JP2017179611A - Sintered bearing - Google Patents
Sintered bearing Download PDFInfo
- Publication number
- JP2017179611A JP2017179611A JP2017128425A JP2017128425A JP2017179611A JP 2017179611 A JP2017179611 A JP 2017179611A JP 2017128425 A JP2017128425 A JP 2017128425A JP 2017128425 A JP2017128425 A JP 2017128425A JP 2017179611 A JP2017179611 A JP 2017179611A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- copper
- iron
- copper powder
- sintered bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 209
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 97
- 239000010949 copper Substances 0.000 claims abstract description 59
- 229910052802 copper Inorganic materials 0.000 claims abstract description 58
- 239000002245 particle Substances 0.000 claims abstract description 43
- 239000002344 surface layer Substances 0.000 claims abstract description 30
- 239000000843 powder Substances 0.000 claims description 129
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 35
- 239000000314 lubricant Substances 0.000 claims description 29
- 238000002844 melting Methods 0.000 claims description 26
- 230000008018 melting Effects 0.000 claims description 26
- 229910000859 α-Fe Inorganic materials 0.000 claims description 21
- 229910001562 pearlite Inorganic materials 0.000 claims description 20
- 239000007787 solid Substances 0.000 claims description 11
- 239000002994 raw material Substances 0.000 description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 37
- 239000012071 phase Substances 0.000 description 35
- 238000000465 moulding Methods 0.000 description 23
- 238000002156 mixing Methods 0.000 description 22
- 238000005245 sintering Methods 0.000 description 21
- 229910052742 iron Inorganic materials 0.000 description 19
- 239000012530 fluid Substances 0.000 description 14
- 239000010439 graphite Substances 0.000 description 14
- 229910002804 graphite Inorganic materials 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 13
- 239000007789 gas Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000001603 reducing effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000016571 aggressive behavior Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 241001424392 Lucia limbaria Species 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、鉄粉および銅粉を主成分とした焼結金属からなる焼結軸受に関する。 The present invention relates to a sintered bearing made of a sintered metal mainly composed of iron powder and copper powder.
鉄粉および銅粉を主成分とするいわゆる銅鉄系の焼結軸受として、特開2006−299347号(特許文献1)に記載された焼結軸受が公知である。この焼結軸受は、鉄系の原料粉末と銅系原料粉末を使用したものであり、銅系原料粉末として、鉄系原料粉末よりも平均直径が小さく、かつアスペクト比が大きな扁平状の銅系扁平原料粉末と、この銅系扁平原料粉末より平均直径が小さい銅系小原料粉末とを用いている。圧粉体を成形する際には、鉄系原料粉末、銅系扁平原料粉末、および銅系小原料粉末を混合したものを成形金型に充填し、その後、原料粉末に振動を与えることで、銅系扁平原料粉末を圧粉体の表面側に偏析させるようにしている。 As a so-called copper-iron-based sintered bearing mainly composed of iron powder and copper powder, a sintered bearing described in JP-A-2006-299347 (Patent Document 1) is known. This sintered bearing uses an iron-based raw material powder and a copper-based raw material powder. As the copper-based raw material powder, a flat copper-based powder having an average diameter smaller than that of the iron-based raw material powder and a large aspect ratio. A flat raw material powder and a copper-based small raw material powder having an average diameter smaller than that of the copper-based flat raw material powder are used. When molding the green compact, fill the molding die with a mixture of iron-based raw material powder, copper-based flat raw material powder, and copper-based small raw material powder, and then give vibration to the raw material powder. The copper-based flat raw material powder is segregated on the surface side of the green compact.
特許文献1に記載された発明においては、銅系小原料粉末の平均直径を銅系扁平原料粉末のそれより小さくしている。銅系小原料粉末の配合割合は特許文献1に明記されていないが、相当量使用するのが通常であるから、原料粉末にはかなりの割合で他の主要粉末より平均直径が小さい銅系小原料粉末が含まれていると考えられる。その結果、原料粉末の流動性が悪くなる傾向にある。原料粉末の流動性が低下すると、圧粉体の成形性が低下し、さらには粒径の小さい銅系小原料粉末が偏析し易くなって量産品での銅の含有量を不均一化させる等の問題を生じる。また、平均直径が小さい銅系小原料粉末を準備するために、銅粉末を篩にかけて入念に選別する必要があり、粉末コストが高騰する問題もある。 In the invention described in Patent Document 1, the average diameter of the copper-based small raw material powder is made smaller than that of the copper-based flat raw material powder. Although the blending ratio of the copper-based small raw material powder is not specified in Patent Document 1, it is usually used in a considerable amount. It is thought that raw material powder is contained. As a result, the fluidity of the raw material powder tends to deteriorate. When the fluidity of the raw material powder is reduced, the moldability of the green compact is reduced, and further, the copper-based small raw material powder having a small particle size is easily segregated, and the content of copper in the mass-produced product is made non-uniform. Cause problems. Further, in order to prepare a copper-based small raw material powder having a small average diameter, it is necessary to carefully sort the copper powder through a sieve, and there is a problem that the powder cost increases.
そこで、本発明は、高い成形性と品質安定性を有し、かつ低コストで製作可能の銅鉄系の焼結軸受を提供することを目的とする。 Therefore, an object of the present invention is to provide a copper-iron sintered bearing that has high formability and quality stability and can be manufactured at low cost.
上記目的を達成するため、本発明にかかる焼結軸受は、鉄粉で形成された鉄組織および銅粉で形成された銅組織を有する焼結軸受であって、銅の含有量が均一になったベース部と、ベース部の表面を覆い、ベース部よりも銅の含有量が多い表面層とを備え、銅粉として、アスペクト比が鉄粉よりも大きい扁平状の第一銅粉と、平均粒径が第一銅粉の平均粒径よりも大きい第二銅粉とを用いたことを特徴とするものである。 In order to achieve the above object, a sintered bearing according to the present invention is a sintered bearing having an iron structure formed of iron powder and a copper structure formed of copper powder, and the copper content becomes uniform. The base part and the surface layer that covers the surface of the base part and has a copper content higher than that of the base part. As the copper powder, a flat cuprous powder having an aspect ratio larger than that of the iron powder, and an average The second copper powder having a particle size larger than the average particle size of the first copper powder is used.
扁平状の第一銅粉は原料粉の成形時に金型成形面に付着する性質を有する。そのため成形後の圧粉体は表層に多くの銅が含まれる。その一方で芯部では銅の含有量が少なくなる。従って、焼結後の焼結体には、銅の含有量の多い表面層と、これよりも銅の含有量が少ないベース部とが形成される。 The flat cuprous powder has the property of adhering to the mold forming surface during molding of the raw material powder. Therefore, the green compact after molding contains a large amount of copper in the surface layer. On the other hand, the copper content is reduced in the core. Therefore, a surface layer with a high copper content and a base portion with a lower copper content are formed in the sintered body after sintering.
このように表面層での銅の含有量を多くすることで、軸受として使用する際の初期なじみ性および静粛性の向上を図ることができる。また、軸に対する攻撃性も低くなるので、耐久寿命が向上する。これらの作用効果は、表面層の表面に面積比で60%以上の銅組織(銅を主成分とする組織)を形成することで、より顕著に得ることができる。さらに、ベース部は、表面層に比べて銅の含有量が少なく、かつ鉄の含有量が多い硬質組織となっている。このように軸受のほとんどの部分を占めるベース部で鉄の含有量が多くなっているので、軸受全体での銅の使用量を削減することができ、大幅な低コスト化を達成することができる。 Thus, by increasing the copper content in the surface layer, it is possible to improve the initial conformability and quietness when used as a bearing. In addition, since the aggression against the shaft is reduced, the durability life is improved. These functions and effects can be obtained more conspicuously by forming a copper structure (structure containing copper as a main component) having a surface ratio of 60% or more on the surface of the surface layer. Furthermore, the base part has a hard structure with a small copper content and a high iron content compared to the surface layer. As described above, since the iron content is large in the base portion that occupies most of the bearing, the amount of copper used in the entire bearing can be reduced, and a significant cost reduction can be achieved. .
特に本願発明では、第二銅粉の平均粒径を扁平状の第一銅粉の平均粒径よりも大きくしている。これは、第二銅粉の見かけ密度が扁平状の第一銅粉の見かけ密度よりも大きいことを意味する。かかる構成から、原料粉末に含まれる主要粉末の粒径の差を小さくして原料粉末の流動性を向上させることができ、圧粉体を成形する際の成形性の向上、あるいは各種粉末の偏析防止を図ることができる。また、篩による第一銅粉の選別をラフに行えるので、粉末コストの低減による低コスト化を達成することもできる。 In particular, in the present invention, the average particle size of the second copper powder is made larger than the average particle size of the flat cuprous powder. This means that the apparent density of the cupric powder is larger than the apparent density of the flat cuprous powder. With this configuration, the difference in the particle size of the main powder contained in the raw material powder can be reduced to improve the fluidity of the raw material powder, improving the formability when forming the green compact, or segregating various powders Prevention can be achieved. Moreover, since the cupper powder can be roughly selected by the sieve, the cost can be reduced by reducing the powder cost.
かかる効果を得るためには、鉄粉の平均粒径を60μm〜150μm、第一銅粉の平均粒径を20μm〜50μm、第二銅粉の平均粒径を50μm〜100μmとするのが好ましい。 In order to obtain such an effect, it is preferable that the average particle size of the iron powder is 60 μm to 150 μm, the average particle size of the cuprous powder is 20 μm to 50 μm, and the average particle size of the cupric powder is 50 μm to 100 μm.
鉄組織(鉄を主成分とする組織)をフェライト相で形成することで、表面層の摩耗により鉄組織を多く含むベース部が露出した際にも、軸受面の軸に対する攻撃性を弱くすることができる。 By forming the iron structure (structure containing iron as a main component) with a ferrite phase, even when the base part containing much iron structure is exposed due to wear of the surface layer, the aggressiveness against the shaft of the bearing surface is weakened. Can do.
その一方で、鉄組織がフェライト相で形成されていると、表面層が摩耗してベース部が露出した際に軸受面の耐摩耗性が低下する。これが問題となる場合、焼結時に鉄を炭素と反応させることで、鉄組織をフェライト相と、フェライト相の粒界に存在するパーライト相とで形成することができる。かかる構成であれば、硬質のパーライト相がフェライト相の耐摩耗性を補うため、軸受面の摩耗を抑制することができる。その一方で炭素が拡散してパーライトの存在割合が過剰になると、軸に対する攻撃性が増して軸が摩耗しやすくなる。かかる観点から、パーライト相はフェライト相の粒界に存在(点在)する程度とする(図12参照)。 On the other hand, if the iron structure is formed of a ferrite phase, the wear resistance of the bearing surface decreases when the surface layer is worn and the base portion is exposed. When this becomes a problem, the iron structure can be formed by the ferrite phase and the pearlite phase present at the grain boundary of the ferrite phase by reacting iron with carbon during sintering. With such a configuration, since the hard pearlite phase supplements the wear resistance of the ferrite phase, wear of the bearing surface can be suppressed. On the other hand, when carbon diffuses and the pearlite is present in excess, the aggression against the shaft increases and the shaft tends to wear. From this point of view, the pearlite phase is present at the grain boundaries of the ferrite phase (see FIG. 12).
上記のように第二銅粉の平均粒径を扁平状の第一銅粉よりも大きくした場合、銅組織の粒径が大きくなるために、鉄組織と銅組織の結合力が低下するおそれがある。これを補うために原料粉末に低融点金属粉を添加する。低融点金属粉の添加により、焼結時に溶融した低融点金属によって鉄粒子と銅粒子が結合されるので、軸受強度の低下を最小限に抑えることができる。一般に低融点金属の含有量が増えれば、それだけ軸受の強度が増すが、その一方で、扁平銅粉は、Cu−Snの液相状態では表面張力により丸くなって球形化する。球形化した扁平銅が増えると、軸受表面における銅組織の占める面積が減少して初期なじみ性・静粛性の改善、相手材への攻撃性低減といった効果を達成できない。以上の観点から、銅に対する低融点金属の割合は10重量%未満とする。 As described above, when the average particle size of the cupric powder is made larger than that of the flat cuprous powder, the particle size of the copper structure is increased, which may reduce the binding force between the iron structure and the copper structure. is there. In order to compensate for this, low melting point metal powder is added to the raw material powder. By adding the low melting point metal powder, the iron particles and the copper particles are combined by the low melting point metal melted at the time of sintering, so that a decrease in bearing strength can be minimized. Generally, as the content of the low melting point metal increases, the strength of the bearing increases accordingly. On the other hand, the flat copper powder is rounded and spheroidized due to the surface tension in the liquid phase state of Cu-Sn. When the spheroidized flat copper increases, the area occupied by the copper structure on the bearing surface decreases, and it is impossible to achieve the effects of improving the initial conformability and quietness and reducing the aggressiveness to the mating material. From the above viewpoint, the ratio of the low melting point metal to copper is less than 10% by weight.
さらに固体潤滑剤粉を包含させることで、軸受面の低摩擦化を図ることができる。 Further, by including solid lubricant powder, it is possible to reduce the friction of the bearing surface.
本発明によれば、原料粉末の流動性が向上するため、圧粉体を成形する際の成形性の向上や各種粉末の偏析防止を図ることができる。また、粉末コストを抑制することもできる。従って、高い成形性と品質安定性を有する安価な焼結軸受を提供することが可能となる。 According to the present invention, since the fluidity of the raw material powder is improved, it is possible to improve the moldability when molding the green compact and prevent segregation of various powders. Moreover, powder cost can also be suppressed. Therefore, it is possible to provide an inexpensive sintered bearing having high formability and quality stability.
以下、本発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図1に示すように、焼結軸受1は、内周に軸受面1aを有する円筒状に形成される。焼結軸受1の内周にステンレス鋼等からなる軸2を挿入し、その状態で軸を回転させ、あるいは軸受1を回転させると、焼結軸受1の無数の空孔に保持された潤滑油が温度上昇に伴って軸受面1aに滲み出す。この滲み出した潤滑油によって、軸の外周面と軸受面1aの間の軸受隙間に油膜が形成され、軸2が軸受1によって相対回転可能に支持される。 As shown in FIG. 1, the sintered bearing 1 is formed in a cylindrical shape having a bearing surface 1a on the inner periphery. When the shaft 2 made of stainless steel or the like is inserted into the inner periphery of the sintered bearing 1 and the shaft is rotated in this state, or the bearing 1 is rotated, the lubricating oil retained in the countless holes of the sintered bearing 1 Oozes out to the bearing surface 1a as the temperature rises. The oil that has oozed out forms an oil film in the bearing gap between the outer peripheral surface of the shaft and the bearing surface 1 a, and the shaft 2 is supported by the bearing 1 so as to be relatively rotatable.
本発明の軸受1は、各種粉末を混合した原料粉を金型に充填し、これを圧縮して圧粉体を成形した後、圧粉体を焼結することで形成される。 The bearing 1 of the present invention is formed by filling raw material powder mixed with various powders in a mold, compressing this to form a green compact, and then sintering the green compact.
原料粉は、銅粉、鉄粉、低融点金属粉、および固体潤滑剤粉を主成分とする混合粉末である。この混合粉末には、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤(金属セッケン等)が添加される。以下、原料粉および軸受の製造手順を詳細に述べる。 The raw material powder is a mixed powder mainly composed of copper powder, iron powder, low melting point metal powder, and solid lubricant powder. To this mixed powder, various molding aids, for example, a lubricant (metal soap or the like) for improving releasability are added as necessary. Hereinafter, the manufacturing procedure of raw material powder and a bearing is described in detail.
[銅粉]
銅粉としては、第一銅粉Cu1としての扁平銅粉(箔状銅粉とも呼ばれる)と、第二銅粉Cu2としての通常銅粉の二種類が用いられる。
[Copper powder]
As the copper powder, two types of flat copper powder (also referred to as foil-like copper powder) as the first copper powder Cu1 and normal copper powder as the second copper powder Cu2 are used.
扁平銅粉Cu1は、アトマイズ粉等からなる原料銅粉を搗砕(Stamping)することで扁平化させたものである。扁平銅粉としては、平均粒径20μm〜50μm(望ましくは30μm〜40μm)程度、見かけ密度1.0g/cm3以下、アスペクト比20〜60程度のものを使用する。見かけ密度の定義は、JIS Z 8901の規定に準じる(以下、同じ)。アスペクト比は、粒子の長さをL、厚さをtとしてL/tで表される(ここでいう「長さ」および「厚さ」は、図2に示すように個々の扁平銅粉3の幾何学的な最大寸法をいう:以下、同じ)。例えば長さLが20μm〜50μm程度、厚さtが0.5μm〜2.0μm程度のものが扁平銅粉として使用可能である。扁平銅粉のアスペクト比は、後述の通常銅粉や鉄粉のアスペクト比よりも大きく、概ね数倍〜数十倍の値となる。以上のサイズ、及び見かけ密度の扁平銅粉であれば、金型成形面に対する扁平銅粉の付着力が高まるため、金型成形面に多量の扁平銅粉を付着させることができる。本実施形態において使用された扁平銅粉の顕微鏡写真を図4に示している。 The flat copper powder Cu1 is flattened by stamping raw material copper powder made of atomized powder or the like. As the flat copper powder, those having an average particle size of about 20 μm to 50 μm (desirably 30 μm to 40 μm), an apparent density of 1.0 g / cm 3 or less, and an aspect ratio of about 20 to 60 are used. The definition of the apparent density conforms to the rules of JIS Z 8901 (hereinafter the same). The aspect ratio is expressed by L / t, where L is the length of the particle and t is the thickness (here, “length” and “thickness” are each flat copper powder 3 as shown in FIG. 2). The geometrical maximum dimension of the following: the same shall apply hereinafter). For example, those having a length L of about 20 μm to 50 μm and a thickness t of about 0.5 μm to 2.0 μm can be used as the flat copper powder. The aspect ratio of the flat copper powder is larger than the aspect ratio of normal copper powder and iron powder described later, and is a value of several times to several tens of times. If the flat copper powder has the above size and apparent density, the adhesion of the flat copper powder to the mold forming surface is increased, so that a large amount of flat copper powder can be attached to the mold forming surface. FIG. 4 shows a photomicrograph of the flat copper powder used in this embodiment.
ここで、扁平銅粉の平均粒径は、例えばレーザ回析散乱法に基づいて測定することができる。この測定方法は、粒子群にレーザ光を照射し、そこから発せられる回折・散乱光の強度分布パターンから計算によって粒度分布、さらには平均粒径を求めるもので、測定装置として、例えば株式会社島津製作所のSALD31000が使用される。見かけ密度はJIS Z 2504に基づいて測定することができる。以上に述べた平均粒径および見かけ密度の測定方法は、以下に述べる各粉末でも適用される。 Here, the average particle diameter of the flat copper powder can be measured based on, for example, a laser diffraction scattering method. In this measurement method, a particle group is irradiated with a laser beam, and a particle size distribution and further an average particle size are obtained by calculation from the intensity distribution pattern of diffracted / scattered light emitted from the particle group. SALD 31000 from the factory is used. The apparent density can be measured based on JIS Z 2504. The method for measuring the average particle diameter and the apparent density described above is also applied to each powder described below.
通常銅粉Cu2としては、焼結軸受用として汎用されている球状や樹枝状の銅粉が広く使用可能であり、例えば還元粉、電解粉、アトマイズ粉等が用いられる。なお、これらの混合粉も使用可能である。本実施形態では含油性に優れたアトマイズ銅粉を使用している。アトマイズ銅粉は表面に多数の凹凸を有する多孔質体であり、不規則形状をなすが、粒子全体の形状は概ね球形である。通常銅粉としては、平均粒径50μm〜100μm(望ましくは60μm〜80μm)程度、見かけ密度2.0g/cm3〜3.0g/cm3(望ましくは2.4g/cm3〜2.8g/cm3)程度、アスペクト比1〜3程度のものを使用する。銅粉として扁平銅粉だけを使用したのでは、扁平銅粉の密度が小さいために、圧粉体の成形時に固まりにくくなるが、通常銅粉と併せて使用することで、圧粉体の成形性を高めることができる。本実施形態において使用された通常銅粉の顕微鏡写真を図5に示している。 Usually, as the copper powder Cu2, spherical or dendritic copper powder widely used for sintered bearings can be widely used. For example, reduced powder, electrolytic powder, atomized powder and the like are used. These mixed powders can also be used. In this embodiment, atomized copper powder having excellent oil impregnation is used. Atomized copper powder is a porous body having a large number of irregularities on the surface and has an irregular shape, but the shape of the entire particle is generally spherical. In general, the copper powder has an average particle size of about 50 μm to 100 μm (preferably 60 μm to 80 μm) and an apparent density of 2.0 g / cm 3 to 3.0 g / cm 3 (preferably 2.4 g / cm 3 to 2.8 g / cm 3 ) and an aspect ratio of 1 to 3 are used. If only flat copper powder is used as the copper powder, the density of the flat copper powder will be small, so it will be hard to solidify when forming the green compact, but it is usually used together with the copper powder to form the green compact. Can increase the sex. A photomicrograph of the normal copper powder used in this embodiment is shown in FIG.
[鉄粉]
鉄粉Feとしては、還元鉄粉、アトマイズ鉄粉等の公知の粉末が広く使用可能である。本実施形態では、含油性に優れた還元鉄粉を使用する。還元鉄粉は、略球形でありながら不規則形状でかつ多孔質状をなし、表面に微小な凹凸を有する海綿状となることから、海綿鉄粉とも呼ばれる。鉄粉としては、平均粒径60μm〜150μm(望ましくは80μm〜120μm)程度、見かけ密度2.0g/cm3〜3.0g/cm3(望ましくは2.4g/cm3〜2.6g/cm3)程度、アスペクト比1〜3程度のものを使用する。なお、鉄粉に含まれる酸素量は0.2重量%以下とする。本実施形態において使用された鉄粉の顕微鏡写真を図6に示している。
[Iron powder]
As the iron powder Fe, known powders such as reduced iron powder and atomized iron powder can be widely used. In this embodiment, reduced iron powder excellent in oil impregnation is used. The reduced iron powder is also called spongy iron powder because it has a substantially spherical shape, an irregular shape and a porous shape, and a spongy shape having minute irregularities on the surface. The iron powder has an average particle size of about 60 μm to 150 μm (preferably 80 μm to 120 μm) and an apparent density of 2.0 g / cm 3 to 3.0 g / cm 3 (preferably 2.4 g / cm 3 to 2.6 g / cm). 3 ) Use a material with an aspect ratio of about 1 to 3. The amount of oxygen contained in the iron powder is 0.2% by weight or less. The micrograph of the iron powder used in this embodiment is shown in FIG.
[流体潤滑剤]
金型成形面に扁平銅粉を付着させるため、扁平銅粉には予め流体潤滑剤を付着させておく。この流体潤滑剤は、原料粉末の金型充填前に扁平銅粉に付着させていればよく、好ましくは原料粉の混合前、さらに好ましくは原料銅粉を搗砕する段階で原料銅粉に付着させる。搗砕後、他の原料粉体と混合するまでの間に扁平銅粉に流体潤滑剤を供給し、攪拌する等の手段で扁平銅粉に流体潤滑剤を付着させてもよい。金型成形面上の扁平銅粉の付着量を確保するため、扁平銅粉に対する流体潤滑剤の配合割合は、重量比で0.1重量%以上とし、また扁平銅粉同士の付着による凝集を防止するため、上記配合割合は0.8重量%以下とする。望ましくは上記配合割合の下限は0.2重量%以上とし、上限は0.7重量%とする(例えば0.3重量%とする)。流体潤滑剤としては、脂肪酸、特に直鎖飽和脂肪酸が好ましい。この種の脂肪酸は、Cn-1H2n-1COOHの一般式で表される。この脂肪酸としては、Cnが12〜22の範囲のもので、具体例として例えばステアリン酸を使用することができる。
[Fluid lubricant]
In order to attach the flat copper powder to the molding surface, a fluid lubricant is previously attached to the flat copper powder. This fluid lubricant only needs to be attached to the flat copper powder before filling the raw material powder into the mold, preferably before mixing the raw material powder, more preferably to the raw material copper powder at the stage of crushing the raw material copper powder. Let The fluid lubricant may be attached to the flat copper powder by means such as supplying the fluid lubricant to the flat copper powder and stirring it after mixing and before mixing with other raw material powders. In order to secure the adhesion amount of the flat copper powder on the molding surface, the blending ratio of the fluid lubricant to the flat copper powder should be 0.1% by weight or more, and aggregation due to the adhesion of the flat copper powders In order to prevent this, the blending ratio is set to 0.8% by weight or less. Desirably, the lower limit of the blending ratio is 0.2% by weight or more, and the upper limit is 0.7% by weight (eg, 0.3% by weight). As the fluid lubricant, fatty acids, particularly linear saturated fatty acids are preferred. This type of fatty acid is represented by the general formula C n-1 H 2n-1 COOH. As this fatty acid, Cn is in the range of 12 to 22, and for example, stearic acid can be used as a specific example.
[低融点金属粉]
低融点金属粉は、焼結温度よりも低融点の金属粉であり、本発明では、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。この中でも焼結時の蒸散が少ない錫粉、特に水アトマイズ錫粉が好ましい。錫粉としては、平均粒径20μm〜60μm(望ましくは30μm〜40μm)程度、見かけ密度1.5g/cm3〜2.5g/cm3(望ましくは1.8g/cm3〜2.2g/cm3)程度のものが使用される。低融点金属粉は銅に対して高いぬれ性を持つため、原料粉に配合することで、液相焼結が進行し、鉄組織と銅組織や銅組織同士の結合強度が強化される。低融点金属の配合量が増えるほど金属組織の強度は高まるが、本発明のように扁平銅粉を使用した場合、低融点金属の量が多すぎると、上記のとおり扁平銅粉が球形化し、軸受面での銅の面積が低下する不具合が生じる。従来の銅系焼結軸受や銅鉄系焼結軸受では、銅に対して10重量%程度の低融点金属を配合するのが一般的であるが、本発明では、上記の理由から銅に対する低融点金属の割合を重量比で10重量%未満(望ましくは8.0重量%以下)とする。
[Low melting point metal powder]
The low melting point metal powder is a metal powder having a melting point lower than the sintering temperature. In the present invention, a metal powder having a melting point of 700 ° C. or lower, for example, a powder of tin, zinc, phosphorus or the like is used. Among these, tin powder with little transpiration during sintering, particularly water atomized tin powder is preferable. The tin powder has an average particle size of about 20 μm to 60 μm (preferably 30 μm to 40 μm) and an apparent density of 1.5 g / cm 3 to 2.5 g / cm 3 (preferably 1.8 g / cm 3 to 2.2 g / cm). 3 ) About grades are used. Since the low melting point metal powder has high wettability with respect to copper, liquid phase sintering proceeds by adding it to the raw material powder, and the bond strength between the iron structure and the copper structure or between the copper structures is enhanced. The strength of the metal structure increases as the blending amount of the low melting point metal increases, but when the flat copper powder is used as in the present invention, if the amount of the low melting point metal is too large, the flat copper powder becomes spherical as described above, There is a problem that the copper area on the bearing surface is reduced. In conventional copper-based sintered bearings and copper-iron-based sintered bearings, it is common to blend a low melting point metal of about 10% by weight with respect to copper. The ratio of the melting point metal is less than 10% by weight (desirably 8.0% by weight or less).
[固体潤滑剤粉]
固体潤滑剤粉は、軸2との摺動による金属接触時の摩擦低減のために添加され、例えば黒鉛が使用される。この時、黒鉛としては、扁平銅粉に対する付着性が得られるように、鱗状黒鉛を使用するのが望ましい。固体潤滑粉としては平均粒径20μm〜60μm(望ましくは30μm〜40μm)程度、見かけ密度0.1g/cm3〜0.6g/cm3(望ましくは0.2g/cm3〜0.4g/cm3)程度のものが使用される。固体潤滑剤粉としては、黒鉛の他に二硫化モリブデン粉も使用することができる。二硫化モリブデン粉は層状結晶構造を有していて層状に剥離するため、鱗状黒鉛と同様に扁平銅粉に対する付着性が得られる。
[Solid lubricant powder]
The solid lubricant powder is added to reduce friction at the time of metal contact due to sliding with the shaft 2, and for example, graphite is used. At this time, as the graphite, it is desirable to use scaly graphite so that adhesion to the flat copper powder can be obtained. The solid lubricant powder has an average particle size of about 20 μm to 60 μm (preferably 30 μm to 40 μm) and an apparent density of 0.1 g / cm 3 to 0.6 g / cm 3 (preferably 0.2 g / cm 3 to 0.4 g / cm). 3 ) About grades are used. As solid lubricant powder, molybdenum disulfide powder can be used in addition to graphite. Molybdenum disulfide powder has a layered crystal structure and peels into layers, and thus adheres to flat copper powder in the same manner as scale graphite.
[配合比]
上記各粉末を配合した原料粉は、銅粉を18重量%以上40重量%以下、低融点金属粉(例えば錫粉)を1重量%以上4重量%以下、固体潤滑剤粉(例えば黒鉛粉)を0.5〜2.5重量%配合し、残部を鉄粉とするのが望ましい。
[Combination ratio]
The raw material powder blended with each of the above powders is copper powder of 18 wt% to 40 wt%, low melting point metal powder (for example, tin powder) of 1 wt% to 4 wt%, solid lubricant powder (for example, graphite powder) Is preferably blended in an amount of 0.5 to 2.5% by weight, with the balance being iron powder.
本発明では、後述のように、原料粉の金型への充填時に扁平銅粉を金型に層状に付着させている。原料粉における扁平銅の配合割合が8重量%を下回ると、金型への扁平銅の付着量が不十分となって本願発明の作用効果が期待できない。また、銅リッチの表層部S1(後述する)が摩耗により消失した際に、軸受面となるベース部S2の表面の軸に対する攻撃性を低下させるため、ベース部S2が少なくとも10重量%以上の銅組織を有することが必要となる。よって、銅粉の配合割合は両者の合計である18重量%以上とする。その一方で、銅粉の割合が40重量%を超えると、銅粉の使用量が過剰となり、扁平銅粉を使用することによるコストメリットが乏しくなる。以上から、原料粉における銅粉の配合量は18重量%以上40重量%以下とする。また、原料粉における扁平銅粉の配合量は8重量%以上20重量%以下、望ましくは8重量%以上20重量%以下とする。20重量%以下が好ましい理由は、扁平銅粉の金型への付着量は20重量%程度で飽和し、これ以上配合量を増しても、高コストの扁平銅粉を使用することによるコストアップが問題となるためである。 In the present invention, as will be described later, the flat copper powder is adhered to the mold in layers when the raw powder is filled into the mold. If the blending ratio of flat copper in the raw material powder is less than 8% by weight, the amount of flat copper adhering to the mold becomes insufficient, and the effect of the present invention cannot be expected. Further, when the copper-rich surface layer portion S1 (described later) disappears due to wear, the base portion S2 has at least 10% by weight or more of copper to reduce the aggression with respect to the shaft of the surface of the base portion S2 that becomes the bearing surface. It is necessary to have an organization. Therefore, the compounding ratio of the copper powder is 18% by weight or more, which is the total of both. On the other hand, if the proportion of copper powder exceeds 40% by weight, the amount of copper powder used becomes excessive, and the cost merit due to the use of flat copper powder becomes poor. From the above, the blending amount of the copper powder in the raw material powder is 18 wt% or more and 40 wt% or less. Moreover, the compounding quantity of the flat copper powder in raw material powder shall be 8 to 20 weight%, desirably 8 to 20 weight%. The reason why 20% by weight or less is preferable is that the amount of flat copper powder adhering to the mold saturates at about 20% by weight, and even if the blending amount is further increased, the cost is increased by using high-cost flat copper powder. Is a problem.
低融点金属粉の割合が1重量%を下回ると軸受の強度を確保できず、4重量%を超えると、上記のとおり扁平銅粉の球形化の問題が生じる。また、固体潤滑剤粉の割合が0.5重量%を下回ると、軸受面における摩擦低減効果が得られず、2.5重量%を超えると強度低下等を招く。以上から、低融点金属粉は1重量%以上4重量%以下、固体潤滑剤粉は0.5〜2.5重量%配合する。なお、上記のとおり銅粉に対する低融点金属粉の配合割合は10重量%未満(望ましくは8重量%以下)とするのが望ましい。 If the ratio of the low melting point metal powder is less than 1% by weight, the strength of the bearing cannot be secured, and if it exceeds 4% by weight, the problem of spheroidizing the flat copper powder occurs as described above. On the other hand, if the ratio of the solid lubricant powder is less than 0.5% by weight, the friction reducing effect on the bearing surface cannot be obtained, and if it exceeds 2.5% by weight, the strength is reduced. From the above, the low melting point metal powder is blended in an amount of 1 to 4% by weight, and the solid lubricant powder is blended in an amount of 0.5 to 2.5% by weight. As described above, the blending ratio of the low melting point metal powder to the copper powder is preferably less than 10% by weight (desirably 8% by weight or less).
上述した各種原料粉末の配合比で特に好ましいものを図11に示す。図示のように、扁平銅粉を8重量%以上10重量%以下、通常銅粉を10重量%以上12重量%以下、低融点金属粉を1.2重量%以上2.0重量%以下(例えば1.2重量%)、固体潤滑剤粉を0.6重量%以上1.0重量%以下(例えば0.8重量%)とするのが特に好ましい。 FIG. 11 shows a particularly preferable blending ratio of various raw material powders described above. As shown in the figure, flat copper powder is 8 wt% or more and 10 wt% or less, normal copper powder is 10 wt% or more and 12 wt% or less, and low melting metal powder is 1.2 wt% or more and 2.0 wt% or less (for example, 1.2 wt%), and the solid lubricant powder is particularly preferably 0.6 wt% or more and 1.0 wt% or less (for example, 0.8 wt%).
[混合]
以上に述べた各粉末の混合は、2回に分けて行うのが望ましい。先ず、一次混合として、鱗状黒鉛粉および予め流体潤滑剤を付着させた扁平銅粉を公知の混合機で混合する。次いで、二次混合として、一次混合粉に鉄粉、通常銅粉、および低融点金属粉を添加して混合し、さらに必要に応じて黒鉛粉も添加・混合する。扁平銅粉は、各種原料粉末の中でも見かけ密度が低いため、原料粉中に均一に分散させるのが難しいが、一次混合で見かけ密度が同レベルの扁平銅粉と黒鉛粉とを予め混合しておくと、扁平銅粉に付着した流体潤滑剤等により、図3に示すように、扁平銅粉Cu1と黒鉛粉Cが互いに付着して層状に重なり、扁平銅粉の見かけ密度が高まる。そのため、二次混合時に原料粉末中に扁平銅粉を均一に分散させることが可能となる。一次混合時に、別途潤滑剤を添加すれば、扁平銅粉と黒鉛粉の付着がさらに促進されるため、二次混合時に扁平銅粉をより均一に分散させることが可能となる。ここで添加する潤滑剤としては、上記流体潤滑剤と同種または異種の流体状潤滑剤の他、粉末状のものも使用可能である。例えば上述した金属セッケン等の成形助剤は一般に粉状でありながら、ある程度の付着力を有するので、扁平銅粉と黒鉛粉の付着より促進させることができる。
[mixture]
It is desirable to mix the powders described above in two steps. First, as primary mixing, scaly graphite powder and flat copper powder to which a fluid lubricant is previously attached are mixed with a known mixer. Next, as secondary mixing, iron powder, normal copper powder, and low melting point metal powder are added to and mixed with the primary mixed powder, and graphite powder is also added and mixed as necessary. Flat copper powder has a low apparent density among various raw material powders, so it is difficult to disperse uniformly in the raw material powder, but it is premixed with flat copper powder and graphite powder that have the same apparent density in the primary mixing. In this case, as shown in FIG. 3, the flat copper powder Cu <b> 1 and the graphite powder C adhere to each other and overlap in layers due to the fluid lubricant or the like attached to the flat copper powder, thereby increasing the apparent density of the flat copper powder. Therefore, it becomes possible to uniformly disperse the flat copper powder in the raw material powder during the secondary mixing. If a lubricant is added separately during the primary mixing, the adhesion between the flat copper powder and the graphite powder is further promoted, so that the flat copper powder can be more uniformly dispersed during the secondary mixing. As the lubricant to be added, a powdery lubricant can be used in addition to the same or different fluid lubricant as the fluid lubricant. For example, the above-mentioned forming aid such as metal soap is generally powdery and has a certain degree of adhesion, which can be promoted by adhesion of flat copper powder and graphite powder.
図3に示す扁平銅粉Cu1と鱗状黒鉛粉Cとの付着状態は、二次混合後もある程度保持されるため、原料粉末を金型に充填した際には、金型表面に扁平銅粉と共に多くの黒鉛粉が付着することとなる。 Since the adhesion state between the flat copper powder Cu1 and the scaly graphite powder C shown in FIG. 3 is maintained to some extent even after the secondary mixing, when the raw material powder is filled in the mold, the flat copper powder is put on the mold surface. A lot of graphite powder will adhere.
[成形]
二次混合後の原料粉末は成形機の金型6に供給される。図7示すように、金型6は、コア6a、ダイ6b、上パンチ6c、および下パンチ6dからなり、これらによって区画されたキャビティに原料粉末が充填される。上下パンチ6c,6dを接近させて原料粉体を圧縮すると、原料粉末が、コア6aの外周面、ダイ6bの内周面、上パンチ6cの端面、および下パンチ6dの端面からなる成形面によって成形され、円筒状の圧粉体9が得られる。
[Molding]
The raw material powder after the secondary mixing is supplied to the mold 6 of the molding machine. As shown in FIG. 7, the mold 6 includes a core 6a, a die 6b, an upper punch 6c, and a lower punch 6d, and a raw material powder is filled into a cavity defined by these. When the upper and lower punches 6c and 6d are brought close to each other and the raw material powder is compressed, the raw material powder is formed by the molding surface composed of the outer peripheral surface of the core 6a, the inner peripheral surface of the die 6b, the end surface of the upper punch 6c, and the end surface of the lower punch 6d. A cylindrical green compact 9 is obtained by molding.
原料粉体における金属粉の中では、扁平銅粉Cu1の見かけ密度が最も小さい。また、扁平銅粉Cu1は、上記長さLおよび厚さtを有する箔状であり、単位重量あたりの幅広面の面積が大きい。そのため、扁平銅粉は、その表面に付着した流体潤滑剤による付着力、さらには静電気等の影響を受けやすくなり、原料粉の金型6への充填後は、図8に拡大して示すように、扁平銅粉Cu1がその幅広面を成形面61に向け、かつ複数層(1層〜3層程度)重なった層状態となって成形面61の全域に付着する。この際、扁平銅粉Cu1に付着した鱗状黒鉛も扁平銅粉Cu1に付随して金型の成形面61に付着する(図8では黒鉛の図示を省略)。その一方で、扁平銅粉Cu1の層状組織の内側領域(キャビティ中心側となる領域)では、鉄粉Fe、通常銅粉Cu2、および低融点金属(錫)粉Snが略均一に分散した状態となる。成形後の圧粉体9は、このような各粉末の分布状態をほぼそのまま保持している。 Among the metal powders in the raw material powder, the apparent density of the flat copper powder Cu1 is the smallest. Moreover, the flat copper powder Cu1 is a foil having the length L and the thickness t, and the area of the wide surface per unit weight is large. For this reason, the flat copper powder is easily affected by the adhesive force of the fluid lubricant adhered to the surface thereof, and further by static electricity, etc., and after filling the mold 6 with the raw material powder, as shown in FIG. In addition, the flat copper powder Cu1 adheres to the entire area of the molding surface 61 in a layered state in which the wide surface is directed to the molding surface 61 and a plurality of layers (about 1 to 3 layers) overlap. At this time, the scaly graphite adhering to the flat copper powder Cu1 also adheres to the molding surface 61 of the mold accompanying the flat copper powder Cu1 (illustration of graphite is omitted in FIG. 8). On the other hand, in the inner region (region on the cavity center side) of the layered structure of the flat copper powder Cu1, the iron powder Fe, the normal copper powder Cu2, and the low melting point metal (tin) powder Sn are substantially uniformly dispersed. Become. The green compact 9 after molding retains such a distribution state of each powder almost as it is.
[焼結]
その後、圧粉体9は焼結炉にて焼結される。焼結条件は、黒鉛に含まれる炭素が鉄と反応しない(炭素の拡散が生じない)条件とする。鉄―炭素の平衡状態では、723℃に変態点があり、これを超える鉄と炭素の反応が始まって、鋼組織中にパーライト相γFeが生じるが、焼結では900℃を超えてから炭素(黒鉛)と鉄の反応が始まり、パーライト相γFeが生じる。パーライト相γFeは硬い組織(HV300以上)で相手材に対する攻撃性が強いため、過剰にパーライト相が析出すると軸2の摩耗を進行させるおそれがある。
[Sintering]
Thereafter, the green compact 9 is sintered in a sintering furnace. The sintering conditions are such that carbon contained in the graphite does not react with iron (carbon diffusion does not occur). In the iron-carbon equilibrium state, there is a transformation point at 723 ° C., and the reaction between iron and carbon exceeding this starts, and a pearlite phase γFe is generated in the steel structure. However, in sintering, carbon ( The reaction between graphite and iron begins, and a pearlite phase γFe is produced. Since the pearlite phase γFe is a hard structure (HV300 or higher) and has a strong attacking property on the counterpart material, excessive precipitation of the pearlite phase may cause wear of the shaft 2.
また、従来の焼結軸受の製造工程では、焼結雰囲気として、液化石油ガス(ブタン、プロパン等)と空気を混合してNi触媒で熱分解させた吸熱型ガス(RXガス)を使用する場合が多い。しかしながら、吸熱型ガス(RXガス)では炭素が拡散して表面を硬化させるおそれがあり、同様の問題を生じる。 In the conventional sintered bearing manufacturing process, an endothermic gas (RX gas) obtained by mixing liquefied petroleum gas (butane, propane, etc.) and air and thermally decomposing with a Ni catalyst is used as the sintering atmosphere. There are many. However, the endothermic gas (RX gas) may cause carbon to diffuse and harden the surface, resulting in the same problem.
以上の観点から、本発明では、焼結は900℃以下の低温焼結、具体的には700℃(望ましくは760℃)〜840℃の焼結温度とする。また、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。これらの対策により、原料粉では炭素と鉄の反応が生じず、従って焼結後の鉄組織は全て軟らかいフェライト相αFe(HV200以下)となる。焼結に伴い、上記流体潤滑剤、その他の潤滑剤、各種成形助剤は焼結体内部から揮散する。 From the above viewpoint, in the present invention, sintering is performed at a low temperature of 900 ° C. or lower, specifically, 700 ° C. (preferably 760 ° C.) to 840 ° C. The sintering atmosphere is a gas atmosphere containing no carbon (hydrogen gas, nitrogen gas, argon gas, etc.) or a vacuum. By these measures, the reaction between carbon and iron does not occur in the raw material powder, and therefore the iron structure after sintering becomes a soft ferrite phase αFe (HV200 or less). With the sintering, the fluid lubricant, other lubricants, and various molding aids are volatilized from the inside of the sintered body.
以上に述べた焼結工程を経ることで、多孔質の焼結体が得られる。この焼結体にサイジングを施し、さらに真空含浸等の手法で潤滑油を含浸させることにより、図1に示す焼結軸受1が完成する。なお、用途によっては、潤滑油の含浸工程を省略し、無給油下で使用する焼結軸受1とすることもできる。 By passing through the sintering step described above, a porous sintered body can be obtained. The sintered bearing 1 shown in FIG. 1 is completed by sizing the sintered body and further impregnating with lubricating oil by a technique such as vacuum impregnation. In addition, depending on a use, the impregnation process of lubricating oil can be abbreviate | omitted and it can also be set as the sintered bearing 1 used under oil-free.
以上の製作工程を経た焼結軸受1の表面付近(図1中の領域P)の金属組織を図9に概略図示する。なお、図9では銅組織にハッチングを付し(扁平銅粉Cu1と通常銅粉Cu2でハッチング線の向きを逆にしている)、黒鉛に散点模様を付している。 FIG. 9 schematically shows the metal structure near the surface of the sintered bearing 1 (region P in FIG. 1) that has undergone the above manufacturing process. In FIG. 9, the copper structure is hatched (the direction of the hatching line is reversed between the flat copper powder Cu1 and the normal copper powder Cu2), and the dotted pattern is added to the graphite.
本発明の焼結軸受1では、金型成形面61に扁平銅Cu1を層状に付着させた状態で圧粉体9が成形され、この層状扁平銅Cu1が焼結されていることに由来して、図9に示すように、軸受1の軸受面1aを含む表面全体に銅濃度の高い表面層S1が形成される。しかも、扁平銅Cu1の幅広面が成形面61に付着していたこともあり、表面層S1の銅組織の多くが扁平状で、かつその幅広面を表面に向けた状態に配向されている。表面層S1の厚さは金型成形面61に層状に付着した扁平銅の厚さに相当し、概ね1μm〜6μm程度である。表面層S1の任意断面では、銅組織の面積は鉄組織の面積よりも大きく、具体的には60%以上が銅組織となる。 In the sintered bearing 1 of the present invention, the green compact 9 is formed in a state in which the flat copper Cu1 is adhered in a layered manner to the mold forming surface 61, and this is derived from the fact that the layered flat copper Cu1 is sintered. As shown in FIG. 9, a surface layer S <b> 1 having a high copper concentration is formed on the entire surface including the bearing surface 1 a of the bearing 1. Moreover, since the wide surface of the flat copper Cu1 is attached to the molding surface 61, most of the copper structure of the surface layer S1 is flat and oriented so that the wide surface faces the surface. The thickness of the surface layer S1 corresponds to the thickness of the flat copper adhering to the mold forming surface 61 in a layer form, and is about 1 μm to 6 μm. In the arbitrary cross section of the surface layer S1, the area of the copper structure is larger than the area of the iron structure, specifically, 60% or more of the copper structure is the copper structure.
表面層S1よりも内側のベース部S2は、基本的に表面層S1に覆われている。図10に示すように、ベース部S2における銅の含有量は、表面層S1での銅の含有量よりも少なく、表面層S1からベース部S2へ移行する際に銅の含有量が急激に低下している。また、ベース部S2の各部における銅の含有量(重量%)は各部で均一になっている。 The base portion S2 inside the surface layer S1 is basically covered with the surface layer S1. As shown in FIG. 10, the copper content in the base portion S2 is less than the copper content in the surface layer S1, and the copper content rapidly decreases when shifting from the surface layer S1 to the base portion S2. doing. Further, the copper content (% by weight) in each part of the base part S2 is uniform in each part.
以上の構成から、軸受面1aを含む表面層S1の表面全体で、鉄組織に対する銅組織の面積比が60%以上となる。そのため、焼結軸受1の初期なじみ性および静粛性を向上させることができる。また、軸受1に含まれる鉄組織が全てフェライト相αFeであるので、仮に表面層S1が摩耗してベース部S2の鉄組織が表面に現れていても、軸受面を軟質化することができ、軸2に対する攻撃性を弱めることができる。 From the above configuration, the area ratio of the copper structure to the iron structure is 60% or more over the entire surface of the surface layer S1 including the bearing surface 1a. Therefore, the initial conformability and quietness of the sintered bearing 1 can be improved. Further, since all the iron structure contained in the bearing 1 is the ferrite phase αFe, even if the surface layer S1 is worn and the iron structure of the base portion S2 appears on the surface, the bearing surface can be softened, Aggressiveness against the axis 2 can be weakened.
その一方で、表面層S1の内側のベース部S2は、表面相S1に比べて銅の含有量が少なく、かつ鉄の含有量が多い硬質組織となっている。このように軸受1のほとんどの部分を占めるベース部S2で鉄の含有量が多くなっているので、軸受1全体での銅の使用量を削減することができ、銅系焼結軸受に比べて大幅な低コスト化を達成することができる。さらに、表面層S1が軸2との摺動で摩耗し、軸受面1aに鉄組織を多く含むベース部S2が現れた際にも、鉄組織がフェライト相αFeであるため、銅の含有量を少なくした状態でも軸2に対する攻撃性を弱くすることができ、軸受としての耐久性を確保できる。この耐久性は、ベース部S2における銅組織の含有量が少なくとも10重量%以上あれば十分に得られる。 On the other hand, the base portion S2 inside the surface layer S1 has a hard structure with a small copper content and a large iron content compared to the surface phase S1. As described above, since the iron content is increased in the base portion S2 that occupies most of the bearing 1, the amount of copper used in the entire bearing 1 can be reduced, and compared with a copper-based sintered bearing. Significant cost reduction can be achieved. Furthermore, when the surface layer S1 is worn by sliding with the shaft 2 and the base portion S2 containing a large amount of iron structure appears on the bearing surface 1a, the iron structure is the ferrite phase αFe. Even in a reduced state, the aggressiveness against the shaft 2 can be weakened, and the durability as a bearing can be ensured. This durability is sufficiently obtained if the content of the copper structure in the base portion S2 is at least 10% by weight or more.
このように本発明では、扁平銅粉を使用し、これを金型成形面61に付着させた状態で圧粉体を成形することで、表面層S1での銅の含有量を高めると共に、表面層S1以外では鉄の含有量を高めることとし、銅組織と鉄組織の最適分布を実現させている。また、鉄組織を意図的にフェライト相αFeとすることで、銅リッチの表面層S1が摩耗した際の軸2の摩耗抑制も図っている。従って、耐久性の向上と銅の使用量削減による低コスト化とを両立することが可能となる。 Thus, in this invention, while using flat copper powder and shape | molding a compact in the state which made this adhere to the metal mold | die molding surface 61, while increasing copper content in surface layer S1, surface Except for the layer S1, the iron content is increased to realize an optimal distribution of the copper structure and the iron structure. In addition, by intentionally setting the iron structure to the ferrite phase αFe, the wear of the shaft 2 is suppressed when the copper-rich surface layer S1 is worn. Therefore, it is possible to achieve both improvement in durability and cost reduction by reducing the amount of copper used.
加えて、軸受面1aを含む表面全体に遊離黒鉛が析出しており、しかも扁平銅粉Cu1に付随する形で金型成形面61に鱗状黒鉛を付着させているため、表面層S1における遊離黒鉛の含有率も高い。そのため、軸受面1aを低摩擦化することができ、軸受1の耐久性を増すことができる。また、表面層S1とベース部S2の双方で銅組織と鉄組織を低融点金属で結合させており、銅組織と鉄組織の間、および銅組織同士の間で高い結合強度が得られている。そのため、従来の青銅系焼結軸受に比べて、軸受1全体の強度が増し、かつ耐久性も向上する。さらに、限界PV値をPV>200MPa・m/minを達成することも可能で、そのような使用条件下でも低摩擦となり、今後見込まれるさらなる負荷容量の増大や高速回転化にも対応可能となる。従って、本発明によれば、青銅系軸受および鉄系焼結軸受(あるいは鉄銅焼結軸受)の双方のメリットのみを有する焼結軸受を得ることができる。 In addition, free graphite is deposited on the entire surface including the bearing surface 1a, and since the scaly graphite is attached to the mold forming surface 61 in a form accompanying the flat copper powder Cu1, the free graphite in the surface layer S1. The content of is also high. Therefore, the bearing surface 1a can be reduced in friction, and the durability of the bearing 1 can be increased. In addition, the copper structure and the iron structure are bonded with a low melting point metal in both the surface layer S1 and the base portion S2, and a high bonding strength is obtained between the copper structure and the iron structure and between the copper structures. . Therefore, the strength of the entire bearing 1 is increased and the durability is improved as compared with the conventional bronze-based sintered bearing. Furthermore, it is also possible to achieve a limit PV value of PV> 200 MPa · m / min, and it is possible to cope with further increase in load capacity and high-speed rotation that are expected in the future because of low friction even under such use conditions. . Therefore, according to the present invention, a sintered bearing having only the merit of both a bronze bearing and an iron sintered bearing (or an iron copper sintered bearing) can be obtained.
図4と図5との対比からも明らかなように、本発明では第二銅粉としての通常銅粉Cu2の平均粒径が第一銅粉としての扁平銅粉Cu1の平均粒径よりも大きい。これは、通常銅粉の見かけ密度が扁平銅粉の見かけ密度よりも大きいことを意味する。また、図4〜図6の対比から明らかなように、鉄粉Feの平均粒径は、扁平銅粉Cu1および通常銅粉Cu2の平均粒径よりも大きい。かかる構成から、原料粉末に含まれる主要粉末(扁平銅粉Cu1、通常銅粉Cu2、鉄粉Fe)の平均粒径は若干の差があるにしても、特許文献1に記載の発明に比べればその差を小さくすることができる。そのため、原料粉末の流動性を向上させることができ、圧粉体を成形する際の成形性の向上、あるいは各種粉末の偏析防止を図ることができる。また、篩による通常銅粉の選別をラフに行えるので、粉末コストの低減による低コスト化を達成することができる。従って、圧粉体を成形する際の成形性の向上や各種粉末の偏析防止を図ることができ、かつ粉末コストを抑制することもできる。以上から、高い成形性と品質安定性を有する安価な銅鉄系の焼結軸受を提供することが可能となる。 As is clear from the comparison between FIG. 4 and FIG. 5, in the present invention, the average particle size of the normal copper powder Cu2 as the second copper powder is larger than the average particle size of the flat copper powder Cu1 as the first copper powder. . This usually means that the apparent density of the copper powder is larger than the apparent density of the flat copper powder. Moreover, as is clear from the comparison of FIGS. 4 to 6, the average particle size of the iron powder Fe is larger than the average particle size of the flat copper powder Cu1 and the normal copper powder Cu2. Even if there is a slight difference in the average particle diameter of the main powder (flat copper powder Cu1, normal copper powder Cu2, iron powder Fe) contained in the raw material powder from such a configuration, it is compared with the invention described in Patent Document 1. The difference can be reduced. Therefore, it is possible to improve the fluidity of the raw material powder, to improve the moldability when molding the green compact, or to prevent segregation of various powders. Moreover, since the normal copper powder can be roughly selected by the sieve, cost reduction can be achieved by reducing the powder cost. Therefore, it is possible to improve the moldability when molding the green compact, prevent segregation of various powders, and suppress the powder cost. From the above, it is possible to provide an inexpensive copper-iron sintered bearing having high formability and quality stability.
このように通常銅粉の平均粒径を扁平銅粉の平均粒径よりも大きくした場合、銅粉全体の粒径が大きくなるために、鉄粒子と銅粒子の結合力が低下するおそれがあるが、原料粉末に適量の低融点金属粉を添加することで鉄組織と銅組織を強固に結合することができる。そのため、軸受強度の低下を最小限に抑えることができる。 Thus, when the average particle diameter of copper powder is made larger than the average particle diameter of flat copper powder, the particle diameter of the entire copper powder is increased, which may reduce the binding force between iron particles and copper particles. However, by adding an appropriate amount of low melting point metal powder to the raw material powder, the iron structure and the copper structure can be firmly bonded. Therefore, a decrease in bearing strength can be minimized.
[他の実施形態]
以上に述べた第一の実施形態では、鉄組織を全てフェライト相で形成しているが、かかる構成では、軸受の使用条件(例えば高面圧で使用する場合)等により、表面層が摩耗してベース部S2が露出した際に軸受面の耐摩耗性が不十分となる場合がある。
[Other Embodiments]
In the first embodiment described above, the iron structure is entirely formed of a ferrite phase. However, in such a configuration, the surface layer is worn due to the use conditions of the bearing (for example, when used at a high surface pressure). When the base portion S2 is exposed, the wear resistance of the bearing surface may be insufficient.
この場合、鉄組織を、フェライト相とパーライト相の二相組織にすれば、硬質のパーライト相が耐摩耗性の向上に寄与し、高面圧下での軸受面の摩耗を抑制して軸受寿命を向上させることができる(第二の実施形態)。炭素が拡散することにより、パーライトγFeの存在割合が過剰となり、フェライトαFeと同等レベルの割合になると、パーライトによる軸に対する攻撃性が著しく増して軸が摩耗しやすくなる。これを防止するため、図12に示すように、パーライト相(γFe)はフェライト相(αFe)の粒界に存在(点在)する程度に抑える。ここでいう「粒界」は、フェライト相の間やフェライト相と他の粒子との間に形成される粒界の他、フェライト相(αFe)中の結晶粒界10の双方を意味する。図12では、前者の粒界に存在するパーライト相をγFe1で表し、後者の粒界に存在するパーライト相をγFe2で表している。フェライト相αFeに対するパーライト相γFe(γFe1+γFe2)の割合は、ベース部S2の任意断面において、面積比で5〜20%とするのが望ましい。 In this case, if the iron structure is a two-phase structure consisting of a ferrite phase and a pearlite phase, the hard pearlite phase contributes to the improvement of wear resistance, and the wear of the bearing surface under high surface pressure is suppressed and the bearing life is extended. It can be improved (second embodiment). When carbon is diffused, the existing ratio of pearlite γFe becomes excessive, and when the ratio is the same as that of ferrite αFe, the aggressiveness of the pearlite against the shaft is remarkably increased, and the shaft is easily worn. In order to prevent this, as shown in FIG. 12, the pearlite phase (γFe) is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase (αFe). The “grain boundary” here means both the grain boundary formed between the ferrite phases and between the ferrite phase and other particles, as well as the crystal grain boundary 10 in the ferrite phase (αFe). In FIG. 12, the pearlite phase existing at the former grain boundary is represented by γFe1, and the pearlite phase present at the latter grain boundary is represented by γFe2. The ratio of the pearlite phase γFe (γFe1 + γFe2) to the ferrite phase αFe is preferably 5 to 20% in area ratio in the arbitrary cross section of the base portion S2.
パーライトの成長速度は、主に焼結温度に依存する。従って、上記の態様でパーライト相をフェライト相の粒界に存在させるためには、第一の実施形態よりも焼結温度を上げて820℃〜900℃程度とし、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相γFeを形成することができる。なお、900℃を越える温度で焼結すると、黒鉛粉中の炭素が鉄と反応する。これ以外の構成、例えば原料粉体の組成や製造手順等は、第一の実施形態と共通であるので、重複説明を省略する。 The growth rate of pearlite mainly depends on the sintering temperature. Therefore, in order for the pearlite phase to be present at the grain boundary of the ferrite phase in the above-described manner, the sintering temperature is raised to about 820 ° C. to 900 ° C. compared to the first embodiment, and carbon is included as the furnace atmosphere. Sintering is performed using a gas such as natural gas or endothermic gas (RX gas). As a result, carbon contained in the gas diffuses into iron during sintering, and pearlite phase γFe can be formed. When sintered at a temperature exceeding 900 ° C., carbon in the graphite powder reacts with iron. Other configurations, such as the composition of the raw material powder and the manufacturing procedure, are the same as those in the first embodiment, and a duplicate description is omitted.
なお、以上の説明では、本発明を、軸受面1aを真円形状とした真円軸受に適用する場合を例示したが、本発明は真円軸受に限らず、軸受面1aや軸2の外周面にヘリングボーン溝、スパイラル溝等の動圧発生部を設けた流体動圧軸受にも同様に適用することができる。 In the above description, the case where the present invention is applied to a perfect circle bearing having a perfect circle shape on the bearing surface 1a is illustrated. However, the present invention is not limited to a perfect circle bearing, and the outer circumference of the bearing surface 1a and the shaft 2 is exemplified. The present invention can be similarly applied to a fluid dynamic pressure bearing in which a dynamic pressure generating portion such as a herringbone groove or a spiral groove is provided on the surface.
1 軸受
1a 軸受面
2 軸
6 金型
9 圧粉体
61 成形面
Cu1 扁平銅粉(第一銅粉)
Cu2 通常銅粉(第二銅粉)
L 扁平銅粉の長さ
t 扁平銅粉の厚さ
DESCRIPTION OF SYMBOLS 1 Bearing 1a Bearing surface 2 Shaft 6 Mold 9 Green compact 61 Molding surface Cu1 Flat copper powder (1st copper powder)
Cu2 Normal copper powder (cupric powder)
L Length of flat copper powder t Thickness of flat copper powder
Claims (9)
銅の含有量が均一になったベース部と、ベース部の表面を覆い、ベース部よりも銅の含有量が多い表面層とを備え、
銅粉として、アスペクト比が鉄粉よりも大きい扁平状の第一銅粉と、平均粒径が第一銅粉の平均粒径よりも大きい第二銅粉とを用いたことを特徴とする焼結軸受。 A sintered bearing having an iron structure formed of iron powder and a copper structure formed of copper powder,
A base part having a uniform copper content and a surface layer covering the surface of the base part and having a higher copper content than the base part,
As the copper powder, a flat cuprous powder having an aspect ratio larger than that of the iron powder and a cupric powder having an average particle diameter larger than the average particle diameter of the first copper powder are used. Connection bearing.
銅の含有量が均一になったベース部と、ベース部の表面を覆い、ベース部よりも銅の含有量が多い表面層とを備え、
銅粉として、アスペクト比が鉄粉よりも大きい扁平状の第一銅粉と、見かけ密度が第一銅粉の見かけ密度よりも大きい第二銅粉とを用いたことを特徴とする焼結軸受。 A sintered bearing having an iron structure formed of iron powder and a copper structure formed of copper powder,
A base part having a uniform copper content and a surface layer covering the surface of the base part and having a higher copper content than the base part,
A sintered bearing characterized by using, as copper powder, a flat cuprous powder having an aspect ratio larger than that of iron powder and a cupric powder having an apparent density larger than that of the first copper powder. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017128425A JP6462053B2 (en) | 2017-06-30 | 2017-06-30 | Sintered bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017128425A JP6462053B2 (en) | 2017-06-30 | 2017-06-30 | Sintered bearing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016064405A Division JP6170587B2 (en) | 2016-03-28 | 2016-03-28 | Sintered bearing |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018243008A Division JP6701319B2 (en) | 2018-12-26 | 2018-12-26 | Sintered bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017179611A true JP2017179611A (en) | 2017-10-05 |
JP6462053B2 JP6462053B2 (en) | 2019-01-30 |
Family
ID=60003899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017128425A Active JP6462053B2 (en) | 2017-06-30 | 2017-06-30 | Sintered bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6462053B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003221606A (en) * | 2002-01-31 | 2003-08-08 | Mitsubishi Materials Corp | Sliding parts and manufacturing method therefor |
JP2008069384A (en) * | 2006-09-12 | 2008-03-27 | Ntn Corp | Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD |
JP2010077474A (en) * | 2008-09-25 | 2010-04-08 | Hitachi Powdered Metals Co Ltd | Iron-based sintered bearing, and method for manufacturing the same |
-
2017
- 2017-06-30 JP JP2017128425A patent/JP6462053B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003221606A (en) * | 2002-01-31 | 2003-08-08 | Mitsubishi Materials Corp | Sliding parts and manufacturing method therefor |
JP2008069384A (en) * | 2006-09-12 | 2008-03-27 | Ntn Corp | Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD |
JP2010077474A (en) * | 2008-09-25 | 2010-04-08 | Hitachi Powdered Metals Co Ltd | Iron-based sintered bearing, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6462053B2 (en) | 2019-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11433455B2 (en) | Sintered bearing and method for manufacturing same | |
US11248653B2 (en) | Sintered bearing | |
US10907685B2 (en) | Sintered bearing and manufacturing process therefor | |
JP6038522B2 (en) | Sintered bearing | |
JP5972588B2 (en) | Manufacturing method of sintered bearing | |
JP6038459B2 (en) | Sintered bearing | |
JP6816079B2 (en) | Vibration motor | |
JP5367502B2 (en) | Iron-based sintered sliding member and manufacturing method thereof | |
EP2878839B1 (en) | Sintered bearing and manufacturing method thereof | |
JP6302259B2 (en) | Manufacturing method of sintered bearing | |
WO2016158373A1 (en) | Sintered bearing and method of manufacturing same | |
JP6038460B2 (en) | Manufacturing method of sintered bearing | |
WO2013042664A1 (en) | Sintered bearing and method for manufacturing same | |
JP6462053B2 (en) | Sintered bearing | |
JP6170587B2 (en) | Sintered bearing | |
JP6701319B2 (en) | Sintered bearing | |
JP6548952B2 (en) | Sintered bearing and method of manufacturing the same | |
JPH0397834A (en) | Sintered metallic body and its production | |
JP2018109445A (en) | Sintered bearing | |
JP2019138472A (en) | Instrument having sinter bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170728 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6462053 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |