以下、建設機械として大型の油圧ショベルを例に挙げ、本発明の実施の形態を図面を参照して説明する。なお、各図中、同等の部材には同一の符号を付し、重複した説明は適宜省略する。
図1は、本発明の第1の実施例に係る油圧ショベルを示す側面図である。
図1において、油圧ショベル100は、左右方向の両側にクローラ式の走行装置8a,8bを備えた下部走行体103と、下部走行体103上に旋回可能に取り付けられた本体としての上部旋回体102とを備えている。上部旋回体102上には、オペレータが搭乗する操作室としてのキャブ101が設けられている。下部走行体103と上部旋回体102とは、油圧アクチュエータとしての旋回モータ7を介して旋回可能とされている。
上部旋回体102の前側には、例えば掘削作業等を行うための作動装置であるフロント作業機104の基端部が回動可能に取り付けられている。ここで、前側とは、キャブ101に搭乗する操作者が向く方向(図1中の左方向)をいう。
フロント作業機104は、上部旋回体102の前側に基端部が俯仰動可能に連結されたブーム2を備えている。ブーム2は、片ロッド式油圧シリンダであるブームシリンダ1を介して動作する。ブームシリンダ1のシリンダロッド1bの先端部は上部旋回体102に連結され、ブームシリンダ1のシリンダヘッド1aの基端部はブーム2に連結されている。ブーム2の先端部には、アーム4の基端部が上下方向に回動可能に連結されている。アーム4は、片ロッド式油圧シリンダである油圧アクチュエータとしてのアームシリンダ3を介して動作する。アームシリンダ3のシリンダロッド3bの先端部はアーム4に連結され、アームシリンダ3のシリンダヘッド3aの基端部はブーム2に連結されている。アーム4の先端部には、バケット6の基端部が上下方向に回動可能に連結されている。バケット6は、片ロッド式油圧シリンダであるバケットシリンダ5を介して動作する。バケットシリンダ5のシリンダロッド5bの先端部はバケット6に連結され、バケットシリンダ5のシリンダヘッド5aの基端部はアーム4に連結されている。
キャブ101には、フロント作業機104を構成するブーム2、アーム4およびバケット6を操作するための操作部材であるブームレバー34a(図2に示す)、アームレバー34b(図2に示す)およびバケットレバー(図示せず)が配置されている。
図2は、油圧ショベル100に搭載された油圧システムの構成を示す概略図である。なお、図2では、説明の簡略化のため、ブームシリンダ1およびアームシリンダ3の駆動に関わる部分のみを示し、その他の油圧アクチュエータの駆動に関わる部分は省略している。
図2において、油圧システム200は、両傾転型の油圧ポンプ(以下「閉回路ポンプ」という。)35,36と、複数の油圧アクチュエータ1,3と、前記複数の油圧アクチュエータに対応した複数の操作レバー34a,34bと、複数の閉回路ポンプ35,36のそれぞれを複数の油圧アクチュエータ1,3のうちの1つに閉回路接続可能とした複数の切換弁37〜40と、複数の操作レバー34a,34bの操作に応じて複数の切換弁37〜40の開閉制御および複数の閉回路ポンプ35,36の流量制御を行う車体制御コントローラ11と、後述の弁装置制御コントローラ33とを備えている。
閉回路ポンプ35,36は、エンジン9からそれぞれ伝達装置10を介して動力を受けて駆動される。閉回路ポンプ35,36はそれぞれ流量調整手段として一対の入出力ポートを持つ傾転斜板機構(図示せず)と、斜板の傾斜角を調整してポンプ押しのけ容積を調整するレギュレータ35a,36aとを備えている。レギュレータ35a,36aは、車体制御コントローラ11から受信したポンプ吐出流量指令値に基づき、閉回路ポンプ35,36の吐出流量と吐出方向を制御する。
切換弁37〜40は、車体制御コントローラ11から受信した制御信号に応じて開閉し、閉回路ポンプ35,36をそれぞれブームシリンダ1またはアームシリンダ3に閉回路接続する。
切換弁37が開いているときは、同一の閉回路ポンプ35に接続されている他の切換弁38は閉じられ、閉回路ポンプ35の一方の吐出ポートは流路20,21を介してブームシリンダ1のシリンダロッド1bに接続され、他方の吐出ポートは流路22,23を介してブームシリンダ1のシリンダヘッド1aに接続されることにより、流路20,21,23,24は閉回路を形成する。一方、切換弁38が開いているときは、同一の閉回路ポンプ35に接続されている他の切換弁37は閉じられ、閉回路ポンプ35の一方の吐出ポートは流路20,28,25を介してアームシリンダ3のシリンダヘッド3aに接続され、他方の吐出ポートは流路22,29,27を介してアームシリンダ3のシリンダロッド3bに接続されることにより、流路20,28,25,27,29,22は閉回路を形成する。
同様に、切換弁40が開いているときは、同一の閉回路ポンプ36に接続されている他の切換弁39は閉じられ、閉回路ポンプ36の一方の吐出ポートは流路24,25を介してアームシリンダ3のシリンダヘッド3aに接続され、他方の吐出ポートは流路26,27を介してアームシリンダ3のシリンダロッド3bに接続されることにより、流路24,25,27,26は閉回路を形成する。一方、切換弁39が開いているときは、同一の閉回路ポンプ36に接続されている他の切換弁40は閉じられ、閉回路ポンプ36の一方の吐出ポートは流路24,30,21を介してアームシリンダ3のシリンダロッド1bに接続され、他方の吐出ポートは流路26,31,23を介してブームシリンダ1のシリンダヘッド1aに接続されることにより、流路24,30,21,23,31,26は閉回路を形成する。
切換弁37は、電磁弁37aとポペット弁37b,37cとを備えている。電磁弁37aは、バネ力によって閉側に付勢されており、車体制御コントローラ11から受信した制御信号(開信号または閉信号)に応じて開閉し、ポペット弁37b,37cのパイロット室をパイロット油圧源41またはタンク32に接続する。電磁弁37aに閉信号が入力された場合は、ポペット弁37b,37cのパイロット室がタンク32に接続されて低圧となり、ポペット弁37b,37cがバネ力によって閉側に駆動され、流路20,21と流路22,23とが切断される。電磁弁37aに開信号が入力された場合は、ポペット弁37b,37cのパイロット室がパイロット油圧源41に接続されて高圧となり、ポペット弁37b,37cが開側に駆動され、流路20,21と流路22,23とが流通状態となる。切換弁38〜40については、切換弁37と同様であるため、説明を省略する。なお、本実施例ではパイロット油圧源および電磁弁を用いてポペット弁を駆動する切換弁を一例として用いたが、電気信号で流路を開閉する電磁弁のみで構成してもよい。
車体制御コントローラ11は、操作レバーとしてのブームレバー34aおよびアームレバー34bに信号線を介して接続され、切換弁37〜40内部の電磁弁37a〜40aに制御信号線を介して接続されている。
車体制御コントローラ11は、情報取得部11aと、車体制御演算部11bと、バルブ信号出力部11cと、ポンプ信号出力部11dとを備えている。情報取得部11aは、ブームレバー34aおよびアームレバー34bの操作量を検出する。
車体制御演算部11bは、ブームレバー34aおよびアームレバー34bの操作量に基づき、閉回路ポンプ35,36とブームシリンダ1およびアームシリンダ3との接続を決定する。この状態で、例えばブームレバー34aの操作量が最大操作量の半分以下の場合は、閉回路ポンプ35のみがブームシリンダ1に接続されるように、切換弁37を開きかつ切換弁38を閉じることを決定し、閉回路ポンプ35のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定する。また、ブームレバー34aの操作量が最大操作量の半分を超える場合は、閉回路ポンプ35,36がブームシリンダ1に接続されるように、切換弁37,39を開くことを決定し、閉回路ポンプ35,36のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定する。ブームレバー34aおよびアームレバー34bが操作された場合は、閉回路ポンプ35がブームシリンダ1に接続されかつ閉回路ポンプ36がアームシリンダ3に接続されるように、切換弁37,40を開きかつ切換弁38,39を閉じることを決定し、閉回路ポンプ35,36のポンプ吐出流量指令値をそれぞれブームレバー34aおよびアームレバー34bの操作量に応じた値に設定する。閉回路ポンプ35,36の吐出方向は、ブームレバー34aおよびアームレバー34bの操作方向によって決定される。
バルブ信号出力部11cは、車体制御演算部11bが決定した切換弁37〜40の開閉情報に基づき、切換弁37〜40に制御信号を出力し、切換弁37〜40を開閉制御する。ポンプ信号出力部11dは、車体制御演算部11bが設定したポンプ吐出流量指令値に基づき、レギュレータ35a,36bに制御信号を出力し、閉回路ポンプ35,36の吐出流量および吐出方向を制御する。
流路21,23にはフラッシング弁46aが接続されており、流路21,23のうち圧力の低い方の流路をタンク32に接続する。また、流路25,27にはフラッシング弁46bが接続されており、流路25,27のうち圧力の低い方の流路をタンク32に接続する。フラッシング弁46a,46bはそれぞれの閉回路の余剰作動油をタンク32に排出する機能と、閉回路の不足作動油をタンク32から吸入する機能とを備える。
次に、本実施例における本発明に関わる構成について説明する。
切換弁37〜40には、それぞれの開閉状態を検出する第1検出装置として、第1〜第4パイロット圧センサ37d〜40dが設けられている。第1〜第4パイロット圧センサ37d〜40dは、弁装置制御コントローラ33に信号線を介して接続されている。例えば切換弁37を一例に説明すると、パイロット圧センサ37dは、電磁弁37aとポペット弁37b,37cとを接続する流路に設けられ、電磁弁37aから出力されるパイロット圧を検出する。電磁弁37aに閉信号が入力されているときは、パイロット圧センサ37dはタンク32に接続されるため、パイロット圧センサ37dの低圧が検出される。一方、電磁弁37aに開信号が入力されているときは、パイロット圧センサ37dはパイロット油圧源41に接続されるため、パイロット圧センサ37dの高圧が検出される。切換弁38〜40においても、第2〜第4パイロット圧センサ38d〜40dは、それぞれ同様の流路に設けられている。なお、本実施例では、第1検出装置を第1〜第4パイロット圧センサ37d〜40dで構成したが、例えば切換弁が電磁弁の場合、電磁弁の弁体の移動量を計測するストロークセンサなどで構成してもよい。
ブームレバー34aおよびアームレバー34bには、それぞれ第1および第2中立検出スイッチ62a,62bが設けられている。第1および第2中立検出スイッチ62a,62bは、ブームレバー34aおよびアームレバー34bの非操作状態(中立)または操作状態(非中立)を検出する。ブームレバー34aおよびアームレバー34bがそれぞれ中立の場合、第1および第2中立検出スイッチ62a,62bはそれぞれ0を出力する。一方、ブームレバー34aおよびアームレバー34bがそれぞれ非中立の場合、第1および第2中立検出スイッチ62a,62bはそれぞれ1を出力する。
弁装置制御コントローラ33は、第1および第2中立検出スイッチ62a,62bおよび第1〜第4パイロット圧センサ37d〜40dに信号線を介して接続され、第1および第2バルブ全閉スイッチ50,51に制御信号を介して接続されている。弁装置制御コントローラ33は、操作量検出部33aと、バルブ状態検出部33bと、故障判定部33cと、信号生成部33dとを備えている。
図3は、弁装置制御コントローラ33の構成を示すブロック図である。
図3において、操作量検出部33aは、第1および第2中立検出スイッチ62a,62bからブームレバー34aとアームレバー34bの操作(非中立)または非操作(中立)を検出する。バルブ状態検出部33bは、第1〜第4パイロット圧センサ37d〜40dの圧力を検出する。故障判定部33cは、操作量検出部33aおよびバルブ状態検出部33bからの情報に基づき、切換弁37〜40の故障を判定する。故障判定部33cによる判定方法についての詳細は後述する。信号生成部33dは、故障判定部33cからの判定結果に基づき、第1および第2バルブ全閉スイッチ50,51に制御信号(開信号または閉信号)を出力する。
図4は、弁装置制御コントローラ33の故障判定部33cによる故障判定ロジックの一例を示す図であり、第1および第2中立検出スイッチ62a,62bの出力と、パイロット圧センサ37d〜38dで検出した切換弁37,38の開閉状態と、故障判定部33cによる判定結果と、第1バルブ全閉スイッチ50の制御指令値との対応関係を表で示している。
図4において、まず、ブームレバー34aおよびアームレバー34bが非操作(中立)の場合について説明する。第1および第2中立検出スイッチ62a,62bの出力が共に0であり、切換弁37,38の両方が閉じていれば、故障判定部33cは切換弁37,38は正常であると判定し、第1バルブ全閉スイッチ50の制御指令値を開に設定する。そして、第1および第2中立検出スイッチ62a,62bの出力が共に0であり、切換弁37,38の少なくとも一方が開いていれば、ブームレバー34aおよびアームレバー34bが非操作であるにも関わらず、切換弁37,38の少なくとも一方が開いているため、故障判定部33cは切換弁37,38の少なくとも一方が故障していると判定し、第1バルブ全閉スイッチ50の制御指令値を閉に設定する。
次に、ブームレバー34aとアームレバー34bの少なくとも一方が操作された場合について説明する。第1および第2中立検出スイッチ62a,62bの出力の少なくとも一方が1でかつ切換弁37,38のいずれか一方のみが開いている場合は、故障判定部33cは切換弁37,38が正常であると判定し、第1バルブ全閉スイッチ50の制御指令値を開に設定する。また、第1および第2中立検出スイッチ62a,62bの出力のいずれか一方が1でかつ切換弁37,38の両方が開いている場合は、故障判定部33cは切換弁37,38の少なくとも一方が故障していると判定し、第1バルブ全閉スイッチ50の制御指令値を閉に設定する。また、第1および第2中立検出スイッチ62a,62bの出力の少なくとも一方が1でかつ切換弁37,38の両方が閉じている場合は、故障判定部33cは切換弁37,38の少なくとも一方が故障していると判定するが、切換弁37,38の両方が閉じていれば、意図しない油圧アクチュエータ1,3の動作は発生しないため、第1バルブ全閉スイッチ50の制御指令値を開に設定する。
図5は、弁装置制御コントローラ33の故障判定部33cによる処理を示すフロー図である。なお、図5に示す故障判定部33cによる処理は、レバー操作が有効になる直前(例えば、エンジン9始動後に安全レバー(図示せず)を解除した直後)に開始することが望ましい。
図5において、故障判定部33cは、ステップS1で第1および第2中立検出スイッチ62a,62bの出力のいずれかが0よりも大きい(すなわち、ブームレバー34aまたはアームレバー34bが操作されている)(Yes)と判定した場合はステップS2に進み、第1および第2中立検出スイッチ62a,62bの出力が共に0以下である(すなわち、ブームレバー34aおよびアームレバー34bが操作されていない)(No)と判定した場合はステップS3に進む。
ステップS2で第1および第2パイロット圧センサ37d,38dの圧力が共に予め設定された圧力しきい値(所定の圧力)Pthよりも高い(Yes)と判定した場合は、切換弁37,38が同時に開いており、意図しない油圧アクチュエータ1,3の動作が発生し得るため、ステップS4で第1バルブ全閉スイッチ50の制御指令値を閉に設定する。一方、第1および第2パイロット圧センサ37d,38dの圧力の少なくとも一方が予め設定された圧力しきい値Pthよりも低い(No)と判定した場合は、切換弁37,38の少なくとも一方が閉じており、意図しない油圧アクチュエータ1,3の動作は発生しないため、ステップS5で第1バルブ全閉スイッチ50の制御指令値を開に設定する。ここで、ステップS2における圧力しきい値Pthは、各切換弁のポペット弁のバネ室に作用する最高圧(図2に示すパイロット油圧源41の圧力)と最低圧(図2に示すタンク32の圧力)との間の値に設定すればよい。また、その他の例として、切換弁がポペット弁前後の圧力のうちの最高圧をパイロット室に導き、ポペット弁を閉じる力として利用するように構成され、最高圧が油圧アクチュエータの負荷によって変動する場合は、変動する最高圧のうちの最低圧を圧力しきい値Pthとして設定すればよい。
ステップS3で第1および第2パイロット圧センサ37d,38dの圧力が共に予め設定された圧力しきい値Pthよりも低い(Yes)と判定した場合は、切換弁37,38の両方が閉じており、意図しない油圧アクチュエータ1,3の動作は発生しないため、ステップS5で第1バルブ全閉スイッチ50の制御指令値を開に設定する。一方、第1および第2パイロット圧センサ37d,38dの圧力の少なくとも一方が予め設定された圧力しきい値Pthよりも高い(No)と判定した場合は、ブームレバー34aおよびアームレバー34bが操作されていないにも関わらず切換弁37,38のいずれかが開いており、意図しない油圧アクチュエータ1,3の動作が発生し得るため、ステップS6で第1バルブ全閉スイッチ50の制御指令値を閉に設定する。
ステップS4〜S6のいずれかを実行した後、ステップS7で第1および第2中立検出スイッチ62a,62bの出力のいずれかが0よりも大きい(すなわち、ブームレバー34aまたはアームレバー34bが操作されている)(Yes)と判定した場合はステップS8に進み、第1および第2中立検出スイッチ62a,62bの出力が共に0以下である(すなわち、ブームレバー34aおよびアームレバー34bが操作されていない)(No)と判定した場合はステップS9に進む。
ステップS8で第3および第4パイロット圧センサ39d,40dの圧力が予め設定された圧力しきい値Pthよりも高い(Yes)と判定した場合は、切換弁39,40が同時に開いており、意図しない油圧アクチュエータ1,3の動作が発生し得るため、ステップS10で第2バルブ全閉スイッチ51の制御指令値を閉に設定する。一方、第3および第4パイロット圧センサ39d,40dの圧力の少なくとも一方が予め設定された圧力しきい値Pthよりも低い(No)と判定した場合は、切換弁39,40の少なくとも一方が閉じており、意図しない油圧アクチュエータ1,3の動作は発生しないため、ステップS11で第2バルブ全閉スイッチ51の制御指令値を開に設定する。
ステップS9で第3および第4パイロット圧センサ39d,40dの圧力が予め設定された圧力しきい値Pthよりも低い(Yes)と判定した場合は、切換弁39,40の両方が閉じており、意図しない油圧アクチュエータ1,3の動作は発生しないため、ステップS11で第2バルブ全閉スイッチ51の制御指令値を開に設定する。一方、第3および第4パイロット圧センサ39d,40dの圧力の少なくとも一方が予め設定された圧力しきい値Pthよりも高い(No)と判定した場合、ブームレバー34aおよびアームレバー34bが操作されていないにも関わらず、切換弁39,40の少なくとも一方が開いており、意図しない油圧アクチュエータ1,3の動作が発生し得るため、ステップS12で第2バルブ全閉スイッチ51の制御指令値を閉に設定する。
ステップS10〜S12のいずれかを実行した後は、ステップS1に戻り、ステップS1以降の処理を繰り返し実行する。
図2において、第1バルブ全閉スイッチ50は、弁装置制御コントローラ33と電磁弁37a,38aとに制御信号線を介して接続されており、未接続の開放側接点50aと接地60に接続された接地側接点50bとを切換可能に有している。また、第2バルブ全閉スイッチ51は、弁装置制御コントローラ33と電磁弁39a,40aとに制御信号線を介して接続されており、未接続の開放側接点51aと接地60に接続された接地側接点51bとを切換可能に有している。本実施例では第1および第2バルブ全閉スイッチ50,51を電気接点式のリレーで構成しているが、同様の機能を備えていれば良く、リレーに限るものではない。
第1バルブ全閉スイッチ50は、弁装置制御コントローラ33からの制御信号に応じて、電磁弁37a,38aからの制御信号線を開放側接点50aまたは接地側接点50bに接続する。また、第2バルブ全閉スイッチ51は、弁装置制御コントローラ33からの制御信号に応じて、電磁弁39a,40aからの制御信号線を開放側接点51aまたは接地側接点51bに接続する。具体的には、第1および第2バルブ全閉スイッチ50,51は、弁装置制御コントローラ33から開信号を受信したときに電磁弁37a〜40aからの制御信号線を接地側接点50b,51bにそれぞれ接続し、閉信号を受信したときに開放側接点50a,51aにそれぞれ接続する。例えば、車体制御コントローラ11から電磁弁37aに開信号が出力されている状態で、弁装置制御コントローラ33からの開信号によって第1バルブ全閉スイッチ50が接地側接点50bに接続されると、車体制御コントローラ11から電磁弁37aへ制御信号が伝達される。これにより、電磁弁37aが開側に駆動されて開き、切換弁37(ポペット弁37b,37c)が開く。一方、弁装置制御コントローラ33からの閉信号によって、第1バルブ全閉スイッチ50が開放側接点50aに接続されると、車体制御コントローラ11から電磁弁37aへの制御信号は伝達されない。これにより、電磁弁37aが開側に駆動されずバネ力によって閉じ、切換弁37(ポペット弁37b,37c)が閉じる。このように、第1および第2バルブ全閉スイッチ50,51は、車体制御コントローラ11による開閉制御に関わらず切換弁37〜40を閉位置に切り換える第1強制閉弁装置を構成している。
次に、油圧システム200の動作を説明する。
まず、切換弁37〜40および車体制御コントローラ11が正常に機能している場合の油圧システム200の動作を説明する。
図2において、操作者がブームレバー34aのみを最大操作量の半分以上の範囲内で操作し、ブームシリンダ1を伸展駆動する入力を与えると、車体制御コントローラ11の情報取得部11aはブームレバー34aの操作量を検出する。車体制御演算部11bはブームレバー34aの操作量に基づき、閉回路ポンプ35,36がブームシリンダ1に接続されるように切換弁37,39の制御指令値を開に設定しかつ切換弁38,40の制御指令値を閉に設定し、閉回路ポンプ35,36のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定する。
バルブ信号出力部11cは、車体制御演算部11bからの切換弁37〜40の制御指令値に基づき、切換弁37,39に開信号を出力し、切換弁38,40に閉信号を出力する。ポンプ信号出力部11dは、車体制御演算部11bからのポンプ吐出流量指令値に基づき、閉回路ポンプ35,36のレギュレータ35a,36aに制御信号を出力する。
閉回路ポンプ35,36は、レギュレータ35a,36aで設定された吐出流量で、流路20,24に作動油を吐出する。また、切換弁37,39の電磁弁37a,39aが開信号に従って開くことにより、ポペット弁37b,37c,39b,39cが開く。一方、切換弁38,40の電磁弁38a,40aが閉信号に従って閉じることにより、ポペット弁38b,38c,40b,40cが閉じる。閉回路ポンプ35が吐出した作動油は、流路20および切換弁37のポペット弁37bを介して流路21に流れる。また、閉回路ポンプ36が吐出した作動油は、流路24、切換弁39(ポペット弁39b)および流路30を介して流路21に流れる。閉回路ポンプ35からの作動油と閉回路ポンプ36からの作動油とが流路21で合流してブームシリンダ1のシリンダヘッド1aに流入し、ブームシリンダ1を伸展させる。ブームシリンダ1のシリンダロッド1bから排出される作動油の一部は、流路23、切換弁37(ポペット弁37b)および流路22を介して閉回路ポンプ35に吸入される。また、ブームシリンダ1のシリンダロッド1bから排出される作動油の残りの一部は、流路31、切換弁39(ポペット弁39b)および流路24を介して閉回路ポンプ36に吸入される。この時、各閉回路にて発生する作動油の過不足分は、フラッシング弁46aを介してタンク32との間で給排される。
図2において、ブームレバー34aのみが操作されているため、第1中立検出スイッチ62aは1を出力し、第2中立検出スイッチ62bは0を出力する。
図3において、弁装置制御コントローラ33の操作量検出部33aは、第1および第2中立検出スイッチ62a,62bの信号を検出する。また、バルブ状態検出部33bは、電磁弁37a,39aが開くことで第1および第3パイロット圧センサ37d,39dの高圧を検出し、電磁弁38a,40aが閉じることで第2および第4パイロット圧センサ38d,40dの低圧を検出する。
図5において、故障判定部33cは、ステップS1,S2,S5,S7,S8,S11の順に実行し、第1および第2バルブ全閉スイッチ50,51の制御指令値を開に設定する。
図3において、弁装置制御コントローラ33の信号生成部33dは、故障判定部33cで設定された第1および第2バルブ全閉スイッチ50,51の制御指令値に基づき、第1および第2バルブ全閉スイッチ50,51に開信号を出力する。
図2において、第1バルブ全閉スイッチ50は、弁装置制御コントローラ33から開信号を受信し、電磁弁37a,38aからの制御信号線を接地側接点50bに接続する。また、第2バルブ全閉スイッチ51は、弁装置制御コントローラ33から開信号を受信し、電磁弁39a,40aからの制御信号線を接地側接点51bに接続する。これにより、各制御信号線の導通状態が維持され、車体制御コントローラ11から切換弁37〜40への制御信号が有効となり、切換弁37,39の開状態と切換弁38,40の閉状態とが維持される。
次に、切換弁38が開固着した場合の油圧システム200の動作を主に図6を用いて説明する。図6は、油圧システム200において切換弁38が開固着した場合の作動油の流れを太線で示す図である。
図6において、操作者がブームレバー34aのみを最大操作量の半分以上の範囲内で操作し、ブームシリンダ1を伸展駆動する入力を与えると、車体制御コントローラ11の情報取得部11aは、ブームレバー34aの操作量を検出する。車体制御演算部11bは、ブームレバー34aの操作量に基づき、閉回路ポンプ35,36がブームシリンダ1に接続されるように切換弁37,39の制御指令値を開に設定しかつ切換弁38,40の制御指令値を閉に設定し、閉回路ポンプ35,36のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定する。
バルブ信号出力部11cは、車体制御演算部11bからの切換弁37〜40の制御指令値に基づき、切換弁37,39に開信号を出力し、切換弁38,40に閉信号を出力する。ポンプ信号出力部11dは、車体制御演算部11bからのポンプ吐出流量指令値に基づき、閉回路ポンプ35,36のレギュレータ35a,36aに制御信号を出力する。
閉回路ポンプ35,36は、レギュレータ35a,36aによって制御された吐出流量で、流路20,24に作動油を吐出する。この時、切換弁38が失陥し、開固着したものとする。すなわち、車体制御演算部11bから閉信号が入力されているにも関わらず電磁弁38aが閉じず、ポペット弁38b,38cが開いたままになったとする。ここで、切換弁37は車体制御コントローラ11からの開信号によって開いているため、切換弁38が開固着したことで切換弁37,38(ポペット弁37b,37c,38b,38c)が同時に開くこととなり、ブームシリンダ1のシリンダヘッド1aが流路21,20,28,25を介してアームシリンダ3のシリンダヘッド3aに接続され、ブームシリンダ1のシリンダロッド1bが流路23,22,29,27を介してアームシリンダ3のシリンダロッド3bに接続される。この状態で、例えばブームシリンダ1に収縮方向の負荷が作用していたとすると、ブームシリンダ1のシリンダヘッド1aの作動油が負荷によって流出し、流路21,20,28,25を介してアームシリンダ3のシリンダヘッド3aに流入する。その結果、アームレバー34bが非操作であるにも関わらず、アームシリンダ3が伸展する。
図6において、ブームレバー34aのみが操作されているため、第1中立検出スイッチ62aは1を出力し、第2中立検出スイッチ62bは0を出力する。
図3において、弁装置制御コントローラ33の操作量検出部33aは、第1および第2中立検出スイッチ62a,62bの信号を検出する。また、バルブ状態検出部33bは、電磁弁37a,39aが開くことで第1および第3パイロット圧センサ37d,39dの高圧を検出し、電磁弁40aが閉じることで第4パイロット圧センサ40dの低圧を検出する。また、バルブ状態検出部33bは、電磁弁38aが開固着しているため、第2パイロット圧センサ38dの高圧を検出する。
図5において、故障判定部33cは、ステップS1,S2の順に実行する。ここで、第1および第2パイロット圧センサ37d,38dの圧力が共に高圧であるため、ステップS2で第1および第2パイロット圧センサ37d,38dの圧力が共に圧力しきい値Pthよりも高い(Yes)と判定し、ステップS4で第1バルブ全閉スイッチ50の制御指令値を閉に設定する。その後、ステップS7,S8,S11の順に実行し、第2バルブ全閉スイッチ51の制御指令値を開に設定する。
図3において、弁装置制御コントローラ33の信号生成部33dは、故障判定部33cで設定された第1および第2バルブ全閉スイッチ50,51の制御指令値に基づき、第1バルブ全閉スイッチ50に閉信号を出力し、第2バルブ全閉スイッチ51に開信号を出力する。
図2において、第1バルブ全閉スイッチ50は、弁装置制御コントローラ33から閉信号を受信し、電磁弁37a,38aからの制御信号線を開放側接点50aに接続する。これにより、車体制御コントローラ11から切換弁37への制御信号が無効となるため、電磁弁37aは開側に駆動されずバネ力によって閉じ、切換弁37(ポペット弁37b,37c)が閉じる。その結果、切換弁38の開固着によってブームシリンダ1とアームシリンダ3とが流路21,20,28,25および流路23,22,29,27を介して接続されていた状態が、切換弁37(ポペット弁37b,37c)が閉じて流路21,23と流路20,22とがそれぞれ切断されることにより解消されるため、アームシリンダ3の伸展が停止する。この時、閉回路ポンプ35に接続されている切換弁37,38が第1バルブ全閉スイッチ50によって使用不可となるが、閉回路ポンプ36に接続されている切換弁39,40を使用することで、ブームシリンダ1およびアームシリンダ3を駆動することができるため、機体の稼働を継続できる。
以上のように構成した本実施例によれば、切換弁37〜40またはその制御系の失陥により切換弁37〜40のうちのいずれか1つの切換弁が開固着した場合に、開固着した切換弁が接続されている1つの閉回路ポンプに接続されている他の切換弁を強制的に閉じることにより、2つの油圧アクチュエータ1,3が流路を介して接続されることがなくなるため、操作者が意図しない油圧アクチュエータ1,3の動作を抑制し、機体の稼働を継続できる。
本発明の第2の実施例について、第1の実施例との相違点を中心に説明する。
本実施例は、開回路ポンプと比例弁とアシスト弁とを更に備え、アシスト弁を設けたアシスト流路を介して開回路ポンプおよび比例弁を片ロッド式油圧シリンダのシリンダヘッドに接続し、閉回路ポンプの作動油と開回路ポンプの作動油とを合流させてシリンダヘッドに供給することでシリンダの伸展速度を向上させ、シリンダヘッドから排出される作動油の一部を閉回路ポンプが吸入し残りの一部を比例弁を介してタンクに排出することでシリンダの収縮速度を向上させたものである。
図7は、本実施例に係る油圧システムの構成を示す概略図である。
図7において、油圧システム200Aは、片傾転型の油圧ポンプ(以下「開回路ポンプ」という。)12,13と、開回路ポンプ12の吐出ポートに接続されたアシスト流路70と、アシスト流路70を流路21に接続するアシスト流路71aと、アシスト流路70を流路25に接続するアシスト流路71bと、開回路ポンプ13の吐出ポートに接続されたアシスト流路72と、アシスト流路72を流路21に接続するアシスト流路73aと、アシスト流路72を流路25に接続するアシスト流路73bと、アシスト流路71a,71b,73a,73bに設けられたアシスト弁80〜83と、アシスト流路70,71をタンク32に接続する流路に設けられた比例弁54,55とを更に備えている。
開回路ポンプ12,13は、エンジン9からそれぞれ伝達装置10を介して動力を受けて駆動される。開回路ポンプ12,13は、それぞれ流量調整手段として出力ポートを持つ傾転斜板機構(図示せず)と、斜板の傾斜角を調整してポンプ押しのけ容積を調整するレギュレータ12a,13aとを備えている。レギュレータ12a,13aは、車体制御コントローラ11から受信したポンプ吐出流量指令値に基づき、開回路ポンプ12,13の吐出流量を制御する。開回路ポンプ12,13はそれぞれタンク32から作動油を吸入し、アシスト流路70,72へ作動油を吐出する。
アシスト弁80は、電磁弁80aとポペット弁80bとを備えている。電磁弁80aは、車体制御コントローラ11から受信した制御信号に応じて開閉し、ポペット弁80bのパイロット受圧部をパイロット油圧源41またはタンク32に接続する。電磁弁80aに閉信号が入力された場合は、ポペット弁80bのパイロット受圧部がタンク32に接続されて低圧となり、ポペット弁80bがバネ力によって閉側に駆動され、アシスト流路70とアシスト流路71とが切断される。電磁弁80aに開信号が入力された場合は、ポペット弁80bのパイロット室がパイロット油圧源41に接続され、ポペット弁80bがパイロット圧によって開側に駆動され、アシスト流路70とアシスト流路71とが流通状態となる。なお、本実施例ではパイロット油圧源および電磁弁を用いてポペット弁を駆動するアシスト弁を一例として用いたが、電気信号でアシスト流路を開閉する電磁弁のみで構成してもよい。なお、アシスト弁81〜83については、アシスト弁80と同様であるため、説明を省略する。
比例弁54、55は、アシスト弁80〜83と同様に、車体制御コントローラ11から受信した制御信号に応じて電磁弁54a,55aが開閉することで、ポペット弁54b,55bを開閉する。ただし、電磁弁54a,55aの弁の開度を車体制御コントローラ11からの制御指令値に対して、連続的に制御できるため、ポペット弁54b,55bの開度も連続的に制御できる点で、アシスト弁80〜83と異なる。
次に、本実施例における本発明に関わる構成について説明する。
アシスト弁80〜83には、それぞれの開閉状態を検出する第2検出装置として、第5〜第6パイロット圧センサ80c〜83cが設けられている。パイロット圧センサ80c〜83cは、弁装置制御コントローラ33Aに信号線を介して接続されている。例えばアシスト弁80を一例に説明すると、パイロット圧センサ80cは電磁弁80aとポペット弁80bを接続する流路に設けられている。電磁弁80aに閉信号が入力されているときは、パイロット圧センサ80cはタンク32に接続されるため、パイロット圧センサ80cから低圧が検出される。一方、電磁弁80aに開信号が入力されているときは、パイロット圧センサ80cはパイロット油圧源41に接続されるため、パイロット圧センサ80cから高圧が検出される。アシスト弁80〜83においても、パイロット圧センサ81c〜83cはそれぞれ同様の流路に設けられている。なお、本実施例では、アシスト弁80〜83の開閉状態を検出する第2検出装置を第1〜第4パイロット圧センサ37d〜40dで構成したが、例えばアシスト弁が電磁弁の場合は、電磁弁の弁体の移動量を計測するストロークセンサなどで構成してもよい。
図8は、本実施例に係る弁装置制御コントローラ33Aの構成を示すブロック図である。
図8において、第1の実施例(図3に示す)と異なる点は、バルブ状態検出部33bが第1〜第4パイロット圧センサ37d〜40dに加えてパイロット圧センサ80c〜83cから圧力信号を受信する点と、故障判定部33cの判定ロジックである。故障判定部33cは、操作量検出部33aおよびバルブ状態検出部33bからの情報に基づき、切換弁37〜40またはアシスト弁80〜83の故障を検出する。故障判定部33cの判定方法についての詳細は後述する。信号生成部33dは、故障判定部33cから切換弁37〜40のいずれかの故障を検出した場合、第1および第2バルブ全閉スイッチ50,51のいずれかに閉信号を出力する。
図9は、弁装置制御コントローラ33Aの故障判定部33cによる処理を示すフロー図である。
図9において、第1の実施例(図5に示す)と異なる点は、図9のステップS2,S3,S8,S9である。ステップS2,S3では、第1および第2パイロット圧センサ37d,38dによる切換弁37,38の開閉チェックに加え、アシスト弁80,81の第5および第6パイロット圧センサ80c,81cによる開閉チェックを行う。また、ステップS8,S9では、第3および第4パイロット圧センサ39d,40dによる切換弁39,40の開閉チェックに加え、アシスト弁82,83の第7および第8パイロット圧センサ82c,83cによる開閉チェックを行う。
図7において、第1バルブ全閉スイッチ50は、弁装置制御コントローラ33Aと電磁弁37a,38a,80a,81a,54aとに制御信号線を介して接続されている。また、第2バルブ全閉スイッチ51は、弁装置制御コントローラ33Aと電磁弁39a,40a,82a,83a,55aとに制御信号線を介して接続されている。なお、第1および第2バルブ全閉スイッチ50,51の構成は第1の実施例と同様であるため、説明を省略する。
第1および第2バルブ全閉スイッチ50,51は、それぞれ弁装置制御コントローラ33Aからの制御信号に応じて開閉し、車体制御コントローラ11からの電磁弁37a〜40a,80a〜83aへの制御信号線を導通または遮断することにより、電磁弁37a〜40a,80a〜83aを開閉する。
次に、油圧システム200Aの動作を説明する。
まず、切換弁37〜40、アシスト弁80〜83および車体制御コントローラ11が正常に機能している場合の油圧システム200Aの動作を説明する。
図7において、操作者がブームレバー34aのみを最大操作量の半分以上の範囲内で操作し、ブームシリンダ1を伸展駆動する入力を与えると、車体制御コントローラ11の情報取得部11aはブームレバー34aの操作量を受信する。車体制御演算部11bは、ブームレバー34aの操作量に基づき、閉回路ポンプ35,36がブームシリンダ1に接続されるように切換弁37,39およびアシスト弁80,82の制御指令値を開に設定しかつ切換弁38,40およびアシスト弁81,83の制御指令値を閉に設定し、閉回路ポンプ35,36および開回路ポンプ12,13のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定し、比例弁54,55の制御指令値を閉に設定する。
バルブ信号出力部11cは、車体制御演算部11bからの切換弁37〜40、アシスト弁80〜83、比例弁54,55の制御指令値に基づき、切換弁37,39およびアシスト弁80,82に開信号を出力し、切換弁38,40およびアシスト弁81,84に閉信号を出力し、比例弁54,55にまたは閉信号を出力する。ポンプ信号出力部11dは、車体制御演算部11bからのポンプ吐出流量指令値に基づき、閉回路ポンプ35,36のレギュレータ35a,36aおよび開回路ポンプ12,13のレギュレータ12a,13aに制御信号を出力する。
閉回路ポンプ35,36は、レギュレータ35a,36aによって制御された吐出流量で、流路20,24に作動油を吐出する。また、開回路ポンプ12,13は、レギュレータ12a,13aによって制御された吐出流量で、アシスト流路70,72へそれぞれ作動油を吐出する。
車体制御コントローラ11からの制御信号に応じて、切換弁37,39およびアシスト弁80,82は開き、切換弁38,40およびアシスト弁81,83は閉じ、比例弁54,55は閉じる。
閉回路ポンプ35が吐出した作動油は、流路20、切換弁37を介して流路21に流れる。閉回路ポンプ36が吐出した作動油は、流路24、切換弁39および流路30を介して流路21に流れる。また、開回路ポンプ12が吐出した作動油は、アシスト流路70、アシスト弁80(ポペット弁80b)およびアシスト流路71aを介して流路21に流れる。開回路ポンプ13が吐出した作動油は、アシスト流路72、アシスト弁82(ポペット弁82b)およびアシスト流路71を介して流路21に流れる。閉回路ポンプ35,36からの作動油と開回路ポンプ12,13からの作動油とが流路21で合流してブームシリンダ1のシリンダヘッド1aに流入し、ブームシリンダ1を伸展させる。ブームシリンダ1のシリンダロッド1bから排出される作動油の一部は、流路23、切換弁37のポペット弁37b、流路22を介して閉回路ポンプ35に吸入される。ブームシリンダ1のシリンダロッド1bから排出される作動油の残りの一部は、流路31、切換弁39(ポペット弁39b)および流路24を介して閉回路ポンプ36に吸入される。
図7において、ブームレバー34aのみが操作されているため、第1中立検出スイッチ62aは1を出力し、第2中立検出スイッチ62bは0を出力する。
図8において、弁装置制御コントローラ33Aの操作量検出部33aは、第1および第2中立検出スイッチ62a,62bの信号を検出する。また、バルブ状態検出部33bは、電磁弁37a,39a,80a,82aが開くことで第1、第3、第5および第7パイロット圧センサ37d,39d,80c,82cの高圧を検出し、電磁弁38a,40a,81a,83aが閉じることで第2、第4、第6および第8パイロット圧センサ38d,40d,81c,83cの低圧を検出する。
図9において、故障判定部33cは、ステップS1,S2,S5,S7,S8,S11の順に実行し、第1および第2バルブ全閉スイッチ50,51の制御指令値を開に設定する。
図8において、弁装置制御コントローラ33Aの信号生成部33dは、故障判定部33cの第1および第2バルブ全閉スイッチ50,51の制御指令値に基づき、第1および第2バルブ全閉スイッチ50,51に開信号を出力する。
図7において、第1バルブ全閉スイッチ50は、弁装置制御コントローラ33Aから開信号を受信し、電磁弁37a,38a,80a,81aからの制御信号線を接地側接点50bに接続する。また、第2バルブ全閉スイッチ51は、弁装置制御コントローラ33Aから開信号を受信し、電磁弁39a,40a,82a,83aからの制御信号線を接地側接点51bに接続する。制御信号線の導通状態を維持する。これにより、各制御信号の導通状態が維持され、車体制御コントローラ11から切換弁37,39およびアシスト弁80,82への制御信号が有効となり、切換弁37,39およびアシスト弁80,82の開状態と切換弁38,40およびアシスト弁81,83の閉状態とが維持される。
次に、アシスト弁81が開固着した場合の油圧システム200Aの動作を主に図7を用いて説明する。なお、図7中、アシスト弁81が開固着した場合の作動油の流れを太線で示している。
図7において、操作者がブームレバー34aのみを最大操作量の半分以下の範囲内で操作し、ブームシリンダ1を伸展駆動する入力を与えると、車体制御コントローラ11の情報取得部11aは、ブームレバー34aの操作量を検出する。車体制御演算部11bは、ブームレバー34aの操作量に基づき、閉回路ポンプ35および開回路ポンプ12がブームシリンダ1に接続されるように切換弁37およびアシスト弁80の制御指令値を開に設定しかつ切換弁38〜40およびアシスト弁81〜83の制御指令値を閉に設定し、閉回路ポンプ35および開回路ポンプ12のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定し、比例弁54の制御指令値を閉に設定する。
バルブ信号出力部11cは、車体制御演算部11bからの切換弁37〜40の制御指令値に基づき、切換弁37およびアシスト弁80に開信号を出力し、切換弁38〜40およびアシスト弁81〜83に閉信号を出力する。また、車体制御演算部11bは、比例弁54に閉信号を出力する。ポンプ信号出力部11dは、車体制御演算部11bからのポンプ吐出流量指令値に基づき、閉回路ポンプ35のレギュレータ35aおよび開回路ポンプ12のレギュレータ12aに制御信号を出力する。
閉回路ポンプ35および開回路ポンプ12は、レギュレータ35a,12aによって制御された吐出流量で、流路20およびアシスト流路70に作動油を吐出する。切換弁37およびアシスト弁80は開信号に応じて開き、切換弁38〜40およびアシスト弁81〜83は閉信号に応じて閉じる。この時、アシスト弁81が失陥し、開固着したものとする。すなわち、車体制御演算部11bから閉信号が入力されているにも関わらず電磁弁81aが閉じず、ポペット弁81bが開いたままになったとする。ここで、アシスト弁80は車体制御コントローラ11からの開信号によって開いているため、アシスト弁81が開固着したことでアシスト弁80,81(ポペット弁80b,81b)が同時に開くこととなり、ブームシリンダ1のシリンダヘッド1aが流路21、アシスト流路71a,70,71bおよび流路25を介してアームシリンダ3のシリンダヘッド3aに接続される。この状態で、例えばブームシリンダ1に収縮方向の負荷が作用していたとすると、ブームシリンダ1のシリンダヘッド1aの作動油が負荷によって流出し、流路21、アシスト流路71a,70,71bおよび流路25を介してアームシリンダ3のシリンダヘッド3aに流入する。その結果、アームレバー34bが非操作であるにも関わらず、アームシリンダ3が伸展する。
図7において、ブームレバー34aのみが操作されているため、第1中立検出スイッチ62aは1を出力し、第2中立検出スイッチ62bは0を出力する。
図8において、弁装置制御コントローラ33Aの操作量検出部33aは、第1および第2中立検出スイッチ62a,62bの信号を検出する。また、バルブ状態検出部33bは、電磁弁37a,80aが開くことで第1および第5パイロット圧センサ37d,80cの高圧を検出し、電磁弁38a〜40a,82a,83aが閉じることで第2〜第4、第7および第8パイロット圧センサ38d〜40d,82c,83cの低圧を検出する。また、バルブ状態検出部33bは、電磁弁81aが開固着しているため、第6パイロット圧センサ81cの高圧を検出する。
図9において、故障判定部33cは、ステップS1,S2の順に実行する。ここで、第5および第6パイロット圧センサ80c,81cの圧力が共に高圧であるため、ステップS42で第5および第6パイロット圧センサ80c,81cの圧力が共に圧力しきい値Pthよりも高い(Yes)と判定し、ステップS4で第1バルブ全閉スイッチ50の制御指令値を閉に設定する。その後、ステップS7,S8,S11の順位実行し、第2バルブ全閉スイッチ51の制御指令値を開に設定する。
図8において、弁装置制御コントローラ33Aの信号生成部33dは、故障判定部33cの第1および第2バルブ全閉スイッチ50,51の制御指令値に基づき、第1バルブ全閉スイッチ50に閉信号を出力し、第2バルブ全閉スイッチ51に開信号を出力する。
図7において、第1バルブ全閉スイッチ50は、弁装置制御コントローラ33Aから閉信号を受信し、電磁弁37a,38a,80a,81aからの信号線を開放側接点50aに接続する。これにより、車体制御コントローラ11からアシスト弁80への制御信号が伝達不能となるため、電磁弁80aは開側に駆動されずバネ力によって閉じ、アシスト弁80(ポペット弁80b)が閉じる。その結果、アシスト弁81の開固着によってブームシリンダ1のシリンダヘッド1aとアームシリンダ3のシリンダヘッド3aとが流路21、アシスト流路71a,70,71bおよび流路25を介して接続されていた状態が、アシスト弁80(ポペット弁80b)が閉じてアシスト流路71aとアシスト流路70とが切断されることにより解消されるため、アームシリンダ3の伸展が停止する。この時、閉回路ポンプ35に接続されている切換弁37,38および開回路ポンプ12に接続されているアシスト弁80,81が第1バルブ全閉スイッチ50によって使用不可となるが、閉回路ポンプ36に接続されている切換弁39,40および開回路ポンプ13に接続されているアシスト弁82,83を使用することで、ブームシリンダ1およびアームシリンダ3を駆動することができるため、機体の稼働を継続できる。
以上のように構成した本実施例によれば、第1の実施例と同様の効果に加えて、以下の効果が得られる。
アシスト弁80〜83またはその制御系の失陥によりアシスト弁80〜83のうちのいずれか1つのアシスト弁が開固着した場合に、開固着したアシスト弁が接続されている1つの開回路ポンプに接続されている他のアシスト弁を強制的に閉じることにより、2つの油圧アクチュエータ1,3が流路を介して接続されることがなくなるため、操作者が意図しない油圧アクチュエータ1,3の動作を抑制し、機体の稼働を継続できる。
なお、本実施例における第1および第2バルブ全閉スイッチ50,51は、車体制御コントローラ11による開閉制御に関わらず切換弁37〜40を閉位置に切り換える第1強制閉弁装置であると共に、車体制御コントローラ11による開閉制御に関わらずアシスト弁80〜83を閉位置に切り換える第2強制閉弁装置を構成している。また、第2強制閉弁装置としてのバルブ全閉スイッチは、第1および第2バルブ全閉スイッチ50,51とは別に設けてもよい。
本発明の第3の実施例について、第1の実施例との相違点を中心に説明する。
本実施例は、第1の実施例におけるアームシリンダ3(図2に示す)を旋回モータ7(図1に示す)に置き換えたものである。図1において、旋回モータ7は、上部旋回体102を旋回させる油圧アクチュエータであるため、例えば掘削作業等を行う際、作動装置であるフロント作業機104の掘削位置の調整や、掘削後の崩土位置の調整において重要な役割を果たす。しかし、切換弁37〜40のいずれかが開固着した場合または車体制御コントローラ11が失陥した場合、意図しない旋回モータの動作が発生し、フロント作業機104の位置決めが困難となる。本実施例は、切換弁37〜40のいずれかが開固着した場合に、意図しない旋回モータ7の動作を抑制し、機体の稼働を継続できるようにしたものである。
図10は、本実施例に係る油圧システムの構成を示す概略図である。
図10において、流路25,27にはアームシリンダ3(図2に示す)に代えて、旋回モータ7が接続されている。また、油圧システム200Bは、アームレバー34bおよび第2中立検出スイッチ62b(図2に示す)に代えて、旋回レバー34cおよびその中立を検出する第3中立検出スイッチ62cを備えている。また、旋回モータ7は、旋回軸7aを介して図1の上部旋回体102に接続されている。旋回軸7aには、例えば摩擦ブレーキなどの旋回ブレーキ7bが接続されている。旋回ブレーキ7bは、旋回を減速(制動)する減速ブレーキと旋回を抑制するパーキングブレーキとを兼ねている。旋回ブレーキ7bは、例えば、車体制御コントローラ11から制御信号が入力されていないときに作動し、車体制御コントローラ11から制御信号が入力されているときにブレーキを解除するように構成されている。
車体制御コントローラ11と旋回ブレーキ7bとを接続する制御信号線には、旋回停止スイッチ53が設けられている。旋回停止スイッチ53は、弁装置制御コントローラ33Bと制御信号線を介して接続されており、接続側接点53aと開放側接点53bとを切換可能に有している。旋回停止スイッチ53は、弁装置制御コントローラ33Bからの制御信号により、接続側接点53aまたは開放側接点53bに切り替わることで、車体制御コントローラ11から旋回ブレーキ7bへの制御信号を導通または遮断する。これにより、旋回停止スイッチ53は、車体制御コントローラ11による制御に関わらず旋回ブレーキ7bを作動させる強制作動装置を構成している。本実施例では一例として、旋回停止スイッチ53の初期状態として、弁装置制御コントローラ33Bからの制御信号が入力されない場合、接続側接点53aに接続されているものとする。また本実施例では、旋回停止スイッチ53は電気リレーで構成しているが、これに限るものではない。
次に、切換弁38が開固着した場合の油圧システム200Bの動作を説明する。
図10において、操作者がブームレバー34aのみを最大操作量の半分以下の範囲内で操作し、ブームシリンダ1を伸展駆動する入力を与えると、車体制御コントローラ11の情報取得部11aは、ブームレバー34aの操作量を検出する。車体制御演算部11bは、ブームレバー34aの操作量に基づき、閉回路ポンプ35のみがブームシリンダ1に接続されるように切換弁37の制御指令値を開に設定しかつ切換弁38〜40の制御指令値を閉に設定し、閉回路ポンプ35のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定し、旋回ブレーキ7bへの制御指令値を解除に設定する。
バルブ信号出力部11cは、車体制御演算部11bからの切換弁37〜40の制御指令値に基づき、切換弁37に開信号を出力し、切換弁38〜40に閉信号を出力する。また、バルブ信号出力部11cは、旋回ブレーキ7bが解除されるように、旋回停止スイッチ53に閉信号を出力する。ポンプ信号出力部11dは、車体制御演算部11bからのポンプ吐出流量指令値に基づき、閉回路ポンプ35のレギュレータ35aに制御信号を出力する。
旋回停止スイッチ53は初期状態で接続側接点53aに接続されており、車体制御コントローラ11と旋回ブレーキ7bとを接続する制御信号線が導通状態にあるため、車体制御コントローラ11からの解除信号により旋回ブレーキ7bは解除され、旋回軸7aは回転可能状態にある。
閉回路ポンプ35は、レギュレータ35aによって制御された吐出流量で、流路20に作動油を吐出する。この時、切換弁38が失陥し、開固着したものとする。ここで、切換弁37は車体制御コントローラ11からの開信号によって開いているため、電磁弁38aが開固着したことで切換弁37,38(ポペット弁37b,37c,38b,38c)が同時に開くこととなり、ブームシリンダ1と旋回モータ7とが流路21,20,28,25および流路23,22,29,27を介して接続される。この状態で、例えばブームシリンダ1に収縮方向の負荷が作用していたとすると、ブームシリンダ1のシリンダヘッド1aの作動油が負荷によって流出し、流路21,20,28,25を介して旋回モータ7に流入する。その結果、旋回レバー34cが非操作であるにも関わらず、旋回モータ7が回転し、上部旋回体102(図1に示す)が旋回する。
図10において、ブームレバー34aのみが操作されているため、第1中立検出スイッチ62aは1を出力し、第2中立検出スイッチ62bは0を出力する。
図11において、弁装置制御コントローラ33Bの操作量検出部33aは、第1および第3中立検出スイッチ62a,62cの信号を検出する。バルブ状態検出部33bは、電磁弁37aが開くことで第1パイロット圧センサ37dの高圧を検出し、電磁弁39a,40aが閉じることで第3および第4パイロット圧センサ39d,40dの低圧を検出する。また、バルブ状態検出部33bは、電磁弁38aが開固着しているため、第2パイロット圧センサ38dの高圧を検出する。
図5において、故障判定部33cは、ステップS1,S2の順に実行する。ここで、第1および第2パイロット圧センサ37d,38dの圧力が共に高圧であるため、ステップS2で第1および第2パイロット圧センサ37d,38dの圧力が共に圧力しきい値Pthよりも高い(Yes)と判定し、ステップS4で第1バルブ全閉スイッチ50の制御指令値を閉に設定する。その後、ステップS7,S8,S11の順に実行し、第2バルブ全閉スイッチ51の制御指令値を開に設定する。
図11において、弁装置制御コントローラ33Bの信号生成部33dは、故障判定部33cで設定された第1および第2バルブ全閉スイッチ50,51の制御指令値に基づき、第1バルブ全閉スイッチ50に閉信号を出力し、第2バルブ全閉スイッチ51に開信号を出力する。また、信号生成部33dは旋回停止スイッチ53に旋回ブレーキを7bの解除信号を出力する。
図10において、第1バルブ全閉スイッチ50は、弁装置制御コントローラ33Bから閉信号を受信し、電磁弁37a,38aからの制御信号線を開放側接点50aに接続する。これにより、車体制御コントローラ11からの切換弁37への制御信号が伝達不能となるため、電磁弁37aは開側に駆動されずバネ力によって閉じ、切換弁37(ポペット弁37b,37c)が閉じる。その結果、切換弁38の開固着によってブームシリンダ1と旋回モータ7とが流路21,20,28,25および流路23,22,29,27を介して接続されていた状態が、切換弁37(ポペット弁37b,37c)が閉じて流路21,23と流路20,22とがそれぞれ切断されることにより解消されるため、旋回モータ7の駆動が停止する。また、弁装置制御コントローラ33Bからの制御信号により、車体制御コントローラ11からの制御信号線が開放側接点53bに接続されることにより、車体制御コントローラ11から旋回ブレーキ7bへの解除信号が伝達不能となるため、旋回ブレーキ7bにより旋回軸7aにブレーキが作用し、旋回モータ7の回転が停止する。
以上のように構成した本実施例においても、第1の実施例と同様の効果が得られる。さらに、切換弁37〜40またはその制御系の失陥により切換弁37〜40のうちのいずれか1つの切換弁が開固着した場合に、旋回ブレーキ7bを作動させ、旋回モータ7を確実に停止させることができる。
本発明の第4の実施例について、第1の実施例との相違点を中心に説明する。
本実施例は、第1の実施例における第1〜第4パイロット圧センサ37d〜40d(図2に示す)に代えて、閉回路ポンプのポンプ圧を検出するポンプ圧センサと油圧アクチュエータの負荷圧を検出する負荷圧センサとで第1検出装置を構成したものである。
図12は、本実施例に係る油圧システムの構成を示す概略図である。
図12において、油圧システム200Cは、第1〜第4パイロット圧センサ37d〜40d(図2に示す)に代えて、閉回路ポンプ35,36のポンプ圧を検出する第1〜第4ポンプ圧センサ90〜93と、ブームシリンダ1およびアームシリンダ3の負荷圧を検出する第1〜第4シリンダ圧センサ(負荷圧センサ)94〜97とを備えている。第1〜第4ポンプ圧センサ90〜93および第1〜第4シリンダ圧センサ94〜97は、弁装置制御コントローラ33Cに信号線を介して接続されている。
図13は、本実施例に係る弁装置制御コントローラ33Cの構成を示すブロック図である。
図13において、弁装置制御コントローラ33Cのバルブ状態検出部33bは、第1〜第4ポンプ圧センサ90〜93を介して流路20,22,24,26の圧力(ポンプ圧)を検出し、第1〜第4シリンダ圧センサ94〜97を介して流路21,23,25,27の圧力(負荷圧)を検出する。
図14は、弁装置制御コントローラ33Cの故障判定部33cによる処理を示すフロー図である。
図14において、第1の実施例(図5に示す)と異なる点は、ステップS2,S3,S8,S9である。ステップS2,S3,S8,S9における圧力差ΔP1〜ΔP8は、第1〜第4ポンプ圧センサ90〜93で検出された閉回路ポンプ35,36のポンプ圧と、第1〜第4シリンダ圧センサ94〜97で検出されたブームシリンダ1およびアームシリンダ3の負荷圧との圧力差(すなわち、ポペット弁37b,37c,38b,38c,39b,39c,40b,40cの前後差圧)であり、次式で計算する。
次に、切換弁38が開固着した場合の油圧システム200Cの動作を説明する。
図12において、操作者がブームレバー34aのみを最大操作量の半分以下の範囲内で操作し、ブームシリンダ1を伸展駆動する入力を与えると、車体制御コントローラ11の情報取得部11aはブームレバー34aの操作量を受信する。車体制御演算部11bは、ブームレバー34aの操作量に基づき、閉回路ポンプ35のみがブームシリンダ1に接続されるように切換弁37の制御指令値を開に設定しかつ切換弁38〜40の制御指令値を閉に設定し、閉回路ポンプ35のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定する。
バルブ信号出力部11cは、車体制御演算部11bからの切換弁37〜40の制御指令値に基づき、切換弁37に開信号を出力し、切換弁38〜40に閉信号を出力する。ポンプ信号出力部11dは、車体制御演算部11bからのポンプ吐出流量指令値に基づき、閉回路ポンプ35のレギュレータ35aに制御信号を出力する。
閉回路ポンプ35は、レギュレータ35aによって制御された吐出流量で、流路20に作動油を吐出する。この時、切換弁38が失陥し、開固着したものとする。ここで、切換弁37は車体制御コントローラ11からの開信号によって開いているため、切換弁38が開固着したことで切換弁37,38(ポペット弁37b,37c,38b,38c)が同時に開くこととなり、ブームシリンダ1のシリンダヘッド1aは流路21,20,28,25を介してアームシリンダ3のシリンダヘッド3aに接続され、ブームシリンダ1のシリンダロッド1bが流路23,22,29,27を介してアームシリンダ3のシリンダロッド3bに接続される。この状態で、例えばブームシリンダ1に収縮方向の負荷が作用していたとすると、ブームシリンダ1のシリンダヘッド1aの作動油が負荷によって流出し、流路21,20,28,25を介してアームシリンダ3のシリンダヘッド3aに流入する。その結果、アームレバー34bが非操作であるにも関わらず、アームシリンダ3が伸展する。
図12において、ブームレバー34aのみが操作されているため、第1中立検出スイッチ62aは1を出力し、第2中立検出スイッチ62bは0を出力する。
図13において、弁装置制御コントローラ33Cの操作量検出部33aは、第1および第3中立検出スイッチ62a,62cの信号を検出する。また、バルブ状態検出部33bは、第1〜第4ポンプ圧センサ90〜93および第1〜第4シリンダ圧センサ94〜97の圧力を検出する。
図14において、故障判定部33cは、ステップS1,S2の順に実行する。ここで、切換弁37が開きかつ切換弁38が開固着したことにより、閉回路ポンプ35とアームシリンダ3との圧力差ΔP1〜ΔP4は小さい値となっている。したがって、ステップS2で圧力差ΔP1〜ΔP4が圧力差しきい値Dthよりも小さい(Yes)と判定し、ステップS4で第1バルブ全閉スイッチ50の制御指令値を閉に設定する。その後、ステップS7,S8,S11の順に実行し、第2バルブ全閉スイッチ51の制御指令値を開に設定する。なお、圧力差しきい値Dthは、例えば切換弁37〜40の持つ圧力損失量に基づいて設定される。
図13において、弁装置制御コントローラ33Cの信号生成部33dは、故障判定部33cの第1および第2バルブ全閉スイッチ50,51の制御指令値に基づき、第1バルブ全閉スイッチ50に閉信号を出力し、第2バルブ全閉スイッチ51に開信号を出力する。
図12において、バルブ全閉スイッチ50は、弁装置制御コントローラ33Cから閉信号を受信し、電磁弁37a,38aからの制御信号線を開放側接点50aに接続する。これにより、車体制御コントローラ11からの切換弁37への制御信号が伝達不能となるため、電磁弁37aは開側に駆動されずバネ力によって閉じ、切換弁37(ポペット弁37b,37c)が閉じる。その結果、切換弁38の開固着によってブームシリンダ1とアームシリンダ3とが流路21,20,28,25および流路23,22,29,27を介して接続されていた状態が、切換弁37(ポペット弁37b,37c)が閉じて流路21,23と流路20,22とが切断されることにより解消されるため、アームシリンダ3の伸展が停止する。
以上のように構成した本実施例によれば、第1の実施例の効果に加え、以下の効果が得られる。
第1の実施例では、切換弁ごとに第1検出装置(パイロット圧力センサ)を設けている。ここで、切換弁の数は閉回路ポンプの数と油圧アクチュエータの数とに比例して増加する。そのため、閉回路ポンプまたは油圧アクチュエータの数が増えると、第1検出装置の数が大幅に増え、コストが増加する。これに対し、本実施例では、閉回路ポンプおよび油圧アクチュエータごとに第1検出装置を設ける構成としたことにより、閉回路ポンプまたは油圧アクチュエータの数が増えたときの第1検出装置の増加数が抑制されるため、コストを低減できる。
本発明の第5の実施例について、第1の実施例との相違点を中心に説明する。
本実施例は、第1の実施例における第1および第2中立検出スイッチ62a,62b(図2に示す)を用いることなく、切換弁37〜40が有する第1〜第4パイロット圧センサ37d〜40dの圧力のみに基づいて第1および第2バルブ全閉スイッチ50,51を制御するようにしたものである。
図15は、本実施例に係る油圧システムの構成を示す概略図である。
図15において、油圧システム200Dは、第1の実施例における第1および第2中立検出スイッチ62a,62b(図1に示す)を備えていない。
図16は、本実施例に係る弁装置制御コントローラ33Dの構成を示すブロック図である。
図16において、弁装置制御コントローラ33Dは、図15に示す油圧システム200Dにおいて第1および第2中立検出スイッチ62a,62b(図1に示す)を省略したことに伴い、操作量検出部33a(図3に示す)を備えていない。
図17は、本実施例に係る弁装置制御コントローラ33Dの故障判定部33cによる処理を示すフロー図である。
図17において、故障判定部33cは、ステップS1で第1および第2パイロット圧センサ37d,38dの圧力に基づき、切換弁37,38が同時に開いているか否かを判定する。具体的には、第1および第2パイロット圧センサ37d,38dの圧力が圧力しきい値Pthよりも高いか否かを判定する。ステップS1で切換弁37,38が同時に開いている(Yes)と判定した場合は、意図しない油圧アクチュエータ1,3の動作が発生し得るため、ステップS2で第1バルブ全閉スイッチ50の制御指令値を閉に設定する。一方、ステップS1で切換弁37,38のうちの少なくとも1つが閉じている(No)と判定した場合は、意図しない油圧アクチュエータ1,3の動作は発生しないため、ステップS3で第1バルブ全閉スイッチ50の制御指令値を開に設定する。
次に、切換弁38が開固着した場合の油圧システム200Dの動作を説明する。
図15において、操作者がブームレバー34aのみを最大操作量の半分以下の範囲内で操作し、ブームシリンダ1を伸展駆動する入力を与えると、車体制御コントローラ11の情報取得部11aは、ブームレバー34aの操作量を検出する。
車体制御演算部11bは、ブームレバー34aの操作量に基づき、閉回路ポンプ35のみがブームシリンダ1に接続されるように切換弁37の制御指令値を開に設定しかつ38〜40の制御指令値を閉に設定し、また、閉回路ポンプ35のポンプ吐出流量指令値をブームレバー34aの操作量に応じた値に設定する。
バルブ信号出力部11cは、車体制御演算部11bからの切換弁37〜40の制御指令値に基づき、切換弁37に開信号を出力し、切換弁38〜40に閉信号を出力する。ポンプ信号出力部11dは、車体制御演算部11bからのポンプ吐出流量指令値に基づき、閉回路ポンプ35のレギュレータ35aに制御信号を出力する。
閉回路ポンプ35は、レギュレータ35aによって制御された吐出流量で、流路20に作動油を吐出する。この時、切換弁38が失陥し、開固着したものとする。ここで、切換弁37は車体制御コントローラ11からの開信号によって開いているため、電磁弁38aが開固着したことで切換弁37,38(ポペット弁37b,38b)が同時に開くこととなり、ブームシリンダ1のシリンダヘッド1aが流路21,20,28,25を介してアームシリンダ3のシリンダヘッド3aに接続され、ブームシリンダ1のシリンダロッド1bが流路23,22,29,27を介してアームシリンダ3のシリンダロッド3bに接続される。この状態で、例えばブームシリンダ1に収縮方向の負荷が作用していたとすると、ブームシリンダ1のシリンダヘッド1aの作動油が負荷によって流出し、流路21,20,28,25を介してアームシリンダ3のシリンダヘッド3aに流入する。その結果、アームレバー34bが非操作であるにも関わらず、アームシリンダ3が伸展する。
図16において、弁装置制御コントローラ33Dのバルブ状態検出部33bは、電磁弁37aが開くことで第1パイロット圧センサ37dの高圧を検出し、電磁弁39a,40aが閉じることで第3および第4パイロット圧センサ39d,40dの低圧を検出する。また、バルブ状態検出部33bは、電磁弁38aが開固着したことで第2パイロット圧センサ38dの高圧を検出する。
図17において、故障判定部33cは、ステップS1で第1および第2パイロット圧センサ37d,38dの圧力が共に圧力しきい値Pthよりも高い(Yes)と判定し、ステップS2で第1バルブ全閉スイッチ50の制御指令値を閉に設定する。続くステップS4で、第3および第4パイロット圧センサ39d,40dの圧力が共に圧力しきい値Pthよりも低い(No)と判定し、ステップS6で第2バルブ全閉スイッチ51の制御指令値を開に設定する。
図16において、弁装置制御コントローラ33Dの信号生成部33dは、故障判定部33cからの第1および第2バルブ全閉スイッチ50,51の制御指令値に基づき、第1バルブ全閉スイッチ50に閉信号を出力し、第2バルブ全閉スイッチ51に開信号を出力する。
図15において、第1バルブ全閉スイッチ50は、弁装置制御コントローラ33Dから開信号を受信し、電磁弁37a,38aからの信号線を開放側接点50aに接続する。これにより、車体制御コントローラ11から切換弁37への制御信号が無効となるため、電磁弁37aは開側に駆動されずバネ力によって閉じ、切換弁37(ポペット弁37b,37c)が閉じる。その結果、切換弁38の開固着によってブームシリンダ1とアームシリンダ3とが流路21,20,28,25および流路23,22,29,27を介して接続されていた状態が、切換弁37(ポペット弁37b,37c)が閉じて流路21,23と流路20,22とがそれぞれ切断されることにより解消されるため、アームシリンダ3の伸展が停止する。
以上のように構成した本実施例においても、第1の実施例と同様の効果が得られる。さらに、第1の実施例における第1および第2中立検出スイッチ62a,62b(図2に示す)を省略したことにより、コストを低減できる。
以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を油圧ショベルに適用したものであるが、本発明はこれに限られず、複数の油圧アクチュエータを油圧閉回路で駆動する建設機械全般に適用可能である。また、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。