JP2017164794A - Shape control method in cold rolling - Google Patents
Shape control method in cold rolling Download PDFInfo
- Publication number
- JP2017164794A JP2017164794A JP2016053905A JP2016053905A JP2017164794A JP 2017164794 A JP2017164794 A JP 2017164794A JP 2016053905 A JP2016053905 A JP 2016053905A JP 2016053905 A JP2016053905 A JP 2016053905A JP 2017164794 A JP2017164794 A JP 2017164794A
- Authority
- JP
- Japan
- Prior art keywords
- exit side
- side tension
- plate
- tension
- end portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
本発明は、圧延された金属帯が板破断を生じないように圧延条件を適正化する方法に関する。 The present invention relates to a method for optimizing rolling conditions so that a rolled metal strip does not break a plate.
冷間圧延機において鋼帯を圧延する際には、鋼帯の厚さや圧延条件によって圧延形状の不良を引き起こし、製品の品質不良を発生させてしまう。圧延形状の不良とは具体的には、中伸び形状(圧延方向の長さの歪のうち、中央部分が延びてしまうこと)や耳伸び形状(圧延方向の長さの歪のうち、圧延帯の両端部が延びてしまうこと)が挙げられる。 When rolling a steel strip in a cold rolling mill, a rolling shape defect is caused depending on the thickness of the steel strip and rolling conditions, resulting in poor product quality. Specifically, the rolling shape defect is a middle-elongation shape (the central portion of the length distortion in the rolling direction is extended) or an ear extension shape (of the length distortion in the rolling direction, the rolling band). For example, both ends of the end of the substrate may extend).
このような形状不良を抑制するため、冷間タンデムミルでは、ワークロールベンダー、中間ロールベンダー、中間ロールシフト等の形状制御手段の制御量を適正値に設定することにより、スタンド間の板形状が悪化しないように図られている。しかし、板端部には微小な割れが存在することが多いため、平均出側張力が大きい場合やスタンド間の圧延材形状が中伸びの場合に板端部出側張力が過大となり、板破断を生じさせる場合がある。 In order to suppress such shape defects, in cold tandem mills, the plate shape between stands can be set by setting the control amount of the shape control means such as work roll bender, intermediate roll bender, intermediate roll shift to an appropriate value. It is designed not to get worse. However, since there are many small cracks at the end of the plate, if the average exit tension is large or the rolled material between the stands has a medium elongation, the exit tension on the end of the plate becomes excessive and the plate breaks. May occur.
そこで、特開平4−200904号公報では、冷間タンデムミルのスタンド間で金属帯端部の急峻度が耳割れの成長しない限界値以上の耳伸び形状となるように形状制御することで板破断を防止する冷間圧延方法が提案されている。これは、平均出側張力が小さい場合には、スタンド間の圧延形状が耳伸び形状となることにより板端部出側張力が小さくなることで、板破断を防止する方法である。 Therefore, in Japanese Patent Application Laid-Open No. 4-200904, the plate breaks by controlling the shape so that the steepness of the end of the metal band between the stands of the cold tandem mill is not less than the limit value where the ear crack does not grow. A cold rolling method for preventing the above has been proposed. This is a method of preventing plate breakage by reducing the plate end portion exit side tension when the average exit side tension is small and the rolled shape between the stands becomes an ear-extending shape.
しかし、特開平4−200904号公報の方法では、平均出側張力が大きく耳伸びの程度が軽い場合には板端部出側張力が過大となり、板破断を生じる場合がある。 However, in the method disclosed in Japanese Patent Laid-Open No. 4-200904, when the average exit tension is large and the degree of ear extension is light, the exit end tension on the plate end is excessive, and the plate may break.
そこで、特開平8−141620号公報では、冷間リバース圧延機において形状検出器出力に基づいて算出される板端部出側張力が予め定めた値よりも大きくなった際に全張力を低減すること(平均出側張力を低減することと同一)により、板端部出側張力が予め定めた値以下として形状制御を行うことを特徴とする圧延機における形状制御方法が提案されている。 Therefore, in Japanese Patent Laid-Open No. 8-141620, the total tension is reduced when the plate end portion exit side tension calculated based on the output of the shape detector in the cold reverse rolling mill becomes larger than a predetermined value. Therefore, a shape control method in a rolling mill has been proposed in which shape control is performed with the sheet end portion exit side tension being equal to or less than a predetermined value.
特許文献2の方法では、被圧延材の形状を形状検出器で検出し、幅方向のユニット張力の最大値及び特定の幅方向の位置ユニット張力の少なくとも一方が、それぞれの予め定めた値よりも大きくなった際に全張力を低減させることで板端部出側張力を小さくすることができ、それによって板破断を防止することができるものである。 In the method of Patent Document 2, the shape of the material to be rolled is detected by a shape detector, and at least one of the maximum value of the unit tension in the width direction and the position unit tension in the specific width direction is more than a predetermined value. By reducing the total tension when it becomes larger, the plate end portion exit side tension can be reduced, thereby preventing the plate from breaking.
しかし、一般的には冷間タンデムミルのスタンド間には形状検出器が設置されておらず、スタンド間の圧延形状を把握することが困難である。したがって、形状検出器出力に基づいた板端部出側張力の算出を前提とする特許文献2の方法を適用することはできない。また、特許文献2の方法では、平均出側張力を低減するため、板厚制御と干渉し、板厚が変動する場合がある。 However, generally, a shape detector is not installed between the stands of the cold tandem mill, and it is difficult to grasp the rolling shape between the stands. Therefore, it is impossible to apply the method of Patent Document 2 on the assumption that the plate end portion exit side tension is calculated based on the shape detector output. Moreover, in the method of Patent Document 2, in order to reduce the average delivery tension, there is a case where the thickness changes due to interference with thickness control.
本発明は、このような問題を解消すべく案出されたものであり、形状検出器の設置されていない冷間タンデムミルのスタンド間においても板厚制御と干渉することなく、板破断を防止可能な形状制御方法を提供することを目的とする。 The present invention has been devised to solve such problems, and prevents plate breakage without interfering with plate thickness control even between cold tandem mill stands where no shape detector is installed. An object is to provide a possible shape control method.
この目的を達成するため、請求項1に記載の発明は、圧延材に板破断が生じる板端部出側張力の破断限界値を予め求め、前記板端部出側張力を表す予測式を予め作成し、該予測式により算出した前記板端部出側張力が前記破断限界値以下となるように形状制御手段の制御量を算出し、算出された前記形状制御手段の制御量を用いて前記板端部出側張力を設定または補正することで制御することを特徴とすることを特徴とする冷間圧延における形状制御方法である。 In order to achieve this object, the invention described in claim 1 preliminarily calculates a rupture limit value of a plate end portion exit side tension at which a plate breakage occurs in a rolled material, and previously calculates a prediction formula representing the plate end portion exit side tension. Create and calculate the control amount of the shape control means so that the plate end portion exit side tension calculated by the prediction formula is equal to or less than the fracture limit value, and using the calculated control amount of the shape control means It is a shape control method in cold rolling characterized by controlling by setting or correcting a sheet end portion exit side tension.
請求項2に記載の発明は圧延材に板破断が生じる板端部出側張力の破断限界値を予め求め、平均出側張力、圧延荷重および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、平均出側張力および圧延荷重の予測値を前記予測式に代入し、板端部出側張力が前記破断限界値以下となるように前記形状制御手段の制御量を算出し、算出された前記形状制御手段の制御量を用いて前記板端部出側張力を制御することを特徴とすることを特徴とする冷間圧延における形状制御方法である。 The invention according to claim 2 is a method of obtaining in advance a rupture limit value of a strip end side tension at which a strip breaks in a rolled material, and using the average strip side tension, rolling load, and control amount of shape control means as variables. Predicting formula representing the exit side tension is prepared in advance, and the predicted values of the average exit side tension and rolling load are substituted into the prediction formula, and the shape control means so that the sheet end portion exit side tension is less than or equal to the fracture limit value. The shape control method in the cold rolling is characterized in that the control amount is calculated, and the strip end side tension is controlled using the calculated control amount of the shape control means.
請求項3に記載の発明は、圧延材に板破断を生じる板端部出側張力の破断限界値を予め求め、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、該平均出側張力、該圧延荷重の予測値および該素材クラウン量を前記板端部出側張力を表す予測式に代入し、前記板端部出側張力が前記破断限界値以下となるように前記形状制御手段の制御量を算出し、算出された前記形状制御手段の制御量を用いて前記板端部出側張力を制御することを特徴とする冷間圧延における形状制御方法である。 In the invention according to claim 3, the breaking limit value of the sheet end portion exit side tension that causes sheet breakage in the rolled material is obtained in advance, and the average exit side tension, rolling load, material crown amount, and control amount of the shape control means are variables. A prediction formula representing the sheet end portion exit side tension in advance, and substituting the average exit side tension, the predicted value of the rolling load and the material crown amount into the prediction formula representing the sheet end portion exit side tension, The control amount of the shape control means is calculated so that the plate end portion exit side tension is equal to or less than the breaking limit value, and the plate end portion exit side tension is controlled using the calculated control amount of the shape control means. It is the shape control method in the cold rolling characterized by doing.
また、請求項4に記載の発明は、請求項2記載の冷間圧延における形状制御方法において、さらに、圧延材の圧延中に前記圧延荷重を連続的に測定し、前記平均出側張力および前記圧延荷重の測定値を前記板端部出側張力を表す予測式に代入し、前記板端部出側張力が前記破断限界値以下となるように前記形状制御手段の制御量を算出し、前記形状制御手段の制御量を算出された前記制御量に補正することで前記板端部出側張力を制御することを特徴とする請求項2記載の冷間圧延における形状制御方法である。 Further, the invention according to claim 4 is the shape control method in cold rolling according to claim 2, wherein the rolling load is continuously measured during rolling of the rolled material, and the average exit side tension and the Substituting the measured value of the rolling load into a prediction formula representing the plate end portion exit side tension, calculating the control amount of the shape control means so that the plate end portion exit side tension is equal to or less than the fracture limit value, The shape control method in cold rolling according to claim 2, wherein the strip end side tension is controlled by correcting the control amount of the shape control means to the calculated control amount.
請求項5に記載の発明は、請求項3記載の冷間圧延における形状制御方法において、さらに、圧延材の圧延中に前記圧延荷重を連続的に測定し、前記平均出側張力、前記圧延荷重の測定値および前記素材クラウン量を前記板端部出側張力を表す予測式に代入し、前記板端部出側張力が前記破断限界値以下となるように前記形状制御手段の制御量を算出し、前記形状制御手段の制御量を算出された前記制御量に補正することで前記板端部出側張力を制御することを特徴とする請求項3記載の冷間圧延における形状制御方法である。 The invention according to claim 5 is the shape control method in cold rolling according to claim 3, and further measures the rolling load continuously during rolling of the rolled material, the average delivery tension, the rolling load And the amount of the material crown is substituted into a prediction formula representing the plate end portion exit side tension, and the control amount of the shape control means is calculated so that the plate end portion exit side tension is equal to or less than the fracture limit value. 4. The shape control method in cold rolling according to claim 3, wherein the strip end side tension is controlled by correcting the control amount of the shape control means to the calculated control amount. .
本発明においては、形状検出器の設置されていない冷間タンデムミルのスタンド間においても板厚制御と干渉することなく、板破断を防止することが可能である。 In the present invention, it is possible to prevent the breakage of the plate without interfering with the plate thickness control even between the stands of the cold tandem mill where no shape detector is installed.
本発明者らは、板端部出側張力を表す予測式を用いて板端部出側張力を算出するとともに、算出した板端部出側張力が破断限界値以下となるように形状制御手段の制御量を設定または補正することにより板端部出側張力を制御し、形状検出器の設置されていない冷間タンデムミルのスタンド間においても板厚制御と干渉することなく、板破断を防止可能な形状制御方法を種々調査検討した。 The inventors calculate the plate end portion exit side tension using a prediction formula representing the plate end portion exit side tension, and shape control means so that the calculated plate end portion exit side tension is equal to or less than the fracture limit value. Set or correct the control amount of the plate to control the tension at the end of the plate end, and prevent breakage without interfering with the plate thickness control even between cold tandem mill stands where no shape detector is installed. Various possible shape control methods were investigated.
その結果、板端部出側張力が平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量とほぼ線形関係にあることに着目し、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として板端部出側張力を表す予測式を用いて形状制御手段の制御量を制御することにより、板端部出側張力を破断限界値以下とすることを可能とした。その結果、形状検出器の設置されていない冷間タンデムミルのスタンド間においても板厚制御と干渉することなく、板破断を防止することを見出した。 As a result, paying attention to the fact that the plate end exit tension is almost linearly related to the average exit tension, rolling load, material crown amount, and control amount of the shape control means, the average exit side tension, rolling load, material crown amount And controlling the control amount of the shape control means using a predictive equation representing the plate end portion exit side tension with the control amount of the shape control means as a variable, thereby making the plate end portion exit side tension below the fracture limit value. It was possible. As a result, it has been found that plate breakage is prevented without interfering with plate thickness control even between cold tandem mill stands where no shape detector is installed.
以下、4スタンドからなる冷間タンデムミルのNo.3スタンドに設置された形状制御手段としてワークロールベンダー、中間ロールベンダーおよび中間ロールシフトを有する6段圧延機を対象に本発明の形状制御方法について説明するが、他のスタンドに設置された圧延機や4段圧延機等の6段圧延機以外の圧延機に対しても同様に本発明が適用されることは勿論である。 Hereinafter, the shape control method of the present invention is intended for a 6-roll mill having a work roll bender, an intermediate roll bender and an intermediate roll shift as a shape control means installed in No. 3 stand of a cold tandem mill consisting of 4 stands. Of course, the present invention is similarly applied to a rolling mill other than a six-high rolling mill such as a rolling mill or a four-high rolling mill installed in another stand.
板端部出側張力Teは、式(1)のように平均出側張力Tavと圧延形状による張力差(板端部出側張力と平均出側張力との差)ΔTとの和で表される。
Te=Tav+ΔT (1)
The plate end portion exit side tension Te is expressed by the sum of the average exit side tension Tav and the tension difference due to the rolling shape (difference between the plate end portion exit side tension and the average exit side tension) ΔT as shown in Equation (1). The
Te = Tav + ΔT (1)
そして、板幅方向の張力差から板幅方向の伸び率差を算出するという形状検出器の原理から明らかなように、ヤング率をE、板幅方向の平均値に対する板端部の伸び率差をΔεとすると、圧延形状による張力差ΔTは式(2)で表される。
ΔT=E・Δε・(−1) (2)
Then, as is apparent from the principle of the shape detector that calculates the elongation difference in the plate width direction from the tension difference in the plate width direction, the Young's modulus is E, and the difference in elongation at the plate edge relative to the average value in the plate width direction. Is Δε, the tension difference ΔT due to the rolling shape is expressed by equation (2).
ΔT = E · Δε · (−1) (2)
圧延材の形状に及ぼす影響要因には、圧延材寸法、材質、潤滑状態、前後方張力、圧延荷重、形状制御手段の制御量、素材クラウン量、圧延前形状等がある。このうち、圧延材寸法については板厚、板幅毎にテーブル区分すると、区分内での圧延材寸法の変化が形状に及ぼす影響を小さくすることができる。圧延材の形状には、材質、潤滑状態及び前後方張力が影響するが、その影響のほとんどは圧延荷重を介したロール撓みの変化によって生じる。 Factors affecting the shape of the rolled material include the rolled material size, material, lubrication state, front / rear tension, rolling load, control amount of the shape control means, material crown amount, pre-rolling shape, and the like. Among these, when the rolled material dimensions are divided into tables for each plate thickness and width, the influence of changes in the rolled material dimensions within the sections on the shape can be reduced. The shape of the rolled material is affected by the material, the lubrication state, and the front / rear tension, but most of the influence is caused by changes in roll deflection due to the rolling load.
また、スキンパス圧延のように圧下率が小さい場合には圧延前形状の影響は大きいが、圧下率5%以上の通常の冷間圧延においては圧延前形状の影響は小さい。したがって、形状変化に及ぼす主要因は、圧延荷重、素材クラウン量、形状制御手段の制御量ということができる。 In addition, when the rolling reduction is small as in skin pass rolling, the influence of the shape before rolling is large, but in normal cold rolling with a rolling reduction of 5% or more, the influence of the shape before rolling is small. Therefore, it can be said that the main factors affecting the shape change are the rolling load, the material crown amount, and the control amount of the shape control means.
そこで、圧延荷重、素材クラウン量、形状制御手段の制御量が圧延形状に及ぼす定量的な影響について検討した。ここで「形状制御手段」とは、ロールベンダー、ロールシフト、圧下率・圧延荷重、スポットクラーント等の一部またはこれらの全部を指す。 Therefore, the quantitative effects of the rolling load, the material crown amount, and the control amount of the shape control means on the rolling shape were examined. Here, the “shape control means” refers to a part or all of a roll bender, a roll shift, a rolling reduction / rolling load, a spot clant, and the like.
図1は、圧延荷重Pが板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す図である。圧延荷重の変化は、ロール撓みの変化となって現れ、圧延材の形状を変化させる。圧延荷重とロール撓み量との関係は弾性領域における変形を対象としていることからほぼ線形的な関係にある。したがって、板幅方向の平均値に対する板端部の伸び率差Δεも圧延荷重Pと線形関係にあることがわかる(図1参照)。 FIG. 1 is a diagram showing the influence of the rolling load P on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The change in rolling load appears as a change in roll deflection and changes the shape of the rolled material. The relationship between the rolling load and the amount of roll deflection is almost linear since it is intended for deformation in the elastic region. Therefore, it can be seen that the elongation difference Δε at the plate edge relative to the average value in the plate width direction is also linearly related to the rolling load P (see FIG. 1).
図2は、ワークロールベンダー力Wbが板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す図である。形状制御手段であるワークロールベンダーも圧延荷重と同様にロール撓みを変化させて圧延形状を変化させるものである。したがって、ワークロールベンダー力Wbと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある(図2参照)。 FIG. 2 is a diagram showing the influence of the work roll bender force Wb on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The work roll bender, which is a shape control means, also changes the rolling shape by changing the roll deflection similarly to the rolling load. Therefore, there is also a linear relationship between the work roll bender force Wb and the elongation difference Δε at the plate end with respect to the average value in the plate width direction (see FIG. 2).
図3は、中間ロールベンダー力Ibが板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す図である。中間ロールベンダーも圧延荷重と同様にロール撓みを変化させて圧延形状を変化させるものである。したがって中間ロールベンダー力Ibと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある(図3参照)。 FIG. 3 is a diagram showing the influence of the intermediate roll bender force Ib on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The intermediate roll bender also changes the rolling shape by changing the roll deflection in the same manner as the rolling load. Therefore, there is also a linear relationship between the intermediate roll bender force Ib and the elongation difference Δε at the plate end with respect to the average value in the plate width direction (see FIG. 3).
図4は、中間ロールシフト位置Lsが板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す図である。中間ロールシフト位置をテーパ開始点から板端までの距離で定義し、テーパ開始点が板端よりも内側にある場合を負、外側にある場合を正とする。中間ロールシフトもワークロールと中間ロール間の接触圧力分布を変化させることによりロール撓みを変化させて圧延形状を変化させるものである。したがって、中間ロールシフト位置Lsと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある(図4参照)。 FIG. 4 is a diagram showing the influence of the intermediate roll shift position Ls on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The intermediate roll shift position is defined by the distance from the taper start point to the plate end. The case where the taper start point is inside the plate end is negative, and the case where the taper start point is outside is positive. The intermediate roll shift also changes the rolling shape by changing the roll deflection by changing the contact pressure distribution between the work roll and the intermediate roll. Therefore, there is also a linear relationship between the intermediate roll shift position Ls and the elongation difference Δε at the plate end with respect to the average value in the plate width direction (see FIG. 4).
図5は、素材クラウン量Crが板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す図である。素材クラウン量は、板端部と板幅中央の板厚差で定義した。図5に示すように、素材クラウン量Crと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にあることがわかった。 FIG. 5 is a diagram showing the influence of the material crown amount Cr on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The amount of material crown was defined as the difference in plate thickness between the plate edge and the plate width center. As shown in FIG. 5, it was found that the material crown amount Cr and the elongation difference Δε at the plate end with respect to the average value in the plate width direction are also in a linear relationship.
以上の各要因相互の関係から、ae、be、ce、de、ee、feを影響係数として、式(3)で板幅方向の平均値に対する板端部の伸び率差Δεを表すことができる。
Δε=ae・P+be・Cr+ce・Wb+de・Ib+ee・Ls+fe (3)
From the relationship between the above factors, the elongation difference Δε at the plate edge portion with respect to the average value in the plate width direction can be expressed by Equation (3) using ae, be, ce, de, ee, fe as influence coefficients. .
Δε = ae · P + be · Cr + ce · Wb + de · Ib + ee · Ls + fe (3)
影響係数ae、be、ce、de、ee、feは、板幅、板厚及び材質等の製造品種によって定まる定数であり、実験又はロールの弾性変形解析と素材の塑性変形解析とを連成させた解析モデルによるシミュレーションからそれぞれ求められる。各影響係数は、板幅、板厚、材質等の各区分毎にテーブル設定し、或いは板幅、板厚、材質等の関数として数式化される。 The influence coefficients ae, be, ce, de, ee, and fe are constants determined by the production type such as the plate width, plate thickness, and material, and are combined with the experiment or the elastic deformation analysis of the roll and the plastic deformation analysis of the material. It is obtained from the simulation by the analysis model. Each influence coefficient is set in a table for each section such as a plate width, a plate thickness, and a material, or expressed as a function as a function of the plate width, the plate thickness, the material, and the like.
各影響係数は具体的には、ae:圧延荷重と伸び率差の関係を表す直線の傾き(図1を参照)、be:素材クラウン量と伸び率差の関係を表す直線の傾き(図5参照)、ce:ワークロールベンダー力と伸び率差の関係を表す直線の傾き(図2参照)、de:中間ロールベンダー力と伸び率差の関係を表す直線の傾き(図3参照)、ee:中間ロールシフト位置と伸び率差の関係を表す直線の傾き(図4参照)、fe:定数項である。 Specifically, each influence coefficient includes: ae: slope of a straight line representing the relationship between rolling load and elongation difference (see FIG. 1); be: slope of a straight line representing the relationship between the amount of material crown and elongation difference (FIG. 5). See), ce: slope of a straight line representing the relationship between work roll bender force and elongation difference (see FIG. 2), de: slope of a straight line representing the relationship between intermediate roll bender force and elongation difference (see FIG. 3), ee : Slope of a straight line representing the relationship between the intermediate roll shift position and elongation difference (see FIG. 4), fe: constant term.
なお、ワークロール径400mm程度が一般的な6段圧延機やワークロール径100mm以下が一般的な20段圧延機等では、ワークロールに大きな撓み変形が生じやすいため、圧延荷重が圧延材の形状に及ぼす影響は大きいが、素材クラウン量が圧延材の形状に及ぼす影響は小さくなりやすい。この場合には、式(3)において素材クラウン量Crをゼロとして素材クラウン量の影響項を無視することも可能である。 In addition, in a 6-high rolling mill having a general work roll diameter of about 400 mm and a general 20-high rolling mill having a work roll diameter of 100 mm or less, a large bending deformation is likely to occur in the work roll. However, the effect of the material crown amount on the shape of the rolled material tends to be small. In this case, it is also possible to ignore the influence term of the material crown amount by setting the material crown amount Cr to zero in the equation (3).
式(1)〜(3)より、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として板端部出側張力を表す予測式は式(4)で表される。
Te=Tav−E(ae・P+be・Cr+ce・Wb+de・Ib+ee・Ls+fe) (4)
From Equations (1) to (3), a prediction equation representing the plate end portion exit side tension with the average exit side tension, rolling load, material crown amount and control amount of the shape control means as variables is expressed by Equation (4). .
Te = Tav−E (ae · P + be · Cr + ce · Wb + de · Ib + ee · Ls + fe) (4)
次に、タンデムミル出側の板厚0.3mm〜0.5mm、板幅850mm〜1050mmの条件で板端部出側張力と板破断の有無との関係について調査した。図6は、圧延条件(条件1〜条件10)毎にパラメータ(圧延荷重、素材クラウン量、平均出側張力、ワークロールベンダー力、中間ロールベンダー力、中間ロールシフト位置)が設定されている。そして各条件を上記式(4)により板端部出側張力の予測値を計算し、板破断の有無を調査した。 Next, the relationship between the plate end portion exit side tension and the presence or absence of plate breakage was investigated under the conditions of a plate thickness of 0.3 mm to 0.5 mm and a plate width of 850 mm to 1050 mm on the tandem mill exit side. In FIG. 6, parameters (rolling load, material crown amount, average delivery side tension, work roll bender force, intermediate roll bender force, intermediate roll shift position) are set for each rolling condition (condition 1 to condition 10). And the predicted value of the board edge part exit side tension was calculated by said Formula (4) for each condition, and the presence or absence of the board breakage was investigated.
その結果を図7に示す。図7に示すように、条件1〜5までは板破断は生じなかったものの、条件6〜10においては板破断が生じた。つまり、板端部出側張力に破断限界値が存在し、板端部出側張力が破断限界値以上になると板破断を生じることが判明した。このように、各パラメータと式(4)により、板端部出側張力の予測値を得ることができ、得られた予測値から板破断が生じるか否かを予測することができる。 The result is shown in FIG. As shown in FIG. 7, plate breakage did not occur under conditions 1 to 5, but plate breakage occurred under conditions 6 to 10. In other words, it has been found that there is a break limit value in the plate end portion exit side tension, and that the plate end break occurs when the plate end portion exit side tension exceeds the break limit value. Thus, the predicted value of the plate end portion exit side tension can be obtained from each parameter and the equation (4), and it can be predicted from the obtained predicted value whether or not the plate breaks.
すなわち、式(4)により算出される板端部出側張力が破断限界値以下となるように形状制御手段の制御量を設定または補正すれば、板破断を防止することが可能となる。 That is, if the control amount of the shape control means is set or corrected so that the plate end portion exit side tension calculated by the equation (4) is equal to or less than the fracture limit value, the plate breakage can be prevented.
形状制御手段の初期設定については、圧延荷重Pを、Bland&Fordの式、Hillの式等の圧延荷重式を用いて予測し、平均出側張力Tav、圧延荷重の予測値Pを、および素材クラウン量の測定値Crを板端部出側張力Teを表す予測式(4)に代入し、板端部出側張力Teが破断限界値以下となるようにワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsを算出し、設定する。 For the initial setting of the shape control means, the rolling load P is predicted using a rolling load formula such as the Brand & Ford formula, the Hill formula, etc., and the average exit side tension Tav, the predicted value P of the rolling load, and the amount of material crown The measured value Cr is substituted into the prediction formula (4) representing the plate end portion exit side tension Te, and the work roll bender force Wb and the intermediate roll bender force Ib are set so that the plate end portion exit side tension Te is not more than the fracture limit value. The intermediate roll shift position Ls is calculated and set.
また、圧延中の圧延材の形状制御においては、圧延材の圧延中に圧延荷重を連続的に測定し、平均出側張力Tav、圧延荷重の測定値Pおよび素材クラウンの測定値Crを板端部出側張力Teを表す予測式(4)に代入し、板端部出側張力Teが破断限界値以下となるようにワークロールベンダー力Wbおよび中間ロールベンダー力Ib、中間ロールシフト位置Lsを算出し、補正する。 In the shape control of the rolled material during rolling, the rolling load is continuously measured during rolling of the rolled material, and the average delivery side tension Tav, the measured value P of the rolling load, and the measured value Cr of the material crown are measured at the plate edge. The work roll bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls are substituted into the prediction formula (4) representing the partial exit side tension Te so that the plate end portion exit side tension Te is equal to or less than the fracture limit value. Calculate and correct.
以上の説明では、ワークロールベンダー、中間ロールベンダーおよび中間ロールシフトの三つの形状制御手段の制御量を設定または補正することを前提としたが、使用する形状制御手段の組合せは、ワークロールベンダー、中間ロ−ルベンダーおよび中間ロールシフトの組合せに限ったものではない。つまり、形状制御手段として、ワークロールベンダー、中間ロールベンダーおよび中間ロールシフトを有する6段圧延機においても、圧延材の圧延中の形状制御においては、応答性の悪い中間ロールシフトを除いたワークロールベンダーおよび中間ロールベンダーの二つの形状制御手段の制御量を補正してもよい。その場合、式(4)において中間ロールシフト位置Lsを初期設定値に固定することが好ましい。 In the above description, it is assumed that the control amounts of the three shape control means of the work roll bender, the intermediate roll bender, and the intermediate roll shift are set or corrected. However, the combination of the shape control means to be used is the work roll bender, It is not limited to a combination of an intermediate roll bender and an intermediate roll shift. That is, even in a six-high rolling mill having a work roll bender, an intermediate roll bender, and an intermediate roll shift as shape control means, the work roll excluding the intermediate roll shift having poor responsiveness in shape control during rolling of the rolled material. The control amounts of the two shape control means of the bender and the intermediate roll bender may be corrected. In that case, it is preferable to fix the intermediate roll shift position Ls to the initial set value in the equation (4).
また、4段圧延機のように形状制御手段がワークロールベンダーのみの場合には、式(4)の代わりに式(5)を用い、板端部出側張力Teが破断限界値以下となるようにワークロールベンダー力Wbを算出し、設定または補正する。
Te=Tav−E(ae・P+be・Cr+ce・Wb+fe) (5)
Further, when the shape control means is only a work roll bender as in the case of a four-high rolling mill, the formula (5) is used instead of the formula (4), and the plate end portion exit side tension Te is equal to or less than the fracture limit value. Thus, the work roll bender force Wb is calculated and set or corrected.
Te = Tav−E (ae · P + be · Cr + ce · Wb + fe) (5)
4スタンドからなる冷間タンデムミルのNo.3スタンドに設置された6段圧延機においてタンデムミル出側の板厚が0.3mm〜0.5mmの冷延鋼板500コイルを圧延する際に本発明を適用した例を説明する。 When rolling a cold-rolled steel sheet 500 coil having a thickness of 0.3 mm to 0.5 mm on the tandem mill outlet side in a 6-high rolling mill installed in No. 3 stand of a cold tandem mill consisting of 4 stands, the present invention An example in which is applied will be described.
6段圧延機1は、図8に示すように、ワークロールベンダー2、中間ロールベンダー3、中間ロールシフト4を形状制御手段として備えている。上位コンピュータ5には予め圧延条件(例えば、ワークロールの回転速度、ワークロール径、摩擦係数、板幅、入出側板厚、平均入出側張力、圧延材の変形抵抗等)が入力されており、圧延荷重式に従って圧延荷重Pが算出される。 As shown in FIG. 8, the six-high rolling mill 1 includes a work roll bender 2, an intermediate roll bender 3, and an intermediate roll shift 4 as shape control means. The host computer 5 has previously input rolling conditions (for example, work roll rotation speed, work roll diameter, friction coefficient, plate width, input / output side thickness, average input / output side tension, deformation resistance of the rolled material, etc.) The rolling load P is calculated according to the load equation.
プロセスコンピュータ6では板幅、板厚及び材質の区分毎に予め算出した影響係数(ae、be、ce、de、ee、fe)と素材クラウンCrの測定値を取り込んでおり、板端部出側張力Teを表す予測式(4)で板端部出側張力Teが破断限界値以下となるようにワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsを算出し、初期設定した。なお、破断限界値については、図7で求めた値を採用した。 The process computer 6 captures the influence coefficient (ae, be, ce, de, ee, fe) and the measured value of the material crown Cr that are calculated in advance for each of the plate width, plate thickness, and material classification, and the plate edge exit side The work roll bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls are calculated and initialized so that the plate end portion exit side tension Te is equal to or less than the fracture limit value by the prediction formula (4) representing the tension Te. . In addition, about the fracture | rupture limit value, the value calculated | required in FIG. 7 was employ | adopted.
また、圧延開始後は荷重計7で圧延荷重Pを連続的に測定し、板端部出側張力Teを表す予測式(4)で板端部出側張力Teが破断限界値以下となるようにワークロールベンダー力Wbおよび中間ロールベンダー力Ibを算出し、補正した。なお、中間ロールシフト位置Lsは初期設定値に固定した。 In addition, after the start of rolling, the rolling load P is continuously measured with the load meter 7 so that the plate end exit side tension Te is equal to or less than the fracture limit value according to the prediction formula (4) representing the plate end exit side tension Te. The work roll bender force Wb and the intermediate roll bender force Ib were calculated and corrected. The intermediate roll shift position Ls was fixed at an initial set value.
その結果、従来は500コイルにつき3コイルで板破断を生じていたが、本発明法を適用することにより、500コイルはいずれも板破断を生じなかった。また、平均出側張力の代わりに形状制御手段の制御量を設定または補正したことで、板厚制御と干渉して板厚が変動することもなかった。 As a result, the plate breakage was conventionally caused by 3 coils per 500 coils, but none of the 500 coils caused the plate breakage by applying the method of the present invention. In addition, since the control amount of the shape control means was set or corrected instead of the average delivery side tension, the thickness did not fluctuate due to interference with the thickness control.
このように、本発明の板端部出側張力を表す予測式を用いて板端部出側張力を算出するとともに、算出した板端部出側張力が破断限界値以下となるように形状制御手段の制御量を設定または補正することで板端部出側張力を制御することにより、形状検出器の設置されていない冷間タンデムミルのスタンド間においても板厚制御と干渉することなく、板破断を防止することが可能となった。 As described above, the plate end portion exit side tension is calculated using the prediction formula representing the plate end portion exit side tension of the present invention, and the shape control is performed so that the calculated plate end portion exit side tension is equal to or less than the fracture limit value. By controlling the tension at the plate end by setting or correcting the control amount of the means, the plate thickness can be controlled without interfering with the plate thickness control even between cold tandem mill stands where no shape detector is installed. It became possible to prevent breakage.
1:6段圧延機
2:ワークロールベンダー
3:中間ロールベンダー
4:中間ロールシフト
5:上位コンピュータ
6:プロセスコンピュータ
7:荷重計
8:圧延材
9:ワークロール
10:中間ロール
11:バックアップロール
1: Six-high rolling mill 2: Work roll bender 3: Intermediate roll bender 4: Intermediate roll shift 5: Upper computer 6: Process computer 7: Load meter 8: Rolled material 9: Work roll 10: Intermediate roll 11: Backup roll
Claims (5)
前記板端部出側張力を表す予測式を予め作成し、該予測式により算出した前記板端部出側張力が前記破断限界値以下となるように形状制御手段の制御量を算出し、
算出された前記形状制御手段の制御量を用いて前記板端部出側張力を設定または補正することで制御する
ことを特徴とする冷間圧延における形状制御方法。 Obtain in advance the rupture limit value of the exit end tension of the plate edge where the rupture occurs in the rolled material,
Preliminarily creating a prediction formula representing the plate end portion exit side tension, calculating the control amount of the shape control means so that the plate end portion exit side tension calculated by the prediction formula is equal to or less than the fracture limit value,
A shape control method in cold rolling, wherein the control is performed by setting or correcting the sheet end portion exit side tension using the calculated control amount of the shape control means.
平均出側張力、圧延荷重および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、
平均出側張力および圧延荷重の予測値を前記予測式に代入し、板端部出側張力が前記破断限界値以下となるように前記形状制御手段の制御量を算出し、
算出された前記形状制御手段の制御量を用いて前記板端部出側張力を制御する
ことを特徴とする冷間圧延における形状制御方法。 Obtain in advance the rupture limit value of the exit end tension of the plate edge where the rupture occurs in the rolled material,
Preliminarily creating a prediction formula representing the sheet end portion exit side tension with the average exit side tension, rolling load and control amount of the shape control means as variables,
Substituting the predicted value of the average exit side tension and rolling load into the prediction formula, and calculating the control amount of the shape control means so that the sheet end portion exit side tension is less than or equal to the fracture limit value,
The shape control method in cold rolling, wherein the sheet end portion exit side tension is controlled using the calculated control amount of the shape control means.
平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、該平均出側張力、該圧延荷重の予測値および該素材クラウン量を前記板端部出側張力を表す予測式に代入し、
前記板端部出側張力が前記破断限界値以下となるように前記形状制御手段の制御量を算出し、
算出された前記形状制御手段の制御量を用いて前記板端部出側張力を制御する
ことを特徴とする冷間圧延における形状制御方法。 Determine in advance the rupture limit value of the plate end portion exit tension that causes plate rupture in the rolled material,
A prediction formula representing the sheet end portion exit side tension is created in advance with the average exit side tension, rolling load, material crown amount and control amount of the shape control means as variables, and the average exit side tension, predicted value of the rolling load and Substituting the material crown amount into a prediction formula representing the exit end tension of the plate end,
Calculate the control amount of the shape control means so that the plate end portion exit side tension is less than or equal to the fracture limit value,
The shape control method in cold rolling, wherein the sheet end portion exit side tension is controlled using the calculated control amount of the shape control means.
前記平均出側張力および前記圧延荷重の測定値を前記板端部出側張力を表す予測式に代入し、
前記板端部出側張力が前記破断限界値以下となるように前記形状制御手段の制御量を算出し、
前記形状制御手段の制御量を算出された前記制御量に補正することで前記板端部出側張力を制御する
ことを特徴とする請求項2記載の冷間圧延における形状制御方法。 Furthermore, the rolling load is continuously measured during rolling of the rolled material,
Substituting the measured value of the average exit side tension and the rolling load into a prediction formula representing the end side exit side tension of the plate,
Calculate the control amount of the shape control means so that the plate end portion exit side tension is less than or equal to the fracture limit value,
The shape control method in cold rolling according to claim 2, wherein the strip end side tension is controlled by correcting the control amount of the shape control means to the calculated control amount.
前記平均出側張力、前記圧延荷重の測定値および前記素材クラウン量を前記板端部出側張力を表す予測式に代入し、
前記板端部出側張力が前記破断限界値以下となるように前記形状制御手段の制御量を算出し、
前記形状制御手段の制御量を算出された前記制御量に補正することで前記板端部出側張力を制御する
ことを特徴とする請求項3記載の冷間圧延における形状制御方法。 Furthermore, the rolling load is continuously measured during rolling of the rolled material,
Substituting the average exit side tension, the measured value of the rolling load, and the material crown amount into the prediction formula representing the exit end tension of the plate end,
Calculate the control amount of the shape control means so that the plate end portion exit side tension is less than or equal to the fracture limit value,
The shape control method in cold rolling according to claim 3, wherein the sheet end portion exit side tension is controlled by correcting the control amount of the shape control means to the calculated control amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016053905A JP6685785B2 (en) | 2016-03-17 | 2016-03-17 | Shape control method in cold rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016053905A JP6685785B2 (en) | 2016-03-17 | 2016-03-17 | Shape control method in cold rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017164794A true JP2017164794A (en) | 2017-09-21 |
JP6685785B2 JP6685785B2 (en) | 2020-04-22 |
Family
ID=59909713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016053905A Active JP6685785B2 (en) | 2016-03-17 | 2016-03-17 | Shape control method in cold rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6685785B2 (en) |
-
2016
- 2016-03-17 JP JP2016053905A patent/JP6685785B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6685785B2 (en) | 2020-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104785539A (en) | Tension optimizing and compensating method for adjusting rolling force | |
JP5811051B2 (en) | Method for cold rolling metal plate and method for producing metal plate | |
CN104923568A (en) | Control method for preventing strip breaking during thin steel strip cold rolling process | |
CN111215455A (en) | Device and method for controlling flat plate shape of hot-rolled thin strip steel | |
JP4948301B2 (en) | Shape control method in cold rolling | |
JP4986463B2 (en) | Shape control method in cold rolling | |
JP6644593B2 (en) | Shape control method in cold rolling | |
KR100758237B1 (en) | Control method of edge drop of tendem mill | |
JP6685785B2 (en) | Shape control method in cold rolling | |
JP6835008B2 (en) | Cold rolling method of metal strip | |
JP3649208B2 (en) | Tandem rolling equipment control method and tandem rolling equipment | |
JP4623738B2 (en) | Shape control method in cold rolling | |
JP4330134B2 (en) | Shape control method in cold rolling | |
WO2018016533A1 (en) | Calculation device and calculation method | |
JP4813014B2 (en) | Shape control method for cold tandem rolling mill | |
JP6644592B2 (en) | Shape control method in cold rolling | |
KR101439682B1 (en) | Apparatus and method of controlling profile of black plate | |
JP5565189B2 (en) | Rolling shape control method in continuous cold rolling mill | |
JP3252751B2 (en) | Strip width control method in cold tandem rolling | |
JP4227686B2 (en) | Edge drop control method during cold rolling | |
JP6251334B1 (en) | Arithmetic apparatus and arithmetic method | |
JP2002292414A (en) | Shape control method in cold rolling | |
WO2024042936A1 (en) | Cold-rolling method and cold-rolling equipment | |
JP2005319492A (en) | Method for controlling shape in cold rolling | |
CN111451294B (en) | Method for improving strip shape precision of hot-rolled strip steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190702 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6685785 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |