JP4948301B2 - Shape control method in cold rolling - Google Patents
Shape control method in cold rolling Download PDFInfo
- Publication number
- JP4948301B2 JP4948301B2 JP2007189176A JP2007189176A JP4948301B2 JP 4948301 B2 JP4948301 B2 JP 4948301B2 JP 2007189176 A JP2007189176 A JP 2007189176A JP 2007189176 A JP2007189176 A JP 2007189176A JP 4948301 B2 JP4948301 B2 JP 4948301B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- amount
- tension
- rolling load
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
Description
本発明は、圧延された金属帯の板形状が目標形状に一致するように圧延条件を適正化する方法に関する。 The present invention relates to a method for optimizing rolling conditions so that the plate shape of a rolled metal strip matches a target shape.
冷間圧延では、圧延機出側に配置された形状検出器で圧延中の圧延材形状を測定し、測定結果に基づいてロールベンダー,ロールシフト等の形状制御手段の制御量を補正する方法が一般的に採用されている。しかし、圧延機から離れた位置に配置された形状検出器で圧延材の形状を測定することが多く、そのため検出遅れが生じ、応答性の高い制御が困難なこともある。
高速応答性で形状制御するため、圧延荷重の変動が圧延材の形状変化に影響を及ぼしているとの前提に立って、板形状の直接測定に代えて圧延荷重を測定し、圧延荷重の測定値に基づいて各形状制御手段の制御量を補正する種々の方式が提案されている(例えば特許文献1,2,3参照)。
In cold rolling, there is a method in which the shape of a rolled material is measured with a shape detector arranged on the delivery side of the rolling mill, and the control amount of shape control means such as roll bender and roll shift is corrected based on the measurement result. Generally adopted. However, the shape of the rolled material is often measured with a shape detector arranged at a position distant from the rolling mill, so that a detection delay occurs and control with high responsiveness may be difficult.
In order to control the shape with high-speed response, the rolling load is measured instead of the direct measurement of the plate shape on the premise that the fluctuation of the rolling load affects the shape change of the rolled material, and the rolling load is measured. Various methods for correcting the control amount of each shape control means based on the value have been proposed (see, for example,
何れの方式も、圧延形状を圧延荷重の関数で表わした圧延形状予測式に基づいて形状制御しているが、圧延形状予測式では板幅方向の1ヶ所の形状のみで圧延形状を評価している。そのため、圧延荷重が大きく変動する場合、板幅全体にわたって良好な形状を得がたい。
このような問題を解消するため、本発明者等は、板幅方向に沿った複数箇所で伸び率差を取り込んだ数式モデルを使用することにより、圧延荷重の変動に応じて形状制御手段の制御量を補正し、板幅全体にわたって良好な形状をもつ鋼帯を製造する方法を開発し、特許文献4で紹介した。
In any method, the shape of the rolled shape is controlled based on the rolling shape prediction formula expressed as a function of the rolling load. In the rolling shape prediction formula, the rolling shape is evaluated only with one shape in the sheet width direction. Yes. Therefore, when the rolling load fluctuates greatly, it is difficult to obtain a good shape over the entire plate width.
In order to solve such a problem, the present inventors use a mathematical model that incorporates elongation difference at a plurality of locations along the sheet width direction, thereby controlling the shape control means in accordance with the rolling load variation. A method of correcting the amount and manufacturing a steel strip having a good shape over the entire plate width was developed and introduced in
この方法は、圧延中の形状制御を対象にしているが、圧延開始時に形状制御手段を初期設定するプリセット制御についても数式モデルをそのまま適用できる。
しかし、特許文献4で紹介した方法は、素材クラウンの影響を考慮することなく、圧延荷重及び形状制御手段の関数で形状予測式を表している。したがって、大径ワークロールを使用する4段圧延機等による圧延では、ワークロールのたわみ変形が小さく、素材クラウンの影響が大きくなる。このような圧延で形状検出器による形状の測定結果に基づいた圧延中の形状制御に先立って、数式モデルにより形状制御手段を初期設定すると、圧延の初期に形状不良が発生しやすい。また、形状検出器が設置されていない圧延機による圧延では、圧延荷重の変動に応じて形状制御手段の制御量を補正する場合、圧延開始時から圧延終了時まで素材クラウンの影響が考慮されていないため、コイル全長にわたって形状不良を生じることもある。
Although this method is intended for shape control during rolling, the mathematical model can be applied as it is to preset control for initially setting shape control means at the start of rolling.
However, the method introduced in
また、特許文献4で紹介した方法は、圧延前形状の影響が小さいことを前提としたものであり、圧延前形状が良好であったり、圧下率が大きく圧延前形状が残存しにくい場合には良好な形状が得られる。しかし、スキンパス圧延のように圧下率が小さい圧延条件においてこの方法を適用すると、圧延前形状が良好でない場合に圧延前形状が残存し、良好な形状が得られない場合がある。
このため、本発明者等は、素材クラウンと圧延前形状の両方の影響を取り込んだ数式モデルを用いてプリセット制御及び圧延中の形状制御を行うことにより、圧延開始時よりコイル全長にわたって良好な形状をもつ鋼帯を製造する方法を開発し、特許文献5で紹介した。
In addition, the method introduced in
For this reason, the present inventors perform preset control and shape control during rolling using a mathematical model that incorporates the effects of both the material crown and the shape before rolling, so that a better shape over the entire coil length than at the start of rolling. A method of manufacturing a steel strip having a thickness of 10 was developed and introduced in Patent Document 5.
特許文献5で紹介した方法は、形状制御手段の仕様範囲が広く、広範囲な圧延条件にわたって目標形状に制御できることを前提としたものであり、形状制御手段の能力が十分な場合には良好な形状が得られる。しかし、形状制御手段の仕様範囲が狭い場合には広範囲な圧延条件への対応が困難となり、良好な形状が得られない場合がある。特に、圧延荷重が大きく、形状制御手段の能力が不足する場合には、大きな耳伸び形状を生じる。
そこで、本発明者等は、ワークロールクラウン量の影響を取り込んだ数式モデルを用いて適正なワークロールクラウン量を算出し、ワークロールに付与することにより、広範囲な圧延条件に対応して圧延開始時よりコイル全長にわたって良好な形状をもつ鋼帯を製造する方法を開発し、特許文献6で提案した。
The method introduced in Patent Document 5 is based on the premise that the shape control means has a wide specification range and can be controlled to the target shape over a wide range of rolling conditions. If the ability of the shape control means is sufficient, the shape is good. Is obtained. However, when the specification range of the shape control means is narrow, it is difficult to cope with a wide range of rolling conditions, and a good shape may not be obtained. In particular, when the rolling load is large and the ability of the shape control means is insufficient, a large ear extension shape is generated.
Therefore, the present inventors calculated a proper work roll crown amount using a mathematical model incorporating the effect of the work roll crown amount, and applied the work roll to start rolling corresponding to a wide range of rolling conditions. From time to time, a method for producing a steel strip having a good shape over the entire length of the coil was developed and proposed in
特許文献6で提案した方法により特許文献5で紹介した方法に比べて、目標形状に制御でき良好な形状が得られる圧延条件の範囲が広がった。しかし、スキンパス圧延で伸び率が大きく異なり圧延荷重が大きく変化する場合のように、圧延条件が広範囲にわたる場合には、形状制御手段の能力が不足し、ワークロールクラウン量の適正化だけでは対応できない場合があった。
Compared with the method introduced in Patent Document 5 by the method proposed in
本発明は、このような問題を解消すべく案出されたものであり、形状に大きく影響する圧延荷重の変化を前後方張力の制御によって抑制することにより、形状制御手段の能力不足を補い、形状精度に優れた圧延材を高生産性で製造できる制御方法を提供することを目的とする。 The present invention has been devised to solve such problems, and by suppressing the change in rolling load that greatly affects the shape by controlling the front-rear tension, it compensates for the lack of capability of the shape control means, It aims at providing the control method which can manufacture the rolling material excellent in the shape accuracy with high productivity.
本発明の冷間圧延における形状制御方法は、その目的を達成するため、圧延荷重,形状制御手段の制御量,素材クラウン量,ワークロールクラウン量及び板端から距離が異なる複数の箇所における板幅中央部に対する圧延前素材の伸び率差を変数とし、板端から距離が異なる複数の箇所について板幅中央に対する圧延後の伸び率差を表す数式モデルと前方張力及び後方張力を変数とし圧延荷重を表す数式モデルを予め作成し、素材クラウン量とワークロールクラウン量及び圧延前素材の伸び率差の実測値を前記圧延後の伸び率差を表す数式モデルに代入し、圧延後の伸び率差が目標値に一致するように形状制御手段の制御量及び圧延荷重を算出するとともに、算出した圧延荷重と前記圧延荷重を表す数式モデルから得られる圧延荷重が一致するように前方張力及び後方張力を算出し、算出した形状制御手段の制御量,前方張力及び後方張力を設定することを特徴とする。 In order to achieve the object, the shape control method in the cold rolling according to the present invention has a rolling load, a control amount of the shape control means, a material crown amount, a work roll crown amount, and a plate width at a plurality of locations at different distances from the plate end. the growth rate difference before the rolling stock to the central portion as a variable, the mathematical model and the rolling load forward tension and backward tension to the variable representing the elongation difference after rolling with respect to the sheet width center for a plurality of locations at different distances from the plate end The mathematical model to represent is created in advance, the measured value of the material crown amount and the work roll crown amount and the elongation difference of the material before rolling are substituted into the mathematical model representing the elongation difference after rolling, and the elongation difference after rolling is The control amount of the shape control means and the rolling load are calculated so as to match the target value, and the calculated rolling load and the rolling load obtained from the mathematical model representing the rolling load match. Calculating a forward tension and backward tension to the control amount of the calculated shape control means, and setting the forward tension and backward tension.
また、前方張力及び後方張力の変更量を変数とし圧延荷重の変化量を表す数式モデルを予め作成しておくとともに、前記の形状制御方法により形状制御手段の制御量,前方張力及び後方張力を初期設定した後に、圧延中に圧延荷重を連続的に測定し、この測定値を前記圧延荷重の変化量を表す数式モデルに代入し、圧延荷重が目標値に一致するように前方張力及び後方張力を補正するとき、圧延中の形状制御も可能となる。 In addition, a mathematical model representing the amount of change in the rolling load is created in advance with the amount of change in the front tension and the rear tension as variables, and the control amount of the shape control means, the front tension and the rear tension are initialized by the above shape control method. After setting, the rolling load is continuously measured during rolling, and this measured value is substituted into the mathematical model representing the amount of change in the rolling load, and the front tension and the back tension are adjusted so that the rolling load matches the target value. When correcting, shape control during rolling is also possible.
本発明においては、前方張力及び後方張力を変数とし圧延荷重を表す数式モデルを用いて、形状に大きく影響する圧延荷重の変化を前後方張力の制御によって抑制している。そのため、広範囲な圧延条件に対応して形状制御手段の能力不足を補い、圧延開始からコイル全長にわたって良好な形状の圧延材が得られる。 In the present invention, a change in rolling load that greatly affects the shape is suppressed by controlling the front-rear tension using a mathematical model that represents the rolling load with the front tension and the rear tension as variables. Therefore, the shortage of the shape control means is compensated for a wide range of rolling conditions, and a rolled material having a good shape can be obtained over the entire length of the coil from the start of rolling.
本発明者らは、圧延荷重の変化を前後方張力の制御によって抑制することにより、広範囲な圧延条件に対応して良好な形状が得られるような冷間圧延の形状制御方法を種々調査検討した。その結果、圧延荷重が前方張力及び後方張力とほぼ線形関係にあることに着目し、圧延荷重を変数とし伸び率差を表す数式モデルにより適正な圧延荷重を算出するとともに、前方張力及び後方張力を変数とし圧延荷重を表す数式モデルを用いて前後方張力を制御することにより圧延荷重の適正化が可能となり、良好な形状をもつ圧延材が製造されることを見出した。
以下、4段圧延機を対象に本発明の形状制御方法について説明するが、6段以上の多段圧延機に対しても同様に本発明が適用されることは勿論である。
The present inventors have investigated and studied various cold rolling shape control methods that can obtain a good shape corresponding to a wide range of rolling conditions by suppressing changes in rolling load by controlling the front-rear tension. . As a result, paying attention to the fact that the rolling load has a substantially linear relationship with the front tension and the back tension, the rolling load is a variable and the appropriate rolling load is calculated by a mathematical model that represents the difference in elongation. It was found that the rolling load can be optimized by controlling the front / rear tension by using a mathematical model representing the rolling load as a variable, and a rolled material having a good shape can be produced.
Hereinafter, the shape control method of the present invention will be described for a four-high mill, but the present invention is naturally applicable to a multi-high mill having six or more stages.
耳伸び,中伸び等の単純な形状不良だけでなく、クォータ伸びや各種伸びが複雑に組み合わさった複合伸びを防止するためには、圧延形状を複数の指標で評価し制御することが要求される。
そこで、本発明においては、圧延形状を板端から距離が異なる複数の箇所における伸び率と板幅中央の伸び率との差で評価する。具体的には、板端部及びクォータ部の板幅中央に対する伸び率差εe及びεqで圧延形状を定義する。伸び率差εe及びεqは板端部の伸び率をele,クォータ部の伸び率をelq,板幅中央の伸び率をelcとするとき、それぞれ式(1)及び(2)で表される。
εe=ele−elc (1)
εq=elq−elc (2)
In order to prevent not only simple shape defects such as ear elongation and medium elongation, but also complex elongation that is a complex combination of quarter elongation and various elongations, it is required to evaluate and control the rolling shape with multiple indices. The
Therefore, in the present invention, the rolling shape is evaluated by the difference between the elongation rate at a plurality of locations at different distances from the plate edge and the elongation rate at the center of the plate width. Specifically, the rolling shape is defined by the elongation difference ε e and ε q with respect to the plate width center of the plate end portion and the quarter portion. The elongation difference epsilon e and epsilon q el elongation of the plate edge e, el q elongation quota portions, when the growth rate of sheet width center and el c, respectively formula (1) and (2) It is represented by
ε e = el e -el c (1)
ε q = el q −el c (2)
同様に、圧延前素材の伸び率差ε0e及びε0qは圧延前素材の板端部の伸び率をel0e,クォータ部の伸び率をel0q,板幅中央の伸び率をel0cとするとき、それぞれ式(3)及び(4)で表される。
ε0e=el0e−el0c (3)
ε0q=el0q−el0c (4)
なお、板端部及びクォータ部の測定位置については、形状を適切に表し、且つ精度の良い数式モデルが得られるように経験的に定められる。
Similarly, the elongation difference ε 0e and ε 0q of the material before rolling is defined as el 0e for the elongation of the plate end of the material before rolling, el 0q for the elongation of the quarter, and el 0c for the center of the sheet width . Are represented by equations (3) and (4), respectively.
ε 0e = el 0e -el 0c (3)
ε 0q = el 0q -el 0c (4)
It should be noted that the measurement positions of the plate end portion and the quarter portion are determined empirically so as to appropriately represent the shape and obtain an accurate mathematical model.
圧延材の形状に及ぼす影響要因には、圧延材寸法,材質,潤滑状態,前後方張力,圧延荷重,形状制御手段の制御量,素材クラウン量,圧延前形状,ワークロールクラウン量等がある。このうち、圧延材寸法については板厚,板幅毎にテーブル区分すると、区分内での圧延材寸法の変化が形状に及ぼす影響を小さくできる。材質,潤滑状態及び前後方張力は圧延材の形状に影響するが、その影響のほとんどは圧延荷重を介したロール撓みの変化によって生じる。
したがって、形状変化に及ぼす主要因は、圧延荷重,形状制御手段の制御量,素材クラウン量,圧延前形状及びワークロールクラウン量ということができる。そこで、圧延荷重,形状制御手段の制御量,素材クラウン量,圧延前形状及びワークロールクラウン量が圧延形状に及ぼす定量的な影響を検討した。
圧延荷重の変化は、ロール撓みの変化となって現れ、圧延材の形状を変化させる。圧延荷重とロール撓み量との関係は弾性領域における変形を対象としていることからほぼ線形的な関係にある。したがって、式(1),(2)で表される伸び率差εe,εqも図1に示すように圧延荷重Pと線形関係にある。
Factors affecting the shape of the rolled material include the rolled material size, material, lubrication state, front / rear tension, rolling load, control amount of the shape control means, material crown amount, pre-rolling shape, work roll crown amount, and the like. Among these, regarding the rolled material dimensions, if the table is divided for each plate thickness and width, the influence of the change in the rolled material size in the section on the shape can be reduced. The material, lubrication state, and front / rear tension affect the shape of the rolled material, but most of the effect is caused by changes in roll deflection through the rolling load.
Therefore, the main factors affecting the shape change can be referred to as rolling load, control amount of shape control means, material crown amount, pre-rolling shape, and work roll crown amount. Therefore, the quantitative effects of the rolling load, the control amount of the shape control means, the material crown amount, the shape before rolling and the work roll crown amount on the rolling shape were examined.
The change in rolling load appears as a change in roll deflection and changes the shape of the rolled material. The relationship between the rolling load and the amount of roll deflection is almost linear since it is intended for deformation in the elastic region. Therefore, the elongation differences ε e and ε q expressed by the equations (1) and (2) are also linearly related to the rolling load P as shown in FIG.
ワークロールベンダーも圧延荷重と同様にロール撓みを変化させて圧延形状を変化させるものであり、図2に示すようにワークロールベンダー力Bと伸び率差εe,εqとの間も線形関係にある。
素材クラウン量は板端部と板幅中央の板厚差で定義した。図3に示すように素材クラウン量Crと伸び率差εe,εqとの間も線形関係にある。
図4,5に示すように圧延前素材の伸び率差ε0e,ε0qと圧延後の伸び率差εe,εqとの間も線形関係にある。
ワークロールクラウン量はワークロール端とワークロール中央との直径差で定義した。図6に示すようにワークロールクラウン量Wrと伸び率差εe,εqとの間も線形関係にある。
The work roll bender also changes the rolling shape by changing the roll deflection in the same manner as the rolling load. As shown in FIG. 2, the linear relationship between the work roll bender force B and the elongation differences ε e and ε q is also obtained. It is in.
The amount of material crown was defined as the thickness difference between the plate edge and the center of the plate width. As shown in FIG. 3, the material crown amount Cr and the elongation differences ε e and ε q are also in a linear relationship.
As shown in FIGS. 4 and 5, the elongation differences ε 0e and ε 0q of the material before rolling and the elongation differences ε e and ε q after rolling are also in a linear relationship.
The amount of work roll crown was defined by the difference in diameter between the end of the work roll and the center of the work roll. As shown in FIG. 6, there is also a linear relationship between the work roll crown amount Wr and the elongation differences ε e and ε q .
以上の各要因相互の関係から、ae,be,ce,de,ee,fe,aq,bq,cq,dq,eq,fqを影響係数として、式(5)〜(6)で圧延形状予測式を表すことができる。
εe=ae・P+be・B+ce+de・Cr+ee・ε0e+fe・Wr (5)
εq=aq・P+bq・B+cq+dq・Cr+eq・ε0q+fq・Wr (6)
影響係数ae,be,ce,de,ee,fe,aq,bq,cq,dq,eq,fqは、板幅,板厚及び材質等の製造品種によって定まる定数であり、実験又はロールの弾性変形解析と素材の塑性変形解析とを連成させた解析モデルによるシミュレーションからそれぞれ求められる。各影響係数は、板幅,板厚,材質等の各区分毎にテーブル設定し、或いは板幅,板厚,材質等の関数として数式化される。
From the above relationship between the factors mutually, a e, b e, c e, d e, e e, f e, a q, b q, c q, d q, e q, the f q as influence coefficients, wherein The rolling shape prediction formula can be expressed by (5) to (6).
ε e = a e · P + b e · B + c e + d e · Cr + e e · ε 0e + f e · Wr (5)
ε q = a q · P + b q · B + c q + d q · Cr + e q · ε 0q + f q · Wr (6)
Influence coefficients a e , b e , c e , d e , e e , f e , a q , b q , c q , d q , e q , f q are production types such as plate width, plate thickness, and material It is a constant determined by the above equation, and is obtained from an experiment or a simulation using an analysis model in which an elastic deformation analysis of a roll and a plastic deformation analysis of a material are coupled. Each influence coefficient is set in a table for each section such as plate width, plate thickness, and material, or expressed as a function of plate width, plate thickness, material, and the like.
なお、ワークロール径400mm程度が一般的な6段圧延機やワークロール径100mm以下が一般的な20段圧延機等では、ワークロールに大きな撓み変形が生じやすいため圧延荷重の形状に及ぼす影響は大きいが、素材クラウンの形状に及ぼす影響は小さくなりやすい。この場合には、式(5),(6)において素材クラウン量Crをゼロとして素材クラウン量の影響項を無視することも可能である。
また、圧延前形状が良好であったり、圧下率が大きく圧延前形状が残存しにくい場合には、圧延前形状の形状に及ぼす影響は小さい。この場合には、式(5),(6)において圧延前素材の伸び率差ε0e,ε0qをゼロとして圧延前形状の影響項を無視することも可能である。
In addition, in a typical 6-high rolling mill having a work roll diameter of about 400 mm, a general 20-high rolling mill having a work roll diameter of 100 mm or less, and the like, the work roll is likely to be greatly deformed. Although large, the influence on the shape of the material crown tends to be small. In this case, in Equations (5) and (6), the material crown amount Cr can be set to zero and the influence term of the material crown amount can be ignored.
In addition, when the shape before rolling is good or the rolling reduction is large and the shape before rolling does not remain, the influence on the shape before rolling is small. In this case, in Equations (5) and (6), it is possible to ignore the influence terms of the shape before rolling by setting the elongation difference ε 0e and ε 0q of the material before rolling to zero.
次に前後方張力が圧延荷重に及ぼす定量的な影響を検討した。図7に示すように前後方張力のいずれも圧延荷重を低減する方向に作用し、圧延荷重Pと前方張力Tf及び後方張力Tbの間はほぼ線形関係にある。なお、後方張力Tbの方が前方張力Tfよりも圧延荷重との関係における直線の傾きが大きいのは、圧延材とロールの速度が一致する中立点の位置がロールバイトの中央よりも出側に寄ったところにあることから、後方張力の方が前方張力よりも圧延荷重に及ぼす影響が大きくなるためである。 Next, the quantitative effect of front / rear tension on rolling load was investigated. As shown in FIG. 7, any of the front and rear tensions acts in the direction of reducing the rolling load, and the rolling load P, the front tension T f, and the rear tension T b are in a substantially linear relationship. Incidentally, the direction of the rear tension T b is the slope of the straight line is large in relation to the rolling load, of the front tension T f is output than the center of the roll bite position of the neutral point the speed of the rolled material and the roll to match This is because the rear tension has a greater influence on the rolling load than the front tension because it is closer to the side.
したがって、xp,yp,zpを影響係数として、式(7)で圧延荷重予測式を表すことができる。
P=xp・Tf+yp・Tb+zp (7)
影響係数xp,yp,zpは、板幅,板厚及び材質等の製造品種によって定まる定数であり、実験又はロールの弾性変形解析と素材の塑性変形解析とを連成させた解析モデルによるシミュレーションからそれぞれ求められる。各影響係数は、板幅,板厚,材質等の各区分毎にテーブル設定し、或いは板幅,板厚,材質等の関数として数式化される。
Therefore, the rolling load prediction formula can be expressed by Expression (7) using x p , y p , and z p as influence coefficients.
P = x p · T f + y p · T b + z p (7)
The influence coefficients x p , y p , and z p are constants determined by the production type such as the sheet width, sheet thickness, and material, and are an analysis model that combines experiments or elastic deformation analysis of the roll and plastic deformation analysis of the material. It is obtained from the simulation by each. Each influence coefficient is set in a table for each section such as plate width, plate thickness, and material, or expressed as a function of plate width, plate thickness, material, and the like.
伸び率差εe,εqがそれぞれの目標値εe 0,εq 0に近づくような圧延荷重P及びワークロールベンダー力Bの算出に際しては、式(8)で示す評価関数Jが最小となるように圧延荷重P及びワークロールベンダー力Bを算出する。
J=we(εe−εe 0)2+wq(εq−εq 0)2 (8)
式中、we,wqは、重み係数を示す。
そして、算出した圧延荷重Pと式(7)から得られる圧延荷重が一致するように前方張力Tf及び後方張力Tbを算出し、算出したワークロールベンダー力B,前方張力Tf及び後方張力Tbを設定する。
In calculating the rolling load P and the work roll bender force B such that the elongation difference ε e , ε q approaches the target values ε e 0 , ε q 0 , the evaluation function J shown in equation (8) is the minimum. The rolling load P and the work roll bender force B are calculated as follows.
J = w e (ε e -ε e 0) 2 + w q (ε q -ε q 0) 2 (8)
In the equation, w e and w q indicate weighting factors.
Then, the front tension T f and the rear tension T b are calculated so that the calculated rolling load P and the rolling load obtained from the equation (7) coincide, and the calculated work roll bender force B, front tension T f and rear tension are calculated. setting the T b.
なお、算出したワークロールベンダー力Bが仕様範囲の上下限値を超える場合には、ワークロールベンダー力Bを上下限値に設定し、式(8)で示す評価関数Jが最小となるように圧延荷重Pを算出する。そして、算出した圧延荷重Pと式(7)から得られる圧延荷重が一致するように前方張力Tf及び後方張力Tbを算出し、設定する。
また、算出した圧延荷重Pが前方張力及び後方張力の仕様範囲から定まる上下限値を超える場合には、前方張力Tf及び後方張力Tbを上下限値に設定し、式(8)で示す評価関数Jが最小となるようにワークロールベンダー力Bを算出し、設定する。
When the calculated work roll bender force B exceeds the upper and lower limit values of the specification range, the work roll bender force B is set to the upper and lower limit values so that the evaluation function J shown in Expression (8) is minimized. The rolling load P is calculated. Then, the front tension T f and the rear tension T b are calculated and set so that the calculated rolling load P and the rolling load obtained from the equation (7) match.
Further, when the calculated rolling load P exceeds the upper and lower limit values determined from the specification range of the front tension and the rear tension, the front tension T f and the rear tension T b are set to the upper and lower limit values, and are expressed by Expression (8). The work roll bender force B is calculated and set so that the evaluation function J is minimized.
形状検出器が設置されている圧延機では、本発明による方法によりワークロールベンダー力Bを初期設定した後、形状検出器で得られた圧延材の形状測定結果に基づいて圧延中にも形状制御できる。形状検出器を備えていない圧延機では、圧延中に圧延荷重を連続的に測定し、この測定値Pmを式(7)に代わり式(9)で示される圧延荷重の変化量を表す数式モデルに代入し、圧延荷重が目標値Pに一致するように前方張力Tf及び後方張力TbをそれぞれΔTf及びΔTbだけ補正する。
P=Pm+xp・ΔTf+yp・ΔTb (9)
In a rolling mill equipped with a shape detector, after the work roll bender force B is initially set by the method according to the present invention, shape control is performed during rolling based on the shape measurement result of the rolled material obtained by the shape detector. it can. In a rolling mill not equipped with a shape detector, a rolling load is continuously measured during rolling, and this measured value P m is a mathematical expression that represents the amount of change in the rolling load expressed by equation (9) instead of equation (7). Substituting into the model, the front tension T f and the rear tension T b are corrected by ΔT f and ΔT b , respectively, so that the rolling load matches the target value P.
P = P m + x p · ΔT f + y p · ΔT b (9)
以上の説明では、板端部及びクォータ部の2点における板幅中央に対する伸び率差εe,εqで圧延形状を定義し、ワークロールベンダー力B,前方張力Tf及び後方張力Tbを設定又は補正している。しかし、本発明はこれに拘束されるものではなく、板幅方向に沿った3点以上について板幅中央に対する伸び率差を用いて圧延形状を定義した場合にも同様に圧延形状を制御できる。 In the above description, the rolling shape is defined by the elongation difference ε e and ε q with respect to the center of the plate width at the two points of the plate end portion and the quarter portion, and the work roll bender force B, the front tension T f and the rear tension T b are determined. Set or correct. However, the present invention is not limited thereto, and the rolling shape can be similarly controlled when the rolling shape is defined by using the elongation difference with respect to the center of the plate width at three or more points along the plate width direction.
使用する形状制御手段はワークロールベンダーに限ったものではなく、6段圧延機の形状制御手段である中間ロールベンダーや中間ロールシフトを用いる場合にも、圧延形状予測式を式(5),(6)と同様な線形式で表し、中間ロールベンダー,中間ロールシフト等を設定又は補正できる。例えばワークロールベンダーと中間ロールベンダーで制御する場合、式(10),(11)の圧延形状予測式が使用され、伸び率差εe,εqがそれぞれの目標値εe 0,εq 0となるようにワークロールベンダー力B,中間ロールベンダー力Iを算出し設定する。
εe=ae・P+be・B+ce+de・Cr+ee・ε0e+fe・Wr+ge・I (10)
εq=aq・P+bq・B+cq+dq・Cr+eq・ε0q+fq・Wr+gq・I (11)
ここで、Iは中間ロールベンダー力、ge,gqは影響係数である。
The shape control means to be used is not limited to the work roll bender, and also when using an intermediate roll bender or an intermediate roll shift which is a shape control means of a six-high rolling mill, the rolling shape prediction formulas are expressed by the equations (5), ( It is expressed in the same line format as 6), and an intermediate roll bender, an intermediate roll shift, etc. can be set or corrected. For example, when controlling with a work roll bender and an intermediate roll bender, the rolling shape prediction formulas (10) and (11) are used, and the elongation differences ε e and ε q are the target values ε e 0 and ε q 0 , respectively. The work roll bender force B and the intermediate roll bender force I are calculated and set so that
ε e = a e · P + b e · B + c e + d e · Cr + e e · ε 0e + f e · Wr + g e · I (10)
ε q = a q · P + b q · B + c q + d q · Cr + e q · ε 0q + f q · Wr + g q · I (11)
Here, I is an intermediate roll bender force, and g e and g q are influence coefficients.
図8に示す4段圧延機を用いた冷間圧延に本発明を適用した例を説明する。4段圧延機1は、ワークロールベンダー2を形状制御手段として備えている。上位コンピュータ3には予め圧延条件が入力されている。プロセスコンピュータ4では板幅,板厚及び材質の区分毎に予め算出した影響係数と素材クラウンCrの実測値,圧延前素材の伸び率差ε0e,ε0qの実測値及びワークロールクラウン量Wrを取り込んでおり、式(5),(6),(8)に基いて圧延荷重P及びワークロールベンダー力Bを算出する。
そして、算出した圧延荷重Pと式(7)から得られる圧延荷重が一致するように前方張力Tf及び後方張力Tbを算出し、算出したワークロールベンダー力B,前方張力Tf及び後方張力Tbを初期設定する。
An example in which the present invention is applied to cold rolling using the four-high rolling mill shown in FIG. 8 will be described. The four-
Then, the front tension T f and the rear tension T b are calculated so that the calculated rolling load P and the rolling load obtained from the equation (7) coincide, and the calculated work roll bender force B, front tension T f and rear tension are calculated. the T b is initialized.
また、4段圧延機1には形状検出器が設置されておらず、圧延中に荷重計6で圧延荷重を連続的に測定し、測定結果を上位コンピュ−タ3に入力する。そして、この測定値Pmを式(9)に代入し、圧延荷重が目標値Pに一致するように前方張力Tf及び後方張力TbをそれぞれΔTf及びΔTbだけ補正する。
本圧延機においては、伸び率0.6%〜3.2%の範囲でスキンパス圧延を行っており、同一のクラウンロールで圧延すると、伸び率が0.6%と小さい場合には圧延荷重が小さくなるため中伸びが生じ易く、伸び率が3.2%と大きい場合には圧延荷重が大きくなるため耳伸びが生じ易い。そこで、伸び率が0.6%の場合(実施例1)と伸び率が3.2%の場合(実施例2)について本発明法により形状制御を行い、圧延後の形状をオフラインの形状測定器で測定した。
The four-
In this rolling mill, skin pass rolling is performed in the range of 0.6% to 3.2% elongation. When rolling with the same crown roll, when the elongation is as small as 0.6%, the rolling load is small, so that the medium elongation is When the elongation rate is as large as 3.2%, the rolling load becomes large and the ear elongation tends to occur. Therefore, shape control was performed by the method of the present invention when the elongation was 0.6% (Example 1) and when the elongation was 3.2% (Example 2), and the shape after rolling was measured with an off-line shape measuring instrument. .
実施例1;
板幅1020mm,板厚1.0mmで素材クラウン量が18μm、急峻度が0.5%の耳伸び形状の熱延鋼帯を4段圧延機1に送り込み、直径600mm、クラウン量が45μmのワークロール5により伸び率0.6%でスキンパス圧延した。なお、伸び率差εe,εqの目標値εe 0,εq 0はいずれも0とした。比較のため、前記特許文献6で紹介した方法により形状制御を行った。
本発明法により形状制御を行った鋼帯は図9に示すように、圧延開始からコイル全長にわたって急峻度が0.5%以内に収められており、良好な形状に圧延されていた。これに対し、ワークロールクラウンは適正化されているが、形状に大きく影響する圧延荷重の変化を前後方張力の制御によって抑制していない従来法では、圧延荷重が小さ過ぎるため、圧延開始からコイル全長にわたって急峻度が約0.7%前後の中伸びを生じていた。
Example 1;
A hot-rolled steel strip in the form of an ear with a sheet width of 1020 mm, a sheet thickness of 1.0 mm, a material crown amount of 18 μm, and a steepness of 0.5% is fed into the four-
As shown in FIG. 9, the steel strip whose shape was controlled by the method of the present invention had a steepness within 0.5% over the entire length of the coil from the start of rolling, and was rolled into a good shape. On the other hand, the work roll crown is optimized, but in the conventional method in which the change in rolling load that greatly affects the shape is not suppressed by controlling the front-rear tension, the rolling load is too small. The steepness was about 0.7% over the entire length.
実施例2;
板幅1020mm,板厚1.0mmで素材クラウン量が15μm、急峻度が0.5%の耳伸び形状の熱延鋼帯を4段圧延機1に送り込み、直径600mm、クラウン量が45μmのワークロール5により伸び率3.2%でスキンパス圧延した。なお、伸び率差εe,εqの目標値εe 0,εq 0はいずれも0とした。比較のため、前記特許文献6で紹介した方法により形状制御を行った。
本発明法により形状制御を行った鋼帯は図10に示すように、圧延開始からコイル全長にわたって急峻度が0.5%以内に収められており、良好な形状に圧延されていた。これに対し、ワークロールクラウンは適正化されているが、形状に大きく影響する圧延荷重の変化を前後方張力の制御によって抑制していない従来法では、圧延荷重が大き過ぎるため、圧延開始からコイル全長にわたって急峻度が約0.7%前後の耳伸びを生じていた。
Example 2;
A hot rolled steel strip with an edge extension shape with a plate width of 1020 mm, a plate thickness of 1.0 mm, a material crown amount of 15 μm, and a steepness of 0.5% is fed into the four-
As shown in FIG. 10, the steel strip whose shape was controlled by the method of the present invention had a steepness within 0.5% over the entire length of the coil from the start of rolling, and was rolled into a good shape. On the other hand, the work roll crown is optimized, but in the conventional method in which the change in rolling load that greatly affects the shape is not suppressed by controlling the front-rear tension, the rolling load is too large. Ear elongation with a steepness of about 0.7% occurred over the entire length.
1:4段圧延機 2:ワークロールベンダー
3:上位コンピュータ 4:プロセスコンピュータ
5:ワークロール 6:荷重計
1: Four-high rolling mill 2: Work roll bender 3: Higher computer 4: Process computer 5: Work roll 6: Load cell
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007189176A JP4948301B2 (en) | 2007-07-20 | 2007-07-20 | Shape control method in cold rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007189176A JP4948301B2 (en) | 2007-07-20 | 2007-07-20 | Shape control method in cold rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009022985A JP2009022985A (en) | 2009-02-05 |
JP4948301B2 true JP4948301B2 (en) | 2012-06-06 |
Family
ID=40395310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007189176A Expired - Fee Related JP4948301B2 (en) | 2007-07-20 | 2007-07-20 | Shape control method in cold rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4948301B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101726088B1 (en) * | 2015-12-22 | 2017-04-12 | 주식회사 포스코 | Strip shape controller and method of the same |
JP6251334B1 (en) * | 2016-07-21 | 2017-12-20 | 日新製鋼株式会社 | Arithmetic apparatus and arithmetic method |
TWI638690B (en) * | 2016-07-21 | 2018-10-21 | 日商日新製鋼股份有限公司 | Arithmetic unit and arithmetic method |
JP6874794B2 (en) * | 2018-08-23 | 2021-05-19 | Jfeスチール株式会社 | Temper rolling method for hot-rolled steel sheet |
JP7077929B2 (en) * | 2018-12-12 | 2022-05-31 | 東芝三菱電機産業システム株式会社 | Mathematical model calculator and control device for rolling lines |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52143950A (en) * | 1976-05-25 | 1977-11-30 | Nippon Steel Corp | Constant thickness strip form control device |
JPS577309A (en) * | 1980-06-12 | 1982-01-14 | Kawasaki Steel Corp | Rolling method |
JPH01170508A (en) * | 1987-12-25 | 1989-07-05 | Kawasaki Steel Corp | Method for controlling shape |
JP4086119B2 (en) * | 1998-03-24 | 2008-05-14 | 日新製鋼株式会社 | Shape control method in cold rolling of hot rolled steel strip before pickling |
JP4330134B2 (en) * | 2003-12-19 | 2009-09-16 | 日新製鋼株式会社 | Shape control method in cold rolling |
-
2007
- 2007-07-20 JP JP2007189176A patent/JP4948301B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009022985A (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4452323B2 (en) | Learning method of rolling load prediction in hot strip rolling. | |
JP4948301B2 (en) | Shape control method in cold rolling | |
JP5239728B2 (en) | Rolling method and rolling apparatus for metal sheet | |
JP4986463B2 (en) | Shape control method in cold rolling | |
JP2008126305A (en) | Thickness control method in cold tandem rolling | |
JP4330134B2 (en) | Shape control method in cold rolling | |
JPH11104721A (en) | Plate crown/shape controlling method in hot rolling | |
JP2001269706A (en) | Method for controlling shape at continuous cold rolling | |
JP4623738B2 (en) | Shape control method in cold rolling | |
JP6232193B2 (en) | Shape control method and shape control method in cold rolling | |
JP4671544B2 (en) | Sheet width control method in cold tandem rolling | |
JP4813014B2 (en) | Shape control method for cold tandem rolling mill | |
JP4267609B2 (en) | Rolling method and rolling apparatus for metal sheet | |
JP2002292414A (en) | Shape control method in cold rolling | |
JP4086119B2 (en) | Shape control method in cold rolling of hot rolled steel strip before pickling | |
JP2005319492A (en) | Method for controlling shape in cold rolling | |
JP4102267B2 (en) | Sheet width control method in cold tandem rolling | |
JP4227686B2 (en) | Edge drop control method during cold rolling | |
JP3664151B2 (en) | Sheet width control method, cold rolled metal sheet manufacturing method, and cold rolling apparatus | |
US20240226978A1 (en) | Plate crown control device | |
JP6685785B2 (en) | Shape control method in cold rolling | |
JP2005177819A (en) | Shape control method cold rolling | |
JP5618210B2 (en) | Outlet shape control method in cold rolling mill | |
JP2003326305A (en) | Method for controlling shape in cold rolling | |
JP2007167887A (en) | Method for controlling thickness in cold tandem rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120306 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |