JP2018156792A - 燃料電池システム - Google Patents
燃料電池システム Download PDFInfo
- Publication number
- JP2018156792A JP2018156792A JP2017051857A JP2017051857A JP2018156792A JP 2018156792 A JP2018156792 A JP 2018156792A JP 2017051857 A JP2017051857 A JP 2017051857A JP 2017051857 A JP2017051857 A JP 2017051857A JP 2018156792 A JP2018156792 A JP 2018156792A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- hot water
- power
- secondary battery
- water supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 197
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 159
- 238000010248 power generation Methods 0.000 claims abstract description 55
- 239000000498 cooling water Substances 0.000 claims abstract description 29
- 239000002918 waste heat Substances 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 18
- 230000020169 heat generation Effects 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000002826 coolant Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000003860 storage Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Fuel Cell (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】本発明の少なくとも一実施形態は、燃料電池と二次電池とが搭載される電動車両を備えて、車両停車時に車外に電力及び給湯を供給可能とし、さらに、給湯能力をきめ細かく制御可能とする燃料電池システムを提供することを目的とする。【解決手段】燃料電池7と、燃料電池で発生する電力を充電する二次電池9と、二次電池からの電力の供給を受けて駆動する走行用モータ11とが搭載された電動車両3を備え、電動車両3の停車時に、二次電池9から電動車両の外部へ電力を供給する電力供給手段23と、燃料電池を冷却する冷却水が循環する冷却水回路29と、冷却水回路に接続されて燃料電池7の廃熱によって加熱され冷却水と熱交換を行い車外より供給された供給水を加熱する熱交換手段33と、熱交換手段によって加熱された温水を電動車両の外部へ供給する給湯手段37と、燃料電池の発電出力を制御する燃料電池制御部65と、を備えたこと。【選択図】図1
Description
本開示は、燃料電池を搭載した電動車両の停止時に、電動車両から車外に電力を供給し、また、燃料電池発電時の廃熱を利用して車内や車外への給湯を行う燃料電池システムに関する。
近年、電動自動車の大容量バッテリから電力を取り出し、分電盤を通じて家庭用電力として使用するシステム、所謂Vehicle to Home(V2H)システムについて開発が行われている。
また、燃料電池の発電時に発生する廃熱を利用して給湯を行うコジェネレーションが可能になるため、燃料電池の排熱利用によるコジェネレーションシステムについての開発も行われている。例えば、特許文献1、2が知られている。
特許文献1には、その図1に示すように、コジェネレーションシステムは、発電ユニット10(発電システムに相当する)および貯湯槽21を備えている。発電ユニット10は、筐体10a、筐体10aの内部の燃料電池モジュール11、熱交換器12(排気熱交換器に相当する)、インバータ装置13、貯水器14、制御装置15及び貯湯槽21を備えている構成が示されている。
また、特許文献2には、電気自動車に搭載した燃料電池と、燃料電池の発電電力を交流電力に変換する電力変換手段と、電気自動車の停止時に電力変換手段の出力を電気自動車の駆動モータより車外の家屋あるいはテントに切り替えて供給する電力供給手段と、冷却水を車外より燃料電池に供給する冷却水供給手段と、この供給された冷水を燃料電池発電の際の排熱によって温水となし、燃料電池の発電電力とともに外部へ供給する供給手段とを備えたことが示されている。
上記特許文献1の燃料電池は車載用ではないが、特許文献2には、車載用の燃料電池を用いて、車両停止時に燃料電池の発電電力と、燃料電池の廃熱利用による給湯とを車外へ供給することを可能にするコジェネレーションシステムについて開示されている。
しかし、この特許文献2のシステムでは、燃料電池の発電電力を車外の住宅の電気機器等に供給するので、車外の電気機器等の電気負荷に応じて燃料電池の出力制御が必要であり、さらに、廃熱利用による給湯のための発熱量の制御のためにも燃料電池の出力制御が必要である。このため、燃料電池の出力制御を電力負荷と給湯との両方を考慮する必要があるため、給湯のためだけにきめ細かい燃料電池の出力制御が行い難い。
そこで、上記技術的課題に鑑み、本発明の少なくとも一実施形態は、燃料電池と二次電池とが搭載される電動車両を備えて、車両停車時に車外に電力及び給湯を供給可能とし、さらに、給湯能力をきめ細かく制御可能とする燃料電池システムを提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る燃料電池システムは、水素及び酸素の供給を受けて発電を行う燃料電池と、前記燃料電池で発生する電力を充電する二次電池と、前記二次電池からの電力の供給を受けて駆動する走行用モータとが搭載された電動車両を備え、前記電動車両の停車時に、前記二次電池から前記電動車両の外部へ電力を供給する電力供給手段と、前記燃料電池を冷却する冷却水が循環する冷却水回路と、前記冷却水回路に接続されて前記燃料電池の廃熱によって加熱され冷却水と熱交換を行い車外より供給された供給水を加熱する熱交換手段と、前記熱交換手段によって加熱された温水を前記電動車両の外部へ供給する給湯手段と、前記燃料電池の発電出力を制御する燃料電池制御部と、前記燃料電池の発電出力を制御する燃料電池制御部と、を備えたことを特徴とする。
上記構成(1)によれば、電動車両に搭載の燃料電池を用いて、車両が停車中に燃料電池による発電電力は、二次電池に充電され、車外への電力はこの二次電池から供給される。さらに、燃料電池の発電に伴う廃熱を利用して車外への給湯が可能になる。
また、燃料電池による発電電力は二次電池に充電され、二次電池から車外に供給されるので、車外の電力負荷への対応のための燃料電池の出力制御はされず二次電池の充電率(SOC:State Of Charge)を考慮するだけでよく、燃料電池の出力制御を、給湯に最適な廃熱制御に特化させることかできる。それにより、給湯制御をきめ細かく行うことが可能になる。
(2)幾つかの実施形態では、前記燃料電池制御部は、前記給湯手段への給湯指示を基に、前記燃料電池の発電出力の制御を開始することを特徴とする。
上記構成(2)によれば、給湯手段への給湯指示を基に燃料電池の発電出力制御を開始するので、給湯指示すなわち給湯の使用開始に対応して燃料電池からの廃熱熱量を制御できる。
(3)幾つかの実施形態では、前記燃料電池制御部は、前記給湯手段に給湯指示がある場合、前記燃料電池を最高効率出力で発電して、前記二次電池への充電と前記給湯手段による給湯を行わせることを特徴とする。
上記構成(3)によれば、給湯手段に給湯指示があると、燃料電池を最高効率出力で発電させるので、燃料電池の低燃費化を達成しつつ給湯が可能である。
この燃料電池の低燃費とは、燃料電池の発電に必要な水素ガス量および酸素量の低減、さらに燃料電池を発電するために必要とする補機、例えば、外気から取り込んだ空気を酸素ガスとして燃料電池のカソードへ供給する空気ブロアや、燃料電池のアノードに供給された燃料の水素ガスの未反応水素ガスを燃料電池のアノードに還流させる循環ポンプや、燃料電池の冷却水もしくは冷却風の供給ポンプ等の補機を作動する電力を低減することである。
なお、燃料電池の最高効率出力とは、図6に示す燃料電池の出力特性を基に「最高効率出力」は、最高効率点Xm(%)のFC出力Ps(KW)である。
この燃料電池の低燃費とは、燃料電池の発電に必要な水素ガス量および酸素量の低減、さらに燃料電池を発電するために必要とする補機、例えば、外気から取り込んだ空気を酸素ガスとして燃料電池のカソードへ供給する空気ブロアや、燃料電池のアノードに供給された燃料の水素ガスの未反応水素ガスを燃料電池のアノードに還流させる循環ポンプや、燃料電池の冷却水もしくは冷却風の供給ポンプ等の補機を作動する電力を低減することである。
なお、燃料電池の最高効率出力とは、図6に示す燃料電池の出力特性を基に「最高効率出力」は、最高効率点Xm(%)のFC出力Ps(KW)である。
(4)幾つかの実施形態では、前記燃料電池制御部は、前記最高効率出力で発電している場合であって、所定の給湯量が確保できない場合には、前記最高効率出力より発電出力を設定上限値まで増大させることを特徴とする。
上記構成(4)によれば、最高効率出力で発電している場合であっても、所定の給湯量が確保できない場合には、最高効率出力より発電出力を設定上限値まで増大させるので、効率悪化に伴い燃費は犠牲になるが、給湯量を確保することが可能になる。また、燃料電池の発電出力に上限値を設けるので、二次電池への過充電を防止して二次電池の劣化を抑制することができる。
(5)幾つかの実施形態では、前記設定上限値は、住宅供給電力と前記二次電池の受入可能電力との合計値であることを特徴とする。
上記構成(5)によれば、設定上限値は、住宅供給電力と二次電池の受入可能電力との合計値であるので、二次電池への過充電を防止して二次電池の劣化を抑制することができる。
(6)幾つかの実施形態では、前記燃料電池制御部は、前記設定上限値によって発電している場合であっても、前記所定の給湯量が確保できない場合には、前記燃料電池の発電効率を低下させて前記燃料電池の発熱量を増加させることを特徴とする。
上記構成(6)によれば、設定上限値によって発電している場合であっても、所定の給湯量が確保できない場合には、燃料電池の発電効率を低下させて、燃料電池の発熱量を増加させることができる。
(7)幾つかの実施形態では、前記燃料電池制御部は、前記給湯手段に給湯指示がない場合には、前記燃料電池の発電を停止して、前記電力供給手段によって前記二次電池から外部へ電力を供給することを特徴とする。
上記構成(7)によれば、給湯手段に給湯指示がない場合には、燃料電池の発電を停止して二次電池への充電も停止されるので、車外への電力は二次電池に充電されている電力によって行われる。
(8)幾つかの実施形態では、前記燃料電池制御部は、前記燃料電池の発電を停止して、前記電力供給手段によって前記二次電池から外部へ電力を供給している場合に、前記二次電池の充電率が所定値を下回った場合、現在の充電状態と前記所定値との偏差に応じて前記燃料電池の発電出力を制御すること特徴とする。
上記構成(8)によれば、二次電池の充電率が所定値を下回った場合に、現在の充電状態と前記所定値との偏差に応じて燃料電池を発電するので、二次電池に充電が行われることで、二次電池の充電状態が所定値以下に下回って電欠状態になることが防止され。
本発明の少なくとも一実施形態によれば、燃料電池と二次電池とが搭載される電動車両を備えて、車両停車時に車外に電力及び給湯を供給可能とし、さらに、給湯能力をきめ細かく制御可能とすることができる。
以下、添付図面を参照して、本発明の幾つかの実施形態について説明する。ただし、これらの実施形態に記載されている又は図面に示されている構成部品の寸法、材質、形状及びその相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
本発明の一実施形態に係る燃料電池システム1について、全体構成を、図1を参照して説明する。
図1に示すように、電動車両3と、車外設備として例えば住宅5とが備えられ、電動車両3は、水素及び酸素の供給を受けて発電を行う燃料電池(FC:Fuel Cell)7と、燃料電池7で発生される電力が充電される二次電池9と、主に二次電池9からの電力の供給を受けて駆動するモータ(走行用モータ)11とを備えている。
図1に示すように、電動車両3と、車外設備として例えば住宅5とが備えられ、電動車両3は、水素及び酸素の供給を受けて発電を行う燃料電池(FC:Fuel Cell)7と、燃料電池7で発生される電力が充電される二次電池9と、主に二次電池9からの電力の供給を受けて駆動するモータ(走行用モータ)11とを備えている。
図1においては、前輪側をモータ11で駆動する例を示しているが、モータ11を後輪側に設けても、前後輪両側に設けてもよい。
燃料電池7は、固体高分子電解質膜を挟んで空気極(カソード)と燃料極(アノード)とを対設した構造を有する発電セルを、セパレータで挟持して、これを複数積層して構成されている。
また、複数の発電セルの各空気極側の触媒層に酸素である空気が供給されるようになっており、各燃料極側の触媒層に燃料ガスの水素ガスが供給されるようになっている。
また、複数の発電セルの各空気極側の触媒層に酸素である空気が供給されるようになっており、各燃料極側の触媒層に燃料ガスの水素ガスが供給されるようになっている。
この燃料電池7においては、燃料極(アノード)に水素ガスを供給すると共に、空気極(カソード)に酸素を含む空気を供給すると、下記に示すような反応が生じるので、電極間に発生する起電力として電気エネルギーを取り出すことが可能となる。
燃料極(アノード):H2→2H++2e-
空気極(カソード):1/2O2+2H++2e-→H2O
燃料極(アノード):H2→2H++2e-
空気極(カソード):1/2O2+2H++2e-→H2O
また、燃料電池7の空気極(不図示)に酸素を含む空気を供給する空気ブロア(不図示)や、燃料極(不図示)に水素ガスを供給する水素タンク(不図示)が接続されている。
さらに、燃料電池7のアノードに供給される水素ガスの未反応水素ガスを燃料電池のアノードに還流させる水素ガス循環ポンプ(不図示)や、燃料電池の冷却水もしくは冷却風の供給ポンプ(不図示)等の燃料電池用の補機が設けられている。
さらに、燃料電池7のアノードに供給される水素ガスの未反応水素ガスを燃料電池のアノードに還流させる水素ガス循環ポンプ(不図示)や、燃料電池の冷却水もしくは冷却風の供給ポンプ(不図示)等の燃料電池用の補機が設けられている。
燃料電池7、二次電池9、DC−DCコンバータ13、インバータ15を有して電動車両3の電源装置17を構成している。そして、燃料電池7の出力は、DC−DCコンバータ13に入力し、DC−DCコンバータ13の出力は、インバータ15及び二次電池9に入力されるように接続される。そして、インバータ15に入力されたDC−DCコンバータ13の出力は交流に変換されてモータ11に供給される。
一方、DC−DCコンバータ13の出力は、二次電池9に入力されると共に、この二次電池9の出力が、接続ケーブル19を介して車外の例えば住宅5の給電器21に電力を供給し、そこからさらに電気機器に給電するようになっている。これら、接続ケーブル19及び給電器21によって電力供給手段23を構成している。
また、この電源装置17によって生成された電力は、モータ11、さらに、燃料電池7の補機である空気ブロア(不図示)、水素ガス循環ポンプ(不図示)、燃料電池7の冷却水を循環させる冷却水ポンプ25や、車両補機である車室エアコン(不図示)やランプ(不図示)等に供給されるようになっている。
また、走行時おいて、電動車両3のモータ11は、主に二次電池9の電力によって駆動されるように構成されており、燃料電池7で発電された電力は、DC−DCコンバータ13により所定電圧に調整されて二次電池9に充電される。すなわち、二次電池9の出力不足が生じた場合にだけ、不足を補うように燃料電池7からの電力がモータ11に供給されるようになっている。
このように、二次電池9は、車両走行時おける加減速に伴う負荷変動時の電力供給を担うと共に、車両制動時における回生電力の貯蔵源を担うものである。二次電池9は、リチウムイオン電池や、ニッケル・カドミウム電池や、ニッケル・水素電池等であってもよく特に限定されるものではない。
さらに、電動車両3には、燃料電池7の冷却手段27として冷却水が循環する冷却水回路29が形成されている。この冷却水回路29は図1に示すように、冷却水を循環させる冷却水ポンプ25と、冷却水を外気によって冷却するラジエータ31と、燃料電池7の廃熱によって加熱され冷却水と熱交換を行い車外より供給された供給水(例えば、水道水)を加熱す熱交換器(熱交換手段)33と、が設けられている。さらに、熱交換器33とラジエータ31との間には、流路切替バルブ35が設けられている。
図2(A)に示すように、車両走行時には燃料電池7の廃熱で加熱された冷却水は熱交換器33に流入し、その後に流路切替バルブ35を通ってラジエータ31を通過して冷却され、冷却水ポンプ25によって、燃料電池7に再循環される。
図2(B)に示すように、車両停車時に外部に給湯を行うときは、流路切替バルブ35が切替えられて、冷却水はラジエータ31をバイパスするように流れる。これにより、冷却水は高温状態で燃料電池7に再循環してさらに廃熱により加熱されることで、熱交換器33に流入する冷却水温度が上昇して、車両外部からの供給水(水道水)を加熱して温水とすることができる。
また、車外の住宅5側には給湯手段37が設けられている。
給湯手段37は、熱交換器33で加熱された温水を溜める貯湯槽39と、貯湯槽39からの温水を出湯するためにユーザが操作する給湯栓等からなる給湯器41とを備えている。
給湯手段37は、熱交換器33で加熱された温水を溜める貯湯槽39と、貯湯槽39からの温水を出湯するためにユーザが操作する給湯栓等からなる給湯器41とを備えている。
図4に示すように、貯湯槽39には貯湯槽39内の貯湯量を検出する湯量センサ43が設けられている。
また、熱交換器33と貯湯槽39との間の配管45には、温度調整弁47が設けられ、一定温度以上の温水が貯湯槽39に流入されるようになっている。また温度調整弁47の下流側の配管45には流量センサ49が設けられ、貯湯槽39に流入される一定温度以上の温水の流量が検出される。
また、貯湯槽39と給湯器41との間の配管51には、流量センサ53が設けられ給湯器41によってユーザが要求する温水の流量が検出される。
また、熱交換器33と貯湯槽39との間の配管45には、温度調整弁47が設けられ、一定温度以上の温水が貯湯槽39に流入されるようになっている。また温度調整弁47の下流側の配管45には流量センサ49が設けられ、貯湯槽39に流入される一定温度以上の温水の流量が検出される。
また、貯湯槽39と給湯器41との間の配管51には、流量センサ53が設けられ給湯器41によってユーザが要求する温水の流量が検出される。
次に、制御装置55について説明する。
制御装置55は、図示しない信号入力部、信号出力部、記憶部、演算部等が設けられている。信号入力部には、図示しない車両状態を検出する種々のセンサからの信号が入力される。また、図1に示すように、制御装置55には、二次電池制御部57、モータ制御部59、車両制御部61、燃料電池制御部(FC制御部)63、さらに給湯制御部65を主に備えている。
制御装置55は、図示しない信号入力部、信号出力部、記憶部、演算部等が設けられている。信号入力部には、図示しない車両状態を検出する種々のセンサからの信号が入力される。また、図1に示すように、制御装置55には、二次電池制御部57、モータ制御部59、車両制御部61、燃料電池制御部(FC制御部)63、さらに給湯制御部65を主に備えている。
二次電池制御部57は、二次電池9の温度、出力電圧、放電電流、さらには二次電池9の充電率(SOC)を検出して、これら情報を取得して、車両制御部61へ送信する。
モータ制御部59は、モータ11のトルク情報などを検出して取得して、該検出情報を車両制御部61へ送信している。また、車両制御部61からの車両要求出力の指示に基づいて、モータ11の出力トルクを制御するためにインバータ15の制御を実行する。
モータ制御部59は、モータ11のトルク情報などを検出して取得して、該検出情報を車両制御部61へ送信している。また、車両制御部61からの車両要求出力の指示に基づいて、モータ11の出力トルクを制御するためにインバータ15の制御を実行する。
車両制御部61は、車両状態を検出する種々のセンサからの信号を基に、車両要求出力を算出して、モータ制御部59、燃料電池制御部63、二次電池制御部57をそれぞれ制御するようになっている。
燃料電池制御部63は、車両走行時及び停車時においての燃料電池7の発電制御を行うが、ここでは、車両が停車(停止)して車外の住宅5への給電及び給湯を行うときの発電制御を行う制御部として説明する。
給湯制御部65は、車両が停車して車外の住宅5への給湯を行う場合、走行する場合の流路切替バルブ35の切替えを制御する。さらに熱交換器33から供給される給湯量の不足を判定して燃料電池制御部63を制御するようになっている。
給湯制御部65は、車両が停車して車外の住宅5への給湯を行う場合、走行する場合の流路切替バルブ35の切替えを制御する。さらに熱交換器33から供給される給湯量の不足を判定して燃料電池制御部63を制御するようになっている。
燃料電池制御部63は図3を参照し、給湯制御部65は図4を参照して説明する。
図3に示す燃料電池制御部63は、給湯を行う際の燃料電池7の発電出力及び発電効率を制御する発電出力・効率制御部67と、発電出力の上限値を設定する上限値設定部69を有している。
図3に示す燃料電池制御部63は、給湯を行う際の燃料電池7の発電出力及び発電効率を制御する発電出力・効率制御部67と、発電出力の上限値を設定する上限値設定部69を有している。
また、図4に示す給湯制御部65は、流量センサ49からの検出信号を基に貯湯槽39に流入される一定温度以上の温水の流量を算出する給湯量算出部71と、流量センサ53からの検出信号を基に給湯器41によってユーザが要求する温水の流量を算出する給湯指示量算出部73と、湯量センサ43からの検出信号を基に貯湯槽39内の湯量が一定量以下に低下した場合に給湯指示を発する給湯指示判定部75と、さらに、給湯量算出部71と給湯指示量算出部73とからの算出結果を基に、給湯量が不足するか否かを判定する給湯量判定部77とを有している。
そして、給湯指示判定部75及び給湯量判定部77の判定結果を、流路切替バルブ35及び燃料電池制御部63に出力する。
そして、給湯指示判定部75及び給湯量判定部77の判定結果を、流路切替バルブ35及び燃料電池制御部63に出力する。
次に、図5のフローチャートを参照して、燃料電池制御部63における制御フローチャートについて説明する。
図5において、まず、ステップS1で、二次電池9のSOCを読み込み、ステップS2で、給湯指示があるかを判定する。この給湯指示の有無は、図4に示すように給湯制御部65の給湯指示判定部75で貯湯槽39内の湯量が一定量以下に低下したことを判定した場合に給湯指示有りとなる。
図5において、まず、ステップS1で、二次電池9のSOCを読み込み、ステップS2で、給湯指示があるかを判定する。この給湯指示の有無は、図4に示すように給湯制御部65の給湯指示判定部75で貯湯槽39内の湯量が一定量以下に低下したことを判定した場合に給湯指示有りとなる。
給湯指示有りでYesの場合は、ステップS3に進んで、燃料電池7を最高効率出力Psで発電を行う。また、給湯指示有りでYesの場合には、流路切替バルブ35を切替えて図2の(B)に示す流れのようにラジエータ31をバイパスして流すように切替える。
なお、燃料電池7の最高効率出力とは、図6に示す燃料電池の出力特性を基に「最高効率出力」は、最高効率点Xm(%)のFC出力Ps(KW)である。図6は、燃料電池出力(FC出力)と車両効率との関係を示し、横軸は燃料電池7の出力電力(KW)であり、縦軸は車両効率(%)を示す。この車両効率は、燃料電池7及び燃料電池7の補機を含む燃料電池システムを搭載した電動車両の効率(車両効率)である。すなわち、燃料電池7の発電のために要する車両全体のエネルギー効率である。
次に、ステップS4で、給湯指示量が燃料電池7の最高効率出力Ps時での給湯量以上であるかを判定する。この給湯量の判定は図4に示すように給湯制御部65の給湯量判定部77で、燃料電池7の最高効率出力Ps時における給湯量算出部71からの算出量と、給湯指示量算出部73からの算出結果とを基に、給湯指示量に対して給湯量が不足するかを基に判定する。判定結果がYesの場合には、ステップS5に進む。
ステップS5では、燃料電池出力を最高効率出力Ps以上で(住宅供給電力+二次電池受入電力)以下の範囲に増加させる。すなわち、図6の特性図に示すように、最高効率出力Ps以上にして車両効率は低下するが出力を増大させて燃料電池7からの発熱量を増大させる。
二次電池受入電力は図7の特性図を参照して算出する。図7は、充電率(SOC)と二次電池受入電力との関係を示し、横軸は二次電池9のSOC(%)であり、縦軸は二次電池受入電力(KW)を示す。
二次電池受入電力は図7の特性図を参照して算出する。図7は、充電率(SOC)と二次電池受入電力との関係を示し、横軸は二次電池9のSOC(%)であり、縦軸は二次電池受入電力(KW)を示す。
次に、ステップS6で、給湯指示量が燃料電池7の(住宅供給電力+二次電池受入電力)での出力時における給湯量以上であるかを判定する。この給湯量の判定も、上記ステップS4での判定と同様に、給湯制御部65の給湯量判定部77で、燃料電池7の(住宅供給電力+二次電池受入電力)での出力時における給湯量算出部71からの算出量と、給湯指示量算出部73からの算出結果とを基に、給湯指示量に対して給湯量が不足するかを基に判定する。判定結果がYesの場合には、ステップS7に進む。
ステップS7では、さらに、燃料電池7の効率低下制御を行う。すなわち、ガス流量(水素ガス量もしくは空気量)の非最適制御、またはセル温度の非最適化制御を行う。これによって、さらに、発熱量を増大させることができる。
燃料電池7の効率は温度上昇とともに低下する特性を有するため、効率低下制御を行って温度上昇を図る。例えば、(住宅供給電力+二次電池受入電力)での出力時における水素ガス量もしくは空気量を絞るように制御する。
燃料電池7の効率は温度上昇とともに低下する特性を有するため、効率低下制御を行って温度上昇を図る。例えば、(住宅供給電力+二次電池受入電力)での出力時における水素ガス量もしくは空気量を絞るように制御する。
例えば、図8に示すように、反応に必要な十分な空気量及び水素ガス量が供給されている場合、すなわち最適制御が行われている場合の燃料電池7の電流電圧特性をC1として示すと、空気量もしくは水素ガス量を絞った場合、すなわち非最適制御が行われている場合の電流電圧特性はC2の状態になる。
このC2の状態特性は、C1の特性よりも発電効率が悪く発電電圧がD1からD2に低下するので、理論電圧に対するエネルギー損失が増大する。すなわち熱エネルギーが増大して発熱量が増大することになる。
例えば、D1の出力(電流×電圧)を確保するためには、D1→D3に移行した場合、発熱量=(理論電圧-電圧)×電流であるので、同一出力で発熱量が増大することになる。
このように、ステップS7では、さらに、燃料電池7の効率低下制御を行って発熱量を増大させる制御を行っている。
このC2の状態特性は、C1の特性よりも発電効率が悪く発電電圧がD1からD2に低下するので、理論電圧に対するエネルギー損失が増大する。すなわち熱エネルギーが増大して発熱量が増大することになる。
例えば、D1の出力(電流×電圧)を確保するためには、D1→D3に移行した場合、発熱量=(理論電圧-電圧)×電流であるので、同一出力で発熱量が増大することになる。
このように、ステップS7では、さらに、燃料電池7の効率低下制御を行って発熱量を増大させる制御を行っている。
図5のフローチャートに戻って、ステップS2で、給湯指示が無い場合には、Noとなって、ステップS8に進んで、燃料電池7の発電を停止する。その後、ステップS9でSOCが目標SOC未満か否かを判定する。SOCが目標SOC未満の場合には、ステップS10に進んで、現在SOCと目標SOC、例えば15〜30%との偏差に応じた燃料電池7の出力で発電を行う。これによって、給湯が行われない場合であっても、燃料電池7の発電を行わせて、二次電池9のSOCを15〜30%の目標値に維持することができ電欠を防止できる。
なお、ステップS4、ステップS6、ステップS9での判定結果がNoの場合には、リータしてステップS1に戻り処理が繰り返される。
以上説明した本実施形態によれば、電動車両3に搭載の燃料電池7を用いて、車両が停車中に燃料電池7による発電電力は、車両駆動用のモータ11への電力供給を行うに二次電池9に充電し、車外への電力は二次電池9から供給可能になる。さらに、燃料電池7の発電に伴う廃熱を利用して車外への給湯が可能になる。
また、燃料電池7による発電電力は二次電池9に充電され、車外の電力負荷へは二次電池9から供給されるので車外の電力負荷に応じた燃料電池7の出力制御は行われず、二次電池9の充電率(例えば、電欠防止のためのSOC15〜30%)を考慮するだけである。しかも、この二次電池9の充電率(例えば、電欠防止のためのSOC15〜30%)を考慮した燃料電池7の発電制御は、給湯していないときであるため、燃料電池7の出力制御を、給湯に最適な発熱量とする制御に特化することができる。
また、給湯指示があった場合には、まず、燃料電池7の発電出力を最高効率時の出力で発電を行うため、燃料電池7の燃料消費を低減できる。
そして、燃料電池7の発電出力を最高効率時の出力では、給湯指示量の要求に不足する場合には、さらに燃料電池7の発電出力を増大して発熱量を上げる。最高効率出力より発電出力を住宅供給電力と前記二次電池の受入可能電力との合計値である上限値まで増大させるので、燃費は犠牲になるが、給湯量を確保することが可能になる。また、燃料電池の発電出力に上限値を設けるので、二次電池への過充電を防止して二次電池の劣化を抑制することができる。
そして、燃料電池7の発電出力を最高効率時の出力では、給湯指示量の要求に不足する場合には、さらに燃料電池7の発電出力を増大して発熱量を上げる。最高効率出力より発電出力を住宅供給電力と前記二次電池の受入可能電力との合計値である上限値まで増大させるので、燃費は犠牲になるが、給湯量を確保することが可能になる。また、燃料電池の発電出力に上限値を設けるので、二次電池への過充電を防止して二次電池の劣化を抑制することができる。
さらに、住宅供給電力と前記二次電池の受入可能電力との合計値である上限値での発電による発熱量でも、給湯指示量の要求に不足する場合には、燃料電池の発電効率を低下させて、燃料電池の発熱量を増加させることでさらに発熱量を増大させることで、給湯指示量の要求に対応することができる。
本発明の少なくとも一実施形態によれば、燃料電池と二次電池とが搭載される電動車両を備え、車両停車時に車外に電力及び給湯を供給可能とし、さらに、燃料電池の出力を制御することによって給湯能力を制御することができるので、燃料電池を搭載した電動車両を用いた燃料電池システムへの利用に適している。
1 燃料電池システム
3 電動車両
5 住宅
7 燃料電池
9 二次電池
11 モータ(走行用モータ)
13 DC−DCコンバータ
15 インバータ
21 給電器
23 電力供給手段
29 冷却水回路
33 熱交換器(熱交換手段)
35 流路切替バルブ
37 給湯手段
39 貯湯槽
41 給湯器
55 制御装置
57 二次電池制御部
59 モータ制御部
61 車両制御部
63 燃料電池制御部
65 給湯制御部
67 発電出力・効率制御部
69 上限値設定部
71 給湯量算出部
73 給湯指示量算出部
75 給湯指示判定部
77 給湯量判定部
3 電動車両
5 住宅
7 燃料電池
9 二次電池
11 モータ(走行用モータ)
13 DC−DCコンバータ
15 インバータ
21 給電器
23 電力供給手段
29 冷却水回路
33 熱交換器(熱交換手段)
35 流路切替バルブ
37 給湯手段
39 貯湯槽
41 給湯器
55 制御装置
57 二次電池制御部
59 モータ制御部
61 車両制御部
63 燃料電池制御部
65 給湯制御部
67 発電出力・効率制御部
69 上限値設定部
71 給湯量算出部
73 給湯指示量算出部
75 給湯指示判定部
77 給湯量判定部
Claims (8)
- 水素及び酸素の供給を受けて発電を行う燃料電池と、前記燃料電池で発生する電力を充電する二次電池と、前記二次電池からの電力の供給を受けて駆動する走行用モータとが搭載された電動車両を備え、
前記電動車両の停車時に、前記二次電池から前記電動車両の外部へ電力を供給する電力供給手段と、
前記燃料電池を冷却する冷却水が循環する冷却水回路と、
前記冷却水回路に接続されて前記燃料電池の廃熱によって加熱され冷却水と熱交換を行い車外より供給された供給水を加熱する熱交換手段と、
前記熱交換手段によって加熱された温水を前記電動車両の外部へ供給する給湯手段と、
前記燃料電池の発電出力を制御する燃料電池制御部と、を備えたことを特徴とする燃料電池システム。 - 前記燃料電池制御部は、前記給湯手段への給湯指示を基に、前記燃料電池の発電出力の制御を開始することを特徴とする請求項1に記載の燃料電池システム。
- 前記燃料電池制御部は、前記給湯手段に給湯指示がある場合、前記燃料電池を最高効率出力で発電して、前記二次電池への充電と前記給湯手段による給湯を行わせることを特徴とする請求項2に記載の燃料電池システム。
- 前記燃料電池制御部は、前記最高効率出力で発電している場合であって、所定の給湯量が確保できない場合には、前記最高効率出力より発電出力を設定上限値まで増大させることを特徴とする請求項3に記載の燃料電池システム。
- 前記設定上限値は、住宅供給電力と前記二次電池の受入可能電力との合計値であることを特徴とする請求項4に記載の燃料電池システム。
- 前記燃料電池制御部は、前記設定上限値によって発電している場合であっても、前記所定の給湯量が確保できない場合には、前記燃料電池の発電効率を低下させて前記燃料電池の発熱量を増加させることを特徴とする請求項4または5に記載の燃料電池システム。
- 前記燃料電池制御部は、前記給湯手段に給湯指示がない場合には、前記燃料電池の発電を停止して、前記電力供給手段によって前記二次電池から外部へ電力を供給することを特徴とする請求項2に記載の燃料電池システム。
- 前記燃料電池制御部は、前記燃料電池の発電を停止して、前記電力供給手段によって前記二次電池から外部へ電力を供給している場合に、前記二次電池の充電率が所定値を下回った場合、現在の充電状態と前記所定値との偏差に応じて前記燃料電池の発電出力を制御すること特徴とする請求項7に記載の燃料電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051857A JP2018156792A (ja) | 2017-03-16 | 2017-03-16 | 燃料電池システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051857A JP2018156792A (ja) | 2017-03-16 | 2017-03-16 | 燃料電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018156792A true JP2018156792A (ja) | 2018-10-04 |
Family
ID=63716680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017051857A Pending JP2018156792A (ja) | 2017-03-16 | 2017-03-16 | 燃料電池システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018156792A (ja) |
-
2017
- 2017-03-16 JP JP2017051857A patent/JP2018156792A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4458126B2 (ja) | 燃料電池システム及びその制御方法 | |
JP6687895B2 (ja) | 車両用燃料電池の暖機装置 | |
US6920948B2 (en) | DC power supply using fuel cell | |
CN102780016B (zh) | 燃料电池系统 | |
JP5644746B2 (ja) | 燃料電池車両用空調装置 | |
JP3928154B2 (ja) | 燃料電池電源装置 | |
JP2007312597A (ja) | 自家用エネルギ生成システム | |
JP4386314B2 (ja) | 電動車両の電力制御方法 | |
JP6926549B2 (ja) | 電動車両の電源装置 | |
CN111933973B (zh) | 一种质子交换膜燃料电池混合能量管理系统 | |
US20100235031A1 (en) | Output controller for fuel cell | |
JP2020113383A (ja) | 蓄電池の充電システム及び蓄電池の充電システムの制御装置 | |
JP2018133147A (ja) | 燃料電池システム | |
JP6926547B2 (ja) | 電動車両の電源装置 | |
JP2009295517A (ja) | 燃料電池システム | |
JP2020053287A (ja) | 燃料電池システム | |
JP6104637B2 (ja) | 2電源負荷駆動システム及び燃料電池自動車 | |
JP2019170022A (ja) | 車両 | |
JP2018156792A (ja) | 燃料電池システム | |
JP2009026563A (ja) | 制御装置及び制御方法 | |
JP6059049B2 (ja) | 燃料電池システム | |
JP2021090278A (ja) | 車両および車両の制御方法 | |
JP2010158102A (ja) | 燃料電池車両 | |
WO2013150619A1 (ja) | 燃料電池システム | |
JP2018147614A (ja) | 燃料電池システム |