Nothing Special   »   [go: up one dir, main page]

JP2017111202A - Optical circuit - Google Patents

Optical circuit Download PDF

Info

Publication number
JP2017111202A
JP2017111202A JP2015243466A JP2015243466A JP2017111202A JP 2017111202 A JP2017111202 A JP 2017111202A JP 2015243466 A JP2015243466 A JP 2015243466A JP 2015243466 A JP2015243466 A JP 2015243466A JP 2017111202 A JP2017111202 A JP 2017111202A
Authority
JP
Japan
Prior art keywords
waveguide
input
optical
width
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015243466A
Other languages
Japanese (ja)
Other versions
JP6539195B2 (en
Inventor
隼志 阪本
Hayashi Sakamoto
隼志 阪本
慶太 山口
Keita Yamaguchi
慶太 山口
光雅 中島
Mitsumasa Nakajima
光雅 中島
賢哉 鈴木
Masaya Suzuki
賢哉 鈴木
俊和 橋本
Toshikazu Hashimoto
俊和 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015243466A priority Critical patent/JP6539195B2/en
Publication of JP2017111202A publication Critical patent/JP2017111202A/en
Application granted granted Critical
Publication of JP6539195B2 publication Critical patent/JP6539195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical circuit that employs a PLC, which allows for reducing pitch at a light exit end.SOLUTION: An optical circuit comprises an arbitrary number of input waveguides, and a multimode interference optical waveguide 3 having an input waveguide section 2 coupled to the input waveguides at one end and an output waveguide section 4 at the other end, where a width of the output waveguide section of the multimode interference optical waveguide is smaller than a width of the input waveguide section thereof. A length Lof the multimode interference optical waveguide in an optical waveguiding direction is set according to the following formula (1): L=4×n×Win×Wout/3λ ...(1), where Wrepresents the width of the input waveguide section, Wrepresents the width of the output waveguide section, λ represents a wavelength of incident light, and n represents a refractive index of a core of the multimode interference optical waveguide.SELECTED DRAWING: Figure 3

Description

本発明は、光デバイスに関し、より詳しくは光源間のピッチを変換する光回路に関する。   The present invention relates to an optical device, and more particularly to an optical circuit that converts a pitch between light sources.

近年、RF(Radio Frequency)帯におけるアレーアンテナを用いた電磁波のビームフォーミング技術を光の偏向技術として応用する研究が注目を集めている(例えば非特許文献1)。この技術は、複数の光源を周期的に配置し、各光源から出射される光の位相を制御し、干渉を変化させることで、光の偏向を制御する技術である。このとき、偏向角の特性を上げるためには、光源間の距離を波長レベルにまで近づける必要がある。光源を波長レベルの狭ピッチに配置することは困難なため、石英系平面光波回路(Planar lightwave circuit:PLC)によるピッチ変換回路を用いることが多い。   2. Description of the Related Art In recent years, research that applies an electromagnetic beam forming technique using an array antenna in an RF (Radio Frequency) band as a light deflection technique has attracted attention (for example, Non-Patent Document 1). In this technique, a plurality of light sources are periodically arranged, the phase of light emitted from each light source is controlled, and the light deflection is controlled by changing interference. At this time, in order to improve the characteristic of the deflection angle, it is necessary to reduce the distance between the light sources to the wavelength level. Since it is difficult to arrange the light sources at a narrow pitch of the wavelength level, a pitch conversion circuit using a quartz planar lightwave circuit (PLC) is often used.

PLCは、平面状のSi基板上に、コア及びクラッドとなる石英の層を積層し、フォトリソグラフィなどによるパターニングと、エッチング加工により、光導波路を作製し、複数の基本的な光回路(例:方向性結合器、マッハ・ツェンダー干渉計など)を組み合わせることで各種の機能を実現する。図1に従来のピッチ変換回路を示す。通常のピッチ変換回路1は図1に示すように、曲げ導波路と直線導波路を用いて、入射端と出射端の導波路間ピッチをAからBに変換する構成を有する。   In PLC, a quartz layer that becomes a core and a clad is laminated on a planar Si substrate, an optical waveguide is produced by patterning by photolithography and the like, and etching, and a plurality of basic optical circuits (for example: Various functions are realized by combining a directional coupler, Mach-Zehnder interferometer, etc. FIG. 1 shows a conventional pitch conversion circuit. As shown in FIG. 1, the normal pitch conversion circuit 1 has a configuration that converts the waveguide pitch between the incident end and the output end from A to B using a bent waveguide and a straight waveguide.

Jie Sun, Erman Timurdogan, Ami Yaacobi, Ehsan Shah Hosseini, and Michael R. Watts, “Large-scale nanophotonic phased array” Nature, vol. 493, 195-199 Jan 2013Jie Sun, Erman Timurdogan, Ami Yaacobi, Ehsan Shah Hosseini, and Michael R. Watts, “Large-scale nanophotonic phased array” Nature, vol. 493, 195-199 Jan 2013 L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging : Principles and Applications”, Journal of Lightwave Technology, vol. 13, No.4, pp.615-627, Apr.1995.L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications”, Journal of Lightwave Technology, vol. 13, No. 4, pp.615-627, Apr. 1995. Y. Sakamaki, T. Saida, T. Hashimoto, and H. Takahashi, "New Optical Waveguide Design Based on Wavefront Matching Method", Journal of Lightwave Technology, vol. 25, No.11, pp.3511-3518, Nov. 2007.Y. Sakamaki, T. Saida, T. Hashimoto, and H. Takahashi, "New Optical Waveguide Design Based on Wavefront Matching Method", Journal of Lightwave Technology, vol. 25, No. 11, pp. 3511-3518, Nov. 2007.

しかしながら、図1に示すピッチ変換回路は、方向性結合器のように隣接導波路間干渉が発生することや、導波路間の狭ギャップ加工が困難となるため、実現できるコアの中心間距離が制限されるといった問題がある。ここで、「ピッチ」とは、図1でA、Bとして示された隣接する導波路の中心間距離をいい、「ギャップ」とは、図1でGとして示された隣接する導波路の境界同士がなす間隔をいう。例えば、通常の露光機、エッチング装置を用いて製造可能なPLCでの隣接する導波路間の最小ギャップは3μm程度であり、コアとクラッドの非屈折率差Δによっては隣接導波路間干渉を避けるため、さらに広いギャップが最小ギャップとなることもある。   However, the pitch conversion circuit shown in FIG. 1 causes interference between adjacent waveguides as in a directional coupler and makes it difficult to process a narrow gap between waveguides. There is a problem that it is restricted. Here, “pitch” refers to the distance between the centers of adjacent waveguides indicated as A and B in FIG. 1, and “gap” refers to the boundary between adjacent waveguides indicated as G in FIG. The interval between each other. For example, the minimum gap between adjacent waveguides in a PLC that can be manufactured using a normal exposure machine and etching apparatus is about 3 μm, and interference between adjacent waveguides is avoided depending on the non-refractive index difference Δ between the core and the cladding. Therefore, a wider gap may be the minimum gap.

図2に、従来のピッチ変換回路において、入力導波路幅4μm、入力導波路間ギャップ1、1.5、2、3μmとした場合の透過率をビーム伝搬法(Beam propagation method:BPM)によるシミュレーションによって算出したものを示す。波長は通信波長帯である1.55μm、Δ2%とした。   FIG. 2 shows a simulation using a beam propagation method (BPM) for transmittance when a conventional pitch conversion circuit has an input waveguide width of 4 μm and an input waveguide gap of 1, 1.5, 2, 3 μm. It shows what was calculated by. The wavelength was 1.55 μm, which is a communication wavelength band, and Δ2%.

図2に示す結果によれば、光の閉じ込めが強い比較的高いΔ2%を設定した場合でも、隣接導波路間干渉を避けるために、透過率を例えば0.99以上にする必要があるので導波路間ギャップを3μm以上に設定しなければならないことが分かる。Δを高くすることで、隣接導波路間干渉を避け、さらに狭ピッチ化することは理論上可能であるが、3μm以下の狭ギャップ加工は製造困難となるため、従来のピッチ変換回路を用いてこれ以上の狭ピッチ化を実現することはできないといえる。   According to the results shown in FIG. 2, even when a relatively high Δ2% where light confinement is strong is set, the transmittance needs to be set to, for example, 0.99 or more in order to avoid interference between adjacent waveguides. It can be seen that the gap between the waveguides must be set to 3 μm or more. It is theoretically possible to avoid interference between adjacent waveguides by increasing Δ and further narrow the pitch. However, since it is difficult to manufacture a narrow gap of 3 μm or less, a conventional pitch conversion circuit is used. It can be said that a narrower pitch than this cannot be realized.

Si系平面導波路は石英に比べて加工が容易で、Δが高く隣接導波路間干渉が起こりにくいため、波長以下にまで狭ギャップ化することも可能であるが、透過する光の波長に制限があり、偏波依存性も大きいため、応用先を制限する。このため、PLCを用いて、狭ピッチに光を出射できる光回路が必要となる。   Si-based planar waveguides are easier to process than quartz, and because Δ is high and interference between adjacent waveguides hardly occurs, it is possible to narrow the gap to less than the wavelength, but it is limited to the wavelength of transmitted light Because of the large polarization dependence, the application destination is limited. For this reason, an optical circuit that can emit light at a narrow pitch using a PLC is required.

本発明はかかる従来の問題に鑑みてなされたものであって、本発明の課題は、光の出射端における狭ピッチ化が実現できるPLCを用いた光回路を提供することにある。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an optical circuit using a PLC capable of realizing a narrow pitch at the light emitting end.

上記の課題を解決するために、一実施形態に記載された発明は、任意の数の入力導波路と、該入力導波路に接続された入力導波路部を一端に有し、他端に出力導波路部を有するマルチモード干渉型光導波路とを備え、前記マルチモード干渉型光導波路の前記出力導波路部の幅が前記入力導波路部の幅よりも小さく形成されていることを特徴とする光回路である。   In order to solve the above-described problem, the invention described in one embodiment has an arbitrary number of input waveguides and an input waveguide portion connected to the input waveguides at one end and an output at the other end. A multimode interference optical waveguide having a waveguide section, wherein the output waveguide section of the multimode interference optical waveguide is formed to have a width smaller than that of the input waveguide section. It is an optical circuit.

従来のピッチ変換回路を示す図である。It is a figure which shows the conventional pitch conversion circuit. 従来のピッチ変換回路における導波路間ギャップと透過率との関係を示す図である。It is a figure which shows the relationship between the gap between waveguides in the conventional pitch conversion circuit, and the transmittance | permeability. 第1の実施形態の光回路に用いられるMMIを上面から見た概略構成を示す図である。It is a figure which shows schematic structure which looked at MMI used for the optical circuit of 1st Embodiment from the upper surface. 光の進行方向に沿って導波路幅を変調させたMMIを上面から見た概略構成を示す図である。It is a figure which shows schematic structure which looked at MMI which modulated the waveguide width along the advancing direction of light from the upper surface. 第2の実施形態の光回路に用いられるMMIを上面から見た概略構成を示す図である。It is a figure which shows schematic structure which looked at MMI used for the optical circuit of 2nd Embodiment from the upper surface. 第3の実施形態の光回路に用いられるMMIを上面から見た概略構成を示す図である。It is a figure which shows schematic structure which looked at MMI used for the optical circuit of 3rd Embodiment from the upper surface.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の光回路は、任意の数の入力導波路と、この入力導波路に接続された入力導波路部を一端に有し、他端に出力導波路部を有するマルチモード干渉型光導波路(Multi-mode interference waveguide:MMI)とを備え、MMIの出力導波路部の幅(WMMIin)が入力導波路部の幅(WMMIout)よりも小さく形成されている構成を備えている。通常、MMIを備えた光回路ではMMIの入出射端導波路幅を同一にするが、本発明の光回路では、異なる幅にすることで、出射される光源の間隔を変化させている。具体的には、WMMIin>WMMIoutとすることにより、所定の長さのMMIにおける光源のピッチがWMMIout/WMMIin倍されるため、狭ピッチ化が可能となる。 An optical circuit of the present invention includes an arbitrary number of input waveguides and a multimode interference optical waveguide having an input waveguide connected to the input waveguide at one end and an output waveguide at the other end ( Multi-mode interference waveguide (MMI), and the width of the output waveguide section (W MMIin ) of the MMI is smaller than the width of the input waveguide section (W MMIout ). Normally, the optical circuit provided with the MMI has the same input / output end waveguide width of the MMI, but in the optical circuit of the present invention, the interval between the emitted light sources is changed by making the width different. Specifically, by setting W MMIin > W MMIout , the pitch of the light source in the MMI having a predetermined length is multiplied by W MMIout / W MMIin, so that the pitch can be reduced.

本発明の光回路では、MMIの入力導波路部の幅をWMMIin、出力導波路部の幅をWMMIout、波長をλ、コアの屈折率をnとすると、MMIの光導波方向の長さLを、近似的に以下の(式1)で与えられる値に設定する。
L=(4/3・n・WMMIin・WMMIout)/λ (式1)
In the optical circuit of the present invention, when the width of the MMI input waveguide section is W MMIin , the width of the output waveguide section is W MMIout , the wavelength is λ, and the refractive index of the core is n, the length of the MMI in the optical waveguide direction L is set to a value approximately given by (Equation 1) below.
L = (4/3 · n · W MMIin · W MMIout ) / λ (Formula 1)

MMIを備えた光回路は一般に、任意の数の入出力導波路と、導波路幅の広いマルチモード干渉導波路(MMI)を備え、入力導波路から入射された光は、MMIで複数の導波モードに展開され、そのモード間での干渉を利用して、光の合分波などの機能を実現することができる。すなわち、MMI単体、もしくは複数のMMIを用いることによって光合分波回路が実現されている(例えば、非特許文献2参照)。上記の(式1)を満たす長さLに設定すると、MMIでモード間の位相差が2πの整数倍となり入射時と同じ基底モードに結像することができる。この現象は自己結像と呼ばれる。   An optical circuit having an MMI generally includes an arbitrary number of input / output waveguides and a multimode interference waveguide (MMI) having a wide waveguide width, and light incident from the input waveguide is guided by a plurality of MMIs. Functions such as optical multiplexing / demultiplexing can be realized by utilizing the interference between the modes. That is, an optical multiplexing / demultiplexing circuit is realized by using a single MMI or a plurality of MMIs (see, for example, Non-Patent Document 2). When the length L satisfying the above (Formula 1) is set, the phase difference between modes becomes an integral multiple of 2π by MMI, and an image can be formed in the same fundamental mode as that at the time of incidence. This phenomenon is called self-imaging.

本発明の光回路によれば、従来のピッチ変換回路における隣接導波路間干渉や狭ギャップ加工による光源の狭ピッチ化制限といった問題を解決し、出射端におけるさらなる狭ピッチ化を実現することができる。具体的には、通常のピッチ変換回路(図1)の先に、入射端から出射端に向けて導波路が細くなるテーパーをつけたMMIを接続しMMIの出射端における出射光を狭ピッチ化する。MMIは1本の幅広の導波路からなるため、狭ギャップ加工を必要とせず、自己結像時には他の光源との干渉が発生しないため、さらなる狭ピッチ化が実現できる。また、本導波路回路形状は、平面導波路の材料やコアとクラッドの非屈折率差Δに依存しないため平面導波路全般に適用可能である。   According to the optical circuit of the present invention, it is possible to solve the problems such as interference between adjacent waveguides in the conventional pitch conversion circuit and restriction of narrowing the light source by narrow gap processing, and further narrowing of the pitch at the emission end can be realized. . Specifically, an MMI having a taper that narrows the waveguide from the incident end to the output end is connected to the tip of the normal pitch conversion circuit (FIG. 1), and the output light at the output end of the MMI is narrowed. To do. Since the MMI consists of a single wide waveguide, narrow gap processing is not required, and interference with other light sources does not occur at the time of self-imaging, so that a further narrow pitch can be realized. In addition, this waveguide circuit shape is not dependent on the material of the planar waveguide and the non-refractive index difference Δ between the core and the clad, and therefore can be applied to all planar waveguides.

(第1の実施形態)
第1の実施形態の光回路について、図3および図4を用いて説明する。図3は本実施形態の光回路に用いられるMMIを上面から見た概略構成を示す図である。本実施形態の光回路は、図1に示す入力導波路に、図3に示す、テーパー付きマルチモード干渉導波路(MMI)3を設けて構成される。本実施形態では入力導波路2の本数が5本の場合を例に挙げて説明するが、入力導波路の本数は任意の本数のものを用いることができることは言うまでもない。
(First embodiment)
The optical circuit of the first embodiment will be described with reference to FIGS. FIG. 3 is a diagram showing a schematic configuration of the MMI used in the optical circuit of the present embodiment as viewed from above. The optical circuit of this embodiment is configured by providing a tapered multimode interference waveguide (MMI) 3 shown in FIG. 3 to the input waveguide shown in FIG. In the present embodiment, the case where the number of input waveguides 2 is five will be described as an example. Needless to say, any number of input waveguides can be used.

入力導波路1及びMMI3は、同一基板上に形成することができ、基板と、下部クラッド層と、コア層と、上部クラッド層とが積層されて形成される。下部クラッド層は基板上に設けられる。クラッド層よりも屈折率が高いコア層は下部クラッド層上に設けられ、上部クラッド層はコア層を囲むように設けられる。   The input waveguide 1 and the MMI 3 can be formed on the same substrate, and are formed by laminating a substrate, a lower cladding layer, a core layer, and an upper cladding layer. The lower cladding layer is provided on the substrate. The core layer having a refractive index higher than that of the cladding layer is provided on the lower cladding layer, and the upper cladding layer is provided so as to surround the core layer.

本実施形態の光回路では、図3に示すテーパー付きMMI3を図1に示すピッチ変換回路の出力端に配置した構成を備えている。MMI3は、導波路長Lであり、入力導波路部2の幅WMMIin、出力導波路部4の幅WMMIoutのものが用いられる。テーパーを付けることによりWMMIin>WMMIoutとするので、狭ピッチ化が図れる。MMI3の導波方向の長さLは、(式1)に基づいて設定するので伝播する光は自己結像することができる。 The optical circuit of this embodiment has a configuration in which the tapered MMI 3 shown in FIG. 3 is arranged at the output end of the pitch conversion circuit shown in FIG. MMI3 is waveguide length L, width W MMIin input waveguide portion 2, is used as the width W MMIout output waveguide section 4. By making the taper W MMIin > W MMIout , the pitch can be reduced. Since the length L in the waveguide direction of the MMI 3 is set based on (Equation 1), the propagating light can be self-imaged.

例えば、通信波長帯である1.55μmの光を用い、コアの屈折率n=1.474である場合、MMI3は、WMMIin、WMMIout、Lをそれぞれ32μm、24μm、3040μmに設定することができる。この場合は、MMI3の入力導波路部2において、各導波路の幅が4μm、導波路間のギャップが3μmであったのを、MMI3の出力導波路部4において、各導波路の幅3μm、導波路間のギャップ1μmが形成されているのと同等の光源ピッチに狭ピッチ化できる。なお、さらに狭ピッチ化しようとした場合、WMMIoutの幅をより小さくする必要があるが、小さくしすぎると、光をコア内に閉じ込めておけず、損失が大きくなる。 For example, when light having a communication wavelength band of 1.55 μm is used and the refractive index of the core is n = 1.474, MMI3 may set W MMIin , W MMIout , and L to 32 μm, 24 μm, and 3040 μm, respectively. it can. In this case, in the input waveguide portion 2 of the MMI 3, the width of each waveguide is 4 μm and the gap between the waveguides is 3 μm. In the output waveguide portion 4 of the MMI 3, the width of each waveguide is 3 μm, The pitch can be narrowed to the same light source pitch as the gap of 1 μm between the waveguides is formed. If the pitch is to be further narrowed, the width of W MMIout needs to be made smaller. However , if the pitch is made too small, light cannot be confined in the core and the loss increases.

(第1の実施形態の変形例)
図4は、光の進行方向に沿って導波路幅を変調させたMMIを示す図である。MMI3にて展開される各モードの有効屈折率はそれぞれ微妙に異なるため、入力導波路によって自己結像に必要な導波路長はそれぞれ微妙に異なる。そのため、MMI3の導波路幅を図3に示すような単純なテーパーにするのではなく、図4に示すように、光の進行方向に沿って導波路幅を変調することで透過率を向上させることができる。
(Modification of the first embodiment)
FIG. 4 is a diagram showing an MMI in which the waveguide width is modulated along the traveling direction of light. Since the effective refractive index of each mode developed by the MMI 3 is slightly different, the waveguide length necessary for self-imaging differs slightly depending on the input waveguide. Therefore, the waveguide width of the MMI 3 is not a simple taper as shown in FIG. 3, but the transmittance is improved by modulating the waveguide width along the light traveling direction as shown in FIG. be able to.

導波路幅の具体的な形状を算出するために、ここでは波面整合法(Wavefront matching method:WFM)を用いることができる。WFMは、ある入出力をもつ光回路に対して、入力側から伝搬していく光と、出力側から伝搬していく光の波面を整合させるように屈折率分布を決定することで、回路の透過率を最大化させる構造を算出するシミュレーション技法であり、SiO2を材料に用いたPLC設計において大きな実績をもつ手法である(例えば、非特許文献3参照)。MMI中の任意の点において、MMIの入力導波路部からの入力フィールドの順伝搬の光フィールドの波面と、MMIの出力導波路部からの出力フィールドの逆伝搬させた光フィールドの波面とが一致するように、所望の光の波長範囲に対して、MMIの導波路幅を光の伝搬方向に沿って変化させる。MMIの出力導波路部において、出力を得たい光の出力フィールドを予め設定し、この設定した出力フィールドの逆伝搬させた光フィールドの波面と、実際に入力導波路部から入力される光の入力フィールドの順伝搬させた光フィールドの波面とが、所望の光の波長範囲に対して、MMI中の任意の点において一致するように導波路幅を決定することができる。 In order to calculate a specific shape of the waveguide width, a wavefront matching method (WFM) can be used here. The WFM determines the refractive index distribution so that the light wave propagating from the input side and the wavefront of the light propagating from the output side are matched to the optical circuit having a certain input / output. This is a simulation technique for calculating a structure that maximizes the transmittance, and has a great track record in PLC design using SiO 2 as a material (see, for example, Non-Patent Document 3). At any point in the MMI, the wavefront of the forward-propagating optical field of the input field from the input waveguide section of the MMI matches the wavefront of the optical field propagated in the reverse direction of the output field from the output waveguide section of the MMI. Thus, the waveguide width of the MMI is changed along the light propagation direction with respect to a desired light wavelength range. In the output waveguide section of the MMI, an output field of light for which output is to be obtained is set in advance, and the wavefront of the light field propagated in the reverse direction of the set output field and the input of light actually input from the input waveguide section The waveguide width can be determined such that the wavefront of the optical field propagated in the forward direction of the field matches the desired wavelength range at any point in the MMI.

具体的にWFMを用いて損失の低減を目的とする導波路幅形状を算出するには、例えばBPM(beam propagation method:ビーム伝搬法)を用いて、入力導波路部側、出力導波路部側からそれぞれ、所望のモードフィールドをもつ光を伝搬させ、回路の中央で、2つの光の波面が整合するように導波路の幅を変化させる。この手順を複数回反復することで、損失を低減する導波路幅形状を決定できる。   Specifically, to calculate the waveguide width shape for the purpose of reducing loss using WFM, for example, using BPM (beam propagation method), the input waveguide section side, the output waveguide section side In each of the above, light having a desired mode field is propagated, and the width of the waveguide is changed so that the wavefronts of the two lights are matched at the center of the circuit. By repeating this procedure a plurality of times, the waveguide width shape that reduces the loss can be determined.

以上に説明したように、テーパー付きMMIを用いることで、従来のピッチ変換回路以上に光源を狭ピッチ化して出射することが可能となる。   As described above, by using the tapered MMI, the light source can be emitted with a narrower pitch than the conventional pitch conversion circuit.

(第2の実施形態)
図5は、第2の実施形態の光回路に用いられるMMIを上面から見た概略構成を示す図である。第1の実施形態のMMIは、光の進行方向に対して線対称な形状をしているが、本実施形態のMMIは、入力導波路部の中心と出力導波路部の中心とがずれるように、光の進行方向とは垂直に互いに平行移動させた構成を備えている。その他の構成は第1の実施形態の光回路に用いられるMMIと同様である。
(Second Embodiment)
FIG. 5 is a diagram illustrating a schematic configuration of an MMI used in the optical circuit of the second embodiment as viewed from above. Although the MMI of the first embodiment has a line-symmetric shape with respect to the light traveling direction, the MMI of the present embodiment is such that the center of the input waveguide portion and the center of the output waveguide portion are shifted. In addition, it is configured such that they are translated in parallel with each other perpendicular to the light traveling direction. Other configurations are the same as those of the MMI used in the optical circuit of the first embodiment.

MMI3の光導波方向における長さは、入力導波路部の幅および出力導波路部の幅に依存するため、第1の実施形態と同じく(式1)に基づいて設定すればよい。ただし、入力導波路部の中心と出力導波路部の中心との平行移動距離は、テーパーの角度がきつくなって導波路側壁から光が放射しないように、光を閉じ込めておける範囲内に設定される。   Since the length of the MMI 3 in the optical waveguide direction depends on the width of the input waveguide portion and the width of the output waveguide portion, it may be set based on (Equation 1) as in the first embodiment. However, the parallel movement distance between the center of the input waveguide section and the center of the output waveguide section is set within a range where light can be confined so that light is not emitted from the side wall of the waveguide due to a tight taper angle. The

この構成により、対称構造でない場合にも狭ピッチ化が図れる。   With this configuration, it is possible to reduce the pitch even when the structure is not symmetrical.

(第3の実施形態)
図6は、第3の実施形態の光回路に用いられるMMIを上面から見た概略構成を示す図である。本実施形態では、入力導波路の出力に平行移動の距離が異なる第2の実施形態のMMI3a、3b、3c、3dを複数個並列に配置した構成とすることができる。具体的には第2の実施形態のMMIを一つのブロックとして入力導波路の出力に並列に複数ブロックを並べた互いに平行移動の距離が異なるMMI3a、3b、3c、3dを用いることができる。出力導波路部4a、4b、4c、4dにおいてブロック同士の間隔をできるだけ小さくすることが望ましい。
(Third embodiment)
FIG. 6 is a diagram illustrating a schematic configuration of an MMI used in the optical circuit of the third embodiment as viewed from above. In the present embodiment, a plurality of MMIs 3a, 3b, 3c, and 3d of the second embodiment in which the distance of parallel movement differs from the output of the input waveguide can be arranged in parallel. Specifically, MMIs 3a, 3b, 3c, and 3d having different parallel movement distances in which a plurality of blocks are arranged in parallel with the output of the input waveguide with the MMI of the second embodiment as one block can be used. In the output waveguide portions 4a, 4b, 4c, and 4d, it is desirable to make the interval between the blocks as small as possible.

1つのMMI単独で入出力数を増やすと自己結像に必要な長さが大きくなるため、素子の大型化を招く。本実施形態によれば、素子長はそのままで入出力数を増やすことができる。ただし、MMI間は、隣接導波路間干渉を避けるために3μm以上のギャップが必要となる。   Increasing the number of inputs / outputs with a single MMI increases the length required for self-imaging, leading to an increase in the size of the element. According to the present embodiment, the number of inputs and outputs can be increased with the element length unchanged. However, a gap of 3 μm or more is required between MMIs in order to avoid interference between adjacent waveguides.

1 ピッチ変換回路
2 入力導波路部
3 マルチモード干渉導波路(MMI)
4 出力導波路部
DESCRIPTION OF SYMBOLS 1 Pitch conversion circuit 2 Input waveguide part 3 Multimode interference waveguide (MMI)
4 Output waveguide section

Claims (5)

任意の数の入力導波路と、
該入力導波路に接続された入力導波路部を一端に有し、他端に出力導波路部を有するマルチモード干渉型光導波路とを備え、
前記マルチモード干渉型光導波路の前記出力導波路部の幅が前記入力導波路部の幅よりも小さく形成されていることを特徴とする光回路。
Any number of input waveguides;
A multimode interference optical waveguide having an input waveguide portion connected to the input waveguide at one end and an output waveguide portion at the other end;
An optical circuit, wherein a width of the output waveguide portion of the multimode interference type optical waveguide is smaller than a width of the input waveguide portion.
前記マルチモード干渉型光導波路の光導波方向の長さLが、前記入力導波路部の幅をWMMIin、前記出力導波路部の幅をWMMIout、入力される光の波長をλ、前記マルチモード干渉型光導波路のコアの屈折率をnとすると、下記(式1)に基づいて設定されていることを特徴とする請求項1に記載の光回路。
L=(4/3・n・WMMIin・WMMIout)/λ (式1)
The length L in the optical waveguide direction of the multimode interference optical waveguide is such that the width of the input waveguide section is W MMIin , the width of the output waveguide section is W MMIout , the wavelength of input light is λ, 2. The optical circuit according to claim 1, wherein the optical circuit is set based on the following (Equation 1), where n is a refractive index of the core of the mode interference optical waveguide.
L = (4/3 · n · W MMIin · W MMIout ) / λ (Formula 1)
前記マルチモード干渉型光導波路は、前記入力導波路部から入力される光の入力フィールドを順伝搬させた光フィールドの波面と前記出力導波路部に出力すべき光の出力フィールドを逆伝搬させた光フィールドの波面とが、所望の光の波長範囲に対して、前記マルチモード干渉型光導波路中の任意の点において一致するように導波路幅が決定されることを特徴とする請求項1または2に記載の光回路。   The multi-mode interference type optical waveguide propagates the wave field of the light field that has been forward-propagated through the input field of the light input from the input waveguide section and the output field of the light to be output to the output waveguide section. The waveguide width is determined so that a wavefront of an optical field coincides with an arbitrary point in the multimode interference optical waveguide with respect to a desired wavelength range of light. 2. The optical circuit according to 2. 前記マルチモード干渉型導波路の入力導波路部の中心と出力導波路部の中心とがずれるように、光の進行方向とは垂直に互いに平行移動させたことを特徴とする、請求項1から3のいずれかに記載の光回路。   2. The multimode interference type waveguide according to claim 1, wherein the center of the input waveguide portion and the center of the output waveguide portion of the multimode interference waveguide are translated from each other perpendicular to the light traveling direction. 4. The optical circuit according to any one of 3. 請求項4に記載のマルチモード干渉型導波路を複数個並列に配置したことを特徴とする光回路。   An optical circuit comprising a plurality of multimode interference waveguides according to claim 4 arranged in parallel.
JP2015243466A 2015-12-14 2015-12-14 Light circuit Active JP6539195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243466A JP6539195B2 (en) 2015-12-14 2015-12-14 Light circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243466A JP6539195B2 (en) 2015-12-14 2015-12-14 Light circuit

Publications (2)

Publication Number Publication Date
JP2017111202A true JP2017111202A (en) 2017-06-22
JP6539195B2 JP6539195B2 (en) 2019-07-03

Family

ID=59079486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243466A Active JP6539195B2 (en) 2015-12-14 2015-12-14 Light circuit

Country Status (1)

Country Link
JP (1) JP6539195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031865A1 (en) * 2018-08-10 2020-02-13 日本電信電話株式会社 Optical multiplexer and rgb coupler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090537A (en) * 1996-09-13 1998-04-10 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer circuit
US6421478B1 (en) * 1999-05-11 2002-07-16 Jds Fitel Inc. Tapered MMI coupler
JP2011197245A (en) * 2010-03-18 2011-10-06 Fujitsu Ltd Optical waveguide device and optical receiver with such optical wave guide device
JP2013007808A (en) * 2011-06-23 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Optical integrated circuit
JP2015215578A (en) * 2014-05-13 2015-12-03 日本電信電話株式会社 Optical waveguide element, and polarization separator using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090537A (en) * 1996-09-13 1998-04-10 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer circuit
US6421478B1 (en) * 1999-05-11 2002-07-16 Jds Fitel Inc. Tapered MMI coupler
JP2011197245A (en) * 2010-03-18 2011-10-06 Fujitsu Ltd Optical waveguide device and optical receiver with such optical wave guide device
JP2013007808A (en) * 2011-06-23 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Optical integrated circuit
JP2015215578A (en) * 2014-05-13 2015-12-03 日本電信電話株式会社 Optical waveguide element, and polarization separator using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAHU, P. P.: "A Tapered Structure for Compact Multimode Interference Coupler", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 20, no. 8, JPN6018041118, 15 April 2008 (2008-04-15), pages 638 - 640, XP011206293, ISSN: 0003903617 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031865A1 (en) * 2018-08-10 2020-02-13 日本電信電話株式会社 Optical multiplexer and rgb coupler
JP2020027170A (en) * 2018-08-10 2020-02-20 日本電信電話株式会社 Optical multiplexer and RGB coupler
JP7172271B2 (en) 2018-08-10 2022-11-16 日本電信電話株式会社 Optical multiplexer and RGB coupler
US11543591B2 (en) 2018-08-10 2023-01-03 Nippon Telegraph And Telephone Corporation Optical multiplexer and RGB coupler

Also Published As

Publication number Publication date
JP6539195B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US9851504B2 (en) Planar optical waveguide device, DP-QPSK modulator, coherent receiver, and polarization diversity
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
JP6631524B2 (en) Optical circuit element and method of configuring optical circuit element
JP2007114253A (en) Waveguide type optical branching device
JP2007072433A (en) Optical integrated device and optical control device
JP2014092759A (en) Polarization control element
JP5561305B2 (en) Optical element
JP2005221999A (en) Optical modulator and optical modulator array
US10082623B2 (en) Rib type optical waveguide and optical multiplexer / demultiplexer using same
JP2002286952A (en) Waveguide type optical coupler and optical multiplexer/ demultiplexer using the coupler
JP4327064B2 (en) Light control element
Zamhari et al. Large cross-section rib silicon-on-insulator (SOI) S-bend waveguide
JP6539195B2 (en) Light circuit
Truong et al. A design of triplexer based on a 2× 2 butterfly MMI coupler and a directional coupler using silicon waveguides
JP5299290B2 (en) Optical switch and manufacturing method thereof
Stanley et al. Mach–Zehnder interferometer: A review of a perfect all-optical switching structure
JP2007065357A (en) Multimode interference coupler, optical semiconductor element using the same, and method for designing the multimode interference coupler
JP2004219986A (en) Holographic wave transmission medium, waveguide circuit, and manufacturing methods therefor
JP2013041146A (en) Wavelength-selective multimode interference waveguide device
WO2019117313A1 (en) Optical polarization wave element and method for manufacturing same
WO2020031865A1 (en) Optical multiplexer and rgb coupler
JP2006106372A (en) Optical branching apparatus
JP6697365B2 (en) Mode multiplexing / demultiplexing optical circuit
Yen et al. Silicon photonics multi-channel Bragg reflectors based on narrowband cladding-modulated gratings
JP2018194665A (en) Wavelength separation element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6539195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150