Nothing Special   »   [go: up one dir, main page]

JP2017137012A - 車両用空調装置、それを備える車両及び車両用空調装置の制御方法 - Google Patents

車両用空調装置、それを備える車両及び車両用空調装置の制御方法 Download PDF

Info

Publication number
JP2017137012A
JP2017137012A JP2016020545A JP2016020545A JP2017137012A JP 2017137012 A JP2017137012 A JP 2017137012A JP 2016020545 A JP2016020545 A JP 2016020545A JP 2016020545 A JP2016020545 A JP 2016020545A JP 2017137012 A JP2017137012 A JP 2017137012A
Authority
JP
Japan
Prior art keywords
refrigerant
vehicle
air conditioner
condenser
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016020545A
Other languages
English (en)
Inventor
輝明 辻
Teruaki Tsuji
輝明 辻
光彦 赤星
Mitsuhiko Akaboshi
光彦 赤星
真 吉田
Makoto Yoshida
真 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Valeo Japan Co Ltd
Original Assignee
Mazda Motor Corp
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Valeo Japan Co Ltd filed Critical Mazda Motor Corp
Priority to JP2016020545A priority Critical patent/JP2017137012A/ja
Publication of JP2017137012A publication Critical patent/JP2017137012A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】本発明の目的は、内部熱交換器を有する冷凍サイクルにおいて、熱負荷が高くないときであっても成績係数が高く、省動力に寄与できる車両用空調装置、それを備える車両及び車両用空調装置の制御方法を提供することである。【解決手段】本発明に係る車両用空調装置100は、車両に搭載される車両用空調装置において、圧縮機2、凝縮器3、膨張装置4及び蒸発器5を配管61〜66で接続して冷媒を循環させる冷媒回路50と、凝縮器3から膨張装置4に導かれる冷媒が流れる第1の熱交換部11と蒸発器5から圧縮機2の吸入側に導かれる冷媒が流れる第2の熱交換部12との間で冷媒の熱交換を行う内部熱交換器10とを有する冷凍サイクル1aと、車両の外気温度を検出する外気温度センサ41と、凝縮器3で放熱される冷媒の放熱量を調節する放熱量調節装置7と、外気温度の値に基づいて放熱量調節装置7を制御する処理装置150と、を備える。【選択図】図1

Description

この発明は、車両用空調装置、それを備える車両及び車両用空調装置の制御方法に関し、特に内部熱交換器及び凝縮器の放熱量調節装置を備えた車両用空調装置において、省動力に寄与する技術に関する。
冷凍サイクルの冷房能力及び成績係数COP(Coefficient of Performance)を向上する構成として、例えば内部熱交換器(凝縮器から流出した相対的に温度の高い冷媒と、蒸発器から流出した相対的に温度の低い冷媒とを熱交換する装置)を冷凍サイクルに配置する技術が知られている(例えば、特許文献1を参照。)。なお、成績係数COPは、蒸発器での吸熱量Qeを、圧縮機の動力Lで除した値(Qe/L)として示され、数値が大きいほど効率がよい。
冷凍サイクルに内部熱交換器を配置することで、凝縮器から流出した冷媒のエントロピーが低減されて蒸発器の吸熱量Qeが増え、蒸発器から流出した冷媒のエントロピーが増加されて圧縮機の動力Lが増える。このとき、通常、Qeの増加割合がLの増加割合よりも大きいため、成績係数(COP=Qe/L)が増加し、効率が向上する。
特開2008−122034号公報
しかしながら、冷凍サイクルに内部熱交換器を配置し、成績係数COPを向上させたとしても、熱負荷が高くないとき(例えば、外気温度10℃以下であるとき)は、成績係数を十分に向上することができなかった。これは、熱負荷(外気温度等)が高くないので凝縮器での熱交換(放熱)が促進され、内部熱交換器に流入する高圧冷媒の温度が低くなり、蒸発器から内部熱交換器に流入する気液混合状態の低圧冷媒と十分に熱交換することができず、液体を含む冷媒が圧縮機に吸入され(いわゆる液圧縮と呼ばれる現象が発生し)、又は液相の冷媒の割合が多くなり、その結果、圧縮機の動力Lが増大するためである。
なお、熱負荷が高くないときであっても、車両の窓の曇りを除去するために、冷凍サイクルと加熱用熱交換器との両方を作動させる除湿暖房モードで空調装置を運転する場合がある。すなわち、年間を通じての空調装置の使用状況を踏まえると、熱負荷が高くないときに対しても、冷凍サイクルの成績係数を向上することは強く求められるところである。
そこで、本発明の目的は、内部熱交換器を有する冷凍サイクルにおいて、熱負荷が高くないときであっても成績係数が高く、省動力に寄与できる車両用空調装置、それを備える車両及び車両用空調装置の制御方法を提供することである。
本発明に係る車両用空調装置は、車両に搭載される車両用空調装置において、圧縮機、凝縮器、膨張装置及び蒸発器を配管で接続して冷媒を循環させる冷媒回路と、前記凝縮器から前記膨張装置に導かれる冷媒が流れる第1の熱交換部と前記蒸発器から前記圧縮機の吸入側に導かれる冷媒が流れる第2の熱交換部との間で前記冷媒の熱交換を行う内部熱交換器とを有する冷凍サイクルと、前記車両の外気温度を検出する外気温度センサと、前記凝縮器で放熱される前記冷媒の放熱量を調節する放熱量調節装置と、前記外気温度の値に基づいて前記放熱量調節装置を制御する処理装置と、を備えたことを特徴とする。
本発明に係る車両用空調装置では、前記処理装置は、前記外気温度の値と、(a)高圧ラインにおける冷媒の圧力、(b)前記車両の走行速度、(c)前記車両の室内温度、(d)前記蒸発器の温度若しくは該蒸発器を通過した空気の温度及び(e)前記蒸発器へのブロアファンからの送風量の、(a)〜(e)の中から選ばれる少なくとも一つと、に基づいて前記放熱量調節装置を制御することが好ましい。液体を含む冷媒が圧縮機に吸入されることをより確実に防止することができる。
本発明に係る車両用空調装置では、前記放熱量調節装置は、前記冷凍サイクルよりも前方に配置され、開口度を最小開口度と最大開口度との間で調整可能なグリル開口部を有する車両用グリル装置を備え、前記処理装置は、前記グリル開口部の開口度を制御することが好ましい。凝縮器での放熱量を適切に調整することができる。その結果、熱負荷が高くないときであっても、圧縮機が液体状の冷媒を吸引することを防止し、成績係数をより高めることができる。
本発明に係る車両用空調装置では、前記放熱量調節装置は、前記凝縮器を冷却する空気の流れを発生させる冷却ファンを備え、前記処理装置は、前記冷却ファンの送風量を制御することが好ましい。凝縮器での放熱量を適切に調整することができる。その結果、熱負荷が高くないときであっても、圧縮機が液体状の冷媒を吸引することを防止し、成績係数をより高めることができる。
本発明に係る車両用空調装置では、前記処理装置は、前記冷却ファンの送風量を低下させる制御よりも、前記グリル開口部の開口度を減少させる制御を優先して行うことが好ましい。凝縮器の放熱量をより効率的に減少させることができる。
本発明に係る車両用空調装置では、前記放熱量調節装置は、前記圧縮機と前記凝縮器との間で前記冷媒回路から分岐して前記凝縮器と前記内部熱交換器との間の前記冷媒回路に接続されるバイパス通路と、前記圧縮機から流出された前記冷媒のうち前記バイパス通路を通流する前記冷媒の比率を変更する冷媒分配装置とを備え、前記冷凍サイクルは、気体状の冷媒と液体状の冷媒とを分離するリキッドタンク又はアキュムレータを有し、前記処理装置は、前記冷媒分配装置を制御することが好ましい。凝縮器での放熱量を適切に調整することができる。その結果、熱負荷が高くないときであっても、圧縮機が液体状の冷媒を吸引することを防止し、成績係数をより高めることができる。
本発明に係る車両用空調装置では、前記圧縮機は固定容量型であることが好ましい。固定容量型圧縮機が使用される場合、蒸発器の凍結を防止するために、圧縮機の断続運転が行われるときがあるところ、断続運転中であっても凝縮器での放熱量を適切に制御することができる。
本発明に係る車両用空調装置では、前記処理装置は、空調制御ユニットに搭載されるか、又はエンジンコントロールユニットに搭載されることが好ましい。設計自由度をより高めることができる。
本発明に係る車両は、本発明に係る車両用空調装置を搭載したことを特徴とする。
本発明に係る車両用空調装置の制御方法は、本発明に係る車両用空調装置の制御方法であって、前記車両用空調装置は前記冷凍サイクルの作動スイッチを備え、前記処理装置は、前記作動スイッチが作動されたことを認識し、前記外気温度と所定温度とを対比し、前記外気温度が前記所定温度よりも低いと判定したとき、前記凝縮器での放熱量を減少させることを特徴とする。
以上のように、本発明は、内部熱交換器を有する冷凍サイクルにおいて、熱負荷が高くないときであっても成績係数が高く、省動力に寄与できる車両用空調装置、それを備える車両及び車両用空調装置の制御方法を提供することができる。
本実施形態に係る車両用空調装置の第一例を示すシステム図である。 本実施形態に係る車両用空調装置の第二例を示すシステム図である。 実施例1及び比較例1における外気温度と成績係数との関係を示すグラフである。
以下、添付の図面を参照して本発明の一態様を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。本発明の効果を奏する限り、種々の形態変更をしてもよい。
本実施形態に係る車両用空調装置100,200は、図1及び図2に示すように、車両に搭載される車両用空調装置において、圧縮機2、凝縮器3、膨張装置4及び蒸発器5を配管61〜66で接続して冷媒を循環させる冷媒回路50と、凝縮器3から膨張装置4に導かれる冷媒が流れる第1の熱交換部11と蒸発器5から圧縮機2の吸入側に導かれる冷媒が流れる第2の熱交換部12との間で冷媒の熱交換を行う内部熱交換器10とを有する冷凍サイクル1a,1bと、車両の外気温度を検出する外気温度センサ41と、凝縮器3で放熱される冷媒の放熱量を調節する放熱量調節装置7と、外気温度の値に基づいて放熱量調節装置7を制御する処理装置150と、を備える。
冷媒回路50は、圧縮機2と凝縮器3と膨張装置4と蒸発器5とを配管61〜66で接続した閉回路であり、内部を冷媒が循環する。冷媒は、例えば、R134aなどのフロン系物質、HFO−1234yf、又は二酸化炭素である。冷媒回路50は、内部を循環する冷媒がフロン系物質の場合、凝縮器3の内部、又は凝縮器3と内部熱交換器10との間に、気体状の冷媒と液体状の冷媒とを分離するとともに、冷媒の一部を貯留するリキッドタンク(不図示)を備える。冷媒回路50は、内部を循環する冷媒が二酸化炭素の場合、蒸発器5と圧縮機2との間に、冷媒の一部を貯留するアキュムレータ(不図示)を備える。
圧縮機2は、エンジン(図示せず)からの駆動力を受けて、又は電力によって駆動するモータ(図示せず)の駆動力を受けて、低温低圧の気化状態の冷媒を圧縮して、高温高圧の気化状態の冷媒にする。
圧縮機2は、例えば、固定容量型圧縮機、又は可変容量型圧縮機である。本実施形態では、圧縮機2は固定容量型であることが好ましい。
凝縮器3は、一般的に車両の先端部(前方)のエンジンルーム内でラジエータの前面に配置される。凝縮器3は、熱交換器であり、圧縮機2から吐出された高温高圧の気化状態の冷媒を、車両の走行若しくは冷却ファン30の稼働のいずれか一方又は両方によってグリル開口部21から導入される車両前方の外気によって冷却し、高温高圧の液化状態の冷媒にする。
膨張装置4は、凝縮器3で凝縮された冷媒を、絞り作用によって減圧・膨張させて、低温低圧の霧状の冷媒(気液混合状の冷媒)とするとともに、冷媒の流量の調整を行う。膨張装置4は、例えば、感温式膨張弁又は電子制御式膨張弁である。
蒸発器5は、熱交換器であり、膨張装置4で気液混合状となった冷媒を気化させ、そのときの蒸発熱によって蒸発器5を通過する送風空気を冷却除湿する。
内部熱交換器10は、冷媒回路50上に配置される。内部熱交換器10は、凝縮器3から膨張装置4に導かれる冷媒が流れる第1の熱交換部11と蒸発器5から圧縮機2の吸入側に導かれる冷媒が流れる第2の熱交換部12とを有し、第1の熱交換部11を流れる相対的に高温の冷媒と第2の熱交換部12を流れる相対的に低温の冷媒との間で熱交換を行う。
配管61は、圧縮機2の出口と凝縮器3の入口とを直接的又は間接的に接続する。配管62は、凝縮器3の出口と第1の熱交換部11の入口とを直接的又は間接的に接続する。配管63は、第1の熱交換部11の出口と膨張装置4の入口とを直接的又は間接的に接続する。配管64は、膨張装置4の出口と蒸発器5の入口とを直接的又は間接的に接続する。配管65は、蒸発器5の出口と第2の熱交換部12の入口とを直接的又は間接的に接続する。配管66は、第2の熱交換部12の出口と圧縮機2の入口とを直接的又は間接的に接続する。
外気温度センサ41は、外気温度(車両の周囲温度)を検出する装置である。外気温度の値から、圧縮機2が吸入する冷媒のおおよその過熱度を推定することができ、外気温度センサ41は、過熱度推定装置ということもできる。
放熱量調節装置7は、例えば、凝縮器3を冷却する装置、又は凝縮器3を通流する冷媒の流量を変更する装置である。凝縮器3を冷却する装置は、例えば、図1及び図2に示すように、車両用グリル装置20又は冷却ファン30である。凝縮器3を通流する冷媒の流量を変更する装置は、図2に示すように、バイパス通路70及び冷媒分配装置71を備える機構である。
車両用グリル装置20は、冷凍サイクル1a,1bよりも前方に配置され、開口度を最小開口度と最大開口度との間で調整可能なグリル開口部21と、ルーバー22と、モータ23とを有する。グリル開口部21は、フロントグリルなどの車両の前面部に設けられ、車両前方の外気をエンジンルーム内へ導入する導入口である。グリル開口部21からエンジンルーム内に導入された外気は、凝縮器3を通過する。その結果、凝縮器3内の高温高圧の冷媒が冷却される。ルーバー22は、グリル開口部21の開口面積を変化させる開閉シャッタである。モータ23は、ルーバー22の各羽板を回動させる駆動装置である。
ルーバー22の回動可能範囲において、ルーバー22の方向が水平方向に最も近づいたとき、グリル開口部21は最大開口面積となる。一方、ルーバー22の回動可能範囲において、ルーバー22の方向が垂直方向に最も近づいたとき、グリル開口部21は最小開口面積となる。車両用グリル装置20の開口度は、グリル開口部21の最小開口面積を0%、グリル開口部21の最大開口面積を100%として、開口面積を百分率で示した値である。
車両用グリル装置20は、モータ23の駆動によって、開口度を最小開口度(0%)と最大開口度(100%)との間で所定の開口度となるよう調整する。開口度が最小開口度となるとき、グリル開口部21は全閉状態となるか、又はわずかに開いている状態であってもよい。
冷却ファン30は、羽根車31とモータ32とを有する。冷却ファン30は、モータ32によって羽根車31が回転され、凝縮器3を冷却する空気の流れを発生させる。モータ32の回転数に応じて、凝縮器3に導入される空気量が変化する。冷却ファン30は、凝縮器3専用のファンであるか、又は凝縮器3の風下側に近接して配置されるラジエータ(不図示)の冷却を兼ねるファンであってもよい。冷却ファン30は、凝縮器3に対して車両の前方側に配置されるか、又は車両の後方側に配置されてもよい。また、冷却ファン30の個数は、特に限定されず、1個であるか、又は2個以上であってもよい。
バイパス通路70は、図2に示すように、圧縮機2と凝縮器3との間で冷媒回路50から分岐して凝縮器3と内部熱交換器10との間の冷媒回路50に接続される通路であり、冷媒が凝縮器3を迂回して循環する冷媒経路を形成する。
冷媒分配装置71は、圧縮機2から流出された冷媒のうちバイパス通路70を通流する冷媒の比率を変更する装置であり、例えば、三方弁(図2に図示)、又は二方弁(不図示)である。冷媒分配装置71が三方弁であるとき、三方弁は、冷媒回路50とバイパス通路70との分岐部P1に配置されることが好ましい。冷媒分配装置71が二方弁であるとき、二方弁はバイパス通路70に配置されることが好ましい。また、二方弁は、バイパス通路70での配置に加えて、冷媒回路50とバイパス通路70との分岐部P1よりも凝縮器3側の配管61に更に配置してもよい。
バイパス通路70を設けるとき、冷凍サイクル1bは、リキッドタンク6又はアキュムレータ(不図示)を有することが好ましい。リキッドタンク6は、冷媒回路50とバイパス通路70との合流部P2と、膨張装置4との間に配置することが好ましい。例えば、リキッドタンク6は、図2に示すように、冷媒回路50とバイパス通路70との合流部P2よりも内部熱交換器10側の配管62に配置することが好ましい。圧縮機2から吐出した気体状の冷媒は、バイパス通路70を通った後、凝縮器3を通流してきた液体状の冷媒と合流して、リキッドタンク6へ流入する。リキッドタンク6では、気体状の冷媒が分離され、液体状の冷媒だけが第1の熱交換部11へ送られる。第1の熱交換部11から流出した冷媒は、膨張装置4及び蒸発器5を経て第2の熱交換部12を通り、再び圧縮機2に吸入される。リキッドタンク6の配置場所は配管62に限定されず、例えば、リキッドタンク6は、第1熱交換部11と膨張装置4との間の配管63に配置してもよい。リキッドタンク6を配管63に配置するとき、気液混合状態の冷媒が第1の熱交換部11を通過する。気液混合状態の冷媒は液体状の冷媒よりも比体積が大きいため、第1の熱交換部11の流路面積を大きくするなど第1の熱交換部11の通路抵抗を軽減する工夫をすることが好ましい。アキュムレータ(不図示)は、蒸発器5と第2の熱交換部12との間の配管65又は第2の熱交換部12と圧縮機2との間の配管66に配置される。
本実施形態に係る車両用空調装置100,200は、放熱量調節装置7として、(1)車両用グリル装置20、(2)冷却ファン30、及び、(3)バイパス通路70及び冷媒分配装置71を備える機構、の(1)〜(3)の中から選ばれる少なくとも一種を有することが好ましい。本発明は、放熱量調節装置7の組合せに限定されず、例として、図1では、放熱量調節装置7が(1)車両用グリル装置20及び(2)冷却ファン30である形態、図2では、放熱量調節装置7が(1)車両用グリル装置20、(2)冷却ファン30及び、(3)バイパス通路70及び冷媒分配装置71を備える機構である形態を示したが、本発明はこれらの組合せに限定されない。
処理装置150は、外気温度の値に基づいて、圧縮機2が吸入する冷媒の過熱度が所定の過熱度よりも大きくなるように、放熱量調節装置7を制御する。圧縮機2が吸入する冷媒の過熱度は、外気温度の値からおおよそ推定することができる。ここで、圧縮機2が吸入する冷媒の過熱度が大きいほど、圧縮機2に液体を含む冷媒又は液相の冷媒が吸入される可能性が低くなる。一方、過熱度が所定値よりも小さい場合、圧縮機2に液体を含む冷媒又は液相の冷媒が吸入される場合がある。そこで、処理装置150は、過熱度が所定値よりも小さいとき、凝縮器3での放熱量を減少させるように、放熱量調節装置7の制御量を設定する。その結果、液体を含む冷媒が圧縮機2に吸入されることを防止することができる。
処理装置150は、外気温度の値に対する放熱量調節装置7の制御量が予め設定されたプロファイルに基づいて、放熱量調整装置7を制御するか、又は外気温度の値に基づいて、圧縮機2が吸入する冷媒の過熱度を推定し、推定された過熱度に基づいて放熱量調整装置7を制御してもよい。
また、処理装置150は、外気温度の値と、(a)高圧ラインにおける冷媒の圧力、(b)車両の走行速度、(c)車両の室内温度、(d)蒸発器5の温度若しくは蒸発器5を通過した空気の温度及び(e)蒸発器5へのブロアファンからの送風量の、(a)〜(e)の中から選ばれる少なくとも一つと、に基づいて放熱量調節装置7を制御することが好ましい。外気温度の値に(a)〜(e)の少なくとも一つを加味することで、圧縮機2が吸入する冷媒の過熱度をより精度良く推定することができ、液体を含む冷媒が圧縮機2に吸入されることをより確実に防止することができる。
(a)高圧ラインにおける冷媒の圧力は、冷凍サイクル1a、1bの高圧ラインに測定点を有する圧力センサ42の検出値であり、圧縮機2による冷媒の吐出量と相関性が高い。圧力センサ42は、凝縮器3の下流側の配管62に測定点を有することが好ましい。高圧ラインは、圧縮機2から膨張装置4に至るラインである。
(b)車両の走行速度は、車速センサ43の検出値である。
(c)車両の室内温度は、室温センサ44の検出値である。
(d)蒸発器5の温度又は蒸発器5を通過した空気の温度は、サーモセンサ45の検出値であり、圧縮機2による冷媒の吐出量と相関性がある。サーモセンサ45が蒸発器5の温度を検知する場合、サーモセンサ45の測定点は、例えば、蒸発器5のうち最も温度が低くなる部位のフィンに取り付けられる。また、サーモセンサ45が蒸発器5を通過した空気の温度を検知する場合、サーモセンサ45の測定点は、例えば、蒸発器5のうち最も温度が低くなる部位の下流側の空間に、従来周知の構成で取り付けられる。
(e)蒸発器5へのブロアファンからの送風量は、例えば、ブロアファン(不図示)を駆動するブロワモータの駆動電圧に所定の係数を乗じて算出した値である。
放熱量調節装置7の制御量が、外気温度の値に(a)〜(e)の少なくとも一つを加味して判断される場合、外気温度だけに基づいて決定された放熱量調節装置7の制御量(以降、基本制御量という。)を、(a)〜(e)の各値に応じて補正することが好ましい。例えば、(a)の圧力の値が所定値よりも低いとき、凝縮器3での放熱が過度に促進されているといえるから、圧縮機2直前の冷媒の過熱度が小さくなることが推定される。このため、基本制御量のままで放熱量調節装置7を制御し続けると、圧縮機2に吸入される冷媒に含まれる液体状の冷媒の割合が増え、冷凍効率の低下が懸念される。そこで、凝縮器3での過度な放熱を抑制するように、放熱量調節装置7の制御量を、基本制御量に対して凝縮器3での放熱量を減少させる方向へ補正する。(b)の速度の値が所定値よりも速いとき、(c)の温度の値が所定値よりも低いとき、(d)の温度の値が所定値よりも低いとき、又は(e)の送風量の値が所定値よりも少ないときも、(a)の圧力の値が所定値よりも低いときと同様に、圧縮機2直前の冷媒の過熱度が小さくなることが推定される。圧縮機に吸入される冷媒に含まれる液体状の冷媒の割合の増加が懸念されるので、放熱量調節装置7の制御量を、基本制御量に対して凝縮器3での放熱量を減少させる方向へ補正する。
処理装置150は、空調制御ユニットに搭載されるか、又はエンジンコントロールユニットに搭載されることが好ましい。車両の設計思想、メモリの容量又はコストなどの各種要因に対して柔軟に対応することができる。また、処理装置150のうち、車両用グリル装置20を制御する装置、冷却ファン30を制御する装置、及び冷媒分配装置71を制御する装置を一つの装置とするか、又はそれぞれ別個の装置としてもよい。
次に、本実施形態に係る車両用空調装置の制御方法について説明する。
本実施形態に係る車両用空調装置の制御方法は、車両用空調装置100,200が冷凍サイクル1a,1bの作動スイッチ(不図示)を備え、処理装置150は、作動スイッチが作動されたことを認識し(ステップ1)、外気温度と所定温度とを対比し(ステップ2)、外気温度が所定温度よりも低いと判定したとき、凝縮器3での放熱量を減少させる(ステップ3)。
冷凍サイクル1a,1bの作動スイッチは、圧縮機2の起動させるためのスイッチであり、例えば、エアコンスイッチである。ステップ1において、作動スイッチが作動されたときは、例えば、乗員がエアコンスイッチを押したときである。なお、圧縮機2が固定容量型圧縮機である場合、蒸発器5の凍結を防止するために、圧縮機2の断続運転が自動的に行われる場合がある。断続運転において、圧縮機2が駆動されない時間帯は、圧縮機2が駆動されているときの判定結果が準用される。断続運転するごとに過度に放熱量制御装置7が制御されることが防止され、放熱量制御装置の耐用期間を延長することができる。
ステップ2において、所定温度は、例えば、5〜15℃であることが好ましく、8〜12℃であることがより好ましい。
ステップ2において、外気温度が所定温度よりも低いと判定されたとき、ステップ3が実行される。ステップ3では、処理装置150は、凝縮器3での放熱量が減少するように、放熱量調節装置7を制御する。これによって、第1の熱交換部11に流入する高圧冷媒の温度が低くなりすぎることを防止することができる。その結果、第2の熱交換部12を通流する低圧冷媒が、第1の熱交換部11を通流する高圧冷媒との熱交換によって適切に加熱され、圧縮機2直前の冷媒の過熱度を大きくすることができる。その結果、液体を含む冷媒が圧縮機2に吸入されることを防止することができる。
ステップ3は、外気温度だけに基づいて決定された放熱量調節装置7の基本制御量を、(a)高圧ラインにおける冷媒の圧力、(b)車両の走行速度、(c)車両の室内温度、(d)蒸発器の温度若しくは蒸発器を通過した空気の温度及び(e)蒸発器へのブロアファンからの送風量の、(a)〜(e)の中から選ばれる少なくとも一つを加味して補正するステップ4を更に有していてもよい。ステップ4が実行されるとき、処理装置150は、補正した制御量に基づいて放熱量調節装置7を制御する。
放熱量調節装置7が車両用グリル装置20であるとき、処理装置150は、グリル開口部21の開口度を制御する。ステップ3では、処理装置150は、開口度を減少させる。より好ましくは、開口度を最小開口度とする。開口度が小さいほど、凝縮器3を通過する空気量が少なくなるため、凝縮器3での放熱量が減少する。
放熱量調節装置7が冷却ファン30であるとき、処理装置150は、冷却ファン30の送風量を制御する。ステップ3では、処理装置150は、冷却ファン30の送風量を低下させる。より好ましくは、冷却ファン30の送風量を最小送風量とする。また、冷却ファン30がラジエータの冷却を兼ねるとき、冷却ファン30の送風量の制御は、ラジエータの冷却を優先して行われることが好ましい。ここで、冷却ファン30の送風量は、冷却ファン30が1個のときは、当該冷却ファンが形成する送風量であり、冷却ファン30が2個以上であるときは、各冷却ファンが形成する送風量の合計である。送風量が少ないほど、凝縮器3を通過する空気量が少なくなるため、凝縮器3での放熱量が減少する。最小送風量は、冷却ファン30が凝縮器専用であるとき又はラジエータの冷却を兼ねるときであってラジエータの冷却が不要であるときは0である。冷却ファン30がラジエータの冷却を兼ねるときであってラジエータの冷却が必要であるとき、最小送風量は、ラジエータの冷却に必要な送風量である。
放熱量調節装置7がバイパス通路70及び冷媒分配装置71を備える機構であるとき、処理装置150は、冷媒分配装置71を制御する。ステップ3では、処理装置150は、バイパス通路70を通流する冷媒の比率を増加させる。バイパス通路70を通流する冷媒の比率が多いほど、凝縮器3を通流する冷媒の流量が少なくなり、凝縮器3での放熱量が減少する。バイパス通路70を通流する冷媒の比率は、特に限定されない。
車両用グリル装置20、冷却ファン30、及びバイパス通路70及び冷媒分配装置71を備える機構は、いずれも凝縮器3での放熱量を適切に調整することができる。その結果、熱負荷が高くないときであっても、圧縮機2が液体状の冷媒を吸引することを防止し、成績係数をより高めることができる。
ステップ3において、車両用空調装置100,200が放熱量調節装置7として車両用グリル装置20及び冷却ファン30を備えるとき、処理装置150は、冷却ファン30の送風量を低下させる制御よりも、グリル開口部21の開口度を減少させる制御を優先して行うことが好ましい。グリル開口部21の開口度を減少させる又は閉塞させる方が、冷却ファンの送風量を低下させるよりも、凝縮器3での放熱量を減少させる効果が大きい。このため、凝縮器3での放熱量をより効率的に減少させることができる。
また、車両用空調装置100,200が放熱量調節装置7として車両用グリル装置20及び冷却ファン30を備えるとき、処理装置150は、グリル開口部21の開口度を減少させる制御と冷却ファン30の送風量を低下させる制御とを同時に行ってもよい。凝縮器3での放熱量をより効率的に減少させることができる。
ステップ2において、外気温度が所定温度以上であると判定されたとき、処理装置150は、凝縮器3での放熱量を判定時のまま保持させるか、又は凝縮器3での放熱量を増加させてもよい。
本実施形態に係る車両は、本実施形態に係る車両用空調装置100,200を搭載する。前記の通り、本実施形態に係る車両用空調装置100は、凝縮器3での放熱量を適切に調節して、液体を含む冷媒が圧縮機2に吸入されることを防止することができる。その結果、本実施形態に係る車両は、熱負荷が小さいときであっても、冷凍サイクルの成績係数が高く、省動力に寄与することができる。
以下、実施例に基づき本発明をさらに詳細に説明するが、本発明は、かかる実施例に何ら限定されるものではない。
(実施例1)
図1に示す冷凍サイクル1aにおいて、処理装置150が、外気温度の値に基づいて車両用グリル装置20の開口度を制御した。具体的には、外気温度が12℃を超えるとき、車両用グリル装置20の開口度を最大開口度とした。また、外気温度が3℃以下であるとき、車両用グリル装置20の開口度を最小開口度に変更した。なお、冷却ファン30の送風量は、いずれの外気温度でも、最大送風量の30%とした。
(比較例1)
図1に示す冷凍サイクル1aにおいて、外気温度の値に関わらず、車両用グリル装置20の開口度を最大開口度のまま、かつ、冷却ファン30の送風量を最大送風量の30%とした。
(実施例2)
図2に示す冷凍サイクル1bにおいて、処理装置150が、外気温度の値に基づいて冷媒分配装置71を制御した。具体的には、外気温度が12℃を超えるとき、冷媒の全量を凝縮器3へ通流させ、バイパス通路70には冷媒を流さなかった。また、外気温度が3℃以下であるとき、圧縮機2と凝縮器3との間の配管61を流れる冷媒の全流量(単位:kg/s)に対するバイパス通路70を通流する冷媒の流量(単位:kg/s)の割合を30%に変更した。
(比較例2)
図2に示す冷凍サイクル1bにおいて、処理装置150が、外気温度の値に関わらず、冷媒の全量を凝縮器3へ通流させ、バイパス通路70には冷媒を流さなかった。
図3は、実施例1及び比較例1における外気温度と成績係数との関係を示すグラフである。図3中、実線901は実施例1、点線902は比較例1を示す。図3に示すように、外気温度が高くないとき(例えば、外気温度が12℃以下であるとき)、実施例1(実線901)は、比較例1(点線902)よりもCOPの落ち込みを抑制することができた。実施例2についても、実施例1と同様の作用効果が確認された。
なお、ここまで、成績係数(COP)の低下は、熱負荷が高くないときに、圧縮機2に吸入される冷媒に液相が含まれる割合が多くなって、圧縮機2の動力Lが増大することを前提に説明してきた。しかし、成績係数の低下は、熱負荷が極端に高いときも発生する。これは、熱負荷(外気温度等)が高く凝縮器3での熱交換(放熱)が不十分となり、内部熱交換器10に流入する高圧冷媒の温度が高くなりすぎ、蒸発器5から内部熱交換器10に流入する低温低圧冷媒との熱交換が過度に促進され、過熱度の大きな冷媒が圧縮機2に吸入され、その結果、圧縮機2の動力Lが過剰に増大するためである。このように、内部熱交換器10を有する冷媒回路50は、熱負荷が低すぎる場合だけでなく高すぎる場合にも成績係数が低下するため、熱負荷に対して最も成績効率の良い最高効率点(極大点)を有する。
しかしながら、本実施形態に係る車両用空調装置100,200は、熱負荷が低いときに凝縮器3の放熱量を減少させることによって、COPの最高効率点(極大点)がより高熱負荷側(高外気温度側)で得られるように冷凍サイクル1a,1bを構成して(例えば、外気温度35℃のときに成績係数が極大点となるように構成して)、最高効率点よりも低熱負荷側(低外気温度側)でのCOPの落ち込みを抑制することで、幅広い熱負荷条件で高いCOPを確保することができた。
1a,1b 冷凍サイクル
2 圧縮機
3 凝縮器
4 膨張装置
5 蒸発器
6 リキッドタンク
7 放熱量調節装置
10 内部熱交換器
11 第1の熱交換部
12 第2の熱交換部
20 車両用グリル装置
21 グリル開口部
22 ルーバー
23 モータ
30 冷却ファン
31 羽根車
32 モータ
41 外気温度センサ
42 圧力センサ
43 車速センサ
44 室温センサ
45 サーモセンサ
50 冷媒回路
61〜66 配管
70 バイパス通路
71 冷媒分配装置
150 処理装置
100,200 車両用空調装置

Claims (10)

  1. 車両に搭載される車両用空調装置において、
    圧縮機、凝縮器、膨張装置及び蒸発器を配管で接続して冷媒を循環させる冷媒回路と、前記凝縮器から前記膨張装置に導かれる冷媒が流れる第1の熱交換部と前記蒸発器から前記圧縮機の吸入側に導かれる冷媒が流れる第2の熱交換部との間で前記冷媒の熱交換を行う内部熱交換器とを有する冷凍サイクルと、
    前記車両の外気温度を検出する外気温度センサと、
    前記凝縮器で放熱される前記冷媒の放熱量を調節する放熱量調節装置と、
    前記外気温度の値に基づいて前記放熱量調節装置を制御する処理装置と、を備えたことを特徴とする車両用空調装置。
  2. 前記処理装置は、前記外気温度の値と、(a)高圧ラインにおける冷媒の圧力、(b)前記車両の走行速度、(c)前記車両の室内温度、(d)前記蒸発器の温度若しくは該蒸発器を通過した空気の温度及び(e)前記蒸発器へのブロアファンからの送風量の、(a)〜(e)の中から選ばれる少なくとも一つと、に基づいて前記放熱量調節装置を制御することを特徴とする請求項1に記載の車両用空調装置。
  3. 前記放熱量調節装置は、前記冷凍サイクルよりも前方に配置され、開口度を最小開口度と最大開口度との間で調整可能なグリル開口部を有する車両用グリル装置を備え、
    前記処理装置は、前記グリル開口部の開口度を制御することを特徴とする請求項1又は2に記載の車両用空調装置。
  4. 前記放熱量調節装置は、前記凝縮器を冷却する空気の流れを発生させる冷却ファンを備え、
    前記処理装置は、前記冷却ファンの送風量を制御することを特徴とする請求項1〜3のいずれか一つに記載の車両用空調装置。
  5. 前記処理装置は、前記冷却ファンの送風量を低下させる制御よりも、前記グリル開口部の開口度を減少させる制御を優先して行うことを特徴とする請求項4に記載の車両用空調装置。
  6. 前記放熱量調節装置は、前記圧縮機と前記凝縮器との間で前記冷媒回路から分岐して前記凝縮器と前記内部熱交換器との間の前記冷媒回路に接続されるバイパス通路と、前記圧縮機から流出された前記冷媒のうち前記バイパス通路を通流する前記冷媒の比率を変更する冷媒分配装置とを備え、
    前記冷凍サイクルは、気体状の冷媒と液体状の冷媒とを分離するリキッドタンク又はアキュムレータを有し、
    前記処理装置は、前記冷媒分配装置を制御することを特徴とする請求項1〜5のいずれか一つに記載の車両用空調装置。
  7. 前記圧縮機は固定容量型であることを特徴とする請求項1〜6のいずれか一つに記載の車両用空調装置。
  8. 前記処理装置は、空調制御ユニットに搭載されるか、又はエンジンコントロールユニットに搭載されることを特徴とする請求項1〜7に記載の車両用空調装置。
  9. 請求項1〜8のいずれか一つに記載の車両用空調装置を搭載したことを特徴とする車両。
  10. 請求項1〜8のいずれか一つに記載の車両用空調装置の制御方法であって、
    前記車両用空調装置は前記冷凍サイクルの作動スイッチを備え、
    前記処理装置は、前記作動スイッチが作動されたことを認識し、前記外気温度と所定温度とを対比し、前記外気温度が前記所定温度よりも低いと判定したとき、前記凝縮器での放熱量を減少させることを特徴とする車両用空調装置の制御方法。
JP2016020545A 2016-02-05 2016-02-05 車両用空調装置、それを備える車両及び車両用空調装置の制御方法 Pending JP2017137012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020545A JP2017137012A (ja) 2016-02-05 2016-02-05 車両用空調装置、それを備える車両及び車両用空調装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020545A JP2017137012A (ja) 2016-02-05 2016-02-05 車両用空調装置、それを備える車両及び車両用空調装置の制御方法

Publications (1)

Publication Number Publication Date
JP2017137012A true JP2017137012A (ja) 2017-08-10

Family

ID=59566665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020545A Pending JP2017137012A (ja) 2016-02-05 2016-02-05 車両用空調装置、それを備える車両及び車両用空調装置の制御方法

Country Status (1)

Country Link
JP (1) JP2017137012A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114297A (zh) * 2018-10-31 2020-05-08 丰田自动车株式会社 冷却装置
JP2021133725A (ja) * 2020-02-25 2021-09-13 マツダ株式会社 車両用空調装置
CN113715578A (zh) * 2020-05-26 2021-11-30 宁波奥克斯电气股份有限公司 一种蓄热吸收式驻车空调及其控制方法
CN114312224A (zh) * 2022-01-13 2022-04-12 珠海格力电器股份有限公司 车载空调器、车辆及车载空调器的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266863A (ja) * 1994-03-31 1995-10-17 Suzuki Motor Corp 車輌用冷房装置の制御装置
JPH07280362A (ja) * 1994-04-01 1995-10-27 Nippondenso Co Ltd 冷凍サイクル
JP2007307936A (ja) * 2006-05-16 2007-11-29 Denso Corp 車両用冷凍サイクル装置
US20100191381A1 (en) * 2007-03-29 2010-07-29 Roland Haussmann Air-Conditioning System, In Particular For A Motor Vehicle
JP2015128916A (ja) * 2014-01-06 2015-07-16 株式会社デンソー 冷凍サイクル装置
JP2015205564A (ja) * 2014-04-18 2015-11-19 サンデンホールディングス株式会社 車両用空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266863A (ja) * 1994-03-31 1995-10-17 Suzuki Motor Corp 車輌用冷房装置の制御装置
JPH07280362A (ja) * 1994-04-01 1995-10-27 Nippondenso Co Ltd 冷凍サイクル
JP2007307936A (ja) * 2006-05-16 2007-11-29 Denso Corp 車両用冷凍サイクル装置
US20100191381A1 (en) * 2007-03-29 2010-07-29 Roland Haussmann Air-Conditioning System, In Particular For A Motor Vehicle
JP2015128916A (ja) * 2014-01-06 2015-07-16 株式会社デンソー 冷凍サイクル装置
JP2015205564A (ja) * 2014-04-18 2015-11-19 サンデンホールディングス株式会社 車両用空気調和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114297A (zh) * 2018-10-31 2020-05-08 丰田自动车株式会社 冷却装置
JP2021133725A (ja) * 2020-02-25 2021-09-13 マツダ株式会社 車両用空調装置
CN113715578A (zh) * 2020-05-26 2021-11-30 宁波奥克斯电气股份有限公司 一种蓄热吸收式驻车空调及其控制方法
CN114312224A (zh) * 2022-01-13 2022-04-12 珠海格力电器股份有限公司 车载空调器、车辆及车载空调器的控制方法

Similar Documents

Publication Publication Date Title
JP6493370B2 (ja) ヒートポンプシステム
JP6855281B2 (ja) 車両用空気調和装置
JP6485390B2 (ja) 冷凍サイクル装置
JP6418787B2 (ja) 車両用空気調和装置
WO2018193770A1 (ja) 車両用空気調和装置
JP6607638B2 (ja) 車両用空気調和装置
WO2017146268A1 (ja) 車両用空気調和装置
JP5831108B2 (ja) 自動車用温調システム
CN112424006B (zh) 车辆用空调装置
CN109642755B (zh) 制冷循环装置
JP2017007593A (ja) 車両用空気調和装置
JP6702146B2 (ja) 車両用冷凍サイクル装置
JP2017035901A (ja) 車両用空調装置
WO2017150592A1 (ja) 車両用空気調和装置
JP2017137012A (ja) 車両用空調装置、それを備える車両及び車両用空調装置の制御方法
WO2017086343A1 (ja) 車両用空調装置の冷凍サイクル及びこれを搭載した車両
JP2019051890A (ja) 車両用空気調和装置
JP6582800B2 (ja) 熱交換システム
WO2017135223A1 (ja) 車両用空調装置、それを備える車両及び車両用グリル装置の制御方法
JP2018124017A (ja) 冷却システム
JP6544287B2 (ja) 空調装置
WO2017130845A1 (ja) ヒートポンプシステム
JP5984479B2 (ja) 車両用空調装置
JP6073587B2 (ja) 車両用空気調和装置
JP6733625B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191023