abrasion resistance may be insufficient. It is from. Ni 3 (Si, Ti) in this temperature range a long if L1 2 crystal structure phase can be obtained. More preferably, the sintering temperature is 950 ° C to 1150 ° C. This is because the Ni 3 (Si, Ti) intermetallic compound can be formed more reliably, a denser sintered body can be obtained, and higher hardness can be obtained at high temperature.

この焼結温度まで昇温する際の昇温速度は、10℃/分以下が好ましい。昇温速度が速すぎた場合、温度分布が不均一となり、焼結体の特性に内外差が生じる場合があるからである。
また、上述の好ましい焼結温度で保持する時間は、60分〜360分が好ましい。保持時間が60分より短いと緻密化が不十分となる場合があり、長すぎると結晶粒が粗大化して硬度等の特性が低下(または劣化)する場合があるからである。
The temperature raising rate at the time of raising the temperature to this sintering temperature is preferably 10 ° C./min or less. If the temperature rise rate is too fast, the temperature distribution may become uneven, which may cause internal and external differences in the characteristics of the sintered body.
Moreover, as for the time hold | maintained at the above-mentioned preferable sintering temperature, 60 minutes-360 minutes are preferable. If the holding time is shorter than 60 minutes, densification may be insufficient. If the holding time is too long, the crystal grains may be coarsened to deteriorate (or degrade) the characteristics such as hardness.

焼結用粉末(または成形体)に付与する応力は、10MPa〜60MPaが好ましい。応力が10MPaより低いと緻密化が不十分となる場合があり、高過ぎるとカーボン型が破損する場合があるからである。
また、焼結は、真空中またはAr(アルゴン)、N(窒素)およびHe(ヘリウム)のような不活性ガスの減圧雰囲気中であることが好ましい。酸素を含む雰囲気中では粉末が酸化し、緻密化が阻害される場合があるからである。
The stress applied to the sintering powder (or compact) is preferably 10 MPa to 60 MPa. If the stress is lower than 10 MPa, densification may be insufficient, and if it is too high, the carbon mold may be broken.
Sintering is preferably in vacuum or in a reduced pressure atmosphere of an inert gas such as Ar (argon), N 2 (nitrogen) and He (helium). In an atmosphere containing oxygen, the powder may be oxidized to inhibit densification.

このようにして作製した硬質相分散ニッケル基金属間化合物複合焼結材料(焼結体)は、焼結条件によっては、焼結体の第二相の一部にNi(Si, Ti)以外の金属間化合物が形成されるあるいは、Ni(Si, Ti)の形成が不十分となる場合がある。このような部分の少なくとも一部からNi(Si, Ti)を形成するように熱処理を行ってよい。
焼結温度より高く、液相が出ない1100℃以下、好ましくは1050℃以下の温度で加熱する熱処理を行うことが好ましい。
このような熱処理を行ったとしても、熱処理温度は、溶製材(鋳造材)を作製する際の溶融温度よりも低い温度が選択されることから、より低い温度でNi(Si, Ti)金属間化合物を形成でき、本発明の効果が得られる。
The hard phase-dispersed nickel-based intermetallic compound composite sintered material (sintered body) produced in this manner is not a part of the second phase of the sintered body except Ni 3 (Si, Ti) depending on the sintering conditions. Or the formation of Ni 3 (Si, Ti) may be insufficient. Heat treatment may be performed to form Ni 3 (Si, Ti) from at least a part of such a portion.
It is preferable to carry out heat treatment at a temperature of 1100 ° C. or less, preferably 1050 ° C. or less, which is higher than the sintering temperature and at which no liquid phase occurs.
Even if such heat treatment is performed, the heat treatment temperature is selected to be lower than the melting temperature at the time of producing the molten material (cast material), so Ni 3 (Si, Ti) metal at a lower temperature Inter-compounds can be formed, and the effects of the present invention can be obtained.

以下に好適な熱処理条件を例示する。
好ましい熱処理温度は、900℃〜1050℃である。900℃未満では、Ni(Si, Ti)の形成が不十分でNi(Si, Ti)以外の金属間化合物が形成される。1050℃より高いとNi(Si, Ti)の形成は確実となるが、液相が出てしまい粒成長を起こし、硬度が低下し、耐摩耗性に問題がでる。
この熱処理温度で、0.5時間〜72時間保持することが好ましい。0.5時間未満では、Ni(Si, Ti)の形成が不十分でNi(Si, Ti)以外の金属間化合物が形成される。72時間を超えるとNi(Si, Ti)の形成は確実となるが、粒成長を起こし、硬度が低下し、耐摩耗性に問題がでてくる。
また、熱処理は、真空中、またはAr等の不活性ガス雰囲気中で行うことが好ましい。酸素を含む雰囲気中では焼結体が酸化されるからである。
The suitable heat treatment conditions are illustrated below.
The preferred heat treatment temperature is 900 ° C to 1050 ° C. Is less than 900 ℃, Ni 3 (Si, Ti) Ni 3 formed is insufficient in (Si, Ti) intermetallic compound other than is formed. When the temperature is higher than 1050 ° C., formation of Ni 3 (Si, Ti) is ensured, but the liquid phase is released to cause grain growth, the hardness is lowered, and the problem of wear resistance is caused.
It is preferable to hold | maintain this heat processing temperature for 0.5 hour-72 hours. Is less than 0.5 hours, Ni 3 (Si, Ti) Ni 3 formed is insufficient in (Si, Ti) intermetallic compound other than is formed. If it exceeds 72 hours, formation of Ni 3 (Si, Ti) becomes certain, but grain growth occurs, the hardness decreases, and a problem occurs in the wear resistance.
The heat treatment is preferably performed in vacuum or in an inert gas atmosphere such as Ar. This is because the sintered body is oxidized in an atmosphere containing oxygen.

以上により、Ni(Si, Ti)金属間化合物を含む第二相を有する焼結体を得ることができる。 Thus, a sintered body having a second phase containing a Ni 3 (Si, Ti) intermetallic compound can be obtained.

[実施例1]
市販の平均粒径2.5μmのNi粉末、粒径75μm〜150μmのSi粉末、粒径45μm以下のTi粉末、粒径38μm以下のB粉末、平均粒径1.5μmのWC粉末を表1に示す組成となるよう、各々所定割合で配合し、ボールミル混合機にて有機溶媒中で72時間混合し、得られた混合粉末を100kgf/cmにてプレス成形した。これを1150℃にて、真空中で30MPaの加圧力にてホットプレス焼結を実施した。その後、1050℃にて真空中で48時間保持することにより実施例1−1、実施例1−2、実施例1−3、実施例1−4および比較例1の試料を作製した。なお、B粉末については、B以外の元素の合計質量(100mass%)に対する比率(outmass%と定義する)で示した。
次に、得られた実施例1−1、実施例1−2、実施例1−3、実施例1−4の試料についてX線回折(CuKα)を行った。X線回折の結果より、硬質相WC、L1型のニッケル基金属間化合物Ni(Si,Ti)の結晶ピークのみが確認された。この結果とSEM、光学顕微鏡観察により実施例1−1、実施例1−2、実施例1−3、実施例1−4の試料について本発明の硬質相分散ニッケル基金属間化合物複合焼結材料が形成されていることが確認できた。
また、表2に表1に示した材料内におけるNi(Si,Ti)中の原子比組成を示す。Ni(Si,Ti)はある組成幅を持っており、その範囲内では金属間化合物を形成しているため、表2の原子比に固定されるものではないことをここに付記しておく。
Example 1
Commercially available Ni powder with an average particle diameter of 2.5 μm, Si powder with a particle diameter of 75 μm to 150 μm, Ti powder with a particle diameter of 45 μm or less, B powder with a particle diameter of 38 μm or less, WC powder with an average particle diameter of 1.5 μm Each mixture was blended at a predetermined ratio so as to obtain the composition shown, and mixed in an organic solvent for 72 hours with a ball mill mixer, and the obtained mixed powder was press-molded at 100 kgf / cm 2 . Hot press sintering was performed at 1150 ° C. under a pressure of 30 MPa in vacuum. Then, the sample of Example 1-1, Example 1-2, Example 1-3, Example 1-4, and the comparative example 1 was produced by hold | maintaining in vacuum at 1050 degreeC for 48 hours. In addition, about B powder, it showed with the ratio (defined as outmass%) with respect to the total mass (100 mass%) of elements other than B.
Next, X-ray diffraction (CuKα) was performed on the obtained samples of Example 1-1, Example 1-2, Example 1-3, and Example 1-4. The results of X-ray diffraction, only the crystal peak of the hard phase WC, L1 2 type nickel-base intermetallic compound Ni 3 (Si, Ti) was confirmed. The hard phase-dispersed nickel-based intermetallic compound composite sintered material of the present invention for the samples of Example 1-1, Example 1-2, Example 1-3, and Example 1-4 according to this result and SEM and optical microscope observation Was confirmed to be formed.
Also, the atomic ratio composition in Ni 3 (Si, Ti) in the materials shown in Table 1 is shown in Table 2. It should be noted here that Ni 3 (Si, Ti) has a certain composition width and forms an intermetallic compound within that range, so it is not fixed to the atomic ratios in Table 2 .

図1に得られた本発明のWC−Ni(Si,Ti)材料の実施例1−1、実施例1−2、実施例1−3、実施例1−4に占めるNi(Si,Ti)の体積百分率と硬度との関係を示す。実施例1−1、実施例1−2のデータについては、硬度が略同じであったので、重ねて表示した。図1中二重丸(◎)は、比較例1のWC−20vol%Ni組成(WC粒径:1.5μm)のデータであり、本発明の実施例1−1のWC−20vol%Ni(Si,Ti)、実施例1−2のWC−20vol%Ni(Si,Ti)−0.005 outmass%Bは、これと結合材料が同体積の組成の比較例1のWC−20vol%Niよりも高硬度となることが図1より確認できる。シールリングのような耐摩耗用途としては、相手材にもよるが、少なくともHV硬さが800(kgf/mm2)以上必要とされることから、図1のグラフにおいて外挿法によりNi(Si,Ti)含有量は65vol%以下が適当であることがわかった。 WC-Ni 3 (Si, Ti ) of the present invention obtained in FIG. 1 embodiment of the material 1-1, Example 1-2, Example 1-3, occupied in Example 1-4 Ni 3 (Si, The relationship between the volume percentage of Ti) and hardness is shown. About the data of Example 1-1 and Example 1-2, since hardness was substantially the same, it overlapped and displayed. Double circles (◎) in FIG. 1 are data of WC-20 vol% Ni composition (WC particle diameter: 1.5 μm) of Comparative Example 1, and WC-20 vol% Ni 3 of Example 1-1 of the present invention. (Si, Ti), WC- 20vol% Ni 3 of example 1-2 (Si, Ti) -0.005 outmass % B , this a binding material of Comparative example 1 of the composition of the same volume WC-20 vol% It can be confirmed from FIG. 1 that the hardness is higher than Ni. The wear-resistant applications such as seal rings, depending on the opposite material, Ni 3 since at least HV hardness is needed 800 (kgf / mm 2) or more, by extrapolation in the graph of FIG. 1 ( It was found that the content of Si, Ti) is suitably 65 vol% or less.

図2に得られた本発明のWC−Ni(Si,Ti)材料の実施例1−1、実施例1−2、実施例1−3、実施例1−4に占めるNi(Si,Ti)の体積百分率とIF法(Indentation Fracture法)による破壊靭性値(Fracture toughness)との関係を示す。実施例1−1、実施例1−2のデータについては、硬度が略同じであったので、重ねて表示した。図2中二重丸(◎)は、比較例1のWC−20vol%Ni組成(WC粒径:1.5μm)のデータである。耐摩耗部材の用途としては、破壊靭性値は8MPa・m1/2以上が必要であるため、図2のグラフにおいて外挿入法によりNi(Si,Ti)はおよそ20vol%以上必要であることがわかる。 WC-Ni 3 (Si, Ti ) of the present invention obtained in the embodiment in FIG materials 1-1, Example 1-2, Example 1-3, occupied in Example 1-4 Ni 3 (Si, The relationship between the volume percentage of Ti) and the fracture toughness value by IF method (Indentation Fracture method) is shown. About the data of Example 1-1 and Example 1-2, since hardness was substantially the same, it overlapped and displayed. Double circles (◎) in FIG. 2 are data of WC-20 vol% Ni composition (WC particle diameter: 1.5 μm) of Comparative Example 1. As the use of wear resistant members, the fracture toughness value needs to be 8 MPa · m 1/2 or more, so in the graph of FIG. 2, about 20 vol% or more of Ni 3 (Si, Ti) is required by the outer insertion method. I understand.

次に、本発明のWC−Ni(Si,Ti)材料の実施例1−1、実施例1−2、実施例1−3、実施例1−4および比較例1のWC−20vol%Ni材料について、以下の方法により腐食試験を行った。
腐食試験方法として、JIS G 0578:2000 ステンレス鋼の塩化第二鉄腐食試験方法を適用した。試験容器は、ガラス製のビーカを使用し、試験溶液はJIS K 8180に規定する塩酸と蒸留水によって調整した、N/20塩酸溶液900mlにJIS K 8142 に規定する塩化鉄(III)六水和物を溶解して、塩酸酸性6%塩化第二鉄溶液に調整した。
試験溶液の量は試験片の表面積1cm当たり20ml以上となるよう準備し、試験前後において、試験片質量を1mgの桁まで測定した。試験温度は標準として、35±1℃とした。連続24時間浸漬試験を行ったのち、試験後、試験片を洗浄し乾燥後、質量をはかり減量を求め、表面積で割り腐食速度とした。
Next, WC-20 vol% Ni of Example 1-1, Example 1-2, Example 1-3, Example 1-4, and Comparative Example 1 of the WC-Ni 3 (Si, Ti) material of the present invention The material was subjected to a corrosion test by the following method.
As a corrosion test method, a ferric chloride corrosion test method of JIS G 0578: 2000 stainless steel was applied. The test vessel was a glass beaker, and the test solution was prepared with hydrochloric acid and distilled water defined in JIS K 8180. 900 ml of N / 20 hydrochloric acid solution, iron chloride (III) chloride prescribed in JIS K 8142. The solution was dissolved and adjusted to a hydrochloric acid 6% ferric chloride solution.
The amount of the test solution was prepared to be 20 ml or more per 1 cm 2 of the surface area of the test piece, and the test piece mass was measured to the order of 1 mg before and after the test. The test temperature was 35 ± 1 ° C. as a standard. After conducting a continuous 24 hour immersion test, after the test, the test piece is washed and dried, and the mass is weighed to determine the weight loss, and the corrosion rate is divided by the surface area.

図3に、上述の腐食試験で得られた各材料の腐食速度(g/m/day)の結果を示す。本発明のWC-Ni(Si,Ti)合金の実施例1−1、実施例1−2、実施例1−3、実施例1−4の順(但し、実施例1−1と実施例1−2とは略同順)にいずれも、比較例1のWC−20vol%Niに比べて腐食速度が遅く耐食性に優れることが確認された。 The result of the corrosion rate (g / m < 2 > / day) of each material obtained by the above-mentioned corrosion test is shown in FIG. Example 1-1, Example 1-2, Example 1-3, and Example 1-4 of the WC-Ni 3 (Si, Ti) alloy of the present invention (however, Example 1-1 and Example) It was confirmed that the corrosion rate is slower and the corrosion resistance is excellent compared to WC-20 vol% Ni of Comparative Example 1 in any order substantially the same as 1-2).

以上の結果より、本発明のWC−Ni(Si,Ti)材料は、耐食耐摩耗性に優れる摺動部品、金型、工具の用途に関してNi(Si,Ti)の含有量が20vol%以上65vol%以下が好適であることがわかった。すなわち、炭化タングステン(WC)を含む硬質相からなる第一相と、78at%〜85at%のニッケル(Ni)、8at%〜13at%のシリコン(Si)、3at%〜13at%のチタン(Ti)を含有する第二相とを含み、この第二相は主に結晶構造がL1型であるNi(Si, Ti)金属間化合物からなり、第一相は35vol%〜80vol%、第二相は20vol%〜65vol%からなる硬質相分散ニッケル基金属間化合物複合焼結材料は、ポンプ軸用の円筒状スリーブ等の耐食耐摩耗摺動部品、耐食耐摩耗金型または耐食耐摩耗工具に好適な材料であることが確認できた。 From the above results, the WC-Ni 3 (Si, Ti) material of the present invention has a content of Ni 3 (Si, Ti) of 20 vol% for the use of sliding parts, dies and tools excellent in corrosion resistance and wear resistance. It turned out that 65 vol% or less is suitable. That is, a first phase consisting of a hard phase containing tungsten carbide (WC), 78 at% to 85 at% nickel (Ni), 8 at% to 13 at% silicon (Si), and 3 at% to 13 at% titanium (Ti) and a second phase containing, the second phase consists primarily Ni 3 (Si, Ti) intermetallic compound crystal structure is L1 2 type, the first phase 35vol% ~80vol%, second The hard phase dispersed nickel base intermetallic compound composite sintered material consisting of 20vol% to 65vol% of the phase is used as a corrosion resistant wear sliding part such as a cylindrical sleeve for a pump shaft, a corrosion resistant wear die or a corrosion resistant wear resistant tool It could be confirmed that it is a suitable material.

[実施例2]
市販の平均粒径2.5μmのNi粉末、粒径75μm〜150μm以下のSi粉末、粒径45μm以下のTi粉末、粒径38μm以下のB粉末、平均粒径0.8μmのTi:Mo=0.8:0.2、C:N=0.6:0.4〜0.5:0.5であるTi、Moの固溶体の炭窒化物である(Ti,Mo)(C,N)粉末を表3に示す組成となるよう、各々所定割合で配合し、ボールミル混合機にて有機溶媒中で72時間混合し、得られた混合粉末を100kgf/cmにてプレス成形した。これを1150℃にて、真空または減圧下における窒素またはアルゴンなどの不活性ガス雰囲気中で30MPaの加圧力にてホットプレス焼結を実施した。その後、1050℃にて、真空下において48時間保持することにより実施例2−1、実施例2−2、実施例2−3、実施例2−4および比較例1の試料を作製した。なお、B粉末については、B以外の元素の合計質量(100mass%)に対する比率(outmass%と定義する)で示した。
次に、得られた実施例2−1、実施例2−2、実施例2−3、実施例2−4の試料についてX線回折(CuKα)を行った。X線回折の結果より、硬質相(Ti,Mo)(C,N)とL1型のニッケル基金属間化合物Ni(Si,Ti)の結晶ピークのみが確認された。これとSEM、光学顕微鏡観察により実施例2−1、実施例2−2、実施例2−3、実施例2−4の試料は本発明の硬質相分散ニッケル基金属間化合物複合焼結材料が形成されていることが確認できた。
Example 2
Commercially available Ni powder having an average particle diameter of 2.5 μm, Si powder having a particle diameter of 75 μm to 150 μm or less, Ti powder having a particle diameter of 45 μm or less, B powder having a particle diameter of 38 μm or less, Ti: Mo = 0 having an average particle diameter of 0.8 μm (Ti, Mo) (C, N) powder which is a carbonitride of a solid solution of Ti and Mo having a ratio of 8: 0.2, C: N = 0.6: 0.4 to 0.5: 0.5 Were mixed at a predetermined ratio to obtain the composition shown in Table 3, mixed in an organic solvent for 72 hours in a ball mill mixer, and press-formed at 100 kgf / cm 2 of the obtained mixed powder. Hot press sintering was performed at 1150 ° C. in an inert gas atmosphere such as nitrogen or argon under vacuum or reduced pressure at a pressure of 30 MPa. Then, the sample of Example 2-1, Example 2-2, Example 2-3, Example 2-4, and the comparative example 1 was produced by hold | maintaining under vacuum at 1050 degreeC for 48 hours. In addition, about B powder, it showed with the ratio (defined as outmass%) with respect to the total mass (100 mass%) of elements other than B.
Next, X-ray diffraction (CuKα) was performed on the obtained samples of Example 2-1, Example 2-2, Example 2-3, and Example 2-4. The results of X-ray diffraction, only the crystal peak of the hard phase (Ti, Mo) (C, N) and L1 2 type nickel-base intermetallic compound Ni 3 (Si, Ti) was confirmed. The hard phase-dispersed nickel-based intermetallic compound composite sintered material of the present invention is a sample of Example 2-1, Example 2-2, Example 2-3, and Example 2-4 according to this, SEM, and optical microscope observation. It could be confirmed that it was formed.

図4に得られた本発明の(Ti,Mo)(C,N)−Ni(Si,Ti)材料の実施例2−1、実施例2−2、実施例2−3、実施例2−4に占めるNi(Si,Ti)の体積百分率と硬度との関係を示す。実施例2−1、実施例2−2のデータについては、硬度が略同じであったので、重ねて表示した。図4中二重丸(◎)は、比較例1のWC−20vol%Ni組成(WC粒径:1.5μm)のデータであり、本発明の実施例2−1の(Ti,Mo)(C,N)−20vol%Ni(Si,Ti)、実施例2−2の(Ti,Mo)(C,N)−20vol%Ni(Si,Ti)−0.005 outmass%Bは、これと結合材料が同体積の組成の比較例1のWC−20vol%Niよりも高硬度となることが図4より確認できる。シールリングのような耐摩耗用途としてはHV硬さが800(kgf/mm2)以上必要とされることから、図4のグラフに外挿することにより金属間化合物Ni(Si,Ti)の含有量はおよそ65vol%以下が適当であることがわかった。 Of the present invention obtained in FIG. 4 (Ti, Mo) (C , N) -Ni 3 (Si, Ti) Example of materials 2-1, Example 2-2, Example 2-3, Example 2 Ni 3 (Si, Ti) occupied to -4 shows the relationship between the volume percentage and hardness. About the data of Example 2-1 and Example 2-2, since hardness was substantially the same, it overlapped and displayed. Double circles (◎) in FIG. 4 are data of WC-20 vol% Ni composition (WC particle size: 1.5 μm) of Comparative Example 1, and (Ti, Mo) (Example 2-1 of the present invention) C, N) -20vol% Ni 3 (Si, Ti), (Ti example 2-2, Mo) (C, N ) -20vol% Ni 3 (Si, Ti) -0.005 outmass% B is It can be confirmed from FIG. 4 that this and the bonding material have higher hardness than WC-20 vol% Ni of Comparative Example 1 having the same volume composition. Since HV hardness is required to be 800 (kgf / mm 2 ) or more for wear resistance applications such as seal rings, the intermetallic compound Ni 3 (Si, Ti) can be obtained by extrapolating to the graph in FIG. It has been found that the content is about 65 vol% or less.

図5に得られた本発明の(Ti,Mo)(C,N)−Ni(Si,Ti)材料の実施例2−1、実施例2−2、実施例2−3、実施例2−4に占めるNi(Si,Ti)の体積百分率とIF法(Indentation Fracture法)による破壊靭性値(Fracture toughness)との関係を示す。実施例2−1、実施例2−2のデータについては、破壊靭性値が略同じであったので、重ねて表示した。図5中二重丸(◎)は、比較例1のWC−20vol%Ni組成(WC粒径:1.5μm)のデータである。耐摩耗部材の用途としては、破壊靭性値は8MPa・m1/2以上が必要であるため、図5のグラフにおいて外挿法によりNi(Si,Ti)はおよそ20vol%以上必要であることがわかる。 Figure 5 obtained of the present invention (Ti, Mo) (C, N) -Ni 3 (Si, Ti) Example of materials 2-1, Example 2-2, Example 2-3, Example 2 Ni 3 (Si, Ti) occupied to -4 shows the relationship between the volume percentage and IF method (Indentation fracture method) fracture toughness value by (fracture toughness). About the data of Example 2-1 and Example 2-2, since the fracture toughness value was substantially the same, it overlapped and displayed. Double circles (◎) in FIG. 5 are data of WC-20 vol% Ni composition (WC particle diameter: 1.5 μm) of Comparative Example 1. As the use of the wear resistant member, since the fracture toughness value needs to be 8 MPa · m 1/2 or more, the extrapolation method in the graph of FIG. 5 requires about 20 vol% or more of Ni 3 (Si, Ti) I understand.

次に、本発明の(Ti,Mo)(C,N)−Ni(Si,Ti)材料の実施例2−1、実施例2−2、実施例2−3、実施例2−4および比較例1のWC−20vol%Ni材料について海水を含む使用環境や、酸性水溶液中での耐食性について比較するため、実施例1と同一の方法により腐食試験を行った。
図6に、前記腐食試験で得られた各材料の腐食速度(g/m/day)の結果を示す。本発明の(Ti,Mo)(C,N)-Ni(Si,Ti)合金の実施例2−1、実施例2−2、実施例2−3、実施例2−4の順(但し、実施例2−1と実施例2−2とは略同順)にいずれも、比較例1のWC−20vol%Niに比べて腐食速度が遅く耐食性に優れることが確認された。
Next, the present invention (Ti, Mo) (C, N) -Ni 3 (Si, Ti) Example of materials 2-1, Example 2-2, Example 2-3, Example 2-4 and In order to compare the use environment including seawater and the corrosion resistance in an acidic aqueous solution, the WC-20 vol% Ni material of Comparative Example 1 was subjected to a corrosion test in the same manner as in Example 1.
The result of the corrosion rate (g / m < 2 > / day) of each material obtained by the said corrosion test is shown in FIG. Example 2-1, Example 2-2, Example 2-3, and Example 2-4 of the (Ti, Mo) (C, N) -Ni 3 (Si, Ti) Alloy of the Present Invention In each of Example 2-1 and Example 2-2, it was confirmed that the corrosion rate is slower and the corrosion resistance is excellent as compared to WC-20 vol% Ni of Comparative Example 1 in all cases.

以上の結果より、本発明の(Ti,Mo)(C,N)−Ni(Si,Ti)材料は、耐食耐摩耗性に優れる摺動部品、金型、工具の用途に関して、Ni(Si,Ti)の含有量が20vol%以上65vol%以下が好適であることがわかった。すなわち(Ti,Mo)(C,N)を含む硬質相(第一相)と、78at%〜85at%のニッケル(Ni)、8at%〜13at%のシリコン(Si)、3at%〜13at%のチタン(Ti)を含有する第二相とを含み、この第二相は主に結晶構造がL1型であるNi(Si, Ti)金属間化合物からなり、第一相は35vol%〜80vol%、第二相は20vol%〜65vol%からなる硬質相分散ニッケル基金属間化合物複合焼結材料は、耐食耐摩耗部品に好適な材料であることが確認できた。
同様に、W(C,N1−x)(0≦x≦1)−Ni(Si,Ti)、(Ti,Mo1−x)C(0≦x≦1)−Ni(Si,Ti)、(Ti,Mo1−x)N(0≦x≦1)−Ni(Si,Ti)、(Ti,MoY,WZ)(Cα,N1−α)(0≦α≦1、x+y+z=1、x,y,z≠0)−Ni(Si,Ti)材料等その他の本発明の硬質相分散ニッケル基金属間化合物複合焼結材料についても同様の結果となり、耐食耐摩耗部品に好適な材料であることが確認できた。
From the above results, the (Ti, Mo) (C, N) -Ni 3 (Si, Ti) material of the present invention is Ni 3 (Ni, 3 ) with respect to applications of sliding parts, molds and tools excellent in corrosion resistance and wear resistance. It was found that the content of Si, Ti) is preferably 20 vol% or more and 65 vol% or less. That is, a hard phase (first phase) containing (Ti, Mo) (C, N), 78 at% to 85 at% nickel (Ni), 8 at% to 13 at% silicon (Si), 3 at% to 13 at% and a second phase containing a titanium (Ti), the second phase is predominantly crystalline structure L1 2 type Ni 3 (Si, Ti) made of an intermetallic compound, the first phase 35vol% ~80vol It was confirmed that the hard phase-dispersed nickel-based intermetallic compound composite sintered material comprising 20% by volume and 20% by volume of the second phase is a material suitable for anticorrosion and wear parts.
Similarly, W (C x, N 1 -x) (0 ≦ x ≦ 1) -Ni 3 (Si, Ti), (Ti x, Mo 1-x) C (0 ≦ x ≦ 1) -Ni 3 ( Si, Ti), (Ti x , Mo 1-x ) N (0 ≦ x ≦ 1) -Ni 3 (Si, Ti), (Ti x , Mo Y , W Z ) (C α , N 1-α ) (0 ≦ α ≦ 1, x + y + z = 1, x, y, z ≠ 0) -Ni 3 (Si, Ti) materials, etc. Other hard phase-dispersed nickel-based intermetallic compound composite sintered materials of the present invention The same results were obtained for the above, and it was confirmed that the material was suitable for the corrosion and wear resistance parts.

本発明の硬質相分散ニッケル基金属間化合物複合焼結材料は、耐食性かつ耐摩耗性を有し、ポンプ軸用の円筒状スリーブ等の耐食耐摩耗摺動部品、耐食耐摩耗金型および耐食耐摩耗工具等様々な耐食性かつ耐摩耗性を必要とする用途に使用できる。   The hard phase-dispersed nickel-based intermetallic compound composite sintered material of the present invention has corrosion resistance and wear resistance, and corrosion-resistant wear-sliding parts such as a cylindrical sleeve for a pump shaft, a corrosion-resistant wear die and a corrosion-resistant It can be used for applications requiring various corrosion resistance and wear resistance such as wear tools.

Claims (7)

Ti、Moの固溶体および/もしくはWの炭化物、窒化物または炭窒化物からなる硬質相である第一相と、
75at%〜85at%のニッケル(Ni)と、8at%〜13at%のシリコン(Si)と、3at%〜13at%のチタン(Ti)とを含んでなる第二相とからなり、当該第二相は主に結晶構造がL1型であるNi(Si, Ti)金属間化合物からなり、
前記第一相が35vol%〜80vol%、前記第二相が20vol%〜65vol%含有されていることを特徴とする硬質相分散ニッケル基金属間化合物複合焼結材料。
A first phase which is a hard phase consisting of a solid solution of Ti, Mo and / or a carbide, nitride or carbonitride of W;
A second phase comprising 75 at% to 85 at% nickel (Ni), 8 at% to 13 at% silicon (Si), and 3 at% to 13 at% titanium (Ti); consists mainly Ni 3 crystal structure is a L1 2 type (Si, Ti) intermetallic compound,
Hard phase-dispersed nickel-based intermetallic compound composite sintered material characterized in that the first phase contains 35 vol% to 80 vol% and the second phase contains 20 vol% to 65 vol%.
前記第二相が、更にボロン(B)を、Ni(Si, Ti)金属間化合物相の質量に対して10mass ppm〜1000mass ppm含有することを特徴とする請求項1に記載の硬質相分散ニッケル基金属間化合物複合焼結材料。 The hard phase dispersion according to claim 1, wherein the second phase further contains boron (B) in an amount of 10 mass ppm to 1000 mass ppm based on the mass of the Ni 3 (Si, Ti) intermetallic compound phase. Nickel-based intermetallic compound composite sintered material. Ti、Moの固溶体および/もしくはWの炭化物、窒化物または炭窒化物からなる硬質粉末と、75at%〜85at%のニッケル(Ni)、8at%〜13at%のシリコン(Si)、3at%〜13at%のチタン(Ti)を含み前記硬質粉末の結合材料となる材料とを混合して、混合粉末または合金粉末を作製する混合工程と、
前記混合工程で作製した混合粉末または合金粉末に圧力を付与した状態で、加熱し焼結する焼結工程とを含むことを特徴とする請求項1に記載の硬質相分散ニッケル基金属間化合物複合焼結材料の製造方法。
Hard powder consisting of solid solution of Ti, Mo and / or carbide, nitride or carbonitride of W, 75 at% to 85 at% of nickel (Ni), 8 at% to 13 at% of silicon (Si), 3 at% to 13 at Mixing step with a material that contains 20% titanium (Ti) and becomes a bonding material of the hard powder to produce a mixed powder or an alloy powder,
The hard phase-dispersed nickel-based intermetallic compound composite according to claim 1, comprising a sintering step of heating and sintering the mixed powder or alloy powder produced in the mixing step in a state where pressure is applied thereto. Method of manufacturing sintered material
前記混合工程では、更にボロン(B)を、前記結合材料となる材料の質量に対して10mass ppm〜1000mass ppmを添加することを特徴とする請求項3に記載の硬質相分散ニッケル基金属間化合物複合焼結材料の製造方法。   4. The hard phase-dispersed nickel-based intermetallic compound according to claim 3, wherein boron (B) is further added in an amount of 10 mass ppm to 1000 mass ppm with respect to the mass of the material serving as the bonding material in the mixing step. Method of manufacturing composite sintered material 請求項1または請求項2に記載の硬質相分散ニッケル基金属間化合物複合焼結材料から構成されていることを特徴とする摺動部品。   A sliding component comprising the hard phase-dispersed nickel-based intermetallic compound composite sintered material according to claim 1 or 2. 請求項1または請求項2に記載の硬質相分散ニッケル基金属間化合物複合焼結材料から構成されていることを特徴とする金型。   A mold comprising the hard phase-dispersed nickel-based intermetallic compound composite sintered material according to claim 1 or 2. 請求項1または請求項2に記載の硬質相分散ニッケル基金属間化合物複合焼結材料から構成されていることを特徴とする工具。   A tool comprising the hard phase-dispersed nickel-based intermetallic compound composite sintered material according to claim 1 or 2.
JP2017207430A 2017-10-26 2017-10-26 Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material Pending JP2019077930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017207430A JP2019077930A (en) 2017-10-26 2017-10-26 Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017207430A JP2019077930A (en) 2017-10-26 2017-10-26 Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material

Publications (1)

Publication Number Publication Date
JP2019077930A true JP2019077930A (en) 2019-05-23

Family

ID=66626398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017207430A Pending JP2019077930A (en) 2017-10-26 2017-10-26 Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material

Country Status (1)

Country Link
JP (1) JP2019077930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116005058A (en) * 2022-12-09 2023-04-25 浙江恒成硬质合金有限公司 Cemented carbide cutter for titanium alloy cutting and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116005058A (en) * 2022-12-09 2023-04-25 浙江恒成硬质合金有限公司 Cemented carbide cutter for titanium alloy cutting and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
JP5905903B2 (en) Heat-resistant alloy and manufacturing method thereof
JP6227517B2 (en) Cemented carbide
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
CN113337746B (en) Preparation method of carbide-reinforced high-entropy alloy composite material
JP2013543539A (en) Method for producing a sintered composite
CN114850475B (en) High-temperature antioxidant titanium carbonitride cermet based on high-entropy alloy binder and preparation method thereof
JPH055152A (en) Hard heat resisting sintered alloy
JP6011946B2 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
JP6259978B2 (en) Ni-based intermetallic compound sintered body and method for producing the same
JP2012077352A (en) Cemented carbide alloy, and cemented carbide tool
JP5872590B2 (en) Heat-resistant alloy and manufacturing method thereof
WO2011125663A1 (en) Molybdenum alloy and process for producing same
JP2005281084A (en) Sintered compact and manufacturing method therefor
KR101450661B1 (en) The method of preparation for ternary titanium carbonitride sintered bodies having enhanced mechanical properties and ternary titanium carbonitride sintered bodies prepared thereby
JP2001089823A (en) Double boride sintered hard alloy, and screw for resin processing machine using the alloy
JP2019077930A (en) Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material
JP4282298B2 (en) Super fine cemented carbide
JP6814758B2 (en) Sputtering target
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JP4265853B2 (en) Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP2004263251A (en) Group 7a element-containing cemented carbide
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP2011132057A (en) Sintered compact

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190920