JP2010077474A - Iron-based sintered bearing, and method for manufacturing the same - Google Patents
Iron-based sintered bearing, and method for manufacturing the same Download PDFInfo
- Publication number
- JP2010077474A JP2010077474A JP2008245492A JP2008245492A JP2010077474A JP 2010077474 A JP2010077474 A JP 2010077474A JP 2008245492 A JP2008245492 A JP 2008245492A JP 2008245492 A JP2008245492 A JP 2008245492A JP 2010077474 A JP2010077474 A JP 2010077474A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- iron
- copper
- powder
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 title description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000010949 copper Substances 0.000 claims abstract description 34
- 229910052802 copper Inorganic materials 0.000 claims abstract description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910000640 Fe alloy Inorganic materials 0.000 claims abstract description 18
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 13
- 239000010439 graphite Substances 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 9
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000011148 porous material Substances 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 21
- 238000005245 sintering Methods 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims 1
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 abstract description 4
- 238000005299 abrasion Methods 0.000 abstract description 2
- 239000011889 copper foil Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/14—Special methods of manufacture; Running-in
- F16C33/145—Special methods of manufacture; Running-in of sintered porous bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/128—Porous bearings, e.g. bushes of sintered alloy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2206/00—Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2220/00—Shaping
- F16C2220/20—Shaping by sintering pulverised material, e.g. powder metallurgy
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Powder Metallurgy (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
本発明は、モータの軸受や複写機等の紙送りローラ軸の軸受等に使用して好適な鉄系焼結軸受およびその製造方法に係り、特に、軸受の摩耗量を少なくし、しかもシャフトの摩耗量も低減する技術に関する。 The present invention relates to an iron-based sintered bearing suitable for use as a bearing for a paper feed roller shaft of a motor bearing, a copying machine, and the like, and a method of manufacturing the same. The present invention relates to a technique for reducing the amount of wear.
従来より軸受には、焼結合金製のものが多用されている。焼結合金は含浸した潤滑油による自己潤滑性を付与できるため、耐焼付き性と耐摩耗性が良好で広く用いられている。
たとえば特許文献1には、Cu:10〜30%、残部:Feからなる鉄銅系焼結合金層を摺動面に設けた軸受が開示されている。
Conventionally, a bearing made of a sintered alloy has been frequently used. Sintered alloys are widely used because they can provide self-lubricating properties with impregnated lubricating oils, and therefore have good seizure resistance and wear resistance.
For example, Patent Document 1 discloses a bearing in which an iron-copper-based sintered alloy layer made of Cu: 10 to 30% and the balance: Fe is provided on a sliding surface.
しかしながら、近年、銅の価格は高騰しているため、特許文献1のように銅を10〜30%使用する技術では製造コストが割高で実用的ではない。このため、鉄を主成分とする軸受のニーズが高まってきている。しかしながら、鉄を主成分とする軸受の場合には、焼付き易く、また、相手部品であるシャフトを傷付け易いという欠点がある。特に、熱処理を施していない硬さが低いシャフトと鉄を主成分とする軸受とを組み合わせて用いる場合、上記の現象は顕著となる。 However, since the price of copper has soared in recent years, a technique using 10 to 30% of copper as in Patent Document 1 is expensive and is not practical. For this reason, the need for bearings mainly composed of iron is increasing. However, in the case of a bearing containing iron as a main component, there are drawbacks that it is easy to seize and the shaft that is the counterpart part is easily damaged. In particular, when a combination of a shaft having a low hardness not subjected to heat treatment and a bearing mainly composed of iron is used, the above phenomenon becomes remarkable.
したがって、本発明は、優れた耐摩耗性を有するとともに、鉄銅系焼結合金軸受に匹敵する耐焼付き性および相手部品への攻撃緩和性を有する鉄系焼結合金軸受およびその製造方法を提供することを目的としている。 Therefore, the present invention provides an iron-based sintered alloy bearing having excellent wear resistance, and having seizure resistance comparable to that of an iron-copper-based sintered alloy bearing and mitigating attack on a counterpart component, and a method for manufacturing the same. The purpose is to do.
本発明は、軸の外周面を支持する軸受面を有する鉄系焼結軸受であって、焼結合金の全体組成が、質量比で、Cu:2.0〜9.0%、C:1.5〜3.7%、残部:Feおよび不可避不純物からなり、軸受の内部は、面積率でフェライトが20〜85%および残部がパーライトからなる鉄合金相中に、軸受の軸方向に対して交差する方向に延在する銅相と、黒鉛相および気孔が分散する金属組織を示し、軸受面に、銅相が8〜40%の面積率で露出していることを特徴としている。 The present invention is an iron-based sintered bearing having a bearing surface that supports the outer peripheral surface of a shaft, and the overall composition of the sintered alloy is Cu: 2.0 to 9.0%, C: 1. .5 to 3.7%, balance: Fe and unavoidable impurities, the inside of the bearing is in an iron alloy phase consisting of 20 to 85% ferrite and balance of pearlite in the area ratio with respect to the axial direction of the bearing. A copper phase extending in a crossing direction and a metal structure in which a graphite phase and pores are dispersed are shown, and the copper phase is exposed on the bearing surface at an area ratio of 8 to 40%.
また、本発明は、型孔を有するダイと、型孔内に配置されるコアロッドと、ダイの型孔とコアロッドの外周とに摺動自在に嵌合する下パンチとから構成されるキャビティに原料粉末を充填し、この原料粉末を、ダイの型孔とコアロッドの外周とに摺動自在に嵌合する上パンチと下パンチとにより圧粉成形し、得られた圧粉体を焼結する鉄系焼結軸受の製造方法において、原料粉末は、平均粒径が20〜150μmである扁平状の銅粉を2.0〜9.0質量%と、平均粒径が40〜80μmの黒鉛粉を1.5〜3.7質量%とを鉄粉に添加し混合したものであり、焼結の温度は950〜1030℃であることを特徴としている。 Further, the present invention provides a raw material in a cavity including a die having a die hole, a core rod disposed in the die hole, and a lower punch that is slidably fitted to the die hole of the die and the outer periphery of the core rod. Iron that fills the powder, compacts this raw material powder with an upper punch and a lower punch that slidably fit into the die hole and the outer periphery of the core rod, and sinters the resulting green compact In the method for producing a sintered sintered bearing, the raw material powder is a flat copper powder having an average particle diameter of 20 to 150 μm, 2.0 to 9.0 mass%, and a graphite powder having an average particle diameter of 40 to 80 μm. 1.5 to 3.7 mass% is added to iron powder and mixed, and the sintering temperature is 950 to 1030 ° C.
以下、本発明の数値限定の根拠を本発明の作用とともに説明する。なお、以下の説明において「%」は質量%の意である。 Hereinafter, the grounds for limiting the numerical values of the present invention will be described together with the operation of the present invention. In the following description, “%” means mass%.
銅粉の粒径
本発明の鉄系焼結軸受の製造方法では、原料粉末に扁平状の銅粉を混合してキャビティに充填する。そして、ダイキャビティ内を原料粉末が落下する際に、コアロッドに銅粉がまとわり付き、コアロッドに銅粉が張り付いた状態となる。これにより、軸受内部と比較して摺動特性が求められる軸受内径面に露出する銅相の量が多くなる。本発明では、Cu量の全てを扁平状の銅粉として与えることにより、軸受内径面に露出する銅相の量を確保しつつ、軸受内部のCu量を低減することができる。
In the method of manufacturing the iron-based sintered bearing of the particle size present invention copper powder, a mixture of flaky copper powder raw material powder filled in the cavity. Then, when the raw material powder falls in the die cavity, the copper powder clings to the core rod, and the copper powder adheres to the core rod. As a result, the amount of copper phase exposed on the inner diameter surface of the bearing, which requires sliding characteristics, as compared with the inside of the bearing is increased. In the present invention, by providing the entire amount of Cu as flat copper powder, the amount of Cu inside the bearing can be reduced while securing the amount of copper phase exposed on the inner surface of the bearing.
扁平状の銅粉を含有する原料粉末を充填すると、コアロッドの周囲に銅粉が平行ないしそれに近い状態で配向するが、軸受内部では、扁平状の銅粉がダイキャビティへの落下時に軸受の軸方向に垂直な方向に配向し易い。このため、原料粉末を圧縮成形、焼結の後では、軸受内部において銅相は軸受の軸方向に対して直交ないしそれに近い状態で延在することになる。 When raw material powder containing flat copper powder is filled, the copper powder is oriented around or parallel to the core rod, but inside the bearing, when the flat copper powder falls into the die cavity, the shaft of the bearing It is easy to align in the direction perpendicular to the direction. For this reason, after compression molding and sintering the raw material powder, the copper phase extends in a state perpendicular to or close to the axial direction of the bearing inside the bearing.
銅相は、鉄合金相と比較して強度は低いが、銅相が上記のように分散することにより、軸方向の銅相の量が少なくなるため、軸方向の荷重に対して強度が確保される。以上のような作用、効果を得るために、扁平状の銅粉の粒径は20〜150μmとする。銅粉の粒径が20μmを下回ると、鉄粒子間に存在する銅の割合が多くなり過ぎ、粒子間の焼結が進行し難くなる。その結果、軸受の強度が低下して軸受の摩耗量が増大する。一方、銅粉の粒径が150μmを超えると、銅粉がコアロッドに付着し難くなり、軸受内径面に露出する銅相の面積率が低下する。その結果、軸受の焼付きが生じ易くなるとともにシャフトの摩耗量が増大する。なお、銅粉の扁平性を確保するために、銅粉の粒子径と厚さの比は2.5〜20であることが望ましい。 The copper phase has lower strength than the iron alloy phase, but the copper phase is dispersed as described above, so the amount of the copper phase in the axial direction is reduced, so the strength is ensured against the axial load. Is done. In order to obtain the above actions and effects, the particle size of the flat copper powder is 20 to 150 μm. When the particle size of the copper powder is less than 20 μm, the ratio of copper existing between the iron particles is excessively increased, and sintering between the particles is difficult to proceed. As a result, the bearing strength is reduced and the wear amount of the bearing is increased. On the other hand, when the particle size of the copper powder exceeds 150 μm, the copper powder is difficult to adhere to the core rod, and the area ratio of the copper phase exposed on the inner diameter surface of the bearing is lowered. As a result, seizure of the bearing is likely to occur and the amount of wear of the shaft increases. In addition, in order to ensure the flatness of copper powder, it is desirable that the ratio of the particle diameter and thickness of copper powder is 2.5-20.
銅粉の添加量
銅粉の添加量が少ないと軸受内径面に露出する銅相の面積率が低下する。一方、銅粉の添加量が多いと、軸受の強度が低下して軸受の摩耗量が増大する。よって、銅粉の添加量は2.0〜9.0%とする。
Addition amount of copper powder When the addition amount of copper powder is small, the area ratio of the copper phase exposed to the inner diameter surface of the bearing is lowered. On the other hand, when there is much addition amount of copper powder, the intensity | strength of a bearing will fall and the amount of wear of a bearing will increase. Therefore, the addition amount of copper powder shall be 2.0 to 9.0%.
黒鉛粉の粒径
上述の扁平状の銅粉により、軸受内径面に露出する銅相の量を確保することができるが、本発明においては、さらに、鉄合金相中に黒鉛を分散させて遊離黒鉛相を形成する。遊離黒鉛相は、固体潤滑剤として作用し、摺動特性を向上させる。ここで、黒鉛粉の粒径が小さ過ぎるとCが鉄合金相中に拡散し易くなり、パーライトの量が増大して鉄合金相の硬さが増加する。その結果、摺動相手であるシャフトの摩耗量が増大する。また、遊離黒鉛相の量が少なくなって摺動特性が低下する。一方、黒鉛粉の粒径が大きすぎると、鉄合金相中へのCの拡散が生じ難くなり、基地の硬さが低下して軸受の摩耗量が増大する。また、黒鉛の粒径が大きくなりすぎた場合、金属粉同士の結合を阻害し材料強度が低下するために、軸受の摩耗量が増大する。よって、黒鉛粉末の平均粒径は、40〜80μmとする。
The particle size of the graphite powder The above-mentioned flat copper powder can secure the amount of the copper phase exposed on the inner surface of the bearing. In the present invention, however, the graphite is further dispersed in the iron alloy phase. A graphite phase is formed. The free graphite phase acts as a solid lubricant and improves sliding properties. Here, when the particle size of the graphite powder is too small, C tends to diffuse into the iron alloy phase, the amount of pearlite increases, and the hardness of the iron alloy phase increases. As a result, the amount of wear on the shaft that is the sliding partner increases. In addition, the amount of free graphite phase is reduced and the sliding characteristics are lowered. On the other hand, if the particle size of the graphite powder is too large, it becomes difficult for C to diffuse into the iron alloy phase, the hardness of the base decreases, and the wear amount of the bearing increases. Moreover, when the particle diameter of graphite becomes too large, since the bond between metal powders is hindered and the material strength is reduced, the wear amount of the bearing is increased. Therefore, the average particle diameter of graphite powder shall be 40-80 micrometers.
黒鉛粉の添加量
黒鉛粉末の添加量が少ないと、鉄合金相中のフェライトの量が多くなり、硬さが低くなって軸受の摩耗量が増大する。また、固体潤滑効果が低下する。一方、黒鉛粉末の添加量が多いとパーライトの量が増えて鉄部の硬さの上昇を招くとともに、金属粉同士の結合が阻害され材料強度が低下するために、シャフトおよび軸受の摩耗量が増大する。よって、黒鉛粉の添加量は1.5〜3.7%とする。
Addition amount of graphite powder If the addition amount of graphite powder is small, the amount of ferrite in the iron alloy phase increases, the hardness decreases, and the wear amount of the bearing increases. In addition, the solid lubricating effect is reduced. On the other hand, if the amount of graphite powder added is large, the amount of pearlite increases, leading to an increase in the hardness of the iron part, and the bonding between the metal powders is hindered and the material strength is reduced. Increase. Therefore, the addition amount of the graphite powder is 1.5 to 3.7%.
焼結温度
本発明では、鉄合金相中に黒鉛相を形成するため、焼結温度は重要である。焼結温度が低いと、鉄合金相中のフェライトの量が多くなり、硬さが低くなって軸受の摩耗量が増大する。一方、焼結温度が高いとパーライトの量が増えて硬さが硬くなるため、シャフトの摩耗量が増大するとともに鉄合金相の強度が低下して軸受の摩耗量が増大する。よって、焼結温度は950〜1030℃とする。
Sintering temperature In the present invention, since the graphite phase is formed in the iron alloy phase, the sintering temperature is important. If the sintering temperature is low, the amount of ferrite in the iron alloy phase increases, the hardness decreases, and the wear amount of the bearing increases. On the other hand, when the sintering temperature is high, the amount of pearlite is increased and the hardness is increased, so that the wear amount of the shaft is increased, the strength of the iron alloy phase is lowered, and the wear amount of the bearing is increased. Therefore, the sintering temperature is 950 to 1030 ° C.
本発明によれば、軸受内径面に露出した銅相と黒鉛相により、優れた耐摩耗性を有するとともに、鉄銅系焼結合金軸受に匹敵する耐焼付き性および相手部品への攻撃緩和性を有する等の効果が得られる。 According to the present invention, the copper phase and the graphite phase exposed on the inner diameter surface of the bearing have excellent wear resistance, and also have seizure resistance comparable to that of an iron-copper-based sintered alloy bearing and mitigation of attack on the counterpart part. The effect of having it etc. is acquired.
(1)軸受の作製
以下、本発明を実施例によりさらに詳細に説明する。
軸受の焼結合金を作製するために下記の原料粉末を用意した。
1.鉱石還元鉄粉(平均粒径:100μm)
2.銅箔粉
(平均粒径:10μm、20μm、50μm、100μm、150μm、200μm)
3.電解銅粉(平均粒径:50μm)
4.天然黒鉛粉(平均粒径:20μm、60μm、100μm)
5.ステアリン酸亜鉛
(1) Manufacture of a bearing Hereinafter, an Example demonstrates this invention further in detail.
In order to produce a sintered alloy of the bearing, the following raw material powders were prepared.
1. Ore reduced iron powder (average particle size: 100μm)
2. Copper foil powder (average particle size: 10 μm, 20 μm, 50 μm, 100 μm, 150 μm, 200 μm)
3. Electrolytic copper powder (average particle size: 50 μm)
4). Natural graphite powder (average particle size: 20μm, 60μm, 100μm)
5). Zinc stearate
これらの粉末を全体組成が表1に示す割合となるように配合し、混合機で混合した。なお、ステアリン酸亜鉛は、成形時の潤滑のために添加するものであり、これを除く混合粉末を100%としたときに、全ての混合粉末に対して0.5%添加した。 These powders were blended so that the total composition was as shown in Table 1, and mixed with a mixer. Zinc stearate is added for lubrication during molding. When the mixed powder excluding this is taken as 100%, 0.5% was added to all the mixed powders.
上記混合粉末を軸受の円筒形状に圧縮成形し、焼結およびサイジングを行った。焼結は、水素ガスと窒素ガスの混合ガス中で表1に示す温度で行い、通常の方法でサイジングを行った。軸受の密度は6.0Mg/m3、有効多孔率は20%とした。そして、軸受の気孔に潤滑油(鉱物油 粘度グレードISO VG56)を含浸させ、試料No.1〜24を得た。 The mixed powder was compression molded into a cylindrical shape of a bearing, and sintered and sized. Sintering was performed at a temperature shown in Table 1 in a mixed gas of hydrogen gas and nitrogen gas, and sizing was performed by an ordinary method. The density of the bearing was 6.0 Mg / m 3 and the effective porosity was 20%. The bearing pores were impregnated with lubricating oil (mineral oil viscosity grade ISO VG56). 1-24 were obtained.
(2)評価
上記試料に対して軸受の内径面の銅相の面積率、鉄合金基地中のフェライト面積率、硬さ、圧環強さ、および軸受とシャフトの摩耗量を測定した。摩耗量の測定は、水平にしたモータの回転軸にS45C製のシャフトを取り付け、このシャフトをハウジングに取り付けた軸受に隙間を持たせて挿入し、ハウジングに垂直方向の荷重を与えた状態でシャフトを回転させて行った。この試験の周囲の温度は80℃に保持し、シャフトの回転数を3000rpm、負荷面圧を1MPaとした。軸受およびシャフトの摩耗量は、試験前の内径および外径の寸法と、1000時間運転後の寸法との差とした。以上の結果を表2に示す。
(2) Evaluation The area ratio of the copper phase on the inner diameter surface of the bearing, the ferrite area ratio in the iron alloy matrix, the hardness, the crushing strength, and the wear amount of the bearing and the shaft were measured for the above samples. The amount of wear is measured by attaching a shaft made of S45C to the horizontal rotation shaft of the motor, inserting the shaft into a bearing attached to the housing with a gap, and applying a vertical load to the housing. It was done by rotating. The ambient temperature of this test was maintained at 80 ° C., the rotational speed of the shaft was 3000 rpm, and the load surface pressure was 1 MPa. The amount of wear of the bearing and shaft was defined as the difference between the dimensions of the inner and outer diameters before the test and the dimensions after 1000 hours of operation. The results are shown in Table 2.
表2に示すように、銅箔粉の添加量が本発明の範囲を下回る試料No.1では、軸受の内径面における銅相の面積率が少ないためシャフトの摩耗が多くなった。また、銅箔粉の添加量が本発明の範囲を超える試料No.5では、軸受の強度が低下したために軸受の摩耗量が多くなった。試料No.6は、添加する銅粉として電解銅粉を使用しているが、軸受およびシャフト双方の摩耗量が多くなった。これは、軸受の内径面における銅相の面積率が低くなっていることから、コアロッドにまとわり付く銅粉の量が少なくなったためと考えられる。これに対して、本発明例である試料No.2〜4では、軸受および軸の摩耗量が少ない。 As shown in Table 2, the sample No. 2 in which the amount of copper foil powder added falls below the range of the present invention. In No. 1, wear of the shaft increased because the area ratio of the copper phase on the inner diameter surface of the bearing was small. In addition, Sample No. in which the added amount of copper foil powder exceeds the range of the present invention. In No. 5, the amount of wear of the bearing increased because the strength of the bearing decreased. Sample No. In No. 6, electrolytic copper powder was used as the copper powder to be added, but the wear amount of both the bearing and the shaft increased. This is presumably because the amount of copper powder clinging to the core rod is reduced because the area ratio of the copper phase on the inner diameter surface of the bearing is low. In contrast, Sample No. which is an example of the present invention. In 2 to 4, the amount of wear of the bearing and the shaft is small.
黒鉛粉の添加量が本発明の範囲を下回る試料No.7では、鉄合金相中のフェライトの面積率が多いために硬さが低下し、軸受の摩耗量が多くなった。また、遊離黒鉛相の量が少なく固体潤滑性に劣るため、シャフトの摩耗量も多くなった。黒鉛粉の添加量が本発明の範囲を超える試料No.11では、鉄合金相中のパーライトの面積率が多いために硬さが高くなり、シャフトの摩耗量が多くなった。また、軸受の圧環強さ(または強度)が低下したため、軸受の摩耗量も増大した。これに対して、本発明例である試料No.8〜10では、軸受およびシャフトの摩耗量が少ない。 Sample No. in which the amount of graphite powder added falls below the range of the present invention. In No. 7, since the area ratio of ferrite in the iron alloy phase was large, the hardness decreased and the wear amount of the bearing increased. In addition, the amount of free graphite phase was small and the solid lubricity was poor, so the amount of wear on the shaft also increased. Sample No. in which the amount of graphite powder added exceeds the range of the present invention. In No. 11, the area ratio of pearlite in the iron alloy phase was large, so that the hardness was high and the wear amount of the shaft was increased. Further, since the crushing strength (or strength) of the bearing has decreased, the wear amount of the bearing has also increased. In contrast, Sample No. which is an example of the present invention. In 8-10, there is little abrasion amount of a bearing and a shaft.
黒鉛粉の粒径が本発明の範囲を下回る試料No.12では、鉄合金相中のパーライトの面積率が多いために硬さが増加し、シャフトの摩耗量が多くなった。また、シャフトの摩耗粉が研磨材として作用した結果、軸受の摩耗量も多い。黒鉛粉の粒径が本発明の範囲を超える試料No.15では、軸受の圧環強さ(または強度)が低下して軸受の摩耗量が多くなった。これに対して、本発明例である試料No.13、14では、軸受およびシャフトの摩耗量が少ない。 Sample No. in which the particle size of the graphite powder is below the range of the present invention. In No. 12, since the area ratio of pearlite in the iron alloy phase was large, the hardness increased and the wear amount of the shaft increased. Further, as a result of the shaft wear powder acting as an abrasive, the amount of wear on the bearing is also large. Sample No. whose graphite particle size exceeds the range of the present invention. In No. 15, the crushing strength (or strength) of the bearing decreased and the wear amount of the bearing increased. In contrast, Sample No. which is an example of the present invention. In Nos. 13 and 14, the wear amount of the bearing and the shaft is small.
銅箔粉の粒径が本発明の範囲を下回る試料No.16では、鉄粒子間に存在する銅の割合が多くなり過ぎ、粒子間の焼結が進行し難くなった結果、軸受の強度が低下して軸受の摩耗量が多くなった。銅箔粉の粒径が本発明の範囲を超える試料No.20では、銅粉がコアロッドに付着し難くなり、軸受内径面に露出する銅相の面積率が低下した結果、シャフトの摩耗量が多くなった。これに対して、本発明例である試料No.17〜19では、軸受およびシャフトの摩耗量が少ない。 Sample No. in which the particle size of the copper foil powder is below the range of the present invention. In No. 16, the proportion of copper present between iron particles increased too much, and sintering between particles became difficult to proceed, resulting in a decrease in bearing strength and an increase in bearing wear. Sample No. in which the particle size of the copper foil powder exceeds the range of the present invention. In No. 20, the copper powder hardly adheres to the core rod, and the area ratio of the copper phase exposed on the inner diameter surface of the bearing is reduced. As a result, the wear amount of the shaft is increased. In contrast, Sample No. which is an example of the present invention. In 17-19, the amount of wear of a bearing and a shaft is small.
焼結温度が本発明の範囲を下回る試料No.21では、鉄合金相中のフェライトの量が多くなり、硬さが低くなって軸受の摩耗量が多い。焼結温度が本発明の範囲を超える試料No.24では、パーライトの量が増えて硬さが硬くなったため、シャフトの摩耗量が多くなった。これに対して、本発明例である試料No.22、23では、軸受およびシャフトの摩耗量が少ない。 Sample No. whose sintering temperature is below the range of the present invention. In No. 21, the amount of ferrite in the iron alloy phase increases, the hardness decreases, and the amount of wear on the bearing increases. Sample No. whose sintering temperature exceeded the range of the present invention. In No. 24, the amount of pearlite increased and the hardness became hard, so the amount of wear on the shaft increased. In contrast, Sample No. which is an example of the present invention. In 22 and 23, the amount of wear of the bearing and the shaft is small.
(3)組織観察
図1は本発明例の軸受内径面のSEM写真である。図1に示すように、本発明例の軸受内径面には、鉄合金相中に銅相と黒鉛相が分散し、銅相は軸受内径面に平行に配置されている。このような銅相により軸受内径面の銅相の面積率が増大し、上記したような摺動性能の向上が得られる。
(3) Microstructure observation FIG. 1 is an SEM photograph of the inner diameter surface of the bearing of the present invention. As shown in FIG. 1, a copper phase and a graphite phase are dispersed in an iron alloy phase on the inner diameter surface of the bearing of the present invention example, and the copper phase is arranged in parallel to the inner diameter surface of the bearing. Such a copper phase increases the area ratio of the copper phase on the inner diameter surface of the bearing, and the above-described improvement in sliding performance can be obtained.
Claims (3)
軸受の内部は、面積率でフェライトが20〜85%および残部がパーライトからなる鉄合金相中に、軸受の軸方向に対して交差する方向に延在する銅相と、黒鉛相および気孔が分散する金属組織を示し、
前記軸受面に、銅相が8〜40%の面積率で露出していることを特徴とする鉄系焼結軸受。 An iron-based sintered bearing having a bearing surface that supports the outer peripheral surface of the shaft, wherein the overall composition of the sintered alloy is Cu: 2.0 to 9.0%, C: 1.5 to 3 .7%, balance: Fe and inevitable impurities,
The interior of the bearing has an area ratio of 20 to 85% of ferrite and the balance of pearlite in an iron alloy phase, in which the copper phase extending in the direction intersecting the axial direction of the bearing, the graphite phase, and the pores are dispersed. Showing the metal structure
An iron-based sintered bearing, wherein a copper phase is exposed at an area ratio of 8 to 40% on the bearing surface.
前記原料粉末は、平均粒径が20〜150μmである扁平状の銅粉を2.0〜9.0質量%と、平均粒径が40〜80μmの黒鉛粉を1.5〜3.7質量%とを鉄粉に添加し混合したものであり、
前記焼結の温度は950〜1030℃であることを特徴とする鉄系焼結軸受の製造方法。 Raw material powder is filled into a cavity composed of a die having a mold hole, a core rod disposed in the mold hole, and a lower punch that is slidably fitted to the mold hole of the die and the outer periphery of the core rod. Then, this raw material powder is compacted by an upper punch and a lower punch that are slidably fitted to the die hole of the die and the outer periphery of the core rod, and the resulting green compact is sintered. In the manufacturing method of the sintered ceramic bearing,
The raw material powder is a flat copper powder having an average particle diameter of 20 to 150 μm, 2.0 to 9.0 mass%, and a graphite powder having an average particle diameter of 40 to 80 μm is 1.5 to 3.7 mass. Is added to iron powder and mixed,
The method for producing an iron-based sintered bearing, wherein the sintering temperature is 950 to 1030 ° C.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008245492A JP5247329B2 (en) | 2008-09-25 | 2008-09-25 | Iron-based sintered bearing and manufacturing method thereof |
KR1020090013418A KR101101078B1 (en) | 2008-09-25 | 2009-02-18 | Iron based sintered bearing and method for producing the same |
CN2009101307995A CN101684536B (en) | 2008-09-25 | 2009-02-20 | Iron-based sintered bearing and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008245492A JP5247329B2 (en) | 2008-09-25 | 2008-09-25 | Iron-based sintered bearing and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010077474A true JP2010077474A (en) | 2010-04-08 |
JP5247329B2 JP5247329B2 (en) | 2013-07-24 |
Family
ID=42047908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008245492A Active JP5247329B2 (en) | 2008-09-25 | 2008-09-25 | Iron-based sintered bearing and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5247329B2 (en) |
KR (1) | KR101101078B1 (en) |
CN (1) | CN101684536B (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012092441A (en) * | 2010-09-30 | 2012-05-17 | Hitachi Powdered Metals Co Ltd | Sintered valve guide material and its manufacturing method |
CN102689013A (en) * | 2012-06-06 | 2012-09-26 | 海安县鹰球集团有限公司 | High-toughness oil-retaining bearing for iron-base power metallurgy and manufacturing method thereof |
WO2013042664A1 (en) * | 2011-09-22 | 2013-03-28 | Ntn株式会社 | Sintered bearing and method for manufacturing same |
JP2013079438A (en) * | 2011-09-22 | 2013-05-02 | Ntn Corp | Sintered bearing and method for manufacturing the same |
JP2013159796A (en) * | 2012-02-02 | 2013-08-19 | Ntn Corp | Method for manufacturing sintered bearing |
JP2013159795A (en) * | 2012-02-02 | 2013-08-19 | Ntn Corp | Method for manufacturing sintered bearing |
WO2014017456A1 (en) * | 2012-07-26 | 2014-01-30 | Ntn株式会社 | Sintered bearing |
JP2014025086A (en) * | 2012-07-24 | 2014-02-06 | Ntn Corp | Sintered bearing |
JP2014505208A (en) * | 2010-11-29 | 2014-02-27 | ヒュンダイ スチール カンパニー | Sintered bearing and manufacturing method thereof |
WO2014065316A1 (en) * | 2012-10-24 | 2014-05-01 | Ntn株式会社 | Sintered bearing |
CN104073746A (en) * | 2013-03-29 | 2014-10-01 | 日立化成株式会社 | Iron-based sintered alloy for sliding member and production method therefor |
JP2014209023A (en) * | 2013-03-25 | 2014-11-06 | Ntn株式会社 | Vibrating motor |
JP2015137660A (en) * | 2014-01-20 | 2015-07-30 | Ntn株式会社 | sintered bearing |
JP2016023349A (en) * | 2014-07-23 | 2016-02-08 | Ntn株式会社 | Sinter machine component |
JP2016153531A (en) * | 2016-03-28 | 2016-08-25 | Ntn株式会社 | Sintered bearing |
CN106402145A (en) * | 2011-09-22 | 2017-02-15 | Ntn株式会社 | Sintered bearing and method for manufacturing the same |
JP2017066491A (en) * | 2015-09-30 | 2017-04-06 | Ntn株式会社 | Powder for powder metallurgy, green compact and method for producing sintered component |
JP2017161072A (en) * | 2017-03-17 | 2017-09-14 | Ntn株式会社 | Sintered bearing |
JP2017179611A (en) * | 2017-06-30 | 2017-10-05 | Ntn株式会社 | Sintered bearing |
WO2017199456A1 (en) * | 2016-05-19 | 2017-11-23 | 日立化成株式会社 | Oil-impregnated iron-based sintered bearing |
WO2018021501A1 (en) * | 2016-07-29 | 2018-02-01 | 株式会社ダイヤメット | Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same |
WO2018079670A1 (en) * | 2016-10-26 | 2018-05-03 | 株式会社ダイヤメット | Oil-impregnated sintered bearing |
WO2019059248A1 (en) | 2017-09-20 | 2019-03-28 | 株式会社ダイヤメット | Sintered oil-retaining bearing |
JP2019065323A (en) * | 2017-09-29 | 2019-04-25 | 日立化成株式会社 | Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing |
WO2019130566A1 (en) | 2017-12-28 | 2019-07-04 | 日立化成株式会社 | Sintered bearing and manufacturing method therefor |
CN110144488A (en) * | 2019-06-27 | 2019-08-20 | 浙江乐粉轨道交通科技有限公司 | A kind of powdered metallurgical material and its friction piece and frictional disk of application |
JP2019138472A (en) * | 2019-02-25 | 2019-08-22 | Ntn株式会社 | Instrument having sinter bearing |
US10428873B2 (en) | 2016-07-29 | 2019-10-01 | Diamet Corporation | Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same |
US10536048B2 (en) | 2013-03-25 | 2020-01-14 | Ntn Corporation | Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same |
US10697495B2 (en) | 2016-07-29 | 2020-06-30 | Diamet Corporation | Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same |
US10907685B2 (en) | 2013-10-03 | 2021-02-02 | Ntn Corporation | Sintered bearing and manufacturing process therefor |
US12129891B2 (en) | 2015-03-27 | 2024-10-29 | Ntn Corporation | Sintered bearing and method of manufacturing same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5604981B2 (en) * | 2009-05-28 | 2014-10-15 | Jfeスチール株式会社 | Iron-based mixed powder for powder metallurgy |
CN103071800A (en) * | 2012-11-23 | 2013-05-01 | 东睦(江门)粉末冶金有限公司 | Iron-based oil-containing bearing and manufacturing method thereof |
CN105648333A (en) * | 2016-03-31 | 2016-06-08 | 泰安皆瑞金属科技有限公司 | Copper-containing iron-based powder metallurgy material and preparation process thereof |
CN108127111A (en) * | 2017-11-22 | 2018-06-08 | 瑞安市钰易来汽摩零部件有限公司 | A kind of sintered metal bearing and its manufacture craft |
CN110646428A (en) * | 2019-09-29 | 2020-01-03 | 山东大学 | Quantitative analysis method for metallographic phase of vermicular graphite cast iron and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4844108A (en) * | 1971-10-12 | 1973-06-25 | ||
JPS59110768A (en) * | 1982-12-13 | 1984-06-26 | Toyota Motor Corp | Abrasion resistance ferrous sintered body and preparation thereof |
JPH11117940A (en) * | 1997-04-19 | 1999-04-27 | Woo Chun Lee | Sliding bearing and its manufacture |
JP2003170298A (en) * | 2001-09-28 | 2003-06-17 | Mitsubishi Materials Corp | Powder molding die and manufacturing method of powder- molded product |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100653953B1 (en) * | 2001-06-29 | 2006-12-04 | 두산인프라코어 주식회사 | Method for manufacturing sintered bearing |
CN1316173C (en) * | 2004-12-24 | 2007-05-16 | 上海汽车股份有限公司 | Method of making oil-containing bearing block through powdered metallurgy |
-
2008
- 2008-09-25 JP JP2008245492A patent/JP5247329B2/en active Active
-
2009
- 2009-02-18 KR KR1020090013418A patent/KR101101078B1/en active IP Right Grant
- 2009-02-20 CN CN2009101307995A patent/CN101684536B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4844108A (en) * | 1971-10-12 | 1973-06-25 | ||
JPS59110768A (en) * | 1982-12-13 | 1984-06-26 | Toyota Motor Corp | Abrasion resistance ferrous sintered body and preparation thereof |
JPH11117940A (en) * | 1997-04-19 | 1999-04-27 | Woo Chun Lee | Sliding bearing and its manufacture |
JP2003170298A (en) * | 2001-09-28 | 2003-06-17 | Mitsubishi Materials Corp | Powder molding die and manufacturing method of powder- molded product |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012092441A (en) * | 2010-09-30 | 2012-05-17 | Hitachi Powdered Metals Co Ltd | Sintered valve guide material and its manufacturing method |
KR101365816B1 (en) * | 2010-09-30 | 2014-02-20 | 히다치 훈마츠 야킨 가부시키가이샤 | Sintered valve guide material and method for manufacturing the same |
EP2647858A4 (en) * | 2010-11-29 | 2017-05-31 | Hyundai Steel Company | Sintered bearing and preparation method thereof |
JP2014505208A (en) * | 2010-11-29 | 2014-02-27 | ヒュンダイ スチール カンパニー | Sintered bearing and manufacturing method thereof |
JP2013079438A (en) * | 2011-09-22 | 2013-05-02 | Ntn Corp | Sintered bearing and method for manufacturing the same |
US10081056B2 (en) | 2011-09-22 | 2018-09-25 | Ntn Corporation | Sintered bearing and method for manufacturing same |
CN106402145A (en) * | 2011-09-22 | 2017-02-15 | Ntn株式会社 | Sintered bearing and method for manufacturing the same |
WO2013042664A1 (en) * | 2011-09-22 | 2013-03-28 | Ntn株式会社 | Sintered bearing and method for manufacturing same |
US11433455B2 (en) | 2011-09-22 | 2022-09-06 | Ntn Corporation | Sintered bearing and method for manufacturing same |
JP2013159795A (en) * | 2012-02-02 | 2013-08-19 | Ntn Corp | Method for manufacturing sintered bearing |
JP2013159796A (en) * | 2012-02-02 | 2013-08-19 | Ntn Corp | Method for manufacturing sintered bearing |
CN102689013A (en) * | 2012-06-06 | 2012-09-26 | 海安县鹰球集团有限公司 | High-toughness oil-retaining bearing for iron-base power metallurgy and manufacturing method thereof |
JP2014025086A (en) * | 2012-07-24 | 2014-02-06 | Ntn Corp | Sintered bearing |
JP2014025527A (en) * | 2012-07-26 | 2014-02-06 | Ntn Corp | Sintered bearing |
WO2014017456A1 (en) * | 2012-07-26 | 2014-01-30 | Ntn株式会社 | Sintered bearing |
US10125819B2 (en) | 2012-07-26 | 2018-11-13 | Ntn Corporation | Sintered bearing |
WO2014065316A1 (en) * | 2012-10-24 | 2014-05-01 | Ntn株式会社 | Sintered bearing |
CN109014218A (en) * | 2012-10-24 | 2018-12-18 | Ntn株式会社 | Sintered bearing |
US10590990B2 (en) | 2012-10-24 | 2020-03-17 | Ntn Corporation | Sintered bearing |
US11248653B2 (en) | 2012-10-24 | 2022-02-15 | Ntn Corporation | Sintered bearing |
CN104755775A (en) * | 2012-10-24 | 2015-07-01 | Ntn株式会社 | Sintered bearing |
US10536048B2 (en) | 2013-03-25 | 2020-01-14 | Ntn Corporation | Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same |
JP2019002570A (en) * | 2013-03-25 | 2019-01-10 | Ntn株式会社 | Vibration motor |
JP2014209023A (en) * | 2013-03-25 | 2014-11-06 | Ntn株式会社 | Vibrating motor |
CN104073746A (en) * | 2013-03-29 | 2014-10-01 | 日立化成株式会社 | Iron-based sintered alloy for sliding member and production method therefor |
US10907685B2 (en) | 2013-10-03 | 2021-02-02 | Ntn Corporation | Sintered bearing and manufacturing process therefor |
JP2015137660A (en) * | 2014-01-20 | 2015-07-30 | Ntn株式会社 | sintered bearing |
JP2016023349A (en) * | 2014-07-23 | 2016-02-08 | Ntn株式会社 | Sinter machine component |
US12129891B2 (en) | 2015-03-27 | 2024-10-29 | Ntn Corporation | Sintered bearing and method of manufacturing same |
JP2017066491A (en) * | 2015-09-30 | 2017-04-06 | Ntn株式会社 | Powder for powder metallurgy, green compact and method for producing sintered component |
JP2016153531A (en) * | 2016-03-28 | 2016-08-25 | Ntn株式会社 | Sintered bearing |
WO2017199456A1 (en) * | 2016-05-19 | 2017-11-23 | 日立化成株式会社 | Oil-impregnated iron-based sintered bearing |
JPWO2017199456A1 (en) * | 2016-05-19 | 2018-11-08 | 日立化成株式会社 | Iron-based sintered oil-impregnated bearing |
WO2018021501A1 (en) * | 2016-07-29 | 2018-02-01 | 株式会社ダイヤメット | Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same |
US10428873B2 (en) | 2016-07-29 | 2019-10-01 | Diamet Corporation | Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same |
US10697495B2 (en) | 2016-07-29 | 2020-06-30 | Diamet Corporation | Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same |
EP3534023A4 (en) * | 2016-10-26 | 2020-07-22 | Diamet Corporation | Oil-impregnated sintered bearing |
JPWO2018079670A1 (en) * | 2016-10-26 | 2019-09-19 | 株式会社ダイヤメット | Sintered oil-impregnated bearing |
WO2018079670A1 (en) * | 2016-10-26 | 2018-05-03 | 株式会社ダイヤメット | Oil-impregnated sintered bearing |
US10865828B2 (en) | 2016-10-26 | 2020-12-15 | Diamet Corporation | Oil-impregnated sintered bearing |
JP2017161072A (en) * | 2017-03-17 | 2017-09-14 | Ntn株式会社 | Sintered bearing |
JP2017179611A (en) * | 2017-06-30 | 2017-10-05 | Ntn株式会社 | Sintered bearing |
WO2019059248A1 (en) | 2017-09-20 | 2019-03-28 | 株式会社ダイヤメット | Sintered oil-retaining bearing |
US11648611B2 (en) | 2017-09-20 | 2023-05-16 | Diamet Corporation | Sintered oil-impregnated bearing |
JP2019065323A (en) * | 2017-09-29 | 2019-04-25 | 日立化成株式会社 | Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing |
JP7024291B2 (en) | 2017-09-29 | 2022-02-24 | 昭和電工マテリアルズ株式会社 | Iron-based sintered bearings and iron-based sintered oil-impregnated bearings |
WO2019130566A1 (en) | 2017-12-28 | 2019-07-04 | 日立化成株式会社 | Sintered bearing and manufacturing method therefor |
JP2019138472A (en) * | 2019-02-25 | 2019-08-22 | Ntn株式会社 | Instrument having sinter bearing |
CN110144488A (en) * | 2019-06-27 | 2019-08-20 | 浙江乐粉轨道交通科技有限公司 | A kind of powdered metallurgical material and its friction piece and frictional disk of application |
CN110144488B (en) * | 2019-06-27 | 2024-06-04 | 浙江乐粉轨道交通科技有限公司 | Powder metallurgy material, friction body and friction disc applied by same |
Also Published As
Publication number | Publication date |
---|---|
CN101684536A (en) | 2010-03-31 |
KR101101078B1 (en) | 2011-12-30 |
KR20100035080A (en) | 2010-04-02 |
JP5247329B2 (en) | 2013-07-24 |
CN101684536B (en) | 2012-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5247329B2 (en) | Iron-based sintered bearing and manufacturing method thereof | |
JP5059022B2 (en) | Iron-copper composite powder for powder metallurgy and method for producing the same | |
JP5675090B2 (en) | Sintered oil-impregnated bearing and manufacturing method thereof | |
JP5367502B2 (en) | Iron-based sintered sliding member and manufacturing method thereof | |
JP6424983B2 (en) | Iron-based sintered oil-impregnated bearing | |
JP6440297B2 (en) | Cu-based sintered bearing | |
JP2019002570A (en) | Vibration motor | |
JP6302259B2 (en) | Manufacturing method of sintered bearing | |
JP2013216972A (en) | Method for manufacturing sintered bearing | |
JP2013217493A (en) | Sintered bearing | |
JP6760807B2 (en) | Copper-based sintered alloy oil-impregnated bearing | |
JP2015227500A (en) | Sintered bearing for fuel pump and production method thereof | |
JP2021099134A (en) | Sintered oil-impregnated bearing and manufacturing method of the same | |
JP4236665B2 (en) | Self-lubricating sintered sliding material and manufacturing method thereof | |
JP6819696B2 (en) | Iron-based sintered oil-impregnated bearing | |
JP2019065323A (en) | Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing | |
WO2018047923A1 (en) | Sintered bearing and process for producing same | |
JP6548952B2 (en) | Sintered bearing and method of manufacturing the same | |
JP2009007433A (en) | Copper-based oil-containing sintered sliding member and method for producing the same | |
CN107855517A (en) | A kind of oiliness bearing powdered metallurgical material and preparation method thereof | |
JP6536866B1 (en) | Sintered bearing, sintered bearing device and rotating device | |
JPH0488139A (en) | Sliding material | |
JP6745760B2 (en) | Sintered bearing for fuel pump and manufacturing method thereof | |
CN114540697B (en) | Superfine Fe-Cu-SiC-C-Al 2 O 3 Composite material and preparation method thereof | |
JP5424121B2 (en) | Sliding material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130409 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5247329 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160419 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |