Nothing Special   »   [go: up one dir, main page]

JP2007053145A - Heat-transfer sheet - Google Patents

Heat-transfer sheet Download PDF

Info

Publication number
JP2007053145A
JP2007053145A JP2005235600A JP2005235600A JP2007053145A JP 2007053145 A JP2007053145 A JP 2007053145A JP 2005235600 A JP2005235600 A JP 2005235600A JP 2005235600 A JP2005235600 A JP 2005235600A JP 2007053145 A JP2007053145 A JP 2007053145A
Authority
JP
Japan
Prior art keywords
sheet
layered structure
heat transfer
transfer sheet
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005235600A
Other languages
Japanese (ja)
Other versions
JP4168047B2 (en
Inventor
Takahisa Ueda
隆久 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2005235600A priority Critical patent/JP4168047B2/en
Publication of JP2007053145A publication Critical patent/JP2007053145A/en
Application granted granted Critical
Publication of JP4168047B2 publication Critical patent/JP4168047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-transfer sheet having a good heat conductivity and a good conformability for improving a heat conductive performance as a whole, by modifying a heat-transfer sheet made of a sheetlike material having layered structures formed in the same direction as one another, while noticing that the heat conductivity is not generally good in the thickness direction but excellent in the planar direction. <P>SOLUTION: The heat-transfer sheet A1 includes the sheetlike material 2 having the layered structures 1 formed in the same direction as one another, and has distorted parts 3 formed on the sheetlike material 2 with end surfaces of the structures 1 formed to be leveled with the surface as the sheetlike material 2. The distorted parts 3 are configured by folding right and left ends of the sheetlike material 2 downward to make the end surfaces of the sheetlike material 2 leveled with the bottom of the sheetlike material 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、伝熱シートに係り、詳しくは、CPU、発光ダイオード、変圧器、パワートランジスタ、液晶パネル、プラズマディスプレイ等の発熱を伴う電子部品の放熱用として、或いは、電子機器における発熱体又は冷却体に対する効率の良い熱伝達媒体として用いられる伝熱シートに関するものである。   The present invention relates to a heat transfer sheet, and more specifically, for heat dissipation of electronic parts with heat generation such as a CPU, light emitting diode, transformer, power transistor, liquid crystal panel, plasma display, etc., or a heating element or cooling in an electronic device. The present invention relates to a heat transfer sheet used as an efficient heat transfer medium for the body.

電子機器における上記の電子部品は使用に伴って発熱し、その自身の発する熱によって性能低下を来たすことがあるため、一般的には、ヒートシンクや筐体等の放熱体を用いて速やかに放熱させる手段が採られている。この場合、発熱電子部品と放熱体との間には熱伝達のインターフェースとして伝熱シートが介装されることが多い。   The above electronic components in electronic devices generate heat with use, and the performance may be degraded by the heat generated by them. Generally, heat is quickly dissipated using a heat sink such as a heat sink or housing. Means are taken. In this case, a heat transfer sheet is often interposed between the heat generating electronic component and the heat radiating body as a heat transfer interface.

従来の伝熱シートは、シート状体としてシリコンシートやシリコングリースを用いたもの(特許文献1や特許文献2)や、アルミ合金や銅等による金属板を用いたもの(特許文献3)が知られている。また、金属箔と合成樹脂シート材とを積層して成るものや、黒鉛を膨張させてから加圧一体化して層状構造を有するシート(層状構造部を有するシート状体)とした膨張黒鉛シートを所定形状にカットして成るもの(例えば、特許文献4や特許文献5)も知られている。   Conventional heat transfer sheets are known that use a silicon sheet or silicon grease (Patent Document 1 or Patent Document 2) as a sheet-like body, or a sheet using a metal plate made of aluminum alloy or copper (Patent Document 3). It has been. Also, an expanded graphite sheet obtained by laminating a metal foil and a synthetic resin sheet material, or an expanded graphite sheet having a layered structure (sheet-like body having a layered structure portion) that is formed by pressurizing and integrating graphite after being expanded. What cuts into the predetermined shape (for example, patent document 4 and patent document 5) is also known.

シリコン系材料による従来の伝熱シートでは、発熱体(発熱電子部品)及び放熱体との馴染み性に優れる利点はあるが、熱伝導率に劣る不利がある。金属系の伝熱シートは熱伝導率が大きい利点はあるものの、発熱体や放熱体との馴染み性には劣る難点がある。金属箔と合成樹脂との積層品は面方向(面に平行な方向)の熱伝導率は良いが、厚み方向の熱伝導率には劣る。また、膨張黒鉛シートは面方向には優れた熱伝導率を示すが、厚み方向の熱伝導率は面方向の1/20未満でしかないという難点がある。   A conventional heat transfer sheet made of a silicon-based material has an advantage of excellent compatibility with a heating element (heating electronic component) and a radiator, but has a disadvantage of being inferior in thermal conductivity. Although the metal-based heat transfer sheet has an advantage of high thermal conductivity, it has a disadvantage that it is inferior in compatibility with a heating element and a heat dissipation element. The laminate of the metal foil and the synthetic resin has good thermal conductivity in the plane direction (direction parallel to the plane), but is inferior in thermal conductivity in the thickness direction. In addition, the expanded graphite sheet exhibits excellent thermal conductivity in the plane direction, but has a drawback that the thermal conductivity in the thickness direction is less than 1/20 of the plane direction.

以上のように、従来では前記したいずれの種類の伝熱シートであってもそれぞれに一長一短があり、抜きん出る性能を有する伝熱シートには至らなかったので、使用目的や使用状況を勘案してそれら三者のものから選択して用いるようにしていたのが実情であった。
特開平10−040823号公報 特開2002−222904号公報 特開2005−101025号公報 特開平10−231111号公報 特開昭64−014139号公報
As described above, any of the types of heat transfer sheets described above has their advantages and disadvantages, and no heat transfer sheet having the ability to pull out has been obtained. The actual situation was to select and use from the three.
Japanese Patent Laid-Open No. 10-040823 JP 2002-222904 A JP 2005-101025 A JP-A-10-231111 JP-A 64-014139

本発明の目的は、互いに同一方向に形成される層状構造部を有するシート状体から成る伝熱シートでは、総じて熱伝導率が厚み方向には芳しくないが、面方向には優れている特性を有することに着目してこれを改良することにより、良好な熱伝導率と良好な馴染み性とを得て、全体としての熱伝導性能が向上する伝熱シートを提供する点にある。   The object of the present invention is that, in a heat transfer sheet composed of sheet-like bodies having layered structures formed in the same direction, the heat conductivity is generally not good in the thickness direction, but has excellent characteristics in the surface direction. It is in the point which provides the heat-transfer sheet | seat which obtains favorable heat conductivity and favorable familiarity by paying attention to having and improving favorable heat conductivity, and improves the heat conductivity performance as a whole.

請求項1に係る発明は、伝熱シートにおいて、互いに同一方向に形成される層状構造部1を有するシート状体2から成るとともに、前記層状構造部1の端面が前記シート状体2としての表面と同一面となる状態に構成される歪曲部3が前記シート状体2に形成されていることを特徴とするものである。   The invention according to claim 1 is a heat transfer sheet comprising a sheet-like body 2 having a layered structure portion 1 formed in the same direction, and the end surface of the layered structure portion 1 is a surface as the sheet-like body 2 The distorted portion 3 configured to be in the same plane as that of the sheet-like body 2 is formed on the sheet-like body 2.

請求項2に係る発明は、請求項1に記載の伝熱シートにおいて、前記歪曲部3が、前記シート状体2の端面が前記シート状体2の表裏何れかの表面と同一面となるように、前記シート状体2の端部を折り曲げることで構成されていることを特徴とするものである。   According to a second aspect of the present invention, in the heat transfer sheet according to the first aspect, the warped portion 3 is such that the end surface of the sheet-like body 2 is flush with the front or back surface of the sheet-like body 2. Further, the sheet-like body 2 is formed by bending an end portion.

請求項3に係る発明は、請求項1に記載の伝熱シートにおいて、前記歪曲部3が、前記層状構造部21の断層が露呈されるように前記シート状体22の表裏何れかの面22Aに抉り取り凹部24が形成されている状態の前記シート状体22の全体をその厚み方向に圧縮することにより、前記抉り取り凹部24の凹表面24aを前記何れかの面22Aと同一面となるように馴染ませることで構成されていることを特徴とするものである。   The invention according to claim 3 is the heat transfer sheet according to claim 1, wherein the warped portion 3 has a surface 22A on either the front or back side of the sheet-like body 22 so that the fault of the layered structure portion 21 is exposed. By compressing the entire sheet-like body 22 in the state in which the scraping recess 24 is formed in the thickness direction, the concave surface 24a of the scraping recess 24 is flush with any one of the surfaces 22A. It is characterized by being made to adapt so.

請求項4に係る発明は、伝熱シートにおいて、互いに同一方向に形成される層状構造部31を有するシート状体32から成るとともに、層方向で隣合う前記層状構造部31どうしのうちの少なくとも一方の層状構造部31の端面が他方の層状構造部31に当接する状態の短絡部33が形成されていることを特徴とするものである。   The invention according to claim 4 is a heat transfer sheet comprising a sheet-like body 32 having layered structures 31 formed in the same direction and at least one of the layered structures 31 adjacent in the layer direction. The short-circuit part 33 in a state where the end surface of the layered structure part 31 is in contact with the other layered structure part 31 is formed.

請求項5に係る発明は、請求項4に記載の伝熱シートにおいて、前記短絡部33が、前記シート状体32にその厚み方向に延びる孔34を機械的に形成することにより、前記孔34部位においては層方向で隣合う前記層状構造部どうしのうちの少なくとも一方の層状構造部31の端面が折り曲げられて他方の層状構造部31に当接する手段に構成されていることを特徴とするものである。   The invention according to claim 5 is the heat transfer sheet according to claim 4, wherein the short-circuit portion 33 mechanically forms a hole 34 extending in the thickness direction of the sheet-like body 32, whereby the hole 34. In the portion, the end surface of at least one layered structure portion 31 of the layered structure portions adjacent to each other in the layer direction is configured to be bent and contacted with the other layered structure portion 31. It is.

請求項6に係る発明は、請求項4に記載の伝熱シートにおいて、前記短絡部33が、層方向で隣合う前記層状構造部51どうしの間に粒状物質54を介装させた状態で厚み方向に圧縮することで部分的に前記層状構造部51を破り、その破られた部位51bにおいては層方向で隣合う前記層状構造部51どうしのうちの少なくとも一方の層状構造部51の端面が他方の層状構造部51に当接する手段に構成されていることを特徴とするものである。   The invention according to claim 6 is the heat transfer sheet according to claim 4, wherein the short-circuit portion 33 has a thickness in a state in which the granular material 54 is interposed between the layered structure portions 51 adjacent in the layer direction. The layered structure portion 51 is partially broken by compressing in the direction, and the end face of at least one of the layered structure portions 51 adjacent to each other in the layer direction is the other in the broken portion 51b It is comprised by the means contact | abutted to the layered structure part 51 of this.

請求項7に係る発明は、請求項1〜6の何れか一項に記載の伝熱シートにおいて、前記層状構造部1,21,31,51が、膨張黒鉛、金属箔、合成樹脂のうちの何れか一つの材料から形成されていることを特徴とするものである。   The invention according to claim 7 is the heat transfer sheet according to any one of claims 1 to 6, wherein the layered structure parts 1, 21, 31, 51 are made of expanded graphite, metal foil, or synthetic resin. It is formed from any one material.

請求項8に係る発明は、請求項5に記載の伝熱シートにおいて、前記シート状体32が、層方向で隣合う前記層状構造部31どうしの間に金属箔44が介装されたものであり、前記孔34が前記金属箔44を貫く状態に形成されていることを特徴とするものである。   The invention according to claim 8 is the heat transfer sheet according to claim 5, wherein the sheet-like body 32 is provided with a metal foil 44 between the layered structure portions 31 adjacent in the layer direction. And the hole 34 is formed so as to penetrate the metal foil 44.

請求項1の発明によれば、歪曲部においては層状構造部の端面がシート状体の表裏のいずれかの面に面一となるから、面方向の優れた熱伝導率が厚み方向にも分配されるようになり、厚み方向の熱伝導率を改善することができる。その結果、複数の層状構造部を有するシート状体より成る伝熱シートの改良により、厚み方向の良好な熱伝導率と良好な馴染み性とを得て、全体としての熱伝導性能が向上する改善された伝熱シートを提供することができる。   According to the invention of claim 1, since the end surface of the layered structure portion is flush with either of the front and back surfaces of the sheet-like body in the distorted portion, the excellent thermal conductivity in the surface direction is also distributed in the thickness direction. As a result, the thermal conductivity in the thickness direction can be improved. As a result, by improving the heat transfer sheet composed of a sheet-like body having a plurality of layered structures, it is possible to obtain good thermal conductivity in the thickness direction and good conformability, and improve the overall heat conduction performance Heat transfer sheet can be provided.

伝熱シートは、発熱体と放熱体との間に介装されるものであるから、厚み方向の熱伝導率向上によって発熱体と放熱体との熱伝達効率を大きく改善できる利点がある。また、層状構造部の材質としては、請求項7のように、膨張黒鉛、金属箔、合成樹脂から選択することができる。   Since the heat transfer sheet is interposed between the heat generating body and the heat radiating body, there is an advantage that the heat transfer efficiency between the heat generating body and the heat radiating body can be greatly improved by improving the thermal conductivity in the thickness direction. Further, the material of the layered structure portion can be selected from expanded graphite, metal foil, and synthetic resin as described in claim 7.

この場合、請求項2のように、シート状体の端部を折り曲げることで歪曲部を形成すれば、シート状体の端部において厚み方向の熱伝導率が明確に改善される利点があるとともに、請求項3のように、層状構造部の断層が露呈されるようにシート状体の表裏何れかの面に抉り取り凹部が形成されている状態のシート状体の全体をその厚み方向に圧縮することにより、抉り取り凹部の凹表面を何れかの面と同一面となるように馴染ませることで歪曲部を形成すれば、抉り取り凹部を設定する箇所における厚み方向の熱伝導率が明確に改善される利点がある。   In this case, as in claim 2, if the distorted portion is formed by bending the end portion of the sheet-like body, there is an advantage that the thermal conductivity in the thickness direction is clearly improved at the end portion of the sheet-like body. As in claim 3, the entire sheet-like body in a state in which the recessed portion is formed on either the front or back surface of the sheet-like body so as to expose the fault of the layered structure portion is compressed in the thickness direction. By forming a distorted part by adapting the concave surface of the scraping recess to be flush with any surface, the thermal conductivity in the thickness direction at the location where the scraping recess is set is clearly There are benefits to be improved.

請求項4の発明によれば、短絡部においては層状構造部の端面が厚み方向で隣る層状構造部に当接するから、その短絡部においては面方向の優れた熱伝導率が厚み方向にも備わった状態となり、厚み方向の熱伝導率を改善することができる。その結果、複数の層状構造部を積層してシート状体を成すようにされた伝熱シートの改良により、厚み方向の良好な熱伝導率と良好な馴染み性とを得て、全体としての熱伝導性能が向上する改善された伝熱シートを提供することができる。   According to the invention of claim 4, since the end face of the layered structure portion abuts on the adjacent layered structure portion in the thickness direction in the short-circuit portion, excellent thermal conductivity in the surface direction is also present in the thickness direction in the short-circuit portion. It becomes an equipped state and can improve the thermal conductivity in the thickness direction. As a result, by improving the heat transfer sheet that is formed by laminating a plurality of layered structures to form a sheet-like body, good heat conductivity in the thickness direction and good familiarity are obtained, and the heat as a whole is obtained. An improved heat transfer sheet with improved conduction performance can be provided.

この場合、請求項5や8のように、厚み方向に延びる孔をシート状体に形成して、孔部位においては層状構造部の端面が折り曲げられて層方向で隣合う層状構造部に当接することとなる短絡部を形成すれば、その孔の部位における厚み方向の熱伝導率が明確に向上するとともに、請求項6のように、層状構造部間に粒状物質が配置された状態で厚み方向に圧縮することで短絡部を形成すれば、厚み方向の熱伝導率がシート状体の特定箇所のみに生じるのではなく、満遍なく改善することができて、平均的に厚み方向の熱伝導率改善が行えるものとなる。また、請求項8では、シート状体への金属箔の埋設により、熱伝導率が面方向及び厚み方向の双方でより改善されるようになる。   In this case, the holes extending in the thickness direction are formed in the sheet-like body as in the fifth and eighth aspects, and the end surface of the layered structure portion is bent at the hole portion and comes into contact with the adjacent layered structure portion in the layer direction. If the short-circuit part to be formed is formed, the thermal conductivity in the thickness direction at the hole portion is clearly improved, and the granular material is arranged between the layered structure parts as in claim 6 in the thickness direction. If the short-circuit part is formed by compressing to a thickness, the thermal conductivity in the thickness direction does not occur only in specific parts of the sheet-like body, but can be improved evenly, improving the thermal conductivity in the thickness direction on average. Can be done. Further, in claim 8, the thermal conductivity is improved in both the surface direction and the thickness direction by embedding the metal foil in the sheet-like body.

以下に、本発明による伝熱シートの実施の形態を、図面を参照しながら説明する。図1〜図3は実施例1による伝熱シートを、図4,5は実施例2による伝熱シートを示し、、図6〜図8は、それぞれ実施例3〜5による伝熱シートを示している。尚、伝熱シートは非常に薄いものであるが、図面理解上、各図においてはシート状体を故意に厚くして描いてある。   Embodiments of a heat transfer sheet according to the present invention will be described below with reference to the drawings. 1 to 3 show a heat transfer sheet according to Example 1, FIGS. 4 and 5 show a heat transfer sheet according to Example 2, and FIGS. 6 to 8 show a heat transfer sheet according to Examples 3 to 5, respectively. ing. Although the heat transfer sheet is very thin, for the purpose of understanding the drawings, in each drawing, the sheet-like body is intentionally made thick.

〔実施例1〕
実施例1による伝熱シートA1を図1に示す。この伝熱シートA1は、膨張黒鉛を主原料として成る層状構造部1を多数有するシート状体(膨張黒鉛シート)2が構成されるとともに、層状構造部1の端面がシート状体2としての表面(扁平面)と同一面となる状態に構成される歪曲部3がシート状体2に形成されて成るものである。歪曲部3は、シート状体2の左右両端面がシート状体2の裏面(底面)2Aと同一面となるように、シート状体2の左右両端部をプレス成形等によって下方に折り曲げることで構成されている(図3参照)。
[Example 1]
A heat transfer sheet A1 according to Example 1 is shown in FIG. This heat transfer sheet A1 is composed of a sheet-like body (expanded graphite sheet) 2 having a large number of layered structure parts 1 mainly composed of expanded graphite, and the end surface of the layered structure part 1 is a surface as a sheet-like body 2. The distortion part 3 comprised in the state which becomes the same surface as (flat surface) is formed in the sheet-like body 2. FIG. The distorted portion 3 is formed by bending the left and right ends of the sheet-like body 2 downward by press molding or the like so that the left and right end faces of the sheet-like body 2 are flush with the back surface (bottom surface) 2A of the sheet-like body 2. It is configured (see FIG. 3).

ここで、膨張黒鉛は、各種シール材等の構成材料として一般的に用いられていた四弗化エチレン樹脂(PTFE、PFA等)やゴムなどに比べて耐熱性や熱伝導性に優れており、近年において多用されつつある公知の材料である。また、膨張黒鉛シートは、膨張させた黒鉛粒子をプレス成形やロール成形により加圧して拡開した蛇腹状の層間(層状構造部1,1間)を再び密着させることで、膨張黒鉛粒子を相互に自己接着してシート状に製造されるものである。つまり、これがシート状体が「互いに同一方向に形成される層状構造部を有する」の意であり、請求項においては「互いに同一方向に形成される」を省略して「層状構造部を有するシート状体……」と表現しても権利範囲上の意味は同じである。尚、前述の製造手段では、表面から内側の各層状構造部は、その表面に露呈されている層状構造部と同一方向に形成されていると見て差し支えなく、請求項においては「表面と同一方向に形成されている層状構造部を有するシート状体……」と表現しても権利範囲上の意味は同じである。   Here, expanded graphite is superior in heat resistance and heat conductivity compared to tetrafluoroethylene resin (PTFE, PFA, etc.) or rubber generally used as a constituent material for various sealing materials, It is a known material that is being used frequently in recent years. In addition, the expanded graphite sheet allows the expanded graphite particles to be brought into close contact with each other by re-adhering the expanded bellows-like layers (between the layered structure portions 1 and 1) that are expanded by press forming or roll forming. It is self-adhesive and is manufactured into a sheet shape. In other words, this means that the sheet-like body has “layered structure portions formed in the same direction as each other”, and in the claims, “formed in the same direction as each other” is omitted and “sheet having layered structure portions” The meaning in the scope of rights is the same even if it is expressed as “like body ...”. In the manufacturing means described above, it can be considered that each layered structure portion inside from the surface is formed in the same direction as the layered structure portion exposed on the surface. Even if it is expressed as “a sheet-like body having a layered structure portion formed in the direction...”, The meaning in the scope of rights is the same.

シート状体2は、図3に示すような方法によって作成される。まず、図3(a)に示すように、密度1.0g/cm3 で平面視が矩形で所定の厚さを有する膨張黒鉛製のシート状体2の左右両端部に、水平面である底面2Aに対して30度の角度が付くように傾斜させた端面(傾斜端面)4を形成する。この端面4の形成手段は問わない。そして、主にシート状体2の左右両端部をプレス器等の加圧力によって下方に押付け、図3(b)に示すように、各端面4,4が底面2Aと同一面となるまでそれら左及び右端部を強制的に折り曲げて左右の歪曲部3,3が形成される。その結果、図1に示す伝熱シートA1が得られるのである。   The sheet-like body 2 is created by a method as shown in FIG. First, as shown in FIG. 3 (a), on the left and right ends of an expanded graphite sheet 2 having a density of 1.0 g / cm @ 3 and rectangular in plan view and having a predetermined thickness, a bottom surface 2A which is a horizontal plane is provided. An end face (inclined end face) 4 is formed so as to be inclined at an angle of 30 degrees. The formation method of this end surface 4 is not ask | required. Then, the left and right end portions of the sheet-like body 2 are mainly pressed downward by the pressing force of a press or the like, and as shown in FIG. In addition, the right and left distortion portions 3 and 3 are formed by forcibly bending the right end portion. As a result, the heat transfer sheet A1 shown in FIG. 1 is obtained.

実施例1の伝熱シートA1の使用例を図2に示す。図2において、11はパワートランジスタ等の発熱体で、12はヒートシンク等の放熱体であり、これら発熱体11と放熱体12との上下間に伝熱シートA1が介装されている。左右の歪曲部3,3においては、端面4,4が放熱体12の上面12aに密着可能に沿った状態になっている。従って、発熱体11から伝熱シートA1に伝達された熱は、シート状体2の底面2Aを介して放熱体12に伝達されるとともに、左右の端面4,4からも放熱体12に伝達される。   The usage example of the heat-transfer sheet | seat A1 of Example 1 is shown in FIG. In FIG. 2, reference numeral 11 denotes a heating element such as a power transistor, and 12 denotes a heat radiator such as a heat sink. A heat transfer sheet A <b> 1 is interposed between the heat generator 11 and the heat radiator 12. In the left and right distorted portions 3, 3, the end surfaces 4, 4 are in a state in which the end surfaces 4, 4 are in close contact with the upper surface 12 a of the radiator 12. Therefore, the heat transmitted from the heat generating body 11 to the heat transfer sheet A1 is transmitted to the heat radiating body 12 through the bottom surface 2A of the sheet-like body 2, and is also transmitted to the heat radiating body 12 from the left and right end surfaces 4 and 4. The

前述したように、膨張黒鉛シートは面方向には優れた熱伝導率を有しているので、所定形状の試料片(30mm×30mm×0.25mm)においては、従来品(左右端面が垂直に切断されたもの)の厚み方向(層方向)の熱伝導率が5.0(W/mK)であったものが、実施例1による伝熱シートA1では7.1(W/mK)に改善されていることが実験データから判った。つまり、シート状体2の左右の端部を下向きに折り曲げる程度の簡単な改造にも拘らず、発熱体11から放熱体12への熱伝導率が明確に改善され、性能向上が図れている。   As described above, the expanded graphite sheet has an excellent thermal conductivity in the surface direction. Therefore, in a sample piece (30 mm × 30 mm × 0.25 mm) having a predetermined shape, the conventional product (the left and right end surfaces are vertical). The heat conductivity in the thickness direction (layer direction) of the cut sheet) was 5.0 (W / mK), but the heat transfer sheet A1 according to Example 1 improved to 7.1 (W / mK). It was found from the experimental data. That is, the thermal conductivity from the heat generating element 11 to the heat radiating body 12 is clearly improved and the performance is improved in spite of the simple modification of bending the left and right end portions of the sheet-like body 2 downward.

例えば、シート状体2の左右端部に加えて前後端部も下方に折り曲げて歪曲部3,3として、放熱体12に対する厚み方向の熱伝導率を改善させるとか、前後の端部を上方に折り曲げての歪曲部3,3として、シート状体2よりも平面視形状が大きい発熱体11に対する厚み方向の熱伝導率を改善させるようにした伝熱シートA1でも良い。また、歪曲部3は、シート状体2の前後方向に貫通形成されず、局部的に形成されるものでも良い。   For example, in addition to the left and right end portions of the sheet-like body 2, the front and rear end portions are also bent downward to form the curved portions 3 and 3 to improve the thermal conductivity in the thickness direction with respect to the radiator 12, or the front and rear end portions upward. As the bent bent portions 3 and 3, the heat transfer sheet A <b> 1 that improves the thermal conductivity in the thickness direction with respect to the heating element 11 having a larger plan view shape than the sheet-like body 2 may be used. Further, the distorted portion 3 may be formed locally rather than penetrating in the front-rear direction of the sheet-like body 2.

〔実施例2〕
実施例2による伝熱シートA2を図4に示す。この伝熱シートA2は、実施例1の伝熱シートA1と同様に、膨張黒鉛を主原料として成る層状構造部21の多数を上下に積層したような状態のシート状体(膨張黒鉛シート)22が構成されるとともに、層状構造部21の端面がシート状体22としての表面(扁平面)22Aと同一面となる状態に構成される歪曲部23がシート状体22に形成されて成るものである。
[Example 2]
A heat transfer sheet A2 according to Example 2 is shown in FIG. Like the heat transfer sheet A1 of Example 1, this heat transfer sheet A2 is a sheet-like body (expanded graphite sheet) 22 in a state in which a large number of layered structure portions 21 made of expanded graphite as a main raw material are stacked one above the other. And a distorted portion 23 is formed on the sheet-like body 22 so that the end surface of the layered structure portion 21 is flush with the surface (flat surface) 22A as the sheet-like body 22. is there.

歪曲部23は、層状構造部22の断層が露呈されるようにシート状体22の裏面(底面)22Aの表面に抉り取り凹部24が形成されている状態のシート状体22の全体をその厚み方向に圧縮することにより、抉り取り凹部24の凹表面24aを底面22Aと同一面となるように変形させて馴染ませることで構成されている。その作成方法(製造方法)は次のようである。   The distorted portion 23 has the entire thickness of the sheet-like body 22 in a state where the recess 24 is formed on the surface of the back surface (bottom face) 22A of the sheet-like body 22 so that the fault of the layered structure portion 22 is exposed. By compressing in the direction, the concave surface 24a of the scraping concave portion 24 is deformed so as to be flush with the bottom surface 22A and is adapted. The preparation method (manufacturing method) is as follows.

まず、図5(a)に示すように、密度0.8g/cm3 で平面視が矩形で厚さDを有する膨張黒鉛製のシート状体22の底面22Aの複数箇所(例:左右に計二箇所)に、上方に円弧形状で凹入する幅2mm程度の抉り取り凹部24を前後方向に貫通する状態で形成する。そして、シート状体2の全体をプレス器等の加圧力によって下方に強力に押付けて、図5(b)に示すように、抉り取り凹部24の凹表面24aが底面22Aと同一平面となる所定の厚さdまで圧縮変形させ、左右の二箇所に歪曲部23,23が作成される。圧縮変形後のシート状体22の密度は1.0g/cm3 であった。その結果、図4に示す伝熱シートA2が得られるのである。   First, as shown in FIG. 5 (a), a plurality of locations (for example, two on the left and right sides) of the bottom surface 22A of the expanded graphite sheet-like body 22 having a density of 0.8 g / cm 3, a rectangular plan view, and a thickness D. In a place), a scraping recess 24 having a width of about 2 mm that is recessed upward in an arc shape is formed in a state of penetrating in the front-rear direction. Then, the entire sheet-like body 2 is strongly pressed downward by a pressing force of a press or the like, and as shown in FIG. 5B, the concave surface 24a of the scraping concave portion 24 is a predetermined plane that is flush with the bottom surface 22A. The thickness is d and compressed, and the distorted portions 23 and 23 are created at two locations on the left and right. The density of the sheet-like body 22 after compression deformation was 1.0 g / cm 3. As a result, the heat transfer sheet A2 shown in FIG. 4 is obtained.

各歪曲部23,23においては、薄膜シート体1としての端面(断層面)が底面22Aと同一面に形成されるので、専用の図示は省略するが、例えば図2に示す放熱体12に対する熱伝導率が格段に向上することが知見された。即ち、所定形状の試料片(30mm×30mm×0.25mm)においては、実施例2による伝熱シートA2では、5.0(W/mK)から13.3(W/mK)に大きく改善されている。つまり、シート状体2の底面側の左右二箇所に溝状の抉り取り凹部24を形成して厚み方向に圧縮させる程度の改造にも拘らず、熱伝導媒体としての熱伝導率が飛躍的に改善され、抜群の性能向上が図れる伝熱シートA2を提供できている。   In each of the distorted portions 23, 23, the end surface (tomographic surface) as the thin film sheet body 1 is formed on the same surface as the bottom surface 22A. It has been found that the conductivity is remarkably improved. That is, the sample piece (30 mm × 30 mm × 0.25 mm) having a predetermined shape is greatly improved from 5.0 (W / mK) to 13.3 (W / mK) in the heat transfer sheet A2 according to Example 2. ing. That is, despite the modification to the extent that the groove-shaped scraping recess 24 is formed at the two left and right sides of the bottom surface side of the sheet-like body 2 and compressed in the thickness direction, the thermal conductivity as the heat conduction medium is dramatically increased. It is possible to provide the heat transfer sheet A2 that has been improved and can achieve outstanding performance improvement.

上述したように、実施例1や実施例2の伝熱シートA1,A2においては、面方向に伝熱している熱流束を厚み方向に転換して伝熱面(底面2A,22Aや放熱体12の上面12a等)に伝達させることができるので、厚み方向の熱伝導率を大きく改善することが可能になる。そして、例えば発熱体や放熱体における局部的に伝熱量の大きな部分があるときには、その発熱又は放熱の大きな部分に歪曲部3,23を合致させるという設計が可能になり、一層効率良く熱伝達させることができる伝熱シートを提供し得る利点がある。   As described above, in the heat transfer sheets A1 and A2 of the first and second embodiments, the heat flux transferred in the surface direction is changed in the thickness direction to change the heat transfer surface (the bottom surfaces 2A and 22A and the radiator 12). Therefore, the thermal conductivity in the thickness direction can be greatly improved. For example, when there is a portion with a large amount of heat transfer locally in the heat generating body or the heat radiating body, the design can be made such that the distorted portions 3 and 23 are matched with the portion where the heat generation or heat dissipation is large, and heat can be transmitted more efficiently. There is an advantage that can provide a heat transfer sheet that can.

厚み方向の熱伝導率が改善されるので、厚みを増して発熱体や放熱体の表面の凹凸、起伏を吸収できて優れた馴染み性を確保することができる。これにより、熱伝導率がさらに向上する二次効果も得られる。面方向で良好な熱伝導率(例:150W/mK)と、厚み方向で劣る熱伝導率(例:5W/mK)という伝熱特性差を小さくすることができる。従って、膨張黒鉛の持つ面方向の優れた熱伝導率を、従来に比べて有効に活用することができ、優れた熱伝導率を有する伝熱シートA1,A2を提供することができる。   Since the thermal conductivity in the thickness direction is improved, the thickness can be increased to absorb irregularities and undulations on the surface of the heating element and the heat radiating body, and excellent conformability can be ensured. Thereby, the secondary effect which thermal conductivity further improves is also acquired. It is possible to reduce a difference in heat transfer characteristics between a good thermal conductivity in the plane direction (example: 150 W / mK) and a poor thermal conductivity in the thickness direction (example: 5 W / mK). Therefore, the thermal conductivity excellent in the surface direction of the expanded graphite can be effectively utilized as compared with the conventional case, and the heat transfer sheets A1 and A2 having excellent thermal conductivity can be provided.

例えば、圧縮成形前において、予め抉り取り凹部24をシート状体22の上下複数箇所に形成しておいて、歪曲部23がシート状体22の上下に形成して、発熱体及び放熱体のいずれに対しても厚み方向の熱伝導率が改善される構造の伝熱シートA2でも良い。また、抉り取り凹部24による歪曲部23は、シート状体22の前後方向に貫通しない局部的なものであっても良い。さらに、図2に示す伝熱シートA1において、抉り取り凹部24に起因する湾曲部23が、シート状体2の上面に面一となる状態で追加形成された構成とすることも自在である。   For example, before the compression molding, the scraping recesses 24 are formed in advance at a plurality of positions above and below the sheet-like body 22, and the distortion portions 23 are formed above and below the sheet-like body 22. Alternatively, the heat transfer sheet A2 having a structure in which the thermal conductivity in the thickness direction is improved may be used. Further, the distorted portion 23 formed by the scraping recess 24 may be a local portion that does not penetrate the sheet-like body 22 in the front-rear direction. Further, in the heat transfer sheet A1 shown in FIG. 2, a configuration in which a curved portion 23 caused by the scraping recess 24 is additionally formed on the upper surface of the sheet-like body 2 is also possible.

〔実施例3〕
実施例3による伝熱シートA3を図6に示す。この伝熱シートA3は、複数の層状構造部31を有するシート状体32が構成されるとともに、層方向で隣合う層状構造部31どうしのうちの少なくとも一方の層状構造部31の端面31aが他方の層状構造部31に当接する状態の短絡部33が形成されて成るものである。短絡部33は、シート状体32にその厚み方向に延びる比較的小径の孔34を機械的に形成することにより、孔34部位においては層方向で隣合う層状構造部31どうしのうちの少なくとも一方の層状構造部31の端面が折り曲げられて他方の層状構造部31に当接する手段に構成されている。
Example 3
A heat transfer sheet A3 according to Example 3 is shown in FIG. In the heat transfer sheet A3, a sheet-like body 32 having a plurality of layered structure parts 31 is configured, and the end surface 31a of at least one of the layered structure parts 31 adjacent to each other in the layer direction is the other. The short-circuit part 33 in a state of contacting the layered structure part 31 is formed. The short-circuit portion 33 is formed by mechanically forming a relatively small diameter hole 34 extending in the thickness direction in the sheet-like body 32, so that at least one of the layered structure portions 31 adjacent in the layer direction at the hole 34 portion. The end surface of the layered structure portion 31 is bent to contact the other layered structure portion 31.

例えば、図6に仮想線で示すように、先の尖った棒状の穿孔部材35をシート状体32に厚み方向に突き刺すことで孔34を形成する手段が考えられる。上から下方に突き刺した場合、層状構造部31における破れて下方に折れ曲ったバーリング部分31bの端面がその下側の層状構造部31のバーリング部分31bの根元部分に接触するような状況になるのである。下から上方に突き刺すことによる孔34を形成しても良い。孔34の部位においては厚み方向の熱伝導率が改善されるので、特に発熱又は放熱させたい箇所に孔34が一するように設定すれば、さらに効率良く熱伝達させることが可能になる。また、孔34の数が増えれば増えるほど厚み方向の熱伝導率を改善することが可能になる。   For example, as shown by phantom lines in FIG. 6, there can be considered a means for forming the hole 34 by piercing the pointed bar-shaped perforating member 35 into the sheet-like body 32 in the thickness direction. When stabbed downward from above, the end surface of the burring portion 31b that is broken and bent downward in the layered structure portion 31 comes into contact with the root portion of the burring portion 31b of the lower layered structure portion 31. is there. You may form the hole 34 by piercing from the bottom upwards. Since the thermal conductivity in the thickness direction is improved at the portion of the hole 34, heat can be more efficiently transferred if the hole 34 is set so as to be aligned with a portion where heat generation or heat dissipation is particularly desired. Further, as the number of holes 34 increases, the thermal conductivity in the thickness direction can be improved.

実例としては、厚みが0,25mmで膨張黒鉛シートによる層状構造部31を、厚み方向にニードル加工することで多数の貫通する孔34を形成し、層間(層状構造部間)を短絡させることができた。尚、孔34の数、深さ、穿孔方向(垂直、斜め)等は、伝熱シートA3の使用箇所、温度条件等の種々の諸条件に応じて適宜に設定することが自在である。   As an example, a layered structure 31 made of an expanded graphite sheet with a thickness of 0.25 mm is needle processed in the thickness direction to form a large number of through holes 34, and the layers (between the layered structures) are short-circuited. did it. Note that the number, depth, perforation direction (vertical, oblique), and the like of the holes 34 can be set as appropriate according to various conditions such as the location where the heat transfer sheet A3 is used and temperature conditions.

〔実施例4〕
実施例4による伝熱シートA4を図7に示す。この伝熱シートA4は、実施例3のシート状体32の上下中間に金属箔44が埋設されている以外は同じであり、異なる点について記載する。即ち、シート状体42は、層方向で隣合う層状構造部31どうしの間に金属箔44が介装されたものであり、上下向きの孔34が金属箔44を貫く状態に形成されて伝熱シートA4が構成されている。金属箔44における折れ曲ったバーリング部分44bの端面は、上下で相隣る層状構造部31に接触して短絡部33を構成している。金属箔44部位においては、厚み方向の熱伝導率改善効果をより明確に得ることができる。
Example 4
A heat transfer sheet A4 according to Example 4 is shown in FIG. This heat transfer sheet A4 is the same except that the metal foil 44 is embedded in the upper and lower middle of the sheet-like body 32 of Example 3, and different points will be described. That is, the sheet-like body 42 is configured such that the metal foil 44 is interposed between the layer structure portions 31 adjacent in the layer direction, and the vertically oriented holes 34 are formed so as to penetrate the metal foil 44. A thermal sheet A4 is configured. The end surface of the bent burring portion 44b in the metal foil 44 is in contact with the layered structure portions 31 adjacent to each other at the top and bottom to form a short circuit portion 33. In the metal foil 44 region, the effect of improving the thermal conductivity in the thickness direction can be obtained more clearly.

実例としては、厚みが0.125mmの膨張黒鉛シートの2枚の中間に50μmのアルミ箔44を配置及び積層して、シート状体42を作成し、それからニードル加工を施して中間層のアルミ箔44の破り(爪たて)部分(短絡部33)を多数形成して層状構造部31,31間を短絡させる(膨張黒鉛の配向層間を短絡)。   As an example, an aluminum foil 44 having a thickness of 50 μm is disposed and laminated between two sheets of an expanded graphite sheet having a thickness of 0.125 mm to form a sheet-like body 42, which is then subjected to needle processing to form an aluminum foil as an intermediate layer. A number of torn 44 (short-circuited portions) 44 are formed to short-circuit the layered structure portions 31 and 31 (short-circuit the orientation layers of expanded graphite).

〔実施例5〕
実施例5による伝熱シートA5を図8に示す。この伝熱シートA5は、短絡部33が、層方向で隣合う層状構造部51どうしの間に粒状物質(例:鋼球54を介装させた状態で厚み方向に圧縮することで部分的に層状構造部51を破り、その破られた部位においては層方向で隣合う層状構造部51どうしのうちの少なくとも一方の層状構造部51の端面が他方の層状構造部51に当接する手段に構成されている。つまり、シート状体52においては、粒状物質54によって破られて形成される破砕部51bの端面が、上下で相隣る層状構造部51に接触するようになり、それによって厚み方向の熱伝導率が大きく向上するようになる。
Example 5
A heat transfer sheet A5 according to Example 5 is shown in FIG. In the heat transfer sheet A5, the short circuit portion 33 is partially compressed by compressing in the thickness direction in a state in which the granular materials (eg, steel balls 54 are interposed) between the layered structure portions 51 adjacent in the layer direction. The layered structure portion 51 is broken, and at the broken portion, at least one of the layered structure portions 51 adjacent to each other in the layer direction is configured as means for abutting the other layered structure portion 51. That is, in the sheet-like body 52, the end face of the crushing part 51b formed by being broken by the granular material 54 comes into contact with the adjacent layered structure parts 51 in the upper and lower sides, and thereby, in the thickness direction. Thermal conductivity is greatly improved.

実例としては、膨張処理した黒鉛と金属粒子とを混合した後、加圧して厚さ0.25mmの膨張黒鉛シートを製造した。この実施例5の伝熱シートA5では、金属粒子(鋼球)を多く混ぜることで伝熱シートの種々の箇所において厚み方向の熱伝導率が改善されるので、全体的に満遍なく厚み方向の熱伝導率が改善される伝熱シートA5とすることができる。尚、シート状体2としては、複数の薄膜シート材を積層して成るものでも良く、その場合には「層状構造部」を「薄膜シート材」と読み換えるものとする。   As an example, expanded graphite and metal particles were mixed and then pressed to produce an expanded graphite sheet having a thickness of 0.25 mm. In the heat transfer sheet A5 of Example 5, the heat conductivity in the thickness direction is improved at various locations of the heat transfer sheet by mixing a large amount of metal particles (steel balls). It can be set as the heat-transfer sheet A5 in which conductivity is improved. The sheet-like body 2 may be formed by laminating a plurality of thin film sheet materials. In this case, the “layered structure portion” is read as “thin film sheet material”.

実施例1による伝熱シートを示す斜視図The perspective view which shows the heat-transfer sheet | seat by Example 1. 図1の伝熱シートの使用例を示す斜視図The perspective view which shows the usage example of the heat-transfer sheet | seat of FIG. (a),(b)は図1の伝熱シートの製造方法を示す各工程図(A), (b) is each process drawing which shows the manufacturing method of the heat-transfer sheet | seat of FIG. 実施例2による伝熱シートを示す斜視図The perspective view which shows the heat-transfer sheet | seat by Example 2. (a),(b)は図4の伝熱シートの製造方法を示す各工程図(A), (b) is each process drawing which shows the manufacturing method of the heat-transfer sheet | seat of FIG. 実施例3による伝熱シートを示す断面図Sectional drawing which shows the heat-transfer sheet | seat by Example 3 実施例4による伝熱シートを示す断面図Sectional drawing which shows the heat-transfer sheet | seat by Example 4. 実施例5による伝熱シートを示す断面図Sectional drawing which shows the heat-transfer sheet | seat by Example 5.

符号の説明Explanation of symbols

1,21,31,51 層状構造部
2,22,32 シート状体
3,23 歪曲部
22A シート状体の表裏何れかの面
24 抉り取り凹部
24a 凹表面
33 短絡部
34 孔
44 金属箔
51b 破られた部位
54 粒状物質
A1〜A5 伝熱シート
1, 21, 31, 51 Layered structure portion 2, 22, 32 Sheet-like body 3, 23 Distorted portion 22A Either front or back surface of sheet-like body 24 Scraping recess 24a Concave surface 33 Short-circuit portion 34 Hole 44 Metal foil 51b Break Part 54 granular material A1-A5 heat transfer sheet

Claims (8)

互いに同一方向に形成される層状構造部を有するシート状体から成るとともに、前記層状構造部の端面が前記シート状体としての表面と同一面となる状態に構成される歪曲部が前記シート状体に形成されている伝熱シート。   The sheet-like body is formed of a sheet-like body having layered structure portions formed in the same direction, and the distortion portion is configured such that an end surface of the layered structure portion is flush with the surface of the sheet-like body. Heat transfer sheet formed on. 前記歪曲部が、前記シート状体の端面が前記シート状体の表裏何れかの表面と同一面となるように、前記シート状体の端部を折り曲げることで構成されている請求項1に記載の伝熱シート。   The said distortion part is comprised by bend | folding the edge part of the said sheet-like body so that the end surface of the said sheet-like body may become the same surface as the surface of either the front or back of the said sheet-like body. Heat transfer sheet. 前記歪曲部が、前記薄膜シート材の断層が露呈されるように前記シート状体の表裏何れかの面に抉り取り凹部が形成されている状態の前記シート状体の全体をその厚み方向に圧縮することにより、前記抉り取り凹部の凹表面を前記何れかの面と同一面となるように馴染ませることで構成されている請求項1に記載の伝熱シート。   The distortion portion compresses the entire sheet-like body in the thickness direction in a state in which a recess is formed on either the front or back surface of the sheet-like body so that a fault of the thin-film sheet material is exposed. The heat transfer sheet according to claim 1, wherein the heat transfer sheet is configured by adjusting the concave surface of the scraping recess so as to be flush with any one of the surfaces. 互いに同一方向に形成される層状構造部を有するシート状体から成るとともに、層方向で隣合う前記層状構造部どうしのうちの少なくとも一方の層状構造部の端面が他方の層状構造部に当接する状態の短絡部が形成されている伝熱シート。   A state in which the end surfaces of at least one layered structure part of the layered structure parts adjacent to each other in the layer direction are in contact with the other layered structure part. The heat transfer sheet in which the short circuit part is formed. 前記短絡部が、前記シート状体にその厚み方向に延びる孔を機械的に形成することにより、前記孔部位においては層方向で隣合う前記層状構造部どうしのうちの少なくとも一方の層状構造部の端面が折り曲げられて他方の層状構造部に当接する手段に構成されている請求項4に記載の伝熱シート。   The short-circuit portion mechanically forms a hole extending in the thickness direction in the sheet-like body, whereby at least one of the layered structure portions adjacent to each other in the layer direction in the hole portion. The heat transfer sheet according to claim 4, wherein the heat transfer sheet is configured as a means in which an end surface is bent and abuts against the other layered structure portion. 前記短絡部が、層方向で隣合う前記層状構造部どうしの間に粒状物質を介装させた状態で厚み方向に圧縮することで部分的に前記層状構造部を破り、その破られた部位においては層方向で隣合う前記層状構造部どうしのうちの少なくとも一方の層状構造部の端面が他方の層状構造部に当接する手段に構成されている請求項4に記載の伝熱シート。   In the broken part, the short circuit part partially breaks the layered structure part by compressing in the thickness direction in a state in which the granular material is interposed between the layered structure parts adjacent in the layer direction. 5. The heat transfer sheet according to claim 4, wherein the end surface of at least one of the layered structure portions adjacent to each other in the layer direction is configured to be in contact with the other layered structure portion. 前記層状構造部が、膨張黒鉛、金属箔、合成樹脂のうちの何れか一つの材料から形成されている請求項1〜6の何れか一項に記載の伝熱シート。   The heat transfer sheet according to any one of claims 1 to 6, wherein the layered structure portion is formed of any one material of expanded graphite, metal foil, and synthetic resin. 前記シート状体が、層方向で隣合う前記層状構造部どうしの間に金属箔が介装されたものであり、前記孔が前記金属箔を貫く状態に形成されている請求項5に記載の伝熱シート。
6. The sheet-like body according to claim 5, wherein a metal foil is interposed between the layered structures adjacent to each other in the layer direction, and the hole is formed so as to penetrate the metal foil. Heat transfer sheet.
JP2005235600A 2005-08-16 2005-08-16 Heat transfer sheet and method of manufacturing heat transfer sheet Expired - Fee Related JP4168047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235600A JP4168047B2 (en) 2005-08-16 2005-08-16 Heat transfer sheet and method of manufacturing heat transfer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235600A JP4168047B2 (en) 2005-08-16 2005-08-16 Heat transfer sheet and method of manufacturing heat transfer sheet

Publications (2)

Publication Number Publication Date
JP2007053145A true JP2007053145A (en) 2007-03-01
JP4168047B2 JP4168047B2 (en) 2008-10-22

Family

ID=37917407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235600A Expired - Fee Related JP4168047B2 (en) 2005-08-16 2005-08-16 Heat transfer sheet and method of manufacturing heat transfer sheet

Country Status (1)

Country Link
JP (1) JP4168047B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166959A1 (en) * 2015-04-13 2016-10-20 パナソニックIpマネジメント株式会社 Heat conduction sheet and manufacturing method for same
JP2019041069A (en) * 2017-08-29 2019-03-14 日本ピラー工業株式会社 Thermally conductive molded article
JP2019079880A (en) * 2017-10-23 2019-05-23 富士通オプティカルコンポーネンツ株式会社 Electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036441U (en) * 1989-06-02 1991-01-22
JPH03200397A (en) * 1989-12-27 1991-09-02 Tokai Rubber Ind Ltd Heat dissipation sheet
JPH0514734U (en) * 1991-08-12 1993-02-26 石川ガスケツト株式会社 Metal core type gasket
JP2002093967A (en) * 2000-09-14 2002-03-29 Kitagawa Ind Co Ltd Thermal conducting member
JP2004022828A (en) * 2002-06-17 2004-01-22 Mitsubishi Electric Corp Composite material heat dissipating substrate
WO2004031497A2 (en) * 2002-09-30 2004-04-15 Advanced Energy Technology Inc. Graphite article useful as a fuel cell component substrate
WO2005019132A1 (en) * 2003-08-26 2005-03-03 Matsushita Electric Industrial Co., Ltd. Highly heat-conductive member, method for producing same, and heat dissipating system using same
JP2005272164A (en) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd High thermal conductive member, method of manufacturing the same and heat radiation system using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036441U (en) * 1989-06-02 1991-01-22
JPH03200397A (en) * 1989-12-27 1991-09-02 Tokai Rubber Ind Ltd Heat dissipation sheet
JPH0514734U (en) * 1991-08-12 1993-02-26 石川ガスケツト株式会社 Metal core type gasket
JP2002093967A (en) * 2000-09-14 2002-03-29 Kitagawa Ind Co Ltd Thermal conducting member
JP2004022828A (en) * 2002-06-17 2004-01-22 Mitsubishi Electric Corp Composite material heat dissipating substrate
WO2004031497A2 (en) * 2002-09-30 2004-04-15 Advanced Energy Technology Inc. Graphite article useful as a fuel cell component substrate
WO2005019132A1 (en) * 2003-08-26 2005-03-03 Matsushita Electric Industrial Co., Ltd. Highly heat-conductive member, method for producing same, and heat dissipating system using same
JP2005272164A (en) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd High thermal conductive member, method of manufacturing the same and heat radiation system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166959A1 (en) * 2015-04-13 2016-10-20 パナソニックIpマネジメント株式会社 Heat conduction sheet and manufacturing method for same
JP2019041069A (en) * 2017-08-29 2019-03-14 日本ピラー工業株式会社 Thermally conductive molded article
JP2019079880A (en) * 2017-10-23 2019-05-23 富士通オプティカルコンポーネンツ株式会社 Electronic device
JP7027801B2 (en) 2017-10-23 2022-03-02 富士通オプティカルコンポーネンツ株式会社 Electronics

Also Published As

Publication number Publication date
JP4168047B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US7200006B2 (en) Compliant thermal interface for electronic equipment
JP5249505B2 (en) Heat spreader with thermal vias
KR20160005081A (en) Thermal interface material pad and method of forming the same
US20090195989A1 (en) Heat sink component and a method of producing a heat sink component
US20070267177A1 (en) Juxtaposing Structure For Heated Ends Of Heat Pipes
JPWO2014020704A1 (en) Power semiconductor device
JP4168047B2 (en) Heat transfer sheet and method of manufacturing heat transfer sheet
JP2005033157A (en) Radiator and its manufacturing method
JP4430523B2 (en) Thermal diffusion sheet
JP2006328213A (en) Heat-conductive sheet
JP6421555B2 (en) Electronics
JP2007049053A (en) Heat transfer sheet
TWM416308U (en) Fin type heat sink fastening structure
WO2011067840A1 (en) Solar cell module manufacturing device
JP5367287B2 (en) Heat transfer components and electronic equipment
CN215222589U (en) Heat-dissipation and pressure-resistant PCB (printed circuit board) and electronic equipment
JP2010129954A (en) Heat dissipating structure
JP2015002623A (en) Thermal conductive sheet, circuit constituent and electric connection box
JP5018195B2 (en) Heat dissipation device
JP2008123851A (en) Contact
US20090033006A1 (en) Processing method for graphite piece
JP2008103595A (en) Semiconductor module, and heat dissipation plate for semiconductor module
JP3077725U (en) Fixing structure of high-density heat radiation fins
JP2017063070A (en) Wiring board
TWM360549U (en) Heat-dissipating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees