Nothing Special   »   [go: up one dir, main page]

JP2019041069A - Thermally conductive molded article - Google Patents

Thermally conductive molded article Download PDF

Info

Publication number
JP2019041069A
JP2019041069A JP2017163913A JP2017163913A JP2019041069A JP 2019041069 A JP2019041069 A JP 2019041069A JP 2017163913 A JP2017163913 A JP 2017163913A JP 2017163913 A JP2017163913 A JP 2017163913A JP 2019041069 A JP2019041069 A JP 2019041069A
Authority
JP
Japan
Prior art keywords
expanded graphite
graphite sheet
molded body
heat
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017163913A
Other languages
Japanese (ja)
Other versions
JP6956565B2 (en
Inventor
広大 井上
Kodai Inoue
広大 井上
洸平 荒川
Kohei Arakawa
洸平 荒川
藤原 優
Masaru Fujiwara
優 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2017163913A priority Critical patent/JP6956565B2/en
Publication of JP2019041069A publication Critical patent/JP2019041069A/en
Application granted granted Critical
Publication of JP6956565B2 publication Critical patent/JP6956565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a thermally conductive molded article having excellent thermal conductivity in both a height direction and a direction intersecting the height direction, using an expanded graphite sheet having high thermal conductivity in a main surface direction as compared to the thermal conductivity in the thickness direction.SOLUTION: A plurality of sheet-like expanded graphite sheets 10 having thermal conductivity higher in main plane directions x, y as compared with thermal conductivity in a thickness direction z is laminated in such a manner that main planes 10a overlaps each other, then the laminated graphite sheets 10 is compression-molded, accordingly a heat dissipating molded article 1 having a predetermined height is configured in which a compression direction is a height direction H.SELECTED DRAWING: Figure 1

Description

この発明は、複数の膨張黒鉛シートで構成した熱伝導成形体に関する。   The present invention relates to a heat conductive molded body composed of a plurality of expanded graphite sheets.

従来より、例えば、モバイル機器やインバータ制御部品における冷却部等には、放熱性の高い熱伝導成形体が放熱体として用いられる。
一方、熱伝導性に優れている膨張黒鉛は、例えば、電子部品からの発熱を拡散するための放熱シートの材料としても利用される(特許文献1参照)。
Conventionally, for example, a heat conductive molded body with high heat dissipation is used as a heat radiator for a cooling unit or the like in a mobile device or an inverter control component.
On the other hand, expanded graphite having excellent thermal conductivity is also used as a material for a heat-dissipating sheet for diffusing heat generated from electronic components, for example (see Patent Document 1).

しかしながら、このようなシート状の膨張黒鉛は、厚み方向の熱伝導性が主面方向の熱伝導性に比べておよそ1/25程度しかない異方性を有するため、例えば、所定の高さを有する熱伝導成形体を、膨張黒鉛シートを厚み方向に積層して構成すると、高さ方向に交差する方向の熱伝導性は確保できるものの、高さ方向はシート状の膨張黒鉛の厚み方向となるため、高さ方向の熱伝導性を確保できず、熱伝導成形体の要求を満足することができなかった。   However, such a sheet-like expanded graphite has an anisotropy in which the thermal conductivity in the thickness direction is only about 1/25 as compared with the thermal conductivity in the main surface direction. When the heat conductive molded body having the expanded graphite sheet is laminated in the thickness direction, the heat conductivity in the direction intersecting the height direction can be secured, but the height direction is the thickness direction of the sheet-like expanded graphite. Therefore, the heat conductivity in the height direction cannot be ensured, and the requirements for the heat conductive molded body cannot be satisfied.

これに対し、帯状の膨張黒鉛シートを渦巻状に巻き回して、所定の高さを有する熱伝導成形体を構成すると、熱伝導成形体を構成する膨張黒鉛シートの主面が高さ方向に向くため、高さ方向の熱伝導性は確保できるものの、高さ方向に交差する径方向がシート状の膨張黒鉛の厚み方向となるため、径方向の熱伝導性を確保できず、熱伝導成形体の要求を満足することができなかった。   On the other hand, when a band-shaped expanded graphite sheet is wound in a spiral shape to form a heat conductive molded body having a predetermined height, the main surface of the expanded graphite sheet constituting the heat conductive molded body faces in the height direction. Therefore, although the heat conductivity in the height direction can be ensured, the radial direction intersecting the height direction becomes the thickness direction of the sheet-like expanded graphite. Could not satisfy the request.

特開2005−229100号公報JP 2005-229100 A

そこで本発明では、厚み方向の熱伝導性に比べて主面方向の熱伝導性が高い膨張黒鉛シートを用い、高さ方向及び高さ方向に交差する方向の両方向に優れた熱伝導性を有する熱伝導成形体を提供することを目的とする。   Therefore, in the present invention, an expanded graphite sheet having higher heat conductivity in the principal surface direction than heat conductivity in the thickness direction is used, and has excellent heat conductivity in both the height direction and the direction intersecting the height direction. It aims at providing a heat conductive molding.

この熱伝導成形体は、厚み方向の熱伝導性に比べて主面方向の熱伝導性が高いシート状である複数の膨張黒鉛シートを、主面が重なるように積層するとともに、前記主面に交差する方向に圧縮成形され、圧縮方向を高さ方向とする所定の高さを有することを特徴とする。
この熱伝導成形体により、高さ方向及び高さ方向に交差する方向の両方向において優れた熱伝導性を発揮することができる。
The heat conductive molded body is formed by laminating a plurality of expanded graphite sheets in the form of a sheet whose heat conductivity in the main surface direction is higher than that in the thickness direction so that the main surfaces overlap, and on the main surface. It is compression-molded in the intersecting direction and has a predetermined height with the compression direction as the height direction.
With this heat conductive molded body, excellent heat conductivity can be exhibited in both the height direction and the direction intersecting the height direction.

詳述すると、厚み方向の熱伝導性に比べて主面方向の熱伝導性が高いシート状である複数の膨張黒鉛シートを主面が重なるように積層するとともに、前記主面に交差する方向に圧縮成形して圧縮方向を高さ方向とする所定の高さを有する熱伝導成形体を構成するため、前記膨張黒鉛シートの前記主面は熱伝導成形体の高さ方向及び高さ方向に交差する方向に向くこととなり、高さ方向及び高さ方向に交差する方向の両方向において優れた熱伝導性を発揮することができる。   More specifically, a plurality of expanded graphite sheets in the form of a sheet having higher heat conductivity in the main surface direction than in the thickness direction are laminated so that the main surfaces overlap, and in a direction intersecting the main surface. The main surface of the expanded graphite sheet intersects the height direction and the height direction of the heat conductive molded body in order to form a heat conductive molded body having a predetermined height in which the compression direction is the height direction by compression molding. Therefore, excellent thermal conductivity can be exhibited in both the height direction and the direction intersecting the height direction.

なお、熱伝導成形体は、膨張黒鉛シートの積層方向が高さ方向でなければ、所定の高さを有する様々な形状とすることができる。
また、熱伝導成形体は、熱を伝達して放熱するための放熱体、あるいは吸熱体や熱を積極的に伝達するための熱伝達体など、用途に応じた熱伝導性を利用可能な成形体としてもよい。
In addition, if the lamination direction of an expanded graphite sheet is not a height direction, a heat conductive molded object can be made into various shapes which have predetermined | prescribed height.
In addition, the heat conductive molded body is a mold that can use heat conductivity according to the application, such as a heat radiating body for transferring heat to dissipate heat, or a heat absorbing body or heat transfer body for positively transferring heat. It may be a body.

この熱伝導成形体の態様として、所定の高さを有するとともに、高さ方向に交差する形状が環状であり、前記膨張黒鉛シートを前記環状における径方向に向けて配置してもよい。
上記環状は、円環状、角形環状、あるいは適宜の環状としてもよく、上記径方向は、例えば半径方向など、環状の内側と外側とを結ぶ方向である。
As an aspect of the heat conductive molded body, the shape having a predetermined height and intersecting the height direction may be an annular shape, and the expanded graphite sheet may be arranged in the radial direction of the annular shape.
The ring may be an annular ring, a square ring, or an appropriate ring, and the radial direction is a direction connecting the inner side and the outer side of the ring, for example, in the radial direction.

この熱伝導成形体により、所定の高さを有する環状の熱伝導成形体において、高さ方向及び高さ方向に交差する径方向の両方向において優れた熱伝導性を発揮することができる。
詳しくは、所定の高さを有するとともに高さ方向に交差する環状における径方向に向けて前記膨張黒鉛シートが配置されるため、つまり、前記膨張黒鉛シートの積層方向が環状に沿う方向となり、前記主面が径方向及び高さ方向に沿うため、高さ方向及び径方向の両方向において優れた熱伝導性を発揮することができる。
By this heat conductive molded body, in a circular heat conductive molded body having a predetermined height, excellent heat conductivity can be exhibited in both the height direction and the radial direction intersecting the height direction.
Specifically, because the expanded graphite sheet has a predetermined height and is arranged toward the radial direction in the ring intersecting the height direction, that is, the stacking direction of the expanded graphite sheet is a direction along the ring, Since the main surface is along the radial direction and the height direction, excellent thermal conductivity can be exhibited in both the height direction and the radial direction.

またこの熱伝導成形体の態様として、前記膨張黒鉛シートが、前記高さ方向に対して湾曲してもよい。
この熱伝導成形体により、積層する前記膨張黒鉛シート同士の高さ方向の結合強度が向上し、耐久性を高くすることができる。
Moreover, as an aspect of this heat conductive molded body, the expanded graphite sheet may be curved with respect to the height direction.
By this heat conductive molded body, the bonding strength in the height direction between the expanded graphite sheets to be laminated is improved, and the durability can be increased.

またこの熱伝導成形体の態様として、前記膨張黒鉛シートが、前記径方向に対して湾曲してもよい。
この熱伝導成形体により、積層する前記膨張黒鉛シート同士の径方向の結合強度が向上し、耐久性を高くすることができる。
Moreover, as an aspect of this heat conductive molded body, the expanded graphite sheet may be curved with respect to the radial direction.
With this heat conductive molded body, the bond strength in the radial direction between the expanded graphite sheets to be laminated is improved, and the durability can be increased.

またこの熱伝導成形体の態様として、前記膨張黒鉛シートが、前記径方向に対して交差する方向に向いてもよい。
この熱伝導成形体により、径方向の熱伝導性を調整することができる。
Moreover, as an aspect of this heat conductive molded object, the said expanded graphite sheet may face in the direction which cross | intersects with respect to the said radial direction.
The thermal conductivity in the radial direction can be adjusted by this thermally conductive molded body.

詳述すると、前記膨張黒鉛シートが前記径方向に対して交差する方向に向くことで、半径方向、つまり放射方向に配置された場合に比べて、膨張黒鉛シートの径方向の長さを長く形成することができる。つまり、径方向に交差する向きに応じて膨張黒鉛シートの径方向の長さを調整でき、膨張黒鉛シートの長さによって、熱伝導成形体の径方向の熱伝導性を調整することができる。   More specifically, the expanded graphite sheet is formed in a longer length in the radial direction than in the radial direction, that is, in the radial direction, by being directed in a direction intersecting the radial direction. can do. That is, the radial length of the expanded graphite sheet can be adjusted according to the direction crossing the radial direction, and the thermal conductivity in the radial direction of the thermally conductive molded body can be adjusted by the length of the expanded graphite sheet.

本発明により、高さ方向及び高さ方向に交差する方向の両方向に優れた熱伝導性を有する熱伝導成形体を提供することができる。   According to the present invention, it is possible to provide a heat conductive molded body having excellent heat conductivity in both the height direction and the direction intersecting the height direction.

膨張黒鉛シート及び放熱成形体についての説明図。Explanatory drawing about an expanded graphite sheet and a heat dissipation molded object. 放熱成形体の平面図及び正面図。The top view and front view of a heat dissipation molded object. 放熱成形体の製造方法についての説明図。Explanatory drawing about the manufacturing method of a thermal radiation molded object. 放熱成形体の製造方法についての説明図。Explanatory drawing about the manufacturing method of a thermal radiation molded object. 放熱成形体の製造方法についての説明図。Explanatory drawing about the manufacturing method of a thermal radiation molded object. 放熱成形体の正面図。The front view of a heat dissipation molded object. 放熱成形体の平面図。The top view of a heat dissipation molded object.

この発明の一実施形態を以下図面と共に説明する。
図1は放熱成形体1についての説明図を示し、図2は放熱成形体1の平面図及び正面図を示し、図3乃至図5は放熱成形体1の製造方法についての説明図を示し、図6は高さ方向Hにおける膨張黒鉛シート10の圧縮形状が異なる放熱成形体1の正面図を示し、図7は膨張黒鉛シート10が径方向Rに対して交差する向きとなる放熱成形体1の平面図を示している。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory view of the heat dissipation molded body 1, FIG. 2 is a plan view and a front view of the heat dissipation molded body 1, and FIGS. 3 to 5 are explanatory views of a manufacturing method of the heat dissipation molded body 1, FIG. 6 shows a front view of the heat dissipation molded body 1 in which the compressed shape of the expanded graphite sheet 10 in the height direction H is different, and FIG. 7 shows the heat dissipation molded body 1 in which the expanded graphite sheet 10 is in the direction intersecting with the radial direction R. FIG.

詳述すると、図1(a)は放熱成形体1を構成する膨張黒鉛シート10の斜視図を示し、図1(b)は放熱成形体1の斜視図を示している。図3(a)放熱成形体1を構成する複数の膨張黒鉛シート10を配置した状態の斜視図を示し、図3(b)は放熱成形体1を構成する圧縮下型110の斜視図を示している。   Specifically, FIG. 1A shows a perspective view of an expanded graphite sheet 10 constituting the heat dissipation molded body 1, and FIG. 1B shows a perspective view of the heat dissipation molded body 1. FIG. 3A shows a perspective view of a state in which a plurality of expanded graphite sheets 10 constituting the heat dissipation molded body 1 are arranged, and FIG. 3B shows a perspective view of a compression lower mold 110 constituting the heat dissipation molded body 1. ing.

また、図4(a)は圧縮下型110に複数の膨張黒鉛シート10を配置した状態の斜視図を示し、図4(b)は同状態の断面図を示し、図5(a)は圧縮上型120で膨張黒鉛シート10を圧縮した状態の斜視図を示し、図5(b)は同状態の断面図を示している。なお、図4(a),図5(b)において、理解を容易にするため、圧縮上型120の手前側半部の図示を省略し、奥側半分のみを図示している。   4A shows a perspective view of a state in which a plurality of expanded graphite sheets 10 are arranged on the compression lower mold 110, FIG. 4B shows a sectional view of the same state, and FIG. The perspective view of the state which compressed the expanded graphite sheet 10 with the upper mold | type 120 is shown, FIG.5 (b) has shown sectional drawing of the state. 4A and 5B, the front half of the compression upper mold 120 is not shown and only the back half is shown for easy understanding.

図6(a)は高さ方向Hに対して膨張黒鉛シート10が屈曲する放熱成形体1の正面図を示し、図6(b)は高さ方向Hに対して膨張黒鉛シート10が交差する向きとなる放熱成形体1の正面図を示している。   6A shows a front view of the heat dissipation molded body 1 in which the expanded graphite sheet 10 bends in the height direction H, and FIG. 6B shows the expanded graphite sheet 10 intersecting in the height direction H. The front view of the heat-radiation molded object 1 which becomes direction is shown.

なお、図1、並びに図3乃至図7において、説明の便宜上、放熱成形体1を構成する膨張黒鉛シート10の境界を明確に図示するとともに、膨張黒鉛シート10の向き等について説明しているが、実際には、放熱成形体1は圧縮成形によって膨張黒鉛シート10が一体化されることから、膨張黒鉛シート10の境界が不明確な場合もあり得る。   1 and FIGS. 3 to 7, for convenience of explanation, the boundary of the expanded graphite sheet 10 constituting the heat-dissipating molded body 1 is clearly illustrated, and the orientation of the expanded graphite sheet 10 is described. Actually, since the expanded graphite sheet 10 is integrated with the heat dissipation molded body 1 by compression molding, the boundary of the expanded graphite sheet 10 may be unclear.

放熱成形体1は、例えば、インジェクター装置における冷却部に用いられ、高さ方向H及び径方向Rの放熱性が高い熱伝放熱体であり、所定の高さを有する平面視円環状に形成されている。
本実施形態において、図1(b),図2(b)等に図示するように、放熱成形体1の高さに沿う方向を高さ方向Hとし、放熱成形体1の平面視において円環状の中心から外側に向く方向を径方向Rとしている。また、本実施形態において、放熱成形体1は、高さ方向Hが20mm、径方向Rの内径が24mm、外径が37mmの円環状で形成している。なお、径方向Rについては、各図面において略90度間隔で4方向のみを例示として図示しているが、平面視円環状の中心から外方に向かって放射状に延びる方向であればいずれの方向であってもよい。
The heat dissipation molded body 1 is a heat transfer heat dissipator that is used, for example, in a cooling part of an injector device and has high heat dissipation in the height direction H and the radial direction R, and is formed in an annular shape in plan view having a predetermined height. ing.
In the present embodiment, as shown in FIG. 1B, FIG. 2B, etc., the direction along the height of the heat dissipation molded body 1 is defined as the height direction H, and an annular shape in plan view of the heat dissipation molded body 1 The direction from the center to the outside is the radial direction R. Moreover, in this embodiment, the heat-radiation molded object 1 is formed in the annular | circular shape whose height direction H is 20 mm, the internal diameter of radial direction R is 24 mm, and an outer diameter is 37 mm. As for the radial direction R, in the drawings, only four directions are illustrated as an example at intervals of approximately 90 degrees, but any direction that extends radially outward from the center of the annular ring in plan view. It may be.

このように形成される放熱成形体1は、図1(a)に図示する膨張黒鉛シート10を、図2(a)に示すように、放熱成形体1の平面視中心に対して周方向に沿って複数積層するとともに、図2(b)に示すように、膨張黒鉛シート10が高さ方向Hに対して略S字状に湾曲するように圧縮され、一体化されている。   The heat-radiation molded body 1 formed in this way is obtained by arranging the expanded graphite sheet 10 shown in FIG. 1A in the circumferential direction with respect to the center of the heat-radiation molded body 1 in plan view, as shown in FIG. As shown in FIG. 2 (b), the expanded graphite sheet 10 is compressed and integrated so as to curve in a substantially S shape with respect to the height direction H, as shown in FIG.

膨張黒鉛シート10は、主面10aに対して適宜の厚みtを有し、後述する主面方向x,yに所定の長さを有する矩形状のシート状である。なお、本実施形態において、図1(a)に図示するように、膨張黒鉛シート10の厚みに沿う方向を厚み方向zとし、厚み方向zに直交するとともに、互いに直交する二方向を主面方向x,yとしている。なお、厚みtは、主面方向x,yの長さに拘らず、任意に設定可能である。   The expanded graphite sheet 10 is a rectangular sheet having an appropriate thickness t with respect to the main surface 10a and having a predetermined length in main surface directions x and y to be described later. In this embodiment, as shown in FIG. 1A, the direction along the thickness of the expanded graphite sheet 10 is defined as the thickness direction z, and the two directions perpendicular to the thickness direction z and perpendicular to each other are the principal surface directions. x, y. The thickness t can be arbitrarily set regardless of the lengths of the principal surface directions x and y.

このような膨張黒鉛シート10は、厚み方向zの熱伝導性が主面方向x,yの熱伝導性に比べておよそ1/25程度しかない異方性を有している。
なお、図1(a),図3(a)において膨張黒鉛シート10は、理解を容易にするため厚みtを厚く図示しているが、本実施形態では、厚みtが0.75mmの膨張黒鉛シート10を用いている。このような厚みtの膨張黒鉛シート10では、21℃の環境において、主面方向x,yの熱伝導性が138W/m・Kであるのに対し、厚み方向zの熱伝導性は5W/m・Kであり、およそ1/25程度である。
Such an expanded graphite sheet 10 has an anisotropy in which the thermal conductivity in the thickness direction z is only about 1/25 compared to the thermal conductivity in the principal surface directions x and y.
In FIGS. 1 (a) and 3 (a), the expanded graphite sheet 10 is shown with a large thickness t for easy understanding, but in this embodiment, the expanded graphite sheet 10 has a thickness t of 0.75 mm. A sheet 10 is used. In the expanded graphite sheet 10 having such a thickness t, in a 21 ° C. environment, the thermal conductivity in the principal surface directions x and y is 138 W / m · K, whereas the thermal conductivity in the thickness direction z is 5 W / m · K, which is about 1/25.

次に、このように主面方向x,yの熱伝導性に比べて厚み方向zの熱伝導性が低い膨張黒鉛シート10を用いて構成された、高さ方向H及び径方向Rの放熱性が高い放熱成形体1の製造方法について図3乃至図5とともに説明する。   Next, heat dissipation in the height direction H and the radial direction R is configured using the expanded graphite sheet 10 having a lower thermal conductivity in the thickness direction z than the thermal conductivity in the principal surface directions x and y. The manufacturing method of the heat-radiation molded object 1 with high is demonstrated with FIG. 3 thru | or FIG.

まず、図3,図4に示すように、複数枚の膨張黒鉛シート10を、主面10aが高さ方向H及び径方向Rに沿うように向けるとともに、主面10a同士が重なり合うように、平面視周方向に沿って配置し、膨張黒鉛シート10を圧縮成形する圧縮下型110の圧縮空間Xにセットする。ここで、本実施形態では、主面10aの主面方向x,yのうちx方向が高さ方向Hを向き、y方向が径方向Rを向くように膨張黒鉛シート10をセットすることとする。   First, as shown in FIGS. 3 and 4, a plurality of expanded graphite sheets 10 are oriented so that the main surface 10a is oriented along the height direction H and the radial direction R, and the main surfaces 10a overlap each other. It arrange | positions along a visual periphery direction and sets to the compression space X of the compression lower mold | type 110 which compresses and molds the expanded graphite sheet 10. FIG. Here, in the present embodiment, the expanded graphite sheet 10 is set so that the x direction of the major surface directions x and y of the major surface 10a faces the height direction H and the y direction faces the radial direction R. .

なお、膨張黒鉛シート10を圧縮して放熱成形体1を構成する圧縮装置は、圧縮下型110と圧縮上型120とで構成されている。圧縮下型110は、図3(b)に示すように、円筒状凹部111と、円筒状凹部111の平面視中央に配置された円柱部112とで、円筒状の圧縮空間Xが形成されている。
圧縮空間Xは、放熱成形体1と平面視形状は同一の円環状に形成され、放熱成形体1の高さ方向Hより深く形成されている。
Note that a compression device that compresses the expanded graphite sheet 10 to form the heat dissipation molded body 1 includes a compression lower mold 110 and a compression upper mold 120. As shown in FIG. 3B, the compression lower mold 110 includes a cylindrical recess 111 and a columnar portion 112 disposed in the center of the cylindrical recess 111 in a plan view, and a cylindrical compression space X is formed. Yes.
The compression space X is formed in the same annular shape as the heat radiation molded body 1 in plan view, and is formed deeper than the height direction H of the heat radiation molded body 1.

圧縮上型120は、上型本体121と、上型本体121の底面から下方に突出する円筒状凸部122とで一体に構成されている。円筒状凸部122は、上述の圧縮下型110の円筒状凹部111に嵌合可能な外形と、円柱部112が嵌合可能な内形とで形成されている。   The compression upper mold 120 is integrally formed of an upper mold main body 121 and a cylindrical convex portion 122 that protrudes downward from the bottom surface of the upper mold main body 121. The cylindrical convex portion 122 is formed with an outer shape that can be fitted into the cylindrical concave portion 111 of the lower compression mold 110 and an inner shape that can be fitted with the column portion 112.

圧縮空間Xに配置される膨張黒鉛シート10は、y方向の長さが圧縮空間Xの径方向Rの長さに比べてわずかに短く、x方向の長さが放熱成形体1の高さ方向Hより長く形成されている。なお、本実施形態において、120枚の膨張黒鉛シート10を上述したように周方向に並べて圧縮空間Xにセットするが、便宜上枚数を減らして図示している。また、膨張黒鉛シート10の使用枚数は、放熱成形体1の目的、用途、使用条件等によって任意に変更可能である。   The expanded graphite sheet 10 disposed in the compression space X has a length in the y direction slightly shorter than the length in the radial direction R of the compression space X, and the length in the x direction is the height direction of the heat dissipation molded body 1. It is formed longer than H. In this embodiment, 120 expanded graphite sheets 10 are arranged in the circumferential direction and set in the compression space X as described above, but the number is reduced for convenience. Moreover, the number of sheets used of the expanded graphite sheet 10 can be arbitrarily changed according to the purpose, application, use conditions, etc. of the heat dissipation molded body 1.

このように、y方向の長さが圧縮空間Xの径方向Rの長さに比べてわずかに短く、x方向の長さが放熱成形体1の高さ方向Hより長い膨張黒鉛シート10を圧縮空間Xに配置した後、圧縮空間Xにおける膨張黒鉛シート10の上部に対して圧縮上型120の円筒状凸部122を圧縮下型110の上方から挿入し、図5に示すように、圧縮下型110の上面110aと、圧縮上型120の上型本体121の底面とが対面するまで圧入する。   In this way, the expanded graphite sheet 10 whose length in the y direction is slightly shorter than the length in the radial direction R of the compression space X and whose length in the x direction is longer than the height direction H of the heat dissipation molded body 1 is compressed. After the arrangement in the space X, the cylindrical convex portion 122 of the compression upper mold 120 is inserted from above the compression lower mold 110 into the upper part of the expanded graphite sheet 10 in the compression space X, and as shown in FIG. The mold 110 is press-fitted until the upper surface 110a of the mold 110 and the bottom surface of the upper mold body 121 of the compression upper mold 120 face each other.

このように、圧縮下型110の上面110aと、圧縮上型120の上型本体121の底面とが対面するまで圧入することで、圧縮空間Xに配置された膨張黒鉛シート10は、上述したように、高さ方向Hに対して略S字状に湾曲するように圧縮され一体化される。これにより、複数の膨張黒鉛シート10から放熱成形体1を構成することができる。   As described above, the expanded graphite sheet 10 disposed in the compression space X is press-fitted until the upper surface 110a of the compression lower mold 110 and the bottom surface of the upper mold body 121 of the compression upper mold 120 face each other, as described above. Are compressed and integrated so as to be bent in a substantially S shape with respect to the height direction H. Thereby, the thermal radiation molded object 1 can be comprised from the some expanded graphite sheet 10. FIG.

なお、膨張黒鉛シート10の圧縮空間Xにおける配置や、x方向の長さに対する高さ方向Hの圧縮量によっては、膨張黒鉛シート10が高さ方向Hに対して略S字状に湾曲せず、膨張黒鉛シート10が高さ方向Hに直線状となる場合もあり、図6(a)に示すように、例えば、膨張黒鉛シート10が高さ方向Hに対して屈曲するように圧縮される場合もある。さらには、図6(b)に示すように、膨張黒鉛シート10が高さ方向Hに対して交差する方向に向く場合もある。   Depending on the arrangement of the expanded graphite sheet 10 in the compression space X and the amount of compression in the height direction H with respect to the length in the x direction, the expanded graphite sheet 10 does not curve in a substantially S shape with respect to the height direction H. The expanded graphite sheet 10 may be linear in the height direction H. For example, the expanded graphite sheet 10 is compressed so as to be bent with respect to the height direction H as shown in FIG. In some cases. Furthermore, as shown in FIG. 6B, the expanded graphite sheet 10 may face in a direction that intersects the height direction H.

このように、所定の高さを有する放熱成形体1は、厚み方向zの熱伝導性に比べて主面方向x,yの熱伝導性が高いシート状である複数の膨張黒鉛シート10を、主面10aが重なるように積層するとともに、主面方向x,yに圧縮成形され、圧縮方向を高さ方向Hとしたため、高さ方向H及び径方向Rの両方向において優れた熱伝導性を発揮することができる。   Thus, the heat dissipation molded body 1 having a predetermined height includes a plurality of expanded graphite sheets 10 having a sheet shape having a higher thermal conductivity in the principal surface directions x and y than the thermal conductivity in the thickness direction z. The main surface 10a is laminated so that it overlaps, and it is compression molded in the main surface directions x and y, and the compression direction is the height direction H, so it exhibits excellent thermal conductivity in both the height direction H and the radial direction R. can do.

詳述すると、厚み方向zの熱伝導性に比べて主面方向x,yの熱伝導性が高いシート状である複数の膨張黒鉛シート10を主面10aが重なるように積層するとともに、主面方向x,yに圧縮成形して圧縮方向を高さ方向Hとする所定の高さを有する放熱成形体1を構成するため、膨張黒鉛シート10の主面10aが放熱成形体1の高さ方向H及び径方向Rに向き、高さ方向H及び径方向Rの両方向において優れた熱伝導性を発揮することができる。   More specifically, a plurality of expanded graphite sheets 10 in the form of a sheet having higher thermal conductivity in the main surface directions x and y than the thermal conductivity in the thickness direction z are stacked so that the main surfaces 10a overlap, and the main surface The main surface 10a of the expanded graphite sheet 10 is formed in the height direction of the heat dissipation molded body 1 in order to form the heat dissipation molded body 1 having a predetermined height in which the compression direction is the height direction H by compression molding in the directions x and y. Excellent thermal conductivity can be exhibited in both the height direction H and the radial direction R in the H direction and the radial direction R.

また、放熱成形体1は、高さ方向Hに交差する平面視形状が円環状であり、膨張黒鉛シート10が、環状における径方向Rに向けて配置されているため、所定の高さを有する環状の放熱成形体1において、高さ方向H及び高さ方向Hに交差する径方向Rの両方向において優れた熱伝導性を発揮することができる。   Further, the heat dissipation molded body 1 has a predetermined height because the shape in plan view intersecting the height direction H is an annular shape, and the expanded graphite sheet 10 is arranged in the annular radial direction R. In the annular heat dissipation molded body 1, excellent thermal conductivity can be exhibited in both the height direction H and the radial direction R intersecting the height direction H.

詳しくは、所定の高さを有するとともに、平面視円環状における径方向Rに向けて膨張黒鉛シート10が配置されているため、つまり、膨張黒鉛シート10の積層方向が環状に沿う方向となり、主面10aが径方向R及び高さ方向Hに沿うため、高さ方向H及び径方向Rの両方向において優れた熱伝導性を発揮することができる。   Specifically, since the expanded graphite sheet 10 has a predetermined height and is arranged in the radial direction R in the annular shape in plan view, that is, the stacking direction of the expanded graphite sheet 10 is a direction along the annular shape. Since the surface 10a is along the radial direction R and the height direction H, excellent thermal conductivity can be exhibited in both the height direction H and the radial direction R.

なお、円環状の放熱成形体1は、膨張黒鉛シート10の厚み方向zが平面視円環状の周方向に向くため、周方向の熱伝導性は低くなるものの、高さ方向H及び径方向Rの優れた熱伝導性によって、放熱成形体1の上面及び底面、並びに内周面及び外周面のいずれ面に対しても優れた熱伝導性を発揮するため、放熱体として優れた放熱性能を発揮することができる。   In addition, since the thickness direction z of the expanded graphite sheet 10 faces the circumferential direction of the annular shape in a plan view, the annular heat dissipation molded body 1 has a low thermal conductivity in the circumferential direction, but the height direction H and the radial direction R. Because of its excellent thermal conductivity, it exhibits excellent thermal conductivity for the top and bottom surfaces of the heat dissipation molded body 1 as well as the inner peripheral surface and the outer peripheral surface. can do.

また、膨張黒鉛シート10が高さ方向Hに対して略S字状に湾曲している場合や図6(a)に図示するように膨張黒鉛シート10が高さ方向Hに対して屈曲する場合は、積層する膨張黒鉛シート10同士の高さ方向Hの結合強度が向上するとともに、密度が向上し、放熱成形体1の耐久性を向上することができる。   Further, when the expanded graphite sheet 10 is curved in a substantially S shape with respect to the height direction H, or when the expanded graphite sheet 10 is bent with respect to the height direction H as shown in FIG. The bonding strength in the height direction H between the expanded graphite sheets 10 to be laminated is improved, the density is improved, and the durability of the heat dissipation molded body 1 can be improved.

なお、図7に示すように、放熱成形体1の膨張黒鉛シート10が、径方向Rに対して交差する方向に向くとともに、径方向Rに対して湾曲してもよい。
この場合も、積層する膨張黒鉛シート10同士の径方向Rの結合強度が向上し、放熱成形体1の耐久性を向上することができる。
Note that, as shown in FIG. 7, the expanded graphite sheet 10 of the heat-dissipation molded body 1 may be curved in the radial direction R while facing the direction intersecting the radial direction R.
Also in this case, the bonding strength in the radial direction R between the expanded graphite sheets 10 to be laminated can be improved, and the durability of the heat dissipation molded body 1 can be improved.

特に、径方向Rに対して交差する方向に膨張黒鉛シート10を向けることで、放熱成形体1における径方向Rの熱伝導性を調整することができる。
詳述すると、膨張黒鉛シート10が径方向Rに対して交差する方向に向くことで、図1(a)に示すように、平面視円環状の中心から放射方向に膨張黒鉛シート10を配置した場合に比べて、同じ平面視円環状であっても、y方向の長さが長い膨張黒鉛シート10を用いることができる。
In particular, by directing the expanded graphite sheet 10 in a direction crossing the radial direction R, the thermal conductivity in the radial direction R of the heat dissipation molded body 1 can be adjusted.
More specifically, the expanded graphite sheet 10 is arranged in the radial direction from the center of the annular shape in plan view, as shown in FIG. Compared to the case, the expanded graphite sheet 10 having a long length in the y direction can be used even in the same annular shape in plan view.

ここで放熱成形体1を構成する膨張黒鉛シート10は、上述したように厚み方向zの熱伝導性が低いため、主面10a同士が対面して積層する膨張黒鉛シート10同士の間で熱伝導されず、膨張黒鉛シート10の主面方向x,yに熱伝導するため、放熱成形体1における径方向Rの熱伝導性は、膨張黒鉛シート10のy方向の長さに寄与することとなる。   Here, since the expanded graphite sheet 10 constituting the heat dissipation molded body 1 has low thermal conductivity in the thickness direction z as described above, heat conduction is performed between the expanded graphite sheets 10 that are laminated so that the principal surfaces 10a face each other. However, since heat conduction is performed in the principal surface directions x and y of the expanded graphite sheet 10, the thermal conductivity in the radial direction R of the heat dissipation molded body 1 contributes to the length of the expanded graphite sheet 10 in the y direction. .

このように、径方向Rに対して交差する方向に膨張黒鉛シート10を向けることや、膨張黒鉛シート10を径方向Rに対して湾曲させることで、膨張黒鉛シート10のy方向の長さを調整でき、膨張黒鉛シート10のy方向の長さを調整することで放熱成形体1の径方向Rの熱伝導性を調整することができる。   As described above, by directing the expanded graphite sheet 10 in a direction crossing the radial direction R, or by bending the expanded graphite sheet 10 with respect to the radial direction R, the length of the expanded graphite sheet 10 in the y direction can be increased. The thermal conductivity in the radial direction R of the heat dissipation molded body 1 can be adjusted by adjusting the length of the expanded graphite sheet 10 in the y direction.

もちろん、図6に図示するように、高さ方向Hに対して膨張黒鉛シート10を湾曲させたり、交差する方向に向けることで放熱成形体1の高さ方向Hの熱伝導性も調整することはできるものの、径方向Rに交差する方向に向ける場合に比べて膨張黒鉛シート10のx方向の長さを調整する調整量は少ない。   Of course, as shown in FIG. 6, the thermal conductivity in the height direction H of the heat-radiation molded body 1 can also be adjusted by curving the expanded graphite sheet 10 with respect to the height direction H or by turning it in the intersecting direction. However, the amount of adjustment for adjusting the length of the expanded graphite sheet 10 in the x direction is smaller than in the case where the expanded graphite sheet 10 is directed in the direction intersecting the radial direction R.

以上、本発明の構成と、前述の実施態様との対応において、本実施形態の厚み方向は厚み方向zに対応し、
以下同様に、
面方向は主面方向x,yに対応し、
膨張黒鉛シートは膨張黒鉛シート10に対応し、
面に交差する方向及び径方向は径方向Rに対応し、
高さ方向は高さ方向Hに対応し、
熱伝導成形体は放熱成形体1に対応するも、上記実施形態に限定するものではない。
As described above, in the correspondence between the configuration of the present invention and the above-described embodiment, the thickness direction of the present embodiment corresponds to the thickness direction z,
Similarly,
The surface direction corresponds to the principal surface direction x, y,
The expanded graphite sheet corresponds to the expanded graphite sheet 10,
The direction intersecting the surface and the radial direction correspond to the radial direction R,
The height direction corresponds to the height direction H,
Although a heat conductive molded object respond | corresponds to the thermal radiation molded object 1, it is not limited to the said embodiment.

上述の説明においては、平面視円環状の放熱成形体1を構成したが、角形環状、あるいは適宜の環状としてもよく、さらに膨張黒鉛シート10の積層方向が高さ方向Hでなければ、所定の高さを有する様々な形状とすることができる。   In the above description, the heat dissipating molded body 1 having an annular shape in plan view is configured, but may be a square ring or an appropriate ring. Various shapes having a height can be employed.

また、放熱成形体1は、熱を伝達して放熱するための放熱体であったが、吸熱体や熱を積極的に伝達するための熱伝達体など、用途に応じた熱伝導性を利用可能な成形体として用いてもよい。   Moreover, although the heat-radiation molded object 1 was a heat radiating body for transferring heat and radiating heat, it uses heat conductivity according to the application such as a heat absorbing body or a heat transfer body for positively transferring heat. You may use as a possible molded object.

1…放熱成形体
10…膨張黒鉛シート
H…高さ方向
R…径方向
x,y…主面方向
z…厚み方向
DESCRIPTION OF SYMBOLS 1 ... Heat dissipation molded object 10 ... Expanded graphite sheet H ... Height direction R ... Radial direction x, y ... Main surface direction z ... Thickness direction

Claims (5)

厚み方向の熱伝導性に比べて主面方向の熱伝導性が高いシート状である複数の膨張黒鉛シートを、主面が重なるように積層するとともに、前記主面に交差する方向に圧縮成形され、圧縮方向を高さ方向とする所定の高さを有する
熱伝導成形体。
A plurality of expanded graphite sheets that are in the form of a sheet having higher thermal conductivity in the principal surface direction than the thermal conductivity in the thickness direction are laminated so that the principal surfaces overlap, and are compressed in the direction intersecting the principal surface. A heat conductive molded body having a predetermined height in which the compression direction is the height direction.
所定の高さを有するとともに、前記高さ方向に交差する形状が環状であり、
前記膨張黒鉛シートが、前記環状における径方向に向けて配置された
請求項1に記載の熱伝導成形体。
A shape having a predetermined height and intersecting the height direction is annular,
The heat conductive molded object according to claim 1, wherein the expanded graphite sheet is arranged in a radial direction in the annular shape.
前記膨張黒鉛シートが、前記高さ方向に対して湾曲している
請求項2に記載の熱伝導成形体。
The heat conductive molded body according to claim 2, wherein the expanded graphite sheet is curved with respect to the height direction.
前記膨張黒鉛シートが、前記径方向に対して湾曲している
請求項2または3に記載の熱伝導成形体。
The heat conductive molded body according to claim 2 or 3, wherein the expanded graphite sheet is curved with respect to the radial direction.
前記膨張黒鉛シートが、前記径方向に対して交差する方向に向いている
請求項2または3に記載の熱伝導成形体。
The thermally conductive molded article according to claim 2 or 3, wherein the expanded graphite sheet is oriented in a direction intersecting the radial direction.
JP2017163913A 2017-08-29 2017-08-29 Heat conductive molded body Active JP6956565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017163913A JP6956565B2 (en) 2017-08-29 2017-08-29 Heat conductive molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017163913A JP6956565B2 (en) 2017-08-29 2017-08-29 Heat conductive molded body

Publications (2)

Publication Number Publication Date
JP2019041069A true JP2019041069A (en) 2019-03-14
JP6956565B2 JP6956565B2 (en) 2021-11-02

Family

ID=65725894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163913A Active JP6956565B2 (en) 2017-08-29 2017-08-29 Heat conductive molded body

Country Status (1)

Country Link
JP (1) JP6956565B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05409A (en) * 1991-03-04 1993-01-08 Doi Seisakusho:Kk Manufacture of graphite formed article and device thereof
JPH0510450A (en) * 1991-07-03 1993-01-19 Nippon Pillar Packing Co Ltd Packing
JP2005229100A (en) * 2004-01-13 2005-08-25 Japan Matekkusu Kk Heat-dissipating sheet and heatsink
JP2005272164A (en) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd High thermal conductive member, method of manufacturing the same and heat radiation system using the same
JP2007053145A (en) * 2005-08-16 2007-03-01 Nippon Pillar Packing Co Ltd Heat-transfer sheet
JP2010003981A (en) * 2008-06-23 2010-01-07 Kaneka Corp Heat-conducting sheet with graphite oriented in thickness direction
JP2010050240A (en) * 2008-08-21 2010-03-04 Toyota Industries Corp Method and apparatus for manufacturing heat conductive resin sheet
JP2014083786A (en) * 2012-10-25 2014-05-12 Lignyte Co Ltd Graphite sheet composite material and method for producing the same
WO2016076330A1 (en) * 2014-11-12 2016-05-19 武延 本郷 Heat dissipation structure and illumination device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05409A (en) * 1991-03-04 1993-01-08 Doi Seisakusho:Kk Manufacture of graphite formed article and device thereof
JPH0510450A (en) * 1991-07-03 1993-01-19 Nippon Pillar Packing Co Ltd Packing
JP2005229100A (en) * 2004-01-13 2005-08-25 Japan Matekkusu Kk Heat-dissipating sheet and heatsink
JP2005272164A (en) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd High thermal conductive member, method of manufacturing the same and heat radiation system using the same
JP2007053145A (en) * 2005-08-16 2007-03-01 Nippon Pillar Packing Co Ltd Heat-transfer sheet
JP2010003981A (en) * 2008-06-23 2010-01-07 Kaneka Corp Heat-conducting sheet with graphite oriented in thickness direction
JP2010050240A (en) * 2008-08-21 2010-03-04 Toyota Industries Corp Method and apparatus for manufacturing heat conductive resin sheet
JP2014083786A (en) * 2012-10-25 2014-05-12 Lignyte Co Ltd Graphite sheet composite material and method for producing the same
WO2016076330A1 (en) * 2014-11-12 2016-05-19 武延 本郷 Heat dissipation structure and illumination device

Also Published As

Publication number Publication date
JP6956565B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6606267B1 (en) heatsink
TWI787425B (en) heat sink
TWM548416U (en) Flexible uniform temperature plate
KR20130111035A (en) A heat sink bonded with pulsating heat pipe typed fins
US20170330817A1 (en) Heat-dissipating structure and method for manufacturing same
WO2019049781A1 (en) Circuit block assembly
JP2019041069A (en) Thermally conductive molded article
US20130112386A1 (en) Heat dissipating device and manufacture method thereof
JP3170065U (en) Structure of plate heat pipe
CN101039567B (en) Spring plate fixing structure and heat radiation module having the same
JP2012060045A (en) Heat dissipation board
US9111918B2 (en) Fin fabrication process for entrainment heat sink
JP7395274B2 (en) thermally conductive molded body
JP2011009367A (en) Semiconductor device
TWI634303B (en) Vapor chamber
JP6071299B2 (en) Heat sink device and lighting device
JP5896124B2 (en) heatsink
JP2019160881A (en) Semiconductor device
JP6540358B2 (en) Heat dissipation structure, case and portable terminal
JP2004319942A (en) Heat sink using metal foamed material
WO2016166959A1 (en) Heat conduction sheet and manufacturing method for same
JP2013247218A (en) Reactor device
JP7518209B2 (en) Antenna Device
JP2019049328A (en) Multilayer heat insulating material
JP5977091B2 (en) Cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150