Nothing Special   »   [go: up one dir, main page]

JP2017110069A - ゴム組成物及び空気入りタイヤ - Google Patents

ゴム組成物及び空気入りタイヤ Download PDF

Info

Publication number
JP2017110069A
JP2017110069A JP2015244425A JP2015244425A JP2017110069A JP 2017110069 A JP2017110069 A JP 2017110069A JP 2015244425 A JP2015244425 A JP 2015244425A JP 2015244425 A JP2015244425 A JP 2015244425A JP 2017110069 A JP2017110069 A JP 2017110069A
Authority
JP
Japan
Prior art keywords
structural unit
meth
formula
acrylate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015244425A
Other languages
English (en)
Other versions
JP6625879B2 (ja
Inventor
智史 福西
Tomoji Fukunishi
智史 福西
貴史 由里
Takashi Yuri
貴史 由里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2015244425A priority Critical patent/JP6625879B2/ja
Priority to DE112016005729.6T priority patent/DE112016005729T5/de
Priority to PCT/JP2016/005132 priority patent/WO2017104135A1/ja
Priority to CN201680068608.5A priority patent/CN108473721B/zh
Priority to US15/779,941 priority patent/US10723866B2/en
Publication of JP2017110069A publication Critical patent/JP2017110069A/ja
Application granted granted Critical
Publication of JP6625879B2 publication Critical patent/JP6625879B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】常温での硬度低下と低温での弾性率上昇と転がり抵抗性能の悪化を抑えながら、ウェットグリップ性能を向上する。【解決手段】ジエン系ゴムからなるゴム成分100質量部に対し、式(1)で表される構成単位を有しかつ反応性シリル基を持たない(メタ)アクリレート系重合体からなる、ガラス転移点が−70〜0℃かつ平均粒径が10nm以上100nm未満の微粒子を、1〜100質量部含有するゴム組成物、及びそれを用いた空気入りタイヤである。(式(1)中、R1は水素原子又はメチル基、R2は炭素数4〜18のアルキル基である。)【化1】【選択図】なし

Description

本発明は、ゴム組成物、及びそれを用いた空気入りタイヤに関するものである。
従来、例えば、タイヤに用いられるゴム組成物においては、湿潤路面におけるグリップ性能(ウェットグリップ性能)と低燃費性に寄与する転がり抵抗性能を高次元でバランスさせることが求められている。しかし、これらは背反特性であるため、同時に改良することは容易ではない。
特許文献1には、転がり抵抗性能を悪化させることなくウェットグリップ性能を向上させるために、ナフサの熱分解によるC5留分とスチレン又はビニルトルエンの共重合樹脂を配合することが提案されている。この場合、ウェットグリップ性能を向上させることはできるが、常温でのゴム組成物の硬度低下による操縦安定性の低下という課題がある。また、低温においてゴム組成物の弾性率が上昇してグリップ性能が悪化するため、低温性能にも課題がある。
特許文献2には、路面グリップ力に優れ、破壊強度及び耐摩耗性良好にしてかつ耐熱性に優れるゴム組成物を提供することを目的として、ゴム成分として2000〜50000の分子量を有する低分子量ビニル芳香族・ジエン共重合体(スチレンブタジエン液状ポリマー)を配合することが開示されている。この場合、得られるゴム組成物の硬度低下が大きく、タイヤに採用した際の操縦安定性が低下してしまう。
特許文献3には、低温性能及び転がり抵抗性能の悪化を抑えながら、ウェットグリップ性能を向上することを目的として、重量平均分子量が5000〜100万でありかつガラス転移点が−70〜0℃である(メタ)アクリレート系重合体を配合することが開示されている。しかしながら、特定の粒径を持つ微粒子状の(メタ)アクリレート系重合体を配合することは開示されていない。
一方、特許文献4には、(メタ)アクリル酸アルキルエステルポリマーの粒子をゴム組成物に配合することが開示されている。しかしながら、この文献において、該粒子は、スタッドレスタイヤのトレッド面にミクロな凹凸を形成することで氷上摩擦抵抗を向上させるものであり、そのため、粒径が0.1μm〜100μm、好ましくは1μm〜30μmと比較的大きいものを用いる必要がある。より粒径の小さい微粒子状の(メタ)アクリレート系重合体を配合することにより、常温での硬度低下と低温での弾性率上昇を抑えながら、ウェットグリップ性能を向上できることについての開示はみられない。
特許文献5には、式≡Si−Xで表される反応性シリル基(式中、Xはヒドロキシルまたは加水分解可能な基である)を持つ非芳香族ビニルポリマー(例えば、(メタ)アクリレートの重合体)のナノ粒子を、ゴム組成物に配合することが開示されている。しかしながら、この文献において、該ナノ粒子は補強性充填剤として用いられており、カップリング剤との併用による補強性を発揮するために、反応性シリル基を持つことが必須となっている。反応性シリル基を持たない(メタ)アクリレート系重合体からなる微粒子を用いることにより、常温での硬度低下と低温での弾性率上昇を抑えながら、ウェットグリップ性能を向上できることについての開示はみられない。
特開平09−328577号公報 特開昭61−203145号公報 WO2015/155965A1 特開2012−158710号公報 特表2009−542827号公報
本発明の実施形態は、常温での硬度低下と低温での弾性率上昇を抑えながら、タイヤ用途に用いたときのウェットグリップ性能を向上することができるゴム組成物を提供することを目的とする。
実施形態に係るゴム組成物は、ジエン系ゴムからなるゴム成分100質量部に対し、下記一般式(1)で表される構成単位を有しかつ反応性シリル基を持たない(メタ)アクリレート系重合体からなる、ガラス転移点が−70〜0℃かつ平均粒径が10nm以上100nm未満の微粒子を、1〜100質量部含有するものである。
Figure 2017110069
式中、R1は水素原子又はメチル基であり、同一分子中のR1は同一でも異なっていてもよく、R2は炭素数4〜18のアルキル基であり、同一分子中のR2は同一でも異なっていてもよい。
実施形態に係る空気入りタイヤは、該ゴム組成物を用いて作製されたものである。
実施形態によれば、ジエン系ゴムに上記特定の重合体からなる微粒子を配合することにより、タイヤ用途に用いたときに、常温での硬度低下と低温での弾性率上昇を抑えながら、ウェットグリップ性能を向上することができる。
本実施形態に係るゴム組成物は、ジエン系ゴムからなるゴム成分に、特定の(メタ)アクリレート系重合体からなる微粒子を配合してなるものである。
ゴム成分としてのジエン系ゴムとしては、例えば、天然ゴム(NR)、合成イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、スチレン−イソプレン共重合体ゴム、ブタジエン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム等が挙げられ、これらはいずれか1種単独で又は2種以上組み合わせて用いることができる。これらの中でも、NR、BR及びSBRからなる群から選択された少なくとも1種であることが好ましい。
上記で列挙した各ジエン系ゴムの具体例には、その分子末端又は分子鎖中において、水酸基、アミノ基、カルボキシル基、アルコキシ基、アルコキシシリル基、及びエポキシ基からなる群から選択された少なくとも1種の官能基が導入されることで、当該官能基により変性された変性ジエン系ゴムも含まれる。変性ジエン系ゴムとしては、変性SBR及び/又は変性BRが好ましい。一実施形態において、ジエン系ゴムは、変性ジエン系ゴム単独でもよく、変性ジエン系ゴムと未変性のジエン系ゴムとのブレンドでもよい。一実施形態において、ジエン系ゴム100質量部中、変性SBRを30質量部以上含んでもよく、変性SBRを50〜90質量部と未変性ジエン系ゴム(例えば、BR及び/又はNR)を50〜10質量部含むものでもよい。
上記微粒子としては、下記一般式(1)で表されるアルキル(メタ)アクリレート単位を構成単位(繰り返し単位とも称される。)として有する(メタ)アクリレート系重合体からなるものが用いられる。
Figure 2017110069
式(1)中、R1は、水素原子又はメチル基であり、同一分子中に存在するR1は同一でも異なってもよい。R2は、炭素数4〜18のアルキル基であり、同一分子中に存在するR2は同一でも異なってもよい。R2のアルキル基は直鎖でも分岐していてもよい。R2は、炭素数6〜16のアルキル基であることが好ましく、より好ましくは炭素数8〜15のアルキル基である。
該(メタ)アクリレート系重合体は、1種又は2種以上のアルキル(メタ)アクリレートを含むモノマーを重合してなるものである。ここで、(メタ)アクリレートとは、アクリレート及びメタクリレートのうちの一方又は両方を意味する。また、(メタ)アクリル酸は、アクリル酸及びメタクリル酸のうちの一方又は両方を意味する。
アルキル(メタ)アクリレートとしては、例えば、アクリル酸n−ブチル、アクリル酸n−ペンチル、アクリル酸n−ヘキシル、アクリル酸n−ヘプチル、アクリル酸n−オクチル、アクリル酸n−ノニル、アクリル酸n−デシル、アクリル酸n−ウンデシル、アクリル酸n−ドデシル、アクリル酸n−トリデシル、メタクリル酸n−ブチル、メタクリル酸n−ペンチル、メタクリル酸n−ヘキシル、メタクリル酸n−ヘプチル、メタクリル酸n−オクチル、メタクリル酸n−ノニル、メタクリル酸n−デシル、メタクリル酸n−ウンデシル、及びメタクリル酸n−ドデシル等の(メタ)アクリル酸n−アルキル; アクリル酸イソブチル、アクリル酸イソペンチル、アクリル酸イソヘキシル、アクリル酸イソヘプチル、アクリル酸イソオクチル、アクリル酸イソノニル、アクリル酸イソデシル、アクリル酸イソウンデシル、アクリル酸イソドデシル、アクリル酸イソトリデシル、アクリル酸イソテトラデシル、メタクリル酸イソブチル、メタクリル酸イソペンチル、メタクリル酸イソヘキシル、メタクリル酸イソヘプチル、メタクリル酸イソオクチル、メタクリル酸イソノニル、メタクリル酸イソデシル、メタクリル酸イソウンデシル、メタクリル酸イソドデシル、メタクリル酸イソトリデシル、及びメタクリル酸イソテトラデシル等の(メタ)アクリル酸イソアルキル; アクリル酸2−メチルブチル、アクリル酸2−エチルペンチル、アクリル酸2−メチルヘキシル、アクリル酸2−エチルヘキシル、アクリル酸2−エチルヘプチル、メタクリル酸2−メチルペンチル、メタクリル酸2−メチルヘキシル、メタクリル酸2−エチルヘキシル、及びメタクリル酸2−エチルヘプチルなどが挙げられる。これらはいずれか1種又は2種以上組み合わせて用いることができる。
ここで、イソアルキルとは、アルキル鎖端から2番目の炭素原子にメチル側鎖を有するアルキル基をいう。例えば、イソデシルとは、鎖端から2番目の炭素原子にメチル側鎖を持つ炭素数10のアルキル基をいい、8−メチルノニル基だけでなく、2,4,6−トリメチルヘプチル基も含まれる概念である。
一実施形態として、(メタ)アクリレート系重合体は、式(1)で表される構成単位として下記一般式(2)で表される構成単位を有する重合体であることが好ましい。
Figure 2017110069
式(2)中、R3は、水素原子又はメチル基であり(好ましくはメチル基)、同一分子中のR3は同一でも異なってもよい。Zは、炭素数1〜15のアルキレン基であり、同一分子中のZは同一でも異なってもよい。Zは直鎖でも分岐していてもよい。
式(2)の構成単位は、式(1)中のR2が下記一般式(2A)で表される場合である。
Figure 2017110069
式(2A)中のZは、式(2)のZと同じである。
このような構成単位を生じる(メタ)アクリレートとしては、上記の(メタ)アクリル酸イソアルキルが挙げられる。かかるイソアルキル基を有する(メタ)アクリレート(より好ましくは、メタクリレート)を用いることにより、本実施形態による効果を高めることができる。式(2)及び(2A)中のZは、炭素数5〜12のアルキレン基であることが好ましく、より好ましくは炭素数6〜10のアルキレン基である。特に好ましくは、炭素数7のアルキレン基であり、一例として、(メタ)アクリレート系重合体は、メタクリル酸イソデシルを含むモノマーの重合体であることが好ましい。
他の実施形態において、上記(メタ)アクリレート系重合体は、式(1)で表される構成単位として、下記一般式(3)で表される構成単位を有する、重合体でもよく、あるいはまた、式(2)で表される構成単位と式(3)で表される構成単位を有する、重合体でもよい。後者の場合、両構成単位の付加形態は、ランダム付加でもブロック付加でもよく、好ましくはランダム付加である。
Figure 2017110069
式(3)中、R4は、水素原子又はメチル基であり(好ましくはメチル基)、同一分子中のR4は同一でも異なってもよい。Q1は、炭素数1〜6(より好ましくは1〜3)のアルキレン基であり、直鎖でも分岐でもよく(好ましくは直鎖)、同一分子中のQ1は同一でも異なってもよい。Q2は、メチル基又はエチル基であり(好ましくはエチル基)、同一分子中のQ2は同一でも異なっていてもよい。
式(3)の構成単位は、式(1)中のR2が下記一般式(3A)で表される場合である。
Figure 2017110069
式(3A)中、Q1及びQ2は、それぞれ式(3)のQ1及びQ2と同じである。
(メタ)アクリレート系重合体が、このような式(2)の構成単位と式(3)の構成単位との共重合体であることにより、常温硬度の低下と低温弾性率の上昇を抑えながら、ウェットグリップ性能と転がり抵抗性能のバランスを改良する、という効果を高めることができる。
ここで、該共重合体において、式(2)の構成単位を生じる(メタ)アクリレートの具体例としては、上記の(メタ)アクリル酸イソアルキルが挙げられ、特に好ましくは、メタクリル酸イソデシルである。また、式(3)の構成単位を生じる(メタ)アクリレートの具体例としては、上記列挙のアルキル(メタ)アクリレートのうち、(メタ)アクリル酸n−アルキルおよび(メタ)アクリル酸イソアルキルを除くものが挙げられ、特に好ましくは、メタクリル酸2−エチルヘキシルである。
このような共重合体の場合、式(2)の構成単位と式(3)の構成単位の比率(共重合比)は、特に限定されない。例えば、式(2)の構成単位/式(3)の構成単位のモル比で、30/70〜90/10でもよく、40/60〜85/15でもよい。
本実施形態に係る微粒子を構成する(メタ)アクリレート系重合体は、上記のアルキル(メタ)アクリレートの単独重合体でもよいが、より好ましい実施形態によれば、アルキル(メタ)アクリレートを、多官能ビニルモノマーの存在によって架橋してなる架橋構造の重合体である。すなわち、好ましい実施形態において、(メタ)アクリレート系重合体は、式(1)で表される構成単位とともに、多官能ビニルモノマーに由来する構成単位を含み、該多官能ビニルモノマーに由来する構成単位を架橋点とする架橋構造を有する。
多官能ビニルモノマーとしては、フリーラジカル重合によって重合可能な少なくとも2個のビニル基を有する化合物が挙げられ、例えば、ジオールまたはトリオール(例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、トリメチロールプロパンなど)のジ(メタ)アクリレートまたはトリ(メタ)アクリレート; メチレンビス−アクリルアミドなどのアルキレンジ(メタ)アクリルアミド; ジイソプロペニルベンゼン、ジビニルベンゼン、トリビニルベンゼンなどの少なくとも2個のビニル基を持つビニル芳香族化合物などが挙げられ、これらはいずれか1種又は2種以上組み合わせて用いることができる。
(メタ)アクリレート系重合体は、基本的には式(1)の構成単位からなり、即ち式(1)の構成単位を主成分とするが、効果を損なわない範囲で他のビニル系化合物を併用してもよい。特に限定するものではないが、(メタ)アクリレート系重合体を構成する全構成単位(全繰り返し単位)に対する式(1)の構成単位のモル比が50モル%以上であることが好ましく、より好ましくは80モル%以上であり、更に好ましくは90モル%以上である。式(1)の構成単位のモル比の上限は、特に限定しないが、例えば上記の多官能ビニルモノマーを添加する場合、99.5モル%以下でもよく、99モル%以下でもよい。多官能ビニルモノマーに基づく構成単位のモル比は、0.5〜20モル%でもよく、1〜10モル%でもよく、1〜5モル%でもよい。
一実施形態において、(メタ)アクリレート系重合体が式(2)の構成単位を有する重合体である場合、当該重合体の全構成単位に対する式(2)の構成単位のモル比は25モル%以上であることが好ましく、より好ましくは35モル%以上であり、50モル%以上でもよく、80モル%以上でもよい。当該モル比の上限は、特に限定しないが、例えば多官能ビニルモノマーを上記のモル比で添加する場合、99.5モル%以下でもよく、99モル%以下でもよい。
一実施形態において、(メタ)アクリレート系重合体が式(3)の構成単位を有する重合体である場合、当該重合体の全構成単位に対する式(3)の構成単位のモル比は25モル%以上であることが好ましく、より好ましくは35モル%以上であり、50モル%以上でもよく、80モル%以上でもよい。当該モル比の上限は、特に限定しないが、例えば多官能ビニルモノマーを上記のモル比で添加する場合、99.5モル%以下でもよく、99モル%以下でもよい。
また、他の実施形態において、(メタ)アクリレート系重合体が式(2)の構成単位と式(3)の構成単位の共重合体である場合、当該共重合体の全構成単位に対する式(2)の構成単位のモル比が25〜90モル%で、式(3)の構成単位のモル比が5〜60モル%でもよく、式(2)の構成単位のモル比が35〜85モル%で、式(3)の構成単位のモル比が8〜55モル%でもよい。また、式(2)の構成単位と式(3)の構成単位のモル比の合計で80モル%以上でもよく、90モル%以上でもよく、またその上限は、例えば多官能ビニルモノマーを上記のモル比で添加する場合、99.5モル%以下でもよく、99モル%以下でもよい。
本実施形態では、上記(メタ)アクリレート系重合体として、反応性シリル基を持たないものを用いる。すなわち、本実施形態において、微粒子はシリカを代替する補強性充填剤として配合するものではないので、該微粒子を構成する(メタ)アクリレート系重合体の分子末端又は分子鎖中に反応性シリル基を有していないものを用いる。これにより、常温硬度の低下と低温弾性率の上昇を抑えながら、ウェットグリップ性能と転がり抵抗性能のバランスを改良するとの本実施形態の効果を有効に発揮することができると考えられる。ここで、反応性シリル基とは、式≡Si−Xで表される官能基(式中、Xはヒドロキシルまたは加水分解可能な基である。)であり、1〜3個のヒドロキシル基又は加水分解可能な1価の基が4価のケイ素原子に結合した構造を有する基である。Xとしては、ヒドロキシル基、アルコキシ基、及びハロゲン原子が挙げられる。
本実施形態において、上記(メタ)アクリレート系重合体からなる微粒子のガラス転移点(Tg)は−70〜0℃の範囲内に設定される。ガラス転移点の設定は、(メタ)アクリレート系重合体を構成するモノマー組成等により行うことができる。ガラス転移点が0℃以下であることにより、低温性能の悪化をより効果的に抑えることができる。また、ガラス転移点が−70℃以上であることにより、ウェットグリップ性能の改善効果を高めることができる。微粒子のガラス転移点は、−50〜−10℃であることが好ましく、より好ましくは−40〜−20℃である。
本実施形態において、上記微粒子の平均粒径は10nm以上100nm未満である。上記特定の構成単位を含む(メタ)アクリレート系重合体を、このような微細な粒子としてジエン系ゴム中に添加することにより、常温での硬度低下と低温での弾性率上昇と転がり抵抗性能の悪化を抑えながら、ウェットグリップ性能を向上するという効果を高めることができる。該微粒子の平均粒径は、より好ましくは20〜90nmであり、更に好ましくは30〜80nmである。
上記微粒子の製造方法は、特に限定されず、例えば、公知の乳化重合を利用して合成することができる。好ましい一例を挙げれば次の通りである。すなわち、(メタ)アクリレートを、架橋剤としての多官能ビニルモノマーとともに、乳化剤を溶解した水等の水性媒体に分散させ、得られたエマルションに水溶性のラジカル重合開始剤(例えば、過硫酸カリウムなどの過酸化物)を添加してラジカル重合させることにより、水性媒体中に(メタ)アクリレート系重合体からなる微粒子が生成されるので、該水性媒体と分離することで微粒子が得られる。その他の微粒子の製造方法として、公知の懸濁重合や分散重合、沈殿重合、ミニエマルション重合、ソープフリー乳化重合(無乳化剤乳化重合)およびマイクロエマルション重合などの重合方法を利用することができる。
本実施形態に係るゴム組成物において、上記(メタ)アクリレート系重合体からなる微粒子の配合量は、特に限定されないが、ジエン系ゴムからなるゴム成分100質量部に対して1〜100質量部であることが好ましく、より好ましくは2〜50質量部であり、更に好ましくは3〜30質量部である。
本実施形態に係るゴム組成物には、上記(メタ)アクリレート系重合体からなる微粒子の他に、補強性充填剤、シランカップリング剤、オイル、亜鉛華、ステアリン酸、老化防止剤、ワックス、加硫剤、加硫促進剤など、ゴム組成物において一般に使用される各種添加剤を配合することができる。
補強性充填剤としては、湿式シリカ(含水ケイ酸)等のシリカやカーボンブラックが好ましく用いられる。より好ましくは、転がり抵抗性能とウェットグリップ性能のバランスを向上するために、シリカを用いることであり、シリカ単独又はシリカとカーボンブラックの併用が好ましい。補強性充填剤の配合量は、特に限定されず、例えば、ゴム成分100質量部に対して20〜150質量部でもよく、30〜100質量部でもよい。シリカの配合量も特に限定されず、例えば、ゴム成分100質量部に対して20〜150質量部でもよく、30〜100質量部でもよい。
シリカを配合する場合、シランカップリング剤を併用することが好ましく、その場合、シランカップリング剤の配合量は、シリカ質量の2〜20質量%であることが好ましく、より好ましくは4〜15質量%である。
上記加硫剤としては、硫黄が好ましく用いられる。加硫剤の配合量は、特に限定するものではないが、ゴム成分100質量部に対して0.1〜10質量部であることが好ましく、より好ましくは0.5〜5質量部である。また、上記加硫促進剤としては、例えば、スルフェンアミド系、チウラム系、チアゾール系、及びグアニジン系などの各種加硫促進剤が挙げられ、いずれか1種単独で又は2種以上組み合わせて用いることができる。加硫促進剤の配合量は、特に限定するものではないが、ゴム成分100質量部に対して0.1〜7質量部であることが好ましく、より好ましくは0.5〜5質量部である。
本実施形態に係るゴム組成物は、通常に用いられるバンバリーミキサーやニーダー、ロール等の混合機を用いて、常法に従い混練し作製することができる。すなわち、例えば、第一混合段階で、ジエン系ゴムに対し、上記微粒子とともに、加硫剤及び加硫促進剤を除く他の添加剤を添加混合し、次いで、得られた混合物に、最終混合段階で加硫剤及び加硫促進剤を添加混合してゴム組成物を調製することができる。
このようにして得られたゴム組成物は、タイヤ用、防振ゴム用、コンベアベルト用などの各種ゴム部材に用いることができる。好ましくは、タイヤ用であり、乗用車用タイヤ、トラックやバスの大型タイヤなど各種用途、各種サイズの空気入りタイヤのトレッド部、サイドウォール部などタイヤの各部位に適用することができる。すなわち、該ゴム組成物は、常法に従い、例えば、押出加工によって所定の形状に成形され、他の部品と組み合わせてグリーンタイヤを作製した後、例えば140〜180℃でグリーンタイヤを加硫成形することにより、空気入りタイヤを製造することができる。これらの中でも、タイヤのトレッド用配合として用いることが特に好ましい。
以下、実施例を示すが、本発明はこれらの実施例に限定されるものではない。
[平均粒径の測定方法]
微粒子の平均粒径は、動的光散乱法(DLS)により測定される粒度分布における積算値50%での粒径(50%径:D50)であり、大塚電子株式会社製のダイナミック光散乱光度計「DLS-8000」を用いた光子相関法(JIS Z8826準拠)により測定した(入射光と検出器との角度90°)。
[Tgの測定方法]
微粒子のTgは、JIS K7121に準拠して示差走査熱量測定(DSC)法により、昇温速度:20℃/分にて測定した(測定温度範囲:−150℃〜150℃)。
[合成例1:微粒子1]
15.0gのメタクリル酸2,4,6−トリメチルヘプチル、0.394gのエチレングリコールジメタクリレート、1.91gのドデシル硫酸ナトリウム、120gの水および13.5gのエタノールを混合し、1時間撹拌させることによりモノマーを乳化させ、0.179gの過硫酸カリウムを添加した後、1時間の窒素バブリングを実施し、溶液を70℃で8時間保持した。得られた溶液中へのメタノール添加による凝析により、14.5gの微粒子1を得た(重合転化率(生成量/仕込量):94%)。微粒子1の平均粒径は60nm、Tgは−37℃であった。
微粒子1について、13C−NMRにより、重合体の化学構造を分析したところ、メタクリル酸2,4,6−トリメチルヘプチル由来の式(2)の構成単位とともに、エチレングリコールジメタクリレート由来の構成単位(以下、EGDM構成単位)を有し、各構成単位のモル比は、式(2)の構成単位が97モル%、EGDM構成単位が3.0モル%であった。
[合成例2:微粒子2]
15.0gのメタクリル酸2−エチルヘキシル、0.450gのエチレングリコールジメタクリレート、2.18gのドデシル硫酸ナトリウム、0.205gの過硫酸カリウム、120gの水および13.5gのエタノールを用い、合成例1と同様の手法により、14.2gの微粒子2を得た(重合転化率:92%)。微粒子2の平均粒径は58nm、Tgは−10℃であった。微粒子2についての13C−NMR分析の結果、メタクリル酸2−エチルヘキシル由来の式(3)の構成単位が97モル%、EGDM構成単位が3.0モル%であった。
[合成例3:微粒子3]
12.0gのメタクリル酸2,4,6−トリメチルヘプチル、2.63gのメタクリル酸2−エチルヘキシル(ここで、メタクリル酸2,4,6−トリメチルヘプチル/メタクリル酸2−エチルヘキシル=80/20(モル比))、0.394gのエチレングリコールジメタクリレート、1.91gのドデシル硫酸ナトリウム、0.179gの過硫酸カリウム、120gの水および13.5gのエタノールを用い、合成例1と同様の手法により、14.0gの微粒子3(重合転化率:93%)を得た。微粒子3の平均粒径は60nm、Tgは−32℃であった。微粒子3についての13C−NMR分析の結果、メタクリル酸2,4,6−トリメチルヘプチル由来の式(2)の構成単位が78モル%、メタクリル酸2−エチルヘキシル由来の式(3)の構成単位が19モル%、EGDM構成単位が3.0モル%であった。
[合成例4:微粒子4]
8.0gのメタクリル酸2,4,6−トリメチルヘプチル、7.0gのメタクリル酸2−エチルヘキシル(ここで、メタクリル酸2,4,6−トリメチルヘプチル/メタクリル酸2−エチルヘキシル=50/50(モル比))、0.420gのエチレングリコールジメタクリレート、2.04gのドデシル硫酸ナトリウム、0.191gの過硫酸カリウム、120gの水および13.5gのエタノールを用い、合成例1と同様の手法により、14.5gの微粒子4を得た(重合転化率:94%)。微粒子4の平均粒径は60nm、Tgは−24℃であった。微粒子4についての13C−NMR分析の結果、メタクリル酸2,4,6−トリメチルヘプチル由来の式(2)の構成単位が49モル%、メタクリル酸2−エチルヘキシル由来の式(3)の構成単位が48モル%、EGDM構成単位が3.0モル%であった。
[合成例5:微粒子5]
15.0gのメタクリル酸n−ドデシル、0.351gのエチレングリコールジメタクリレート、1.70gのドデシル硫酸ナトリウム、0.159gの過硫酸カリウム、120gの水および13.5gのエタノールを用い、合成例1と同様の手法により、13.8gの微粒子5を得た(重合転化率:90%)。微粒子5の平均粒径は62nm、Tgは−65℃であった。微粒子5についての13C−NMR分析の結果、メタクリル酸n−ドデシル由来の式(1)の構成単位が97モル%、EGDM構成単位が3.0モル%であった。
[合成例6:微粒子6]
微粒子1の合成に用いた0.394gのエチレングリコールジメタクリレートの代わりに、0.673gのトリメチロールプロパントリメタクリレートを用いること以外は合成例1と同様の手法により、14.6gの微粒子6を得た(重合転化率:93%)。微粒子6の平均粒径は58nm、Tgは−36℃であった。微粒子6についての13C−NMR分析の結果、式(2)の構成単位が97モル%、トリメチロールプロパントリメタクリレート由来の構成単位が3.0モル%であった。
[合成例7:微粒子7(比較例)]
15.0gのメタクリル酸メチル、0.891gのエチレングリコールジメタクリレート、4.32gのドデシル硫酸ナトリウム、0.405gの過硫酸カリウム、120gの水および13.5gのエタノールを用い、合成例1と同様の手法により微粒子7を得た。微粒子7の平均粒径は60nm、Tgは105℃であった。
[合成例8:微粒子8(比較例)]
15.0gのスチレン、0.856gのエチレングリコールジメタクリレート、4.15gのドデシル硫酸ナトリウム、0.390gの過硫酸カリウム、120gの水および13.5gのエタノールを用い、合成例1と同様の手法により微粒子8を得た。微粒子8の平均粒径は60nm、Tgは100℃であった。
[合成例9:ポリマー3(比較例)]
30gのメタクリル酸2,4,6−トリメチルヘプチルと、0.129gの2−ブロモイソ酪酸エチルと、0.115gのN,N,N',N'',N''-ペンタメチルジエチレントリアミンを混合し、1時間窒素バブリングした。その後、反応溶液に0.190gの臭化銅(I)を添加し、70℃で5時間保持した。得られた溶液のメタノールへの再沈精製により、(メタ)アクリレート系重合体(ポリマー3)を得た。ポリマー3のTgは−41℃であった。
[ゴム組成物の評価]
ラボミキサーを使用し、下記表1に示す配合(質量部)に従って、まず、第一混合段階で、ジエン系ゴム成分に対し硫黄及び加硫促進剤を除く他の配合剤を添加し混練した(排出温度=160℃)。次いで、得られた混練物に、最終混合段階で、硫黄と加硫促進剤を添加し混練して(排出温度=90℃)、ゴム組成物を調製した。表1中の各成分の詳細は、以下の通りである。
・変性SBR:アルコキシ基及びアミノ基末端変性溶液重合SBR、JSR(株)製「HPR350」
・BR:宇部興産(株)製の「ウベポールBR150B」
・シリカ:東ソー・シリカ(株)製「ニップシールAQ」
・シランカップリング剤:ビス(3−トリエトキシシリルプロピル)テトラスルフィド、エボニック社製「Si69」
・亜鉛華:三井金属鉱業(株)製「亜鉛華1種」
・老化防止剤:大内新興化学工業(株)製「ノクラック6C」
・ステアリン酸:花王(株)製「ルナックS−20」
・硫黄:細井化学工業(株)製「ゴム用粉末硫黄150メッシュ」
・加硫促進剤:大内新興化学工業(株)製「ノクセラーCZ」
・2次加硫促進剤:大内新興化学工業(株)製「ノクセラーD」
・微粒子1〜8:上記合成例1〜8で合成したもの
・ポリマー1:東ソー(株)製、芳香族脂肪族共重合体系石油樹脂「ペトロタック100」
・ポリマー2:クラレ(株)製、液状スチレンブタジエンゴム「クラプレン L−SBR820」
・ポリマー3:上記合成例9で合成したもの
得られた各ゴム組成物について、160℃×20分で加硫して所定形状の試験片を作製し、得られた試験片を用いて、動的粘弾性試験を行って0℃及び60℃でのtanδと、−10℃での貯蔵弾性率E’を測定するとともに、常温(23℃)での硬度を測定した。測定方法は次の通りである。
・0℃tanδ:UBM社製レオスペクトロメーターE4000を用いて、周波数10Hz、静歪み10%、動歪み2%、温度0℃の条件で損失係数tanδを測定し、比較例1の値を100とした指数で表示した。指数が大きいほど、tanδが大きく、ウェットグリップ性能に優れることを示す。
・60℃tanδ:温度を60℃に変え、その他は0℃tanδと同様にしてtanδ測定し、比較例1の値を100とした指数で表示した。指数が小さいほど、発熱しにくく、タイヤでの転がり抵抗が小さくて転がり抵抗性能(即ち、低燃費性)に優れることを示す。
・−10℃ E’:温度を−10℃に変え、その他は0℃tanδと同条件にて−10℃での貯蔵弾性率E’を測定し、比較例1の値を100とした指数で表示した。指数が小さいほど、E’が小さく、低温性能に優れることを示す。
・23℃硬度:JIS K6253に準拠して、デュロメーターのタイプAにより温度23℃での硬度を測定し、比較例1の値を100とした指数で表示した。指数が大きいほど、常温での硬度が高いことを示す。
Figure 2017110069
結果は表1に示す通りである。コントロールである比較例1に対し、上記特定の(メタ)アクリレート系重合体からなる微粒子1〜6を配合した実施例1〜6であると、転がり抵抗性能が実質的に悪化することなく、ウェットグリップ性能が顕著に向上していた。また、低温での弾性率を実質的に上昇させることなく、低温性能に優れており、更に、常温での硬度の低下も実質上なく、操縦安定性が維持されていた。これに対し、ガラス転移点の高い(メタ)アクリレート系重合体からなる微粒子7を用いた比較例2や、ポリスチレンからなる微粒子8を用いた比較例3では、ウェットグリップ性能の向上効果が小さいだけでなく、低温性能が大きく損なわれており、また、転がり抵抗性能にも悪化が見られた。微粒子ではなく、石油樹脂を配合した比較例4でも、比較例2,3と同様、低温性能の大幅な悪化とともに、転がり抵抗性能にも悪化が見られた。また、液状ゴムを配合した比較例5では、常温での硬度低下が大きかった。一方、ガラス転移点は低いものの、微粒子でない(メタ)アクリレート系重合体を配合した比較例6では、ウェットグリップ性能と常温での硬度とのバランスの点で、実施例1〜6に対し劣るものであった。

Claims (5)

  1. ジエン系ゴムからなるゴム成分100質量部に対し、下記一般式(1)で表される構成単位を有しかつ反応性シリル基を持たない(メタ)アクリレート系重合体からなる、ガラス転移点が−70〜0℃かつ平均粒径が10nm以上100nm未満の微粒子を、1〜100質量部含有するゴム組成物。
    Figure 2017110069
    (式中、R1は水素原子又はメチル基であり、同一分子中のR1は同一でも異なっていてもよく、R2は炭素数4〜18のアルキル基であり、同一分子中のR2は同一でも異なっていてもよい。)
  2. 前記(メタ)アクリレート系重合体が、前記一般式(1)で表される構成単位として、下記一般式(2)で表される構成単位を有する、重合体である、請求項1記載のゴム組成物。
    Figure 2017110069
    (式中、R3は水素原子又はメチル基であり、同一分子中のR3は同一でも異なっていてもよく、Zは炭素数1〜15のアルキレン基であり、同一分子中のZは同一でも異なっていてもよい。)
  3. 前記(メタ)アクリレート系重合体が、前記一般式(1)で表される構成単位として、前記一般式(2)で表される構成単位と下記一般式(3)で表される構成単位を有する、重合体である、請求項2記載のゴム組成物。
    Figure 2017110069
    (式中、R4は水素原子又はメチル基であり、同一分子中のR4は同一でも異なっていてもよく、Q1は炭素数1〜6のアルキレン基であり、同一分子中のQ1は同一でも異なっていてもよく、Q2はメチル基又はエチル基であり、同一分子中のQ2は同一でも異なっていてもよい。)
  4. 前記(メタ)アクリレート系重合体が、メタクリル酸イソデシルを含むモノマーの重合体である請求項2又は3記載のゴム組成物。
  5. 請求項1〜4のいずれか1項に記載のゴム組成物を用いて作製された空気入りタイヤ。
JP2015244425A 2015-12-15 2015-12-15 ゴム組成物及び空気入りタイヤ Active JP6625879B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015244425A JP6625879B2 (ja) 2015-12-15 2015-12-15 ゴム組成物及び空気入りタイヤ
DE112016005729.6T DE112016005729T5 (de) 2015-12-15 2016-12-14 Kautschukzusammensetzung und pneumatischer Reifen
PCT/JP2016/005132 WO2017104135A1 (ja) 2015-12-15 2016-12-14 ゴム組成物及び空気入りタイヤ
CN201680068608.5A CN108473721B (zh) 2015-12-15 2016-12-14 橡胶组合物及充气轮胎
US15/779,941 US10723866B2 (en) 2015-12-15 2016-12-14 Rubber composition and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015244425A JP6625879B2 (ja) 2015-12-15 2015-12-15 ゴム組成物及び空気入りタイヤ

Publications (2)

Publication Number Publication Date
JP2017110069A true JP2017110069A (ja) 2017-06-22
JP6625879B2 JP6625879B2 (ja) 2019-12-25

Family

ID=59080038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015244425A Active JP6625879B2 (ja) 2015-12-15 2015-12-15 ゴム組成物及び空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP6625879B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112560A (ja) * 2017-12-25 2019-07-11 Toyo Tire株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP2019112558A (ja) * 2017-12-25 2019-07-11 Toyo Tire株式会社 ポリマー粒子の製造方法
JP2021095528A (ja) * 2019-12-18 2021-06-24 Toyo Tire株式会社 ポリマー粒子、ゴム組成物及びタイヤ
US11530319B2 (en) 2019-12-02 2022-12-20 Toyo Tire Corporation Rubber composition and pneumatic tire using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268169A (ja) * 1994-03-30 1995-10-17 Japan Synthetic Rubber Co Ltd ゴム分散合成樹脂組成物とその製造方法
JP2002212344A (ja) * 2001-01-18 2002-07-31 Jsr Corp ゴム状重合体組成物
JP2005139309A (ja) * 2003-11-07 2005-06-02 Jsr Corp 紙塗工用共重合体ラテックス
JP2005537382A (ja) * 2002-09-04 2005-12-08 ビーエーエスエフ アクチェンゲゼルシャフト 重付加生成物とラジカル重合体とから成るハイブリッド分散液
WO2009148029A1 (ja) * 2008-06-02 2009-12-10 旭硝子株式会社 共重合体、その製造方法および撥油剤組成物ならびにその処理物品
JP2012158710A (ja) * 2011-02-02 2012-08-23 Yokohama Rubber Co Ltd:The ゴム組成物およびそれを用いた空気入りタイヤ
WO2015155965A1 (ja) * 2014-04-08 2015-10-15 東洋ゴム工業株式会社 ゴム組成物及び空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268169A (ja) * 1994-03-30 1995-10-17 Japan Synthetic Rubber Co Ltd ゴム分散合成樹脂組成物とその製造方法
JP2002212344A (ja) * 2001-01-18 2002-07-31 Jsr Corp ゴム状重合体組成物
JP2005537382A (ja) * 2002-09-04 2005-12-08 ビーエーエスエフ アクチェンゲゼルシャフト 重付加生成物とラジカル重合体とから成るハイブリッド分散液
JP2005139309A (ja) * 2003-11-07 2005-06-02 Jsr Corp 紙塗工用共重合体ラテックス
WO2009148029A1 (ja) * 2008-06-02 2009-12-10 旭硝子株式会社 共重合体、その製造方法および撥油剤組成物ならびにその処理物品
JP2012158710A (ja) * 2011-02-02 2012-08-23 Yokohama Rubber Co Ltd:The ゴム組成物およびそれを用いた空気入りタイヤ
WO2015155965A1 (ja) * 2014-04-08 2015-10-15 東洋ゴム工業株式会社 ゴム組成物及び空気入りタイヤ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112560A (ja) * 2017-12-25 2019-07-11 Toyo Tire株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP2019112558A (ja) * 2017-12-25 2019-07-11 Toyo Tire株式会社 ポリマー粒子の製造方法
US11530319B2 (en) 2019-12-02 2022-12-20 Toyo Tire Corporation Rubber composition and pneumatic tire using the same
JP2021095528A (ja) * 2019-12-18 2021-06-24 Toyo Tire株式会社 ポリマー粒子、ゴム組成物及びタイヤ
JP7405598B2 (ja) 2019-12-18 2023-12-26 Toyo Tire株式会社 ポリマー粒子、ゴム組成物及びタイヤ

Also Published As

Publication number Publication date
JP6625879B2 (ja) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6096381B2 (ja) ゴム組成物及び空気入りタイヤ
JP6625879B2 (ja) ゴム組成物及び空気入りタイヤ
US10723866B2 (en) Rubber composition and pneumatic tire
JP6826876B2 (ja) ゴム組成物及び空気入りタイヤ
JP6719366B2 (ja) ゴム組成物及び空気入りタイヤ
JP2016117880A (ja) 共重合体、ゴム組成物及び空気入りタイヤ
JP2018135495A (ja) スタッドレスタイヤ用ゴム組成物
JP2017110070A (ja) ゴム組成物及び空気入りタイヤ
JP2018123209A (ja) スタッドレスタイヤ用ゴム組成物
JP6943754B2 (ja) タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP6742203B2 (ja) ゴム組成物及び空気入りタイヤ
JP6826877B2 (ja) ゴム組成物及び空気入りタイヤ
JP6804961B2 (ja) ゴム組成物及び空気入りタイヤ
JP7365913B2 (ja) ゴム組成物、及びそれを用いた空気入りタイヤ
JP7365877B2 (ja) ゴム組成物、及びそれを用いた空気入りタイヤ
JP6826875B2 (ja) ゴム組成物及び空気入りタイヤ
JP7365876B2 (ja) ゴム組成物、及びそれを用いた空気入りタイヤ
JP7129289B2 (ja) ゴム組成物及び空気入りタイヤ
JP7405597B2 (ja) ポリマー粒子及びその製造方法、並びにゴム組成物及びタイヤ
JP7405598B2 (ja) ポリマー粒子、ゴム組成物及びタイヤ
JP2023177126A (ja) ゴム組成物、及びそれを用いた空気入りタイヤ
JP2023177127A (ja) ゴム組成物、及びそれを用いた空気入りタイヤ
JP7025201B2 (ja) タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP2022087685A (ja) ゴム組成物、及びそれを用いた空気入りタイヤ
JP2013173817A (ja) ゴム用配合剤の製造方法及びそのゴム組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191128

R150 Certificate of patent or registration of utility model

Ref document number: 6625879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250