Nothing Special   »   [go: up one dir, main page]

JP2017155251A - Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor - Google Patents

Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor Download PDF

Info

Publication number
JP2017155251A
JP2017155251A JP2016036603A JP2016036603A JP2017155251A JP 2017155251 A JP2017155251 A JP 2017155251A JP 2016036603 A JP2016036603 A JP 2016036603A JP 2016036603 A JP2016036603 A JP 2016036603A JP 2017155251 A JP2017155251 A JP 2017155251A
Authority
JP
Japan
Prior art keywords
aluminum alloy
measured
average
forging
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016036603A
Other languages
Japanese (ja)
Inventor
松本 克史
Katsushi Matsumoto
克史 松本
久郎 宍戸
Hisao Shishido
久郎 宍戸
中井 学
Manabu Nakai
学 中井
雅是 堀
Masasada Hori
雅是 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016036603A priority Critical patent/JP2017155251A/en
Priority to US15/433,381 priority patent/US20170247782A1/en
Priority to CN201710107790.7A priority patent/CN107130149A/en
Publication of JP2017155251A publication Critical patent/JP2017155251A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a 6000 series aluminum alloy hot forging material having excellent corrosion resistance, high strength and high ductility.SOLUTION: There is provided an aluminum alloy forging material containing, by mass%, each of Si:0.7 to 1.5%, Mg:0.6 to 1.2%, Fe:0.01 to 0.5%, further one or more kind of Mn:0.05 to 1.0%, Cr:0.01 to 0.5% and Zr:0.01 to 0.2% and the balance Al with inevitable impurities and having a structure on an observed surface of a thickness center of the thickest part of the forging material, which has a dislocation density measured by an X ray diffraction in a range of 1.0×10to 5.0×10/mas average, an average percentage of a small tilt angle grain boundary with a tilt angle of 2 to 15° of a crystal grain with an orientation difference within 2° measured by SEM-EBSD method of 50% or more, and an average number density of a precipitate which can be measured by TEM with amplification of 300,000 of 5.0×10/μmor more.SELECTED DRAWING: None

Description

本発明は強度と延性に優れたアルミニウム合金鍛造材およびその製造方法に関するものである。以下、アルミニウムを単にAlとも言う。   The present invention relates to an aluminum alloy forged material excellent in strength and ductility and a method for producing the same. Hereinafter, aluminum is also simply referred to as Al.

本発明で言う鍛造材とは、熱間鍛造によって製造(塑性加工)されたアルミニウム合金鍛造材を意味する。
本発明では、この鍛造材なる用語を、物の製造方法の記載としてではなく、モノの状態を特定するための、技術用語、特許用語としても汎用されることが周知な用語として使用している。
アルミニウム合金材は、熱間鍛造材、押出材、圧延材などの、塑性加工履歴の違いによって、合金組成が例え同じでも、その組織、特性が全く異なり、塑性加工履歴を特定しない限り、合金組成や組織、特性を規定する意味が無くなる。
このため、本発明では、対象とするアルミニウム合金熱間鍛造材を、前記他の塑性加工材とは明確に区別し、モノの状態を明確に特定するために、「熱間鍛造材」あるいは同義語の「鍛造材」なる用語を、本願請求項や以下の記載で使用している。
The forging material referred to in the present invention means an aluminum alloy forging material manufactured (plastic processing) by hot forging.
In the present invention, the term forged material is used as a well-known term that is widely used as a technical term and a patent term for specifying the state of an object, not as a description of a manufacturing method of an object. .
Aluminum alloy materials have different alloy compositions due to differences in plastic working history, such as hot forged materials, extruded materials, rolled materials, etc., but the structure and properties are completely different, unless the plastic working history is specified. The meaning of defining the organization and characteristics disappears.
For this reason, in the present invention, in order to clearly distinguish the target aluminum alloy hot forging material from the other plastic working materials and to clearly specify the state of the object, “hot forging material” or the same meaning is used. The term “forging” is used in the claims and the following description.

近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化による燃費の向上が追求されている。このため、自動車などの輸送機の構造材や構造部品、特に、アッパーアーム、ロアーアームなどの自動車足回り部品として、AA乃至JIS の規格で言う6000系(Al−Mg−Si系)アルミニウム合金熱間鍛造材が使用されている。
これらの構造材や構造部品として、6000系アルミニウム合金熱間鍛造材は、高強度高靱性であり、耐食性にも比較的優れている。以下、輸送機の構造材や構造部品として、自動車足回り部品を例にとって説明する。
In recent years, with respect to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency has been pursued by reducing the weight of the body of a transport aircraft such as an automobile. For this reason, 6000 series (Al-Mg-Si series) aluminum alloy hots in the AA to JIS standards as structural parts and structural parts of transport equipment such as automobiles, especially automobile underbody parts such as upper arms and lower arms. Forging is used.
As these structural materials and structural parts, 6000 series aluminum alloy hot forged materials have high strength and high toughness, and are relatively excellent in corrosion resistance. Hereinafter, an automobile underbody part will be described as an example of a structural material or a structural part of a transport aircraft.

自動車の一層の軽量化のために、自動車足回り部品には、より薄肉化させた上での高強度化や高靱性化が求められている。また、保安部品としての信頼性から、粒界腐食や応力腐食割れなどに対しての高耐食性化も求められている。このため、従来から、素材としての6000系アルミニウム合金熱間鍛造材の組成やミクロ組織を改善することが種々行われている。   In order to further reduce the weight of automobiles, automobile underbody parts are required to have higher strength and higher toughness after being made thinner. In addition, in view of reliability as a safety part, high corrosion resistance against intergranular corrosion and stress corrosion cracking is also required. For this reason, conventionally, various attempts have been made to improve the composition and microstructure of the 6000 series aluminum alloy hot forging as a raw material.

例えば、6000系アルミニウム合金鍛造材の晶出物密度を平均面積率で1.5%以下に抑制し、鍛造の際に生じるパーティングラインを含む断面部位の組織で観察される各粒界析出物同士の平均間隔を0.7 μm以上に大きくすることが提案されている(特許文献1参照)。   For example, the crystallization density of a 6000 series aluminum alloy forging material is suppressed to an average area ratio of 1.5% or less, and the grain boundary precipitates observed in the structure of the cross-sectional site including the parting line generated during forging It has been proposed to increase the average interval to 0.7 μm or more (see Patent Document 1).

また、アルミニウム合金押出材を熱間鍛造してなる6000系アルミニウム合金鍛造材として、鍛造材の断面全域における、傾角が2°以上、15°未満の小傾角粒界と傾角が15°以上の大傾角粒界とを含めた未再結晶領域を備え、この未再結晶領域における傾角2°以上の境界で囲まれる領域の平均粒径が10μm以下であるとともに、この未再結晶領域の断面全域に対する平均面積割合を75%以上とし、かつ、この未再結晶組織領域における、最大長が10nm以上、800nm以下の分散粒子の平均密度が10個/μm以上であるとともに、最大長が0.5μm以上の晶出物の平均面積率が2.5%以下である、アルミニウム合金鍛造材とすることも提案されている(特許文献2参照)。 Moreover, as a 6000 series aluminum alloy forged material obtained by hot forging an aluminum alloy extruded material, a small angle grain boundary with a tilt angle of 2 ° or more and less than 15 ° and a large tilt angle of 15 ° or more in the entire cross section of the forged material. The non-recrystallized region including the tilted grain boundary is provided, and the average grain size of the region surrounded by the boundary having the tilt angle of 2 ° or more in the non-recrystallized region is 10 μm or less and The average area ratio is 75% or more, and the average density of dispersed particles having a maximum length of 10 nm or more and 800 nm or less in this non-recrystallized structure region is 10 particles / μm 3 or more, and the maximum length is 0.5 μm. It has also been proposed to use an aluminum alloy forged material in which the average area ratio of the crystallized material is 2.5% or less (see Patent Document 2).

一方、熱間鍛造材の分野ではないが、アルミニウム合金材の高強度化の冶金的な手法として、6000系アルミニウム合金鋳造材に溶体化処理をした後で、150〜250℃程度の温間鍛造加工を繰り返し行い、その後人工時効処理(人工時効硬化処理)することが公知である(特許文献3、4参照)。   On the other hand, although not in the field of hot forging, as a metallurgical technique for increasing the strength of aluminum alloy material, after forging treatment to 6000 series aluminum alloy casting material, warm forging at about 150-250 ° C It is known that the processing is repeated and then artificial aging treatment (artificial age hardening treatment) is performed (see Patent Documents 3 and 4).

特許第5110938号公報Japanese Patent No. 5110938 特許第5723192号公報Japanese Patent No. 5723192 特開2014−218685号公報Japanese Patent Laid-Open No. 2014-218685 特許第5082483号公報Japanese Patent No. 5082483

ただ、前記特許文献1、2などの、6000系アルミニウム合金熱間鍛造材の組成やミクロ組織の改善でも、相反する特性であり、兼備することが難しい、強度と延性ともに優れたアルミニウム合金鍛造材とすることには、未だ改善の余地がある。   However, the aluminum alloy forging material which is incompatible with the improvement of the composition and microstructure of the 6000 series aluminum alloy hot forging material, such as Patent Documents 1 and 2, is difficult to combine, and has excellent strength and ductility. There is still room for improvement.

また、前記特許文献3、4のような、6000系アルミニウム合金鋳造材に温間鍛造加工を繰り返し行い、その後人工時効処理することで、高強度化を行う手法も、500℃などと温度が高い熱間鍛造を行っては、高強度化の効果が小さいとしており、この手法が、6000系アルミニウム合金の熱間鍛造材の機械的特性の向上に有効かどうかは未だ不明である。   In addition, a technique for increasing the strength by repeatedly performing a warm forging process on a 6000 series aluminum alloy cast material as in Patent Documents 3 and 4 and then performing an artificial aging treatment is also as high as 500 ° C. If hot forging is performed, the effect of increasing the strength is considered to be small, and it is still unclear whether this technique is effective in improving the mechanical properties of the 6000 series aluminum alloy hot forging.

本発明はこの様な事情に着目してなされたものであって、その目的は、優れた耐食性を有することを前提に、強度と延性に優れた(高い強度と高い伸びとを兼備する)6000系アルミニウム合金鍛造材を提供することを目的とする。   The present invention has been made by paying attention to such circumstances, and the object thereof is excellent in strength and ductility (combining high strength and high elongation) on the assumption that it has excellent corrosion resistance. An object of the present invention is to provide a forged aluminum alloy.

この目的を達成するために、本発明の強度と延性に優れたアルミニウム合金鍛造材の要旨は、質量%で、Si:0.7〜1.5%、Mg:0.6〜1.2%、Fe:0.01〜0.5%を各々含有するとともに、更に、Mn:0.05〜1.0%、Cr:0.01〜0.5%、Zr:0.01〜0.2%のうちの一種または二種以上を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金鍛造材であって、この鍛造材の最も厚肉な部分の肉厚中心の観察面における組織として、X線回折により測定された転位密度が平均で1.0×1014〜5.0×1016/mの範囲であり、SEM−EBSD法により測定された、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合が50%以上であり、倍率30万倍のTEMにより測定可能な析出物の平均数密度が5.0×10個/μm以上であることとする。 In order to achieve this object, the gist of the aluminum alloy forging material excellent in strength and ductility of the present invention is mass%, Si: 0.7 to 1.5%, Mg: 0.6 to 1.2% Fe: 0.01 to 0.5%, respectively, Mn: 0.05 to 1.0%, Cr: 0.01 to 0.5%, Zr: 0.01 to 0.2% %, A balance of Al and unavoidable impurities, and an aluminum alloy forging material, the structure of the thickest part of the forging material at the observation center of the thickness center, X Dislocation density measured by line diffraction is in the range of 1.0 × 10 14 to 5.0 × 10 16 / m 2 on average, and crystal grains having an orientation difference of 2 ° or more measured by SEM-EBSD method The average proportion of the low-angle grain boundaries with an inclination angle of 2 to 15 ° is 50% or more, and the magnification is 300,000 times. The average number density of precipitates that can be measured by TEM is 5.0 × 10 2 pieces / μm 3 or more.

また、前記目的を達成するために、本発明の強度と延性に優れたアルミニウム合金鍛造材の製造方法の要旨は、質量%で、Si:0.7〜1.5%、Mg:0.6〜1.2%、Fe:0.01〜0.5%を各々含有するとともに、更に、Mn:0.05〜1.0%、Cr:0.01〜0.5%、Zr:0.01〜0.2%のうちの一種または二種以上を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金鋳塊を、均熱処理後に熱間鍛造して鍛造材とし、更に溶体化および焼入れ処理した前記鍛造材を温間加工した上で人工時効処理を施し、この人工時効処理後の鍛造材の最も厚肉な部分の肉厚中心の観察面における組織として、X線回折により測定された転位密度を平均で1.0×1014〜5.0×1016/mの範囲とし、SEM−EBSD法により測定された、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合を50%以上とし、倍率30万倍のTEMにより測定可能な析出物の平均数密度を5.0×10個/μm以上と各々したことである。 Moreover, in order to achieve the said objective, the summary of the manufacturing method of the aluminum alloy forging material excellent in the intensity | strength and ductility of this invention is the mass%, Si: 0.7-1.5%, Mg: 0.6 -1.2%, Fe: 0.01-0.5%, respectively, Mn: 0.05-1.0%, Cr: 0.01-0.5%, Zr: 0.0. An aluminum alloy ingot containing one or more of 01 to 0.2% and comprising the balance Al and unavoidable impurities is hot-forged after soaking to form a forged material, followed by solution treatment and quenching treatment Dislocation measured by X-ray diffraction as a structure in the observation surface of the thickness center of the thickest part of the forged material after the artificial aging treatment was performed after warming the forged material. range of 1.0 × 10 14 ~5.0 × 10 16 / m 2 on average density In addition, the average ratio of crystal grain boundaries with an orientation difference of 2 ° or more and an inclination angle of 2 to 15 ° measured by the SEM-EBSD method is 50% or more, and can be measured by a TEM with a magnification of 300,000 times. The average number density of the precipitates was set to 5.0 × 10 2 pieces / μm 3 or more, respectively.

本発明では、6000系アルミニウム合金鍛造材につき、溶体化および焼入れ処理した鍛造材に温間加工による加工歪を付与した上で、人工時効処理を施した場合に、加工歪を付与しない通常の場合に比して、強度と延性とがともに向上する(高強度化、高延性化する)ことを知見した。   In the present invention, for a 6000 series aluminum alloy forged material, a forging material subjected to solution treatment and quenching treatment is given a processing strain due to warm working and then subjected to an artificial aging treatment, and a normal case where no processing strain is imparted It was found that both strength and ductility were improved (higher strength and higher ductility) than those of

この効果を発揮させる、あるいは保証するために、本発明では、人工時効処理後の鍛造材の最も厚肉な部分の肉厚中心部における組織として、前記した通り、平均の転位密度、小傾角粒界の平均割合、析出物の平均数密度を各々規定する。   In order to exert or guarantee this effect, in the present invention, as described above, the average dislocation density, the small-gradient grain as the structure in the thickness center part of the thickest part of the forged material after the artificial aging treatment The average ratio of boundaries and the average number density of precipitates are defined respectively.

本発明によれば、6000系アルミニウム合金鍛造材の強度と延性とがともに向上するため、さらなる軽量化が可能となる。   According to the present invention, both the strength and ductility of the 6000 series aluminum alloy forged material are improved, so that further weight reduction is possible.

以下に、本発明の実施態様につき具体的に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(化学成分組成)
先ず、本発明鍛造材や、鋳造材の素材である鋳塊の、アルミニウム合金の化学成分組成について、以下に説明する。
(Chemical composition)
First, the chemical component composition of the aluminum alloy of the forged material of the present invention and the ingot that is the material of the cast material will be described below.

本発明における6000系(Al−Mg−Si系)アルミニウム合金の化学成分組成は、前記足回り鍛造部品などとして、高強度化、高延性化や、高い耐食性乃至耐久性を保証する必要がある。このため、6000系アルミニウム合金組成範囲の中でも、本発明におけるアルミニウム合金組成は、質量%で、Si:0.7〜1.5%、Mg:0.6〜1.2%、Fe:0.01〜0.5%を各々含有するとともに、更に、Mn:0.05〜1.0%、Cr:0.01〜0.5%、Zr:0.01〜0.2%のうちの一種または二種以上を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金とする。   The chemical component composition of the 6000 series (Al-Mg-Si series) aluminum alloy in the present invention needs to ensure high strength, high ductility, and high corrosion resistance or durability as the undercarriage forged part. For this reason, the aluminum alloy composition in the present invention in the composition range of 6000 series aluminum is mass%, Si: 0.7 to 1.5%, Mg: 0.6 to 1.2%, Fe: 0.00. In addition to each containing 01-0.5%, Mn: 0.05-1.0%, Cr: 0.01-0.5%, Zr: 0.01-0.2% Or it is set as the aluminum alloy which contains 2 or more types, and consists of remainder Al and an unavoidable impurity.

また、強度などの特性向上のために、前記アルミニウム合金が、更に、質量%で、Cu:0.05〜1.0%、Ti:0.01〜0.1%、Zn:0.005〜0.25%の一種または二種以上を含有しても良い。なお、各元素量における%表示はすべて質量%の意味である。
次に、各元素の含有量について、臨界的意義や好ましい範囲について説明する。
Further, in order to improve properties such as strength, the aluminum alloy further contains, in mass%, Cu: 0.05 to 1.0%, Ti: 0.01 to 0.1%, Zn: 0.005. You may contain 1 type, or 2 or more types of 0.25%. In addition, all the% display in each element amount means the mass%.
Next, the critical significance and preferable range of the content of each element will be described.

Si:0.7〜1.5%、
Siは、Mgとともに人工時効処理により、主として針状β' 相として結晶粒内に析出して、自動車足回り部品の高強度化を付与するために必須の元素である。
Siの含有量が少なすぎると、人工時効処理時の析出量が少なくなりすぎ、高強度が得られない。
一方、Siの含有量が多過ぎると、鋳造時および溶体化処理後の焼き入れ途中で、粗大な単体Si粒子が晶出および析出して、耐食性と靱性を低下させる。また、過剰Siが多くなって、高耐食性と高靱性高疲労特性を得ることができない。更に伸びが低くなるなど、熱間鍛造性や加工性も阻害する。
したがって、Siの含有量は0.7〜1.5%の範囲とする。
Si: 0.7 to 1.5%,
Si, together with Mg, is an essential element for precipitating in crystal grains mainly as an acicular β ′ phase by artificial aging treatment and imparting high strength to automobile undercarriage parts.
If the Si content is too small, the amount of precipitation during the artificial aging treatment is too small, and high strength cannot be obtained.
On the other hand, if the Si content is too large, coarse single Si particles crystallize and precipitate during casting and during quenching after solution treatment, thereby reducing corrosion resistance and toughness. Moreover, excess Si increases, and high corrosion resistance and high toughness and high fatigue characteristics cannot be obtained. Furthermore, hot forgeability and workability are also hindered, such as elongation becoming low.
Therefore, the Si content is in the range of 0.7 to 1.5%.

Mg:0.6〜1.2%
Mgも、人工時効処理(時効処理)により、Siとともに、主として針状β' 相として結晶粒内に析出し、自動車足回り部品の高強度化、高延性化を付与するために必須の元素である。
Mgの含有量が少なすぎると、人工時効処理時の析出量が少なくなりすぎ、高強度が得られない。
一方、Mgの含有量が多過ぎると、粗大なMg含有の化合物が、結晶の粒内や粒界に生成してしまい、耐食性、靱性を低下させる。また、高温時の強度 (耐力) が高くなりすぎ、熱間鍛造性や加工性を阻害する。
したがって、Mg含有量は0.6〜1.2%の範囲とする。
Mg: 0.6-1.2%
Mg is an element essential for imparting high strength and high ductility of automobile undercarriage parts by precipitation into crystal grains mainly as acicular β 'phase by artificial aging treatment (aging treatment). is there.
When the content of Mg is too small, the amount of precipitation during the artificial aging treatment is too small to obtain high strength.
On the other hand, when there is too much content of Mg, a coarse Mg containing compound will generate | occur | produce in the grain of a crystal | crystallization, or a grain boundary, and corrosion resistance and toughness will fall. In addition, the strength (proof strength) at high temperatures becomes too high, which hinders hot forgeability and workability.
Therefore, the Mg content is in the range of 0.6 to 1.2%.

Fe:0.01〜0.5%
Feは、Siと金属間化合物を生成して分散粒子 (分散相) を生成し、再結晶後の粒界移動を妨げることで、再結晶を抑制し、結晶粒の粗大化を防止することで、結晶粒を微細化させる効果がある。
一方で、Feの含有量が多すぎると、結晶粒内および結晶粒界に粗大な化合物を形成しやすくなり、耐食性とじん性を低下させやすい。また、Feが形成する金属間化合物中にSiを含有しやすいため、Siを必要とする人工時効処理で生成する針状のβ’相が低減してしまい、強度が低下しやすくなる。
したがって、Fe含有量は0.01〜0.5%の範囲とする。
Fe: 0.01 to 0.5%
Fe forms an intermetallic compound with Si to produce dispersed particles (dispersed phase), which prevents rebounding and prevents coarsening of crystal grains by preventing grain boundary movement after recrystallization. There is an effect of refining crystal grains.
On the other hand, when the content of Fe is too large, a coarse compound tends to be formed in the crystal grains and in the crystal grain boundaries, and the corrosion resistance and toughness are likely to be lowered. Moreover, since Si is easily contained in the intermetallic compound formed by Fe, the needle-like β ′ phase generated by the artificial aging treatment that requires Si is reduced, and the strength is easily lowered.
Therefore, the Fe content is in the range of 0.01 to 0.5%.

Mn:0.05〜1.0%、Cr:0.01〜0.5%、Zr:0.01〜0.2%のうちから一種または二種以上
Mn、Cr、Zrは、Feと同様、Siと金属間化合物を生成して分散粒子 (分散相) を生成し、再結晶後の粒界移動を妨げ、再結晶を抑制し、結晶粒の粗大化を防止することで、結晶粒を微細化させる効果がある。
一方で、Mn、Cr、Zrの含有量が多すぎると、結晶粒内および結晶粒界に粗大な化合物を形成しやすくなり、耐食性とじん性を低下させやすい。また、これらの元素が形成する金属間化合物中にSiを含有しやすいため、Siを必要とする人工時効処理で生成する針状のβ’が低減してしまい、強度が低下しやすくなる。
したがって、これらの元素の一種または二種以上を含有させる場合の、各々の含有量は、Mn:0.05〜1.0%、Cr:0.01〜0.5%、Zr:0.01〜0.2%の範囲とする。
Mn: 0.05 to 1.0%, Cr: 0.01 to 0.5%, Zr: 0.01 to 0.2%, one or more Mn, Cr and Zr are the same as Fe , By generating an intermetallic compound with Si to produce dispersed particles (dispersed phase), preventing grain boundary movement after recrystallization, suppressing recrystallization, and preventing coarsening of crystal grains. There is an effect of miniaturization.
On the other hand, when there is too much content of Mn, Cr, and Zr, it will become easy to form a coarse compound in a crystal grain and a crystal grain boundary, and it will be easy to reduce corrosion resistance and toughness. Moreover, since Si is easily contained in the intermetallic compound formed by these elements, the needle-like β ′ generated by the artificial aging treatment that requires Si is reduced, and the strength is likely to be lowered.
Accordingly, when one or more of these elements are contained, the respective contents are Mn: 0.05 to 1.0%, Cr: 0.01 to 0.5%, Zr: 0.01 It is made into the range of -0.2%.

Cu:0.05〜1.0%、Ti:0.01〜0.1%、Zn0.005〜0.25%の一種または二種以上
Cu、Ti、Znは、鍛造材の強度や靱性を向上させる同効元素であるので、これらの効果を期待する場合には、一種または二種以上選択的に含有させる。
Cuは固溶強化にて鍛造材の強度、靱性の向上に寄与する他、時効処理に際して、最終製品の時効硬化を著しく促進する効果も有する。Cuの含有量が少なすぎると、これらの強度向上効果が無い。一方、Cuの含有量が多すぎると、アルミニウム合金鍛造材の組織の応力腐食割れや粒界腐食の感受性を著しく高め、アルミニウム合金鍛造材の耐食性や耐久性を低下させる。したがって、含有させる場合のCuの含有量は0.05〜1.0%の範囲とする。
One or more of Cu: 0.05 to 1.0%, Ti: 0.01 to 0.1%, Zn 0.005 to 0.25% Cu, Ti, and Zn increase the strength and toughness of the forged material. Since it is a synergistic element to be improved, when these effects are expected, one or more kinds are selectively contained.
Cu contributes to improving the strength and toughness of the forged material by solid solution strengthening, and also has the effect of remarkably accelerating the age hardening of the final product during the aging treatment. When there is too little content of Cu, there will be no these strength improvement effects. On the other hand, if the Cu content is too large, the sensitivity of stress corrosion cracking and intergranular corrosion of the structure of the aluminum alloy forged material is remarkably increased, and the corrosion resistance and durability of the aluminum alloy forged material are lowered. Therefore, if Cu is included, the Cu content is in the range of 0.05 to 1.0%.

Znは、人工時効処理において、Zn−Mg析出物を、微細かつ高密度に析出、形成して、強度、靱性を向上させる。また、固溶したZnは粒内の電位を下げ、腐食形態を粒界からではなく、全面的な腐食として、粒界腐食や応力腐食割れを結果として軽減する効果もある。しかし、Znの含有量が多過ぎると、耐食性が顕著に低下する。したがって、含有する場合のZnの含有量は0.005〜0.25%の範囲とする。   Zn precipitates and forms Zn-Mg precipitates finely and at high density in an artificial aging treatment, thereby improving strength and toughness. Further, the solid solution Zn has the effect of lowering the electric potential in the grains and reducing the corrosion form not from the grain boundaries but as the entire corrosion, resulting in reduction of the intergranular corrosion and stress corrosion cracking. However, when there is too much content of Zn, corrosion resistance will fall remarkably. Therefore, the Zn content in the case of inclusion is set to a range of 0.005 to 0.25%.

Tiは、鋳塊の結晶粒を微細化し、鍛造材組織を微細な結晶粒として、強度、靱性を向上させる効果がある。Tiの含有量が少なすぎるとこの効果が発揮されない。しかし、Tiの含有量が多すぎると、粗大な晶出物を形成し、前記加工性を低下させる。したがって、含有させる場合のTiの含有量は0.01〜0.1%の範囲とする。   Ti has the effect of refining the crystal grains of the ingot and improving the strength and toughness by using the forged material structure as fine crystal grains. If the Ti content is too small, this effect cannot be exhibited. However, when there is too much content of Ti, a coarse crystallization thing will be formed and the said workability will be reduced. Therefore, when Ti is contained, the content of Ti is set to a range of 0.01 to 0.1%.

ここで、溶解原料スクラップなどから混入されやすい他の不純物元素も、前記合金組成の残部のうちの不可避的不純物として、本発明の諸特性を阻害しない範囲で、JIS規格の上限規定などに基づく通常の量を含むことは許容される。   Here, other impurity elements that are likely to be mixed from the melting raw material scrap are inevitable impurities in the remainder of the alloy composition as long as they do not hinder various characteristics of the present invention, and are usually based on the upper limit provisions of JIS standards. It is permissible to include

例えば、以下に記載する不純物元素は、各々以下に各々記載する含有量まで許容される。水素は不純物として混入しやすく、特に、鍛造材の加工度が小さくなる場合、水素に起因する気泡が鍛造等加工で圧着せず、ブリスターが発生し、破壊の起点となるため、靱性や疲労特性を著しく低下させる。特に、高強度化した足回り部品などにおいては、この水素による影響が大きい。したがって、Al100g当たりの水素濃度は0.25ml以下の、できるだけ少ない含有量とすることが好ましい。
Sc、V、Hfも不純物として混入しやすく、足回り部品の特性を阻害するので、これらの合計で0.3%未満とする。
Bは500ppmを越えて含有されると、粗大な晶出物を形成し、前記加工性を低下させるので、許容量は500ppm以下までとする。
For example, the impurity elements described below are allowed up to the contents described below. Hydrogen is likely to be mixed as an impurity, especially when the forging material has a low workability, bubbles due to hydrogen will not be crimped by forging and other processes, blisters will be generated, and fracture will occur, leading to toughness and fatigue characteristics Is significantly reduced. In particular, in the undercarriage parts with increased strength, the influence of hydrogen is large. Therefore, the hydrogen concentration per 100 g of Al is preferably 0.25 ml or less, and the content is as low as possible.
Sc, V, and Hf are also likely to be mixed as impurities and hinder the characteristics of the undercarriage parts, so the total of these is made less than 0.3%.
If B is contained in excess of 500 ppm, a coarse crystallized product is formed and the workability is lowered. Therefore, the allowable amount is set to 500 ppm or less.

(組織)
以上の合金組成を前提に、本発明では、自動車などの輸送機の構造材や構造部品、特に自動車足回り鍛造部品などとしての鍛造材につき、強度と延性をともに向上させる(高強度化、高延性化を兼備させる)ために、この鍛造材の最も厚肉な部分の肉厚中心の観察面(肉厚中心部)における組織を規定する。
この規定として、先ず、X線回折により測定された転位密度を平均で1.0×1014〜5.0×1016/mの範囲とする。
また、SEM−EBSD法により測定された、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合が50%以上とする。
更に、倍率30万倍のTEMにより測定可能な析出物の平均数密度を5.0×10個/μm以上とする。
(Organization)
Based on the above alloy composition, the present invention improves both strength and ductility of structural materials and structural parts of transport vehicles such as automobiles, especially forged materials such as automobile undercarriage forged parts (high strength, high strength). In order to combine ductility), the structure on the observation surface (thickness center portion) of the thickness center of the thickest portion of the forged material is defined.
As this rule, first, the average dislocation density measured by X-ray diffraction is set to a range of 1.0 × 10 14 to 5.0 × 10 16 / m 2 .
Further, the average ratio of the low-angle grain boundaries having an inclination angle of 2 to 15 ° measured by the SEM-EBSD method and having an orientation difference of 2 ° or more is set to 50% or more.
Furthermore, the average number density of precipitates that can be measured with a TEM with a magnification of 300,000 times is set to 5.0 × 10 2 pieces / μm 3 or more.

前記合金組成の6000系アルミニウム合金鍛造材では、溶体化および焼入れ処理した鍛造材に温間加工による加工歪を付与した上で人工時効処理を施した場合、前記加工歪を付与しない通常の鍛造材の場合に比して、強度と延性とがともに向上する。
これは、後述する温間加工前の加熱によって予め鍛造材の粒内に析出した均一微細なβ’相が、その後、温間加工による加工歪を付与することによって導入、強化された転位により、人工時効処理時のβ’相の不均一析出が抑制され、強度と延性とがともに向上するものと推考される。
また、温間加工前の加熱によって前記粒内に析出した均一微細なβ’相が、その後の温間加工による加工歪の付与によって導入された転位をピン止めして、人工時効処理時の転位の回復を抑制し、加工硬化量を確保して延性が向上するものと推考される。
In the 6000 series aluminum alloy forging material having the above alloy composition, when a forging material subjected to solution treatment and quenching treatment is subjected to processing strain due to warm working and then subjected to artificial aging treatment, normal forging material which does not impart the processing strain. Both strength and ductility are improved as compared with the case of.
This is due to dislocations introduced and strengthened by applying a processing strain due to warm working after the uniform fine β ′ phase preliminarily precipitated in the grain of the forging material by heating before warm working described later. It is considered that the β 'phase non-uniform precipitation during the artificial aging treatment is suppressed, and both strength and ductility are improved.
In addition, the uniform fine β ′ phase precipitated in the grains by heating before warm working pinned dislocations introduced by imparting processing strain by subsequent warm working, and dislocation during artificial aging treatment It is assumed that the recovery of the steel is suppressed, the work hardening amount is secured, and the ductility is improved.

これらの効果を発揮させる、あるいは保証するために、本発明では、人工時効処理後の鍛造材の最も厚肉な部分の肉厚中心部における組織として、前記した通りに、平均の転位密度、小傾角粒界の平均割合、析出物の平均数密度を各々規定する。
これらの組織要件を、順次以下の通り説明する。
In order to exhibit or guarantee these effects, in the present invention, as described above, the average dislocation density, the small thickness of the thickest portion of the forged material after the artificial aging treatment, The average ratio of tilt grain boundaries and the average number density of precipitates are respectively defined.
These organizational requirements will be explained sequentially as follows.

(転位密度)
本発明では、鍛造材の高強度化、高延性化を図るために、結晶粒界中の小傾角粒界の平均割合や析出物の平均数密度などの他の組織制御と合わせて、この鍛造材の最も厚肉な部分の肉厚中心の観察面における、X線回折により測定された転位密度を平均で1.0×1014〜5.0×1016/mの範囲とする。
本発明では、溶体化および焼入れ処理した前記鍛造材を温間加工して、加工歪(ひずみ)を付与して、鍛造材に再度転位を導入し、鍛造材の転位密度を前記規定範囲に制御し、自動車足回り部品などとしての使用時の外力の負荷に対して、高歪み域までの、あるいは破断に至るまでの不均一変形を抑制し、高い加工硬化特性(降伏比の低減、伸びの増加)を発現させる。この結果、結晶粒界中の小傾角粒界の平均割合や析出物の平均数密度などの他の組織規定(要件)と合わせて、0.2%耐力が400MPa以上、伸びが10%以上の高強度、高延性とできる。
(Dislocation density)
In the present invention, in order to increase the strength and ductility of the forging material, this forging is combined with other structure controls such as the average ratio of the low-angle grain boundaries in the grain boundaries and the average number density of precipitates. The average dislocation density measured by X-ray diffraction on the observation surface at the thickness center of the thickest part of the material is in the range of 1.0 × 10 14 to 5.0 × 10 16 / m 2 .
In the present invention, the forged material that has undergone solution treatment and quenching is warm-worked, imparted with processing strain (strain), introduced dislocations again into the forged material, and controlled the dislocation density of the forged material within the specified range. In addition, it suppresses uneven deformation up to a high strain range or up to breakage against external loads when used as automobile undercarriage parts, etc., and has high work hardening characteristics (reduction in yield ratio, elongation Increase). As a result, the 0.2% proof stress is 400 MPa or more and the elongation is 10% or more, together with other structural regulations (requirements) such as the average ratio of the low-angle grain boundaries in the grain boundaries and the average number density of precipitates. High strength and high ductility.

この転位密度が、1.0×1014/m未満と、低くなり過ぎると、前記温間加工による歪を付与しない、従来の鍛造材と同じとなり、加工硬化特性が低くなる。この結果、自動車足回り部品などとしての使用時の外力負荷に対して、高歪み域での早期の破断をまねくことになる。
一方、この転位密度が、5.0×1016/mを超えて、高くなり過ぎると、自動車足回り部品などとしての使用時の外力負荷に対して、高歪み域で導入、蓄積できる転位が減少するので、やはり高歪み域での早期の破断をまねくことになる。
If this dislocation density is too low, less than 1.0 × 10 14 / m 2 , it becomes the same as a conventional forged material that does not impart distortion due to the warm working, and the work hardening characteristics are lowered. As a result, an early break in a high strain region is caused with respect to an external force load when used as an automobile underbody part or the like.
On the other hand, when this dislocation density exceeds 5.0 × 10 16 / m 2 and becomes too high, dislocations that can be introduced and accumulated in a high strain range with respect to external force loads when used as automobile underbody parts and the like. As a result, the premature rupture in the high strain region is also caused.

転位密度の測定方法
転位密度を透過型電子顕微鏡などにより計測することも汎用されてはいるが、本発明では、X線回折により、より簡便かつ再現性よく測定する。
転位のうち、線状、筋状の転位が密集した領域(セル壁やせん断帯)は、透過型電子顕微鏡では判別しにくく、転位密度ρを求める際の測定誤差となりうる。これに対して、X線回折では、後述する通り、集合組織における各面からの回折ピークの半価幅から転位密度ρを算出するために、このような林立転位であっても誤差が少なくなる利点がある。
Measurement method of dislocation density Although it is widely used to measure the dislocation density with a transmission electron microscope or the like, in the present invention, the dislocation density is measured more easily and reproducibly by X-ray diffraction.
Of the dislocations, regions (cell walls and shear bands) in which linear and streak dislocations are dense are difficult to discriminate with a transmission electron microscope, and can cause measurement errors when determining the dislocation density ρ. On the other hand, in X-ray diffraction, as will be described later, since the dislocation density ρ is calculated from the half-value width of the diffraction peak from each surface in the texture, there is less error even with such a forest dislocation. There are advantages.

鍛造や前記温間加工による塑性変形を加えて、転位を導入した鍛造材の組織では、転位を中心に格子歪みが生じる。また、転位の配列により小傾角粒界、セル構造などが発達する。このような転位やそれに伴うドメイン構造をX線回折パターンからとらえると、回折指数に応じた特徴的な拡がり、形状が回折ピークに現れる。この回折ピークの形状(ラインプロファイル)を解析(ラインプロファイル解析)して、転位密度を求めることができる。   In the structure of a forged material in which dislocations are introduced by applying plastic deformation by forging or warm working, lattice distortion occurs around dislocations. In addition, small tilt grain boundaries, cell structures, and the like develop due to the dislocation arrangement. When such dislocations and the domain structure associated therewith are taken from the X-ray diffraction pattern, a characteristic spread corresponding to the diffraction index and a shape appear in the diffraction peak. By analyzing the shape (line profile) of this diffraction peak (line profile analysis), the dislocation density can be obtained.

具体的には、先ず、更に溶体化および焼入れ処理した前記鍛造材に温間加工による歪を付与した上で人工時効処理を施し、この人工時効処理後の鍛造材の最も厚肉な部分の任意の位置の縦断面から、肉厚中心部を含む測定試料(3個)を採取して、前記試料を鍛造材表面と平行にいわばスライスし、肉厚中心が観察面として出るように研磨する。
すなわち、肉厚中心部とは、鍛造材の平面視で、肉厚中心(板で言う板厚中心)における鍛造材表面と平行な面であって、肉厚中心において鍛造材の表面(例えば水平面)と概ね平行に延在する面である。
この試験片の表面(肉厚中心位置の面)の組織をX線回折して、この表面部の集合組織における主要な方位である、(111)、(200)、(220)、(311)、(400)、(331)、(420)、(422)の各面(各方位面)からの回折ピークの半価幅を求める。転位密度ρが高いほど、これら各面の回折ピークの半価幅は大きくなる。なお、試験片の、X線回折の測定対象となる圧延表面は、試験片の状態のままであっても、エッチングを伴わない洗浄が施されていても良い。
Specifically, first, the forged material further subjected to solution treatment and quenching treatment is subjected to artificial aging treatment after imparting strain due to warm working, and any of the thickest parts of the forging material after this artificial aging treatment is given. From the vertical cross section at the position of (2), a measurement sample (three pieces) including the thickness center portion is collected, and the sample is sliced in parallel to the forging material surface and polished so that the thickness center comes out as an observation surface.
That is, the thickness center portion is a plane parallel to the forging material surface at the thickness center (plate thickness center) in the plan view of the forging material, and the forging material surface (for example, a horizontal plane) at the thickness center. ) And a surface extending substantially parallel to the surface.
X-ray diffraction of the structure of the surface of this specimen (surface at the thickness center position), and (111), (200), (220), (311) which are the main orientations in the texture of this surface part , (400), (331), (420), (422) The half width of the diffraction peak from each surface (each azimuth surface) is obtained. The higher the dislocation density ρ, the larger the half width of the diffraction peak on each of these surfaces. In addition, even if the rolled surface used as the measuring object of a X-ray diffraction of a test piece remains in the state of a test piece, the washing | cleaning which does not involve an etching may be given.

次に、これらの各面の回折ピークの半価幅から、Williamson-Hall法により、格子ひずみ(結晶歪み)εを求めた上で、下記の式により転位密度ρを算出することができる。ここで、転位密度ρは前記肉厚中心部から採取した3個の試料につき行い、これらを平均化して転位密度ρの平均とする。
ρ= 16.1ε/b
ここで、ρは転位密度、εは格子ひずみ、bはバーガースベクトルの大きさである。
また、バーガースベクトルの大きさには2.8635×10-10mを用いた。
Next, after obtaining the lattice strain (crystal strain) ε by the Williamson-Hall method from the half-value width of the diffraction peak of each surface, the dislocation density ρ can be calculated by the following equation. Here, the dislocation density ρ is performed on three samples collected from the central portion of the thickness, and these are averaged to obtain the average of the dislocation density ρ.
ρ = 16.1ε 2 / b 2
Here, ρ is the dislocation density, ε is the lattice strain, and b is the size of the Burgers vector.
The size of Burgers vector was 2.8635 × 10 -10 m.

上記Williamson-Hall法は、複数の回折の半価幅と回折角の関係から転位密度や結晶粒径を求めるために汎用されている公知のラインプロファイル解析法である。また、これらX線回折による転位密度の一連の求め方も公知であり、これらX線回折による転位密度の一連の求め方を総称して、本発明では転位密度を「X線回折により測定された転位密度」と称している。   The Williamson-Hall method is a well-known line profile analysis method that is widely used to determine the dislocation density and the crystal grain size from the relationship between the half width of a plurality of diffractions and the diffraction angle. In addition, a series of methods for obtaining the dislocation density by X-ray diffraction is also known, and the series of methods for obtaining the dislocation density by X-ray diffraction are collectively referred to as “dislocation density measured by X-ray diffraction” in the present invention. Dislocation density ".

(小傾角粒界の平均割合)
本発明では、鍛造材の高強度化、高延性化を図るために、平均転位密度や析出物の平均数密度などの他の組織制御とともに、この鍛造材の最も厚肉な部分の肉厚中心の観察面(肉厚中心部)における、SEM−EBSD法により測定された、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合を50%以上とする。
(Average ratio of low-angle grain boundaries)
In the present invention, in order to increase the strength and ductility of the forging, along with other structure control such as average dislocation density and average number density of precipitates, the center of thickness of the thickest part of the forging The average ratio of small-angle grain boundaries having an inclination angle of 2 to 15 ° of crystal grains having an orientation difference of 2 ° or more, as measured by the SEM-EBSD method, is 50% or more.

このように、小傾角粒界の割合を、前記規定範囲のように、大きくなるよう制御することによって、自動車足回り部品などとしての使用時の外力の負荷に対して、局所的に歪が集中せずに、均一に変形する組織とできる。これによって、局所的な破断を防止でき、平均転位密度や析出物の平均数密度などの他の組織規定(要件)と合わせて、0.2%耐力が400MPa以上、伸びが10%以上の高強度、高延性とできる。
一方、前記小傾角粒界の平均割合が50%未満では、従来の鍛造材と同じとなり、前記高強度と高伸びを達成する機構が発現せず、伸びも低下する。
In this way, by controlling the ratio of the low-angle grain boundaries to be large as in the specified range, strain is concentrated locally with respect to the load of external force when used as an automobile underbody part or the like. Without causing the tissue to deform uniformly. As a result, local breakage can be prevented, and in combination with other structural rules (requirements) such as average dislocation density and average number density of precipitates, 0.2% proof stress is 400 MPa or more and elongation is 10% or more. High strength and high ductility.
On the other hand, when the average proportion of the low-angle grain boundaries is less than 50%, it becomes the same as a conventional forged material, and the mechanism for achieving the high strength and high elongation is not exhibited, and the elongation is also lowered.

本発明で言う小傾角粒界とは、後述するSEM−EBSD法により測定した結晶方位の内、結晶方位の相違(傾角)が2〜15°と小さい結晶粒の間の粒界である。
なお、これに対する大傾角粒界とは、この結晶方位の相違(傾角)が15°を超え、90°以下の結晶粒の間の粒界である。
The small tilt grain boundary referred to in the present invention is a grain boundary between crystal grains having a small crystal orientation difference (tilt angle) of 2 to 15 ° among crystal orientations measured by the SEM-EBSD method described later.
In addition, the large tilt grain boundary with respect to this is a grain boundary between crystal grains in which the difference in crystal orientation (tilt angle) exceeds 15 ° and is 90 ° or less.

この小傾角粒界の平均割合として、本発明では、測定した小傾角粒界の結晶粒界の全長(測定された全小傾角粒の結晶粒界の合計の長さ)の、同じく測定した、結晶方位の相違が2〜90°の結晶粒界の全長(測定された全結晶粒の結晶粒界の合計の長さ)に対する割合を、傾角2〜15°の小傾角粒界の割合と規定している。すなわち、規定する傾角2〜15°の小傾角粒界の割合(%)は、〔(2〜15°の結晶粒界の全長)/(2〜90°の結晶粒界の全長)〕×100として計算でき、この値の平均を50%以上とする。なお、製造あるいは熱間鍛造の限界から、2〜15°の小傾角粒界の割合の上限は90%程度である。   As an average ratio of the low-angle grain boundaries, in the present invention, the total length of the grain boundaries of the measured small-angle grain boundaries (the total length of the grain boundaries of all the small-angle grains measured) was also measured. The ratio of the crystal orientation difference with respect to the total length of the crystal grain boundary of 2 to 90 ° (the total length of the measured crystal grain boundaries of all crystal grains) is defined as the ratio of the small tilt grain boundary with the tilt angle of 2 to 15 °. doing. That is, the ratio (%) of the low-angle grain boundary with the specified inclination angle of 2 to 15 ° is [(total length of the crystal grain boundary of 2 to 15 °) / (full length of the crystal grain boundary of 2 to 90 °)] × 100. The average of these values is 50% or more. From the limit of production or hot forging, the upper limit of the ratio of 2-15 ° low-angle grain boundaries is about 90%.

SEM−EBSD法による小傾角粒界の平均割合測定
鍛造材組織における、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合の測定は、人工時効処理後の鍛造材の最も厚肉な部分の、前記肉厚中心の観察面(肉厚中心部)の組織をSEM−EBSD法により測定して行う。
Measurement of average ratio of low-angle grain boundaries by SEM-EBSD method Measurement of average ratio of low-angle grain boundaries with a tilt angle of 2 to 15 degrees of crystal grains having a misorientation of 2 ° or more in the forged structure is performed after artificial aging treatment. The structure of the observation surface (thickness center portion) of the thickness center of the thickest portion of the forged material is measured by SEM-EBSD method.

具体的な測定方法は、前記転位密度の試料採取と同じく、前記人工時効処理後の鍛造材の最も厚肉な部分の任意の位置の縦断面から、肉厚中心部を含む測定試料(3個)を採取して、肉厚中心における観察面が出るように研磨する。
そして、SEM−EBSDを用いて、前記観察面における、鍛造材の長手方向の辺の長さが1000μm×幅方向の辺の長さが320μmの、矩形領域の測定範囲に対して、1.0μmのピッチで電子線を照射する。
これによって、1試料当たりの小傾角粒界の平均割合を測定し、更に、測定した試料数3個で平均化する。
A specific measurement method is the same as in the sampling of the dislocation density, from a longitudinal section at an arbitrary position of the thickest part of the forged material after the artificial aging treatment, ) And grind so that the observation surface at the center of the wall appears.
And using SEM-EBSD, the length of the longitudinal side of the forging material on the observation surface is 1000 μm × the length of the side in the width direction is 320 μm. The electron beam is irradiated at a pitch of.
Thus, the average ratio of the low-angle grain boundaries per sample is measured, and further averaged with three measured samples.

SEM−EBSD(EBSP)法は、走査電子顕微鏡(Scanning Electron Microscope: SEM)に、後方散乱電子回折像[EBSD: Electron Back Scattering (Scattered) Diffraction Pattern] システムを搭載した、汎用的な結晶方位解析法である。   The SEM-EBSD (EBSP) method is a general-purpose crystal orientation analysis method in which a scanning electron microscope (SEM) is equipped with an EBSD (Electron Back Scattering (Scattered) Diffraction Pattern) system. It is.

より具体的に、SEM−EBSDの前記観察用試料の調整は、前記観察試料 (断面組織)を、更に機械研磨後電解エッチングして鏡面化する。そして、SEM の鏡筒内にセットし、試料の鏡面化した表面に、電子線を照射してスクリーン上にEBSD(EBSP)を投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y、z)などとともに記録される。このプロセスが全測定点に対して自動的に行なわれるので、測定終了時には、鍛造材の断面における数万〜数十万点の結晶方位データが得られる。この結晶方位データを基に、結晶粒を判別し、結晶粒界の方位差を解析することになる。   More specifically, the observation sample of SEM-EBSD is adjusted by mirror-polishing the observation sample (cross-sectional structure) after further mechanical polishing. Then, it is set in a SEM column and irradiated with an electron beam on the mirror-finished surface of the sample to project EBSD (EBSP) on the screen. This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y, z) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data in the cross section of the forged material are obtained at the end of the measurement. Based on this crystal orientation data, the crystal grains are discriminated and the difference in crystal grain boundaries is analyzed.

(析出物)
本発明では、鍛造材の高強度化、高延性化を図るために、以上の平均転位密度や小傾角粒界の平均割合の制御とともに、この鍛造材の最も厚肉な部分の肉厚中心の観察面(肉厚中心部)における、倍率30万倍のTEMにより測定可能な析出物の平均数密度を5.0×10個/μm以上とする。
これによって、平均転位密度や結晶粒界中の小傾角粒界の平均割合などの他の組織規定(要件)と合わせて、0.2%耐力が400MPa以上、伸びが10%以上の高強度、高延性とできる。
(Precipitate)
In the present invention, in order to increase the strength and ductility of the forged material, along with the control of the average dislocation density and the average ratio of the low-angle grain boundaries, the center of thickness of the thickest portion of the forged material is obtained. The average number density of precipitates that can be measured by a TEM with a magnification of 300,000 times on the observation surface (wall thickness center portion) is set to 5.0 × 10 2 pieces / μm 3 or more.
Accordingly, in combination with other structural provisions (requirements) such as average dislocation density and average proportion of low-angle grain boundaries in crystal grain boundaries, 0.2% proof stress is 400 MPa or more and elongation is 10% or more. Can be highly ductile.

ここで、倍率30万倍のTEMにより測定可能な析出物とは、30万倍のTEMで、組成に関わらず、その形状から測定(識別)可能な全析出物である。
すなわち、TEMの画像解析によって、マトリックスや粒界、あるいは転位などとは、形状から識別(区別)して観察(測定)できる、種々の粒状あるいは塊状、棒状、針状などの孤立した不定形(複雑形)を有する析出物全般である。
また、30万倍のTEMで測定可能な析出物の最小の大きさは、その平均円相当径が5nm以上であり、これ未満のものは測定できないので範囲外となる。
Here, the precipitates that can be measured by a TEM with a magnification of 300,000 times are all precipitates that can be measured (identified) from the shape of the TEM with a magnification of 300,000 times regardless of the composition.
That is, by TEM image analysis, matrix, grain boundaries, or dislocations can be identified (differentiated) from the shape and observed (measured), and can be observed (measured) in various granular or lump-like shapes, rod shapes, needle shapes, etc. This is a general precipitate having a complex shape.
Further, the minimum size of the precipitates that can be measured with a TEM of 300,000 times is out of the range because the average equivalent circle diameter is 5 nm or more, and those smaller than this cannot be measured.

ちなみに、析出物の大きさの上限であるが、常法により製造する自動車足回り部品鍛造材では、その平均円相当径が1000nmを超える粗大な析出物は、破壊の原因となるため、殆ど存在させない(存在しない)。このため、前記TEMにて測定可能な、析出物の大きさの実質的な上限は1000nmである。   By the way, although it is the upper limit of the size of precipitates, in automobile underbody parts forgings manufactured by a conventional method, coarse precipitates whose average equivalent circle diameter exceeds 1000 nm cause destruction and are almost present. Do not let (do not exist). For this reason, the substantial upper limit of the size of the precipitates that can be measured by the TEM is 1000 nm.

ここで、円相当径とは、同定できた析出物を画像処理して、前記TEM視野内の個々の析出物の面積を算出し、その同一面積の円に換算した場合の直径(等価な円径)に換算したもの(円等価直径)である。   Here, the equivalent circle diameter is the diameter (equivalent circle) when the identified precipitate is image-processed, the area of each precipitate within the TEM visual field is calculated, and converted into a circle of the same area. (Diameter) (circle equivalent diameter).

本発明で言う析出物の組成は、前記合金組成において、人工時効処理時に生成する、Mg-Si系あるいはAl-Mg-Si-Cu系、Al- Mn系、Al- Cr系、Al- Zr系、あるいはこれらにFeが入った組成が主となる金属間化合物である。
これらの前記TEMにより測定可能な微細な析出物の平均数密度を5.0×10個/μm以上とより多く存在させることによって(多く存在するほど)、強度(BH性)が格段に向上する。
これらの析出物がBH性を向上させる機構は未だ不明であるものの、前記予ひずみ付与時の加工硬化特性の向上や、予ひずみ付与によって導入された転位の、人工時効処理時の回復抑制に対して、前記サイズや数密度の遷移元素系分散粒子が特に寄与するものと推測される。
しかも、このような微細な析出物は、鍛造材の伸びを低下させないという優れた効果も有する。
The composition of the precipitates referred to in the present invention is the Mg-Si-based or Al-Mg-Si-Cu-based, Al-Mn-based, Al-Cr-based, Al-Zr-based, produced during the artificial aging treatment in the alloy composition. Or an intermetallic compound mainly containing a composition containing Fe.
By making the average number density of the fine precipitates measurable by these TEM more as 5.0 × 10 2 / μm 3 or more (as much as there are), the strength (BH property) is remarkably increased. improves.
Although the mechanism by which these precipitates improve BH properties is still unclear, improvement in work hardening characteristics at the time of prestraining, and suppression of recovery during artificial aging treatment of dislocations introduced by prestraining Thus, it is presumed that the transition element-based dispersed particles having the size and number density contribute particularly.
Moreover, such fine precipitates have an excellent effect of not reducing the elongation of the forged material.

この鍛造材の最も厚肉な部分の肉厚中心部における、倍率30万倍のTEMにより測定可能な析出物の平均数密度が5.0×10個個/μm未満と少なくなると、従来の鍛造材と同じとなり、前記高強度を達成するBH性の機構が発現せず、伸びも低下する。
なお、製造乃至熱間鍛造の限界からすると、前記析出物の平均数密度の上限は1.0×10個/μm程度である。
When the average number density of precipitates that can be measured by a TEM with a magnification of 300,000 times is less than 5.0 × 10 2 pieces / μm 3 at the thickness center of the thickest part of the forging, This is the same as the forging material, and the BH mechanism for achieving the high strength does not appear, and the elongation also decreases.
In addition, from the limit of production or hot forging, the upper limit of the average number density of the precipitates is about 1.0 × 10 5 pieces / μm 3 .

析出物の平均数密度の測定
本発明で規定する析出物の平均数密度の測定は、人工時効処理後の鍛造材の最も厚肉な部分の肉厚中心の観察面の組織を30万倍の倍率のTEM(透過型電子顕微鏡:FE−TEM)によって測定する。
具体的な測定方法は、前記人工時効処理後の鍛造材の最も厚肉な部分の任意の位置の縦断面から、肉厚中心部を含む測定試料(3個)を採取して、肉厚中心における観察面が出るように、TEM用の薄膜試料を作成する。
TEM用の薄膜試料は、前記測定試料を機械研磨して、肉厚中心から両厚さ方向に0.05mm(厚さ0.1mm)とした後、ツインジェット式電解研磨法にて肉厚中心から厚さ100nmの薄膜にする。
その上で、この薄膜(試料)を30万倍の倍率のTEMにより撮影した組織写真を画像処理し、測定視野内(観察視野の合計面積が0.5μm以上)の同定(識別)可能な全ての析出物の個数を測定する。
そして、測定視野に対する析出物の平均数密度(個/μm)を測定する。
ここで、平均数密度の測定は、前記肉厚中心部から採取した3個の試料につき行い、これらを平均化して析出物の平均数密度(個/μm)とする。
Measurement of the average number density of precipitates The average number density of the precipitates defined in the present invention is 300,000 times the structure of the observation center at the thickness center of the thickest part of the forged material after artificial aging treatment. It measures by TEM (transmission electron microscope: FE-TEM) of magnification.
A specific measurement method is to collect measurement samples (three pieces) including a thickness center portion from a longitudinal section at an arbitrary position of the thickest portion of the forged material after the artificial aging treatment, A thin film sample for TEM is prepared so that the observation surface at.
The thin film sample for TEM was mechanically polished from the measurement sample to 0.05 mm (thickness 0.1 mm) in both thickness directions from the thickness center, and then the thickness center was measured by the twin jet electrolytic polishing method. To a thin film with a thickness of 100 nm.
In addition, a tissue photograph obtained by photographing the thin film (sample) with a TEM at a magnification of 300,000 times can be subjected to image processing, and identification (identification) within the measurement visual field (the total area of the observation visual field is 0.5 μm 2 or more) is possible. The number of all precipitates is measured.
And the average number density (pieces / micrometer < 3 >) of the precipitate with respect to a measurement visual field is measured.
Here, the average number density is measured for three samples collected from the central portion of the thickness, and these are averaged to obtain the average number density of the precipitates (pieces / μm 3 ).

以上説明した通り、本発明で規定する鍛造材の組織そして特性は、溶体化および焼入れ処理した鍛造材に温間加工による歪を付与した上で人工時効処理を施した後の鍛造材の組織と特性である。   As described above, the structure and characteristics of the forging material defined in the present invention are the structure of the forging material after the artificial aging treatment is applied to the forging material that has been subjected to solution treatment and quenching treatment, and is subjected to artificial aging treatment. It is a characteristic.

(鍛造材測定部位)
以上の組織や特性の測定部位は人工時効処理後の鍛造材の最も厚肉な部分の肉厚中心部とした。鍛造材が、I型と呼ばれるような、棒状、板状、円形状や円柱状などの単純な形状であれば、前記測定対象となる鍛造材の肉厚中心部は、鍛造材の中心点を基準に特定できる。
ただ、前記自動車足回り部品は、代表的には、平面視で略三角形の全体形状からなるとともに、この三角形の頂点部分となる3箇所のボールジョイントを、幅狭で厚い周縁部のリブと幅広で薄肉な中央部のウエブとからなる、断面が略H型または略U型のアームで繋いだ、複雑形状からなる。
したがって、このような自動車足回り部品の肉厚中心部とは、鍛造材の最も厚肉な部分として、前記厚肉のリブの任意の位置の前記した肉厚中心の部位とする。
(Forging material measurement site)
The measurement site | part of the above structure | tissue and a characteristic was made into the thickness center part of the thickest part of the forged material after artificial aging treatment. If the forging material is a simple shape such as a bar shape, a plate shape, a circular shape or a columnar shape called I-type, the thickness center of the forging material to be measured is the center point of the forging material. It can be specified as a standard.
However, the automobile undercarriage part typically has an overall shape of a substantially triangular shape in plan view, and three ball joints, which are the apex portions of the triangle, are connected to a narrow and thick peripheral edge rib and a wide width. It is composed of a thin central web and has a complicated shape with a cross section connected by a substantially H-shaped or U-shaped arm.
Therefore, the thickness center portion of such an automobile underbody part is the above-described thickness center portion at an arbitrary position of the thick rib as the thickest portion of the forged material.

(製造方法)
次に、本発明におけるアルミニウム合金鍛造材の製造方法について述べる。本発明におけるアルミニウム合金鍛造材の製造工程自体は、前記組成を有するアルミニウム合金鋳塊を均質化熱処理後、熱間鍛造加工を行い、この鍛造材に溶体化および焼入れ処理と人工時効処理とを施す、常法により製造が可能である。すなわち、鋳塊の熱間押出加工を行わずとも製造が可能である。
但し、自動車足回り部品などとして、前記組織を有し、前提としての高耐食性の上で、強度と延性とをともに向上させる(高強度化、高延性化の)ために、溶体化および焼入れ処理後であって、人工時効処理前に予め温間加工を行うなどの、以下に示す好ましい製造条件がある。
(Production method)
Next, the manufacturing method of the aluminum alloy forging material in this invention is described. In the manufacturing process of the aluminum alloy forged material in the present invention, the aluminum alloy ingot having the above composition is subjected to a homogenization heat treatment, followed by a hot forging process, and the forged material is subjected to solution treatment, quenching treatment and artificial aging treatment. It can be produced by a conventional method. That is, it can be manufactured without performing hot extrusion of the ingot.
However, as an automobile undercarriage part, etc., it has the above structure, and in order to improve both strength and ductility (high strength and high ductility) on the premise of high corrosion resistance, solution treatment and quenching treatment There are preferable manufacturing conditions as described below, such as warming in advance after the artificial aging treatment.

鋳造
前記特定アルミニウム合金成分範囲内に溶解調整されたアルミニウム合金溶湯を鋳造する場合には、連続鋳造圧延法、半連続鋳造法(DC鋳造法)、ホットトップ鋳造法等の通常の溶解鋳造法を適宜選択して鋳造する。
但し、前記特定アルミニウム合金成分範囲からなるアルミニウム合金溶湯を鋳造する際には、晶出物の微細化と、デンドライト二次アーム間隔(DAS) を微細化させるために、平均冷却速度を100 ℃/s以上とすることが好ましい。
Casting When casting a molten aluminum alloy that has been adjusted to be dissolved within the specific aluminum alloy component range, a normal melting casting method such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), or a hot top casting method is used. Select appropriately and cast.
However, when casting an aluminum alloy melt composed of the specific aluminum alloy component range, an average cooling rate of 100 ° C / ° C is used in order to refine the crystallized material and the dendrite secondary arm spacing (DAS). It is preferable to set it as s or more.

均質化熱処理
鋳造した鋳塊の均質化熱処理は450〜580℃の温度範囲に2時間以上保持して行う。均質化熱処理温度が450℃未満では、温度が低すぎて鋳塊を均質化できず、均質化熱処理温度が580℃を超えると、鋳塊表面のバーニングが発生する可能性がある。なお、均質化熱処理後で、熱間鍛造に先立つ押出加工は、不要であるが、所望であれば施しても良い。
Homogenizing heat treatment The cast ingot is homogenized and heat-treated at 450 to 580 ° C for 2 hours or more. If the homogenization heat treatment temperature is less than 450 ° C., the temperature is too low to homogenize the ingot, and if the homogenization heat treatment temperature exceeds 580 ° C., burning of the ingot surface may occur. In addition, after the homogenization heat treatment, an extrusion process prior to hot forging is unnecessary, but may be performed if desired.

熱間鍛造
均質化熱処理後の鋳塊を再加熱し、材料温度が430〜550℃の範囲、金型温度が100〜250℃の範囲、最小の肉厚減少率が25%以上であるとともに、最大の肉厚減少率が90%以下の条件で熱間鍛造加工を行うことが好ましい。
熱間鍛造は、メカニカルプレスによる鍛造や油圧プレスを用いて、自動車足回り部品の最終製品形状 (ニアネットシェイプ) に鍛造加工される。熱間鍛造は、鍛造途中の再加熱無しで、あるいは必要に応じて再加熱し、つぶし、荒鍛造、仕上げ鍛造と、熱間鍛造が複数回行われる。
Hot forging The ingot after homogenization heat treatment is reheated, the material temperature is in the range of 430 to 550 ° C, the mold temperature is in the range of 100 to 250 ° C, and the minimum thickness reduction rate is 25% or more, It is preferable to perform hot forging under the condition that the maximum thickness reduction rate is 90% or less.
Hot forging is forged into the final product shape (near net shape) of automobile undercarriage parts using mechanical press forging or hydraulic press. In the hot forging, hot forging is performed a plurality of times without reheating during forging or reheating as necessary, crushing, rough forging, finish forging, and so on.

熱間鍛造の加工率として、最小の肉厚減少率が1%未満では、前記した複雑形状の自動車足回り部品が、形状精度良く鍛造加工できなくなる可能性がある。一方、最大の肉厚減少率が90%を超える場合、再結晶を抑制することが難しく、粗大な再結晶粒が発生する可能性が高くなる。   If the minimum thickness reduction rate is less than 1% as the hot forging processing rate, the above-described complex-shaped automobile undercarriage part may not be forged with high shape accuracy. On the other hand, when the maximum thickness reduction rate exceeds 90%, it is difficult to suppress recrystallization, and the possibility of generating coarse recrystallized grains increases.

最終の鍛造後の鍛造終了温度が300℃未満であれば、鍛造および溶体化処理工程において、再結晶を抑制することが難しく、加工組織が再結晶して粗大結晶粒が発生する可能性がある。これら粗大結晶粒が発生した場合、前記組織に制御しても、高強度化や高延性化が果たせず、また、耐食性も低下する。しかも、低温の熱間鍛造では、鍛造材断面の前記全域を目標としている結晶粒を微細化させることが困難となる。一方、材料温度が550℃を超えた場合、鍛造材表面のバーニングが発生するとともに、粗大な再結晶粒が発生する可能性が高くなる。   If the forging end temperature after the final forging is less than 300 ° C., it is difficult to suppress recrystallization in the forging and solution treatment process, and the processed structure may be recrystallized to generate coarse crystal grains. . When these coarse crystal grains are generated, even if the structure is controlled, the strength and ductility cannot be increased, and the corrosion resistance also decreases. Moreover, in hot forging at low temperature, it is difficult to refine crystal grains that target the entire region of the cross-section of the forged material. On the other hand, when the material temperature exceeds 550 ° C., burning of the forged material surface occurs and the possibility of generating coarse recrystallized grains increases.

溶体化および焼き入れ処理
この熱間鍛造後に、溶体化および焼き入れ処理を行う。溶体化処理は、好ましくは、530〜570℃の温度範囲に、1時間以上、8時間以下保持する。この溶体化処理温度が低過ぎるか、あるいは時間が短過ぎると、溶体化が不足して、Mg−Si系化合物の固溶が不十分となり、続く人工時効処理における化合物の析出量が少なすぎ、強度が低下する。保持時間は長くても良いが、8時間を超えても、効果が飽和する。
Solution treatment and quenching treatment After this hot forging, solution treatment and quenching treatment are performed. The solution treatment is preferably held in the temperature range of 530 to 570 ° C. for 1 hour or more and 8 hours or less. If the solution treatment temperature is too low, or if the time is too short, the solution treatment is insufficient, the solid solution of the Mg-Si-based compound becomes insufficient, and the precipitation amount of the compound in the subsequent artificial aging treatment is too small. Strength decreases. Although the holding time may be long, the effect is saturated when it exceeds 8 hours.

この溶体化処理後、500℃から100℃までを25℃/s以上の平均冷却速度で焼入れ処理を行なうことが好ましい。この平均冷却速度を確保するために、焼き入れ処理時の冷却は、鍛造材の歪を防止した均一な冷却のためにも、水冷、特に、気泡をバブリングしつつ冷却水を循環させる、水冷(水槽浸漬)により行なうことが好ましい。この焼き入れ処理時の冷却速度が低くなると、粒界上にMg−Si系化合物、Si等が析出し、人工時効後の製品において、粒界破壊が生じ易くなり、靱性ならびに疲労特性を低くする。また、冷却途中に、粒内にも、安定相であるMg−Si系化合物、Siが形成され、人工時効時に析出するβ相、β' 相の析出量が減るため、強度が低下する。 After this solution treatment, it is preferable to perform a quenching treatment from 500 ° C. to 100 ° C. at an average cooling rate of 25 ° C./s or more. In order to secure this average cooling rate, the cooling during the quenching process is also water cooling, in particular, water cooling (circulating cooling water while bubbling bubbles, It is preferable to carry out by immersion in a water bath. When the cooling rate during the quenching process is lowered, Mg-Si compounds, Si, etc. are precipitated on the grain boundaries, and in the product after artificial aging, grain boundary fracture is likely to occur, and the toughness and fatigue characteristics are lowered. . Also, during cooling, even in the grains, Mg-Si-based compound is a stable phase, Si is formed, beta phase which precipitates during artificial aging, since the precipitation amount of beta 'phase is decreased, the strength is lowered.

ただ、一方で、冷却速度が高く(速く)なり過ぎると、焼入ひずみ量が多くなり、焼入後に、矯正工程が新たに必要になったり、矯正工程の工数が増す問題も新たに生じる。また残留応力も高くなり、製品の寸法、形状精度が低下する問題も新たに生じる。この点、製品製造工程を短縮し、低コスト化するためには、焼入歪みが緩和される30〜85℃の温湯焼入が好ましい。ここで、温湯焼入温度が30℃未満では焼入歪みが大きくなり、85℃を超えると冷却速度が低くなりすぎ、靱性ならびに疲労特性、強度が低くなる。   However, on the other hand, if the cooling rate is too high (fast), the amount of quenching strain increases, and a new problem arises that a straightening process becomes necessary after quenching, and the number of steps in the straightening process increases. In addition, the residual stress increases, and a new problem arises that the dimensional and shape accuracy of the product is lowered. In this respect, in order to shorten the product manufacturing process and reduce the cost, hot water quenching at 30 to 85 ° C. in which quenching distortion is alleviated is preferable. Here, when the hot water quenching temperature is less than 30 ° C., the quenching strain increases, and when it exceeds 85 ° C., the cooling rate becomes too low, and the toughness, fatigue characteristics, and strength are lowered.

温間加工
本発明では、このように得られた(溶体化および焼き入れ処理後の)熱間鍛造材に歪を付加して、規定する前記組織とし、高強度化、高延性化させるために、人工時効処理前に予め温間加工を行う。
この温間加工条件として、溶体化及び焼き入れ処理後48時間以内に温間加工を行う。温間加工前の加熱は、140〜220℃の温度範囲に、炉への投入(保持)時間を20分〜120分(昇温を19分〜60分の範囲で行い、到達温度で1分〜60分の範囲で保持)とし、その後遅滞なく(直ちに)温間加工することが好ましい。
このような加熱条件によって、前記加熱保持中に先に粒内に均一微細なβ’相の析出が生じる。その後に温間加工するため、温間加工によって導入された転位によるβ’相の不均一析出が抑制される。また、既に析出しているβ’相が転位をピン止めし、人工時効処理時の転位の回復を抑制し、加工硬化量も確保される。
一方で、この投入時間が短いと、温間加工前の加熱処理での昇温・加熱保持中のβ’相の析出はほとんど起こらないが、その後の温間加工によって導入された転位が、人工時効処理時の析出サイトとなり、不均一析出するとともに、転位が元素の拡散を促進し、析出物が粗大化、疎に分布し、強度が低下する可能性がある。
Warm working In the present invention, the hot forged material thus obtained (after solution treatment and quenching treatment) is distorted to form the above-mentioned structure, and to increase the strength and ductility. Warm processing is performed in advance before artificial aging treatment.
As this warm working condition, warm working is performed within 48 hours after solution treatment and quenching treatment. The heating before the warm working is performed in a temperature range of 140 to 220 ° C., a furnace charging (holding) time of 20 minutes to 120 minutes (a temperature increase is performed in a range of 19 minutes to 60 minutes, and a final temperature is 1 minute) It is preferable to perform warm processing without delay (immediately) after that.
Under such heating conditions, a uniform fine β ′ phase is first precipitated in the grains during the heating and holding. Since warm working is performed thereafter, non-uniform precipitation of β ′ phase due to dislocations introduced by warm working is suppressed. In addition, the β ′ phase that has already precipitated pins the dislocation, suppresses the recovery of the dislocation during the artificial aging treatment, and secures the work hardening amount.
On the other hand, if the charging time is short, the β ′ phase is hardly precipitated during the temperature rise and heat retention in the heat treatment before warm working, but the dislocation introduced by the subsequent warm working is artificial. It becomes a precipitation site at the time of aging treatment, and in addition to non-uniform precipitation, dislocation promotes the diffusion of elements, and precipitates are coarsened and sparsely distributed, which may reduce strength.

温間加工率は5〜30%が望ましい。5%未満では、温間加工により鍛造材に付加される歪量が小さくなり、鍛造材に導入される転位が少なく、転位強化の効果が得られない。
また、30%を超えると、蓄積歪が増大することにより、人工時効時の回復の駆動力が増大し、転位強化による硬化量は飽和し、強度向上効果は小さくなる。
さらに、加工量が増えると、温間加工後或いは人工時効中の回復によって形成される粒界の方位差が増大し、小傾角粒界の割合が減少し、粒界への優先析出量が増大することで、却って強度が低下する。
温間加工の態様は、鍛造材の形状に応じて行い、棒状、板状、円形状や円柱状などの単純な形状であれば、ロールによる圧延やプレス加工が適用でき、前記自動車足回り部品などの複雑形状であれば、温間での型鍛造や自由鍛造などを用いる。
そして、温間加工の加工率や加工方法にもよるが、加工率を前記範囲で高くしたい場合には、この温間加工によって、鍛造材を最終製品形状とする(前記熱間鍛造ではニアネットシェイプとする)ことが好ましい。
The warm working rate is preferably 5 to 30%. If it is less than 5%, the amount of strain applied to the forged material due to warm working becomes small, and there are few dislocations introduced into the forged material, and the effect of dislocation strengthening cannot be obtained.
If it exceeds 30%, the accumulated strain increases, so that the driving force for recovery during artificial aging increases, the amount of hardening due to dislocation strengthening is saturated, and the strength improvement effect becomes small.
Furthermore, as the processing amount increases, the grain boundary orientation difference formed by recovery after warm processing or during artificial aging increases, the proportion of low-angle grain boundaries decreases, and the amount of preferential precipitation at the grain boundaries increases. By doing so, the strength decreases.
The mode of warm working is performed according to the shape of the forged material, and rolling or pressing with a roll can be applied as long as it is a simple shape such as a rod, plate, circle or cylinder, and the automobile undercarriage part For complex shapes such as those, warm die forging and free forging are used.
And depending on the processing rate and processing method of the warm processing, when it is desired to increase the processing rate within the above range, the forging material is made into the final product shape by this warm processing (in the above-mentioned hot forging, the near net It is preferable to use a shape).

人工時効処理
以上の温間加工後に、人工時効処理(人工時効硬化処理)を施す。室温時効を進めないためには、前記温間加工後に、速やかに、例えば目安としては1時間以内に人工時効処理を行うことが好ましい。この人工時効処理は、好ましくは、100℃以上、250℃以下の温度範囲と20分〜8hrの保持時間の範囲から条件を選択する。
Artificial aging treatment After the above warm processing, artificial aging treatment (artificial aging hardening treatment) is performed. In order to prevent room temperature aging from proceeding, it is preferable to perform artificial aging treatment immediately after the warm working, for example, within 1 hour as a guideline. In this artificial aging treatment, conditions are preferably selected from a temperature range of 100 ° C. or higher and 250 ° C. or lower and a holding time range of 20 minutes to 8 hours.

但し、この条件範囲内であっても、組成や、熱間鍛造、溶体化焼き入れ処理、冷間あるいは温間加工などの前工程の条件に見合った最適条件を選択すべきで、これらの組成や前工程条件に見合わず、この人工時効温度が低すぎるか高すぎる、あるいは保持時間が短すぎると、所望の規定する組織や、高い引張強度と高い耐力、そして高い伸びが得られない可能性がある。
なお、前記した、均質化熱処理、溶体化処理には空気炉、誘導加熱炉、硝石炉などが適宜用いられる。更に、人工時効処理には空気炉、誘導加熱炉、オイルバスなどが適宜用いられる。
However, even within this range of conditions, the optimum conditions should be selected according to the conditions of the previous process such as composition, hot forging, solution quenching, cold or warm processing, and these compositions. If the artificial aging temperature is too low or too high, or the holding time is too short, the desired specified structure, high tensile strength and high yield strength, and high elongation may not be obtained. There is sex.
In addition, an air furnace, an induction heating furnace, a nitrite furnace, etc. are used suitably for the above-mentioned homogenization heat treatment and solution treatment. Furthermore, an air furnace, an induction heating furnace, an oil bath, or the like is appropriately used for the artificial aging treatment.

本発明鍛造材は、自動車足回り部品用として、前記人工時効処理の前後に、機械加工や表面処理などが適宜施されても良い。   The forged material of the present invention may be appropriately subjected to machining or surface treatment before and after the artificial aging treatment for automobile undercarriage parts.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

次に、本発明の実施例を説明する。表1に示す各アルミニウム合金組成で、溶体化および焼入れ処理までは同じ製造条件とした熱間鍛造材を、表2に示す各異なる条件で温間加工と人工時効処理とを施して、自動車足回り部品の素材となる鍛造材を製造した。そして、この鍛造材の組織、機械的特性、耐食性を表2に示すように測定、評価した。   Next, examples of the present invention will be described. Hot forgings with the same production conditions until solution treatment and quenching treatment with each aluminum alloy composition shown in Table 1 are subjected to warm working and artificial aging treatment under different conditions shown in Table 2, Manufactured a forging material to be used as a material for rotating parts. Then, the structure, mechanical properties, and corrosion resistance of this forged material were measured and evaluated as shown in Table 2.

具体的には、各例とも共通して、表1に示すアルミニウム合金鍛造材の化学成分からなる鋳塊を、平均冷却速度を100℃/s以上とした半連続鋳造法により鋳造した。なお、表1に示す各アルミニウム合金例は、共通して100gのAl中の水素濃度は全て0.10〜0.15mlであった。ここで、表1中の各元素の含有量の表示において、各元素における数値欄を「−」としている表示は、その含有量が検出限界以下であることを示す。   Specifically, in common with each example, the ingot which consists of a chemical component of the aluminum alloy forging material shown in Table 1 was cast by the semi-continuous casting method which made the average cooling rate 100 degrees C / s or more. In addition, in each example of aluminum alloy shown in Table 1, the hydrogen concentration in 100 g of Al was all 0.10 to 0.15 ml. Here, in the display of the content of each element in Table 1, the display in which the numerical value column for each element is “−” indicates that the content is below the detection limit.

これら各アルミニウム合金鋳塊の外表面を、各例とも共通して、厚さ3mm面削して、長さ120mm 、φ75mmの丸棒状ビレットに切断後、520℃×5時間、均質化熱処理し、この均質化熱処理後は、ファンを使用して、冷却速度が100℃/hr以上で鋳塊を強制空冷した。
均質化熱処理後の鋳塊の熱間鍛造は、各例とも共通して、最終の肉厚まで再加熱無しに3回鍛造し、鍛造開始時の温度が500〜520℃の範囲、金型温度が170〜200℃の範囲、鍛造材中央部の肉厚変化率が(25%を超える)75%の共通の条件で、上下金型を用いたメカニカルプレスにより行った。
なお、これら熱間鍛造では、各例とも、後述する温間鍛造にて同じ共通した最終鍛造材形状とするため、温間鍛造の各加工率に応じた、各ニアネットシェイプ形状の熱間鍛造材とした。
In common with each example, the outer surface of each aluminum alloy ingot is chamfered 3 mm in thickness, cut into a round bar-shaped billet with a length of 120 mm and φ75 mm, and then subjected to a homogenization heat treatment at 520 ° C. for 5 hours. After this homogenization heat treatment, the ingot was forcibly air-cooled using a fan at a cooling rate of 100 ° C./hr or more.
The hot forging of the ingot after the homogenization heat treatment is common to each example, forging three times without reheating to the final wall thickness, the temperature at the start of forging is in the range of 500 to 520 ° C, the mold temperature Was performed by a mechanical press using upper and lower molds under the common conditions of a range of 170 to 200 ° C. and a thickness change rate of the center of the forging material of 75% (over 25%).
In addition, in these hot forgings, in each example, in order to obtain the same final forged material shape in the warm forging described later, each of the near net shape hot forgings corresponding to each processing rate of the warm forging. A material was used.

これらの鍛造材を、各例とも共通して、空気炉を用い、550℃×5時間の溶体化処理後に、500℃から100℃までが25℃/s以上の平均冷却速度となる、前記水冷(水槽浸漬)を行った。   These forged materials are commonly used in each example, using an air furnace, and after the solution treatment at 550 ° C. for 5 hours, the water cooling is performed at an average cooling rate of 25 ° C./s or more from 500 ° C. to 100 ° C. (Water bath immersion) was performed.

このように得られた(溶体化および焼き入れ処理後の)熱間鍛造材を、表2に示す条件で温間加工と人工時効処理とを実施し、前記組織を各々作り分けた。
温間鍛造は、表2に示す温間加工前加熱条件にて加熱後、上下金型を用いたメカニカルプレスにより、表2の温間加工前加熱温度と加工率にて、温間加工し、最終形状とした。
The hot forged material (after solution treatment and quenching treatment) thus obtained was subjected to warm working and artificial aging treatment under the conditions shown in Table 2 to create the respective structures.
In warm forging, after heating under the pre-warm heating conditions shown in Table 2, it is warm-worked with a mechanical press using upper and lower molds at the pre-warm heating temperature and processing rate in Table 2, Final shape.

製造した鍛造材の最終形状は、各例とも共通して、前記した、平面視で略三角形の全体形状からなるとともに、この三角形の頂点部分となる3箇所のボールジョイントを、幅狭で肉厚(高さ)が60mmの周縁リブと、幅広で肉厚(高さ)が31mmの薄肉な中央部のウエブとからなる、断面が略H型のアームで繋いだ足回り部品形状とした。   The final shape of the manufactured forged material is common to each example, and is composed of the overall shape of a substantially triangular shape in plan view as described above, and the three ball joints that are the apex portions of this triangle are narrow and thick. The suspension part shape was formed of a peripheral rib having a height of 60 mm and a thin central web having a wide wall thickness (height) of 31 mm and connected by an arm having a substantially H-shaped cross section.

以上のようにして、前記組織を作り分けた鍛造材の組織、機械的特性、耐粒界応力腐食割れ性を、以下の方法で測定、評価した。これらの結果を表2に示す。   As described above, the structure, mechanical characteristics, and intergranular stress corrosion cracking resistance of the forged material that made the structure were measured and evaluated by the following methods. These results are shown in Table 2.

(組織)
本発明で規定した各組織は、前記した測定方法により、鍛造材の任意の前記略H型のアームにおける最も厚肉のリブ部の任意の肉厚中心部の縦断面から、試料を採取して、転位密度平均(/m)、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合(%)、析出物の平均数密度(個/μm)を、前記した要領で各々測定した。
(Organization)
Each structure defined in the present invention is obtained by taking a sample from a longitudinal section of an arbitrary thickness center portion of the thickest rib portion in any of the substantially H-shaped arms of the forged material by the measurement method described above. Average dislocation density (/ m 2 ), average ratio (%) of grain boundaries with a tilt angle of 2 ° to 15 °, and average number density of precipitates (pieces / μm 3 ). Each was measured in the manner described above.

(機械的特性)
前記鍛造材の前記最も厚肉のリブ部の任意の部位の肉厚中心部から試料を採取し、この試料から、厚み方向の中心位置に肉厚中心を含んで、鍛造材の長手方向にそのL方向が延在するように、外径φ5mm、標点間距離25mm、引張試験片 (L方向) を3個作製した。そして、この試験片の0.2%耐力(MPa) 、伸び(%) などの機械的性質を各々、室温にて測定し、これら3個所(試験片3個)の各平均値を求めた。引張速度は、0.2%耐力までは5mm/分、0.2%耐力以降は20mm/分とした。
ここで、自動車足回り部品用の鍛造材としての合格基準は、0.2%耐力が400MPa以上 、伸びが10%以上とした。
(Mechanical properties)
A sample is taken from the thickness center portion of an arbitrary part of the thickest rib portion of the forged material, and from this sample, the center of the thickness direction is included in the thickness direction, and the longitudinal direction of the forged material is Three tensile test pieces (L direction) were prepared so that the L direction extends, the outer diameter was 5 mm, the distance between the gauge points was 25 mm. Then, mechanical properties such as 0.2% proof stress (MPa) and elongation (%) of the test piece were measured at room temperature, and average values of these three locations (three test pieces) were obtained. The tensile speed was 5 mm / min up to 0.2% proof stress and 20 mm / min after 0.2% proof stress.
Here, the acceptance criteria for forgings for automobile undercarriage parts were 0.2% proof stress of 400 MPa or more and elongation of 10% or more.

(耐食性)
耐食性の評価は、JIS H8711の交互浸漬法の規定に準じて、粒界腐食性の評価を行った。すなわち、耐応力腐食割れ性評価用試験片(SCC試験用Cリング)に300MPaの応力を負荷し、割れの大小にかかわらず、粒界腐食割れが生じるまでの時間(日数)を測り、30日未満の場合は×、30日以上〜60日未満は○と評価した。
(Corrosion resistance)
Corrosion resistance was evaluated according to intergranular corrosion properties in accordance with the provisions of the alternating immersion method of JIS H8711. That is, stress of 300 MPa was applied to a test piece for stress corrosion cracking resistance evaluation (C-ring for SCC test), and the time (number of days) until grain boundary corrosion cracking occurred regardless of the size of the crack was measured for 30 days. In the case of less than x, it was evaluated as x, and the case of 30 days or more to less than 60 days was evaluated as ◯.

表1、2から明らかな通り、各発明例は、本発明の成分組成範囲内で、かつ好ましい条件範囲で温間加工と人工時効処理されている。このため、これら各発明例は、表2に示す通り、本発明で規定する通りの組織を有し、X線回折により測定された転位密度が平均で1.0×1014〜5.0×1016/mの範囲であり、SEM−EBSD法により測定された、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合が50%以上であり、倍率30万倍のTEMにより測定可能な析出物の平均数密度が5.0×10個/μm以上である。 As is apparent from Tables 1 and 2, each of the inventive examples is subjected to warm working and artificial aging treatment within the component composition range of the present invention and within a preferable condition range. Therefore, as shown in Table 2, each of the inventive examples has a structure as defined in the present invention, and the average dislocation density measured by X-ray diffraction is 1.0 × 10 14 to 5.0 ×. 10 16 / m 2 , measured by the SEM-EBSD method, the average proportion of the low-angle grain boundaries with an inclination of 2 ° to 15 ° of crystal grains having an orientation difference of 2 ° or more is 50% or more, and the magnification The average number density of precipitates that can be measured with a TEM of 300,000 times is 5.0 × 10 2 pieces / μm 3 or more.

この結果、これら各発明例は、優れた耐食性を有した上で、0.2%耐力が400MPa以上 、伸びが10%以上であり、高強度と高延性を有し、足回り部品として必要な諸特性が兼備できている。   As a result, each of the inventive examples has excellent corrosion resistance, 0.2% proof stress of 400 MPa or more, elongation of 10% or more, high strength and high ductility, and is necessary as an undercarriage part. Various characteristics are combined.

これに対し、表2の比較例13〜19のように、合金組成は表1の合金番号1の範囲内だが、温間加工が好ましい条件範囲から外れて製造されている場合は、肉厚中心部における本発明の組織規定を満たしていない。この結果、これら比較例は、共通して、0.2%耐力や伸びが発明例に比して著しく劣る。
比較例13は人工時効処理前に温間加工していない。
比較例14は温間加工の際の加熱温度が低すぎる。
比較例15は温間加工の際の加熱温度が高すぎる。
比較例16は温間加工の際の加熱保持時間が短すぎる。
比較例17は温間加工の際の加熱保持時間が長すぎる。
比較例18は温間加工の加工率が低すぎる。
比較例19は温間加工の加工率が高すぎる。
On the other hand, as in Comparative Examples 13 to 19 in Table 2, the alloy composition is within the range of Alloy No. 1 in Table 1, but when the warm working is manufactured out of the preferable condition range, Does not meet the organizational regulations of the present invention. As a result, in these comparative examples, 0.2% proof stress and elongation are significantly inferior to those of the inventive examples.
In Comparative Example 13, warm processing was not performed before artificial aging treatment.
In Comparative Example 14, the heating temperature during warm working is too low.
In Comparative Example 15, the heating temperature during warm working is too high.
In Comparative Example 16, the heating and holding time during the warm working is too short.
In Comparative Example 17, the heating and holding time during the warm working is too long.
In Comparative Example 18, the processing rate of warm processing is too low.
In Comparative Example 19, the processing rate of warm processing is too high.

また、表2の比較例20〜23は、温間加工は好ましい条件範囲内だが、合金組成が範囲外であり、肉厚中心部における本発明の組織規定を満たしていない。この結果、これら比較例は、共通して、0.2%耐力や伸びが発明例に比して著しく劣る。
比較例20は、表1の合金番号11の通り、Mgが下限から外れる。
比較例21は、表1の合金番号12の通り、Siが下限から外れる。
比較例22は、表1の合金番号13の通り、Feを含有していない。
比較例23は、表1の合金番号14の通り、Mn、Cr、Zrのいずれも含有していない。
Further, in Comparative Examples 20 to 23 in Table 2, warm working is within a preferable condition range, but the alloy composition is out of the range and does not satisfy the structure rule of the present invention at the thickness center portion. As a result, in these comparative examples, 0.2% proof stress and elongation are significantly inferior to those of the inventive examples.
In Comparative Example 20, as shown in Alloy No. 11 in Table 1, Mg deviates from the lower limit.
In Comparative Example 21, as shown in Alloy No. 12 in Table 1, Si deviates from the lower limit.
Comparative Example 22 does not contain Fe as shown by Alloy No. 13 in Table 1.
Comparative Example 23 does not contain any of Mn, Cr, and Zr as shown in Alloy No. 14 in Table 1.

以上の結果から、優れた耐食性を有することを前提に、高強度と高延性とを有する6000系アルミニウム合金鍛造材を得られる、本発明組成、組織規定の臨界的な意義が分かる。   From the above results, on the premise of having excellent corrosion resistance, the critical significance of the composition of the present invention and the structure definition that can obtain a 6000 series aluminum alloy forged material having high strength and high ductility can be understood.

本発明によれば、優れた耐食性を有することを前提に、高強度と高延性とを有する6000系アルミニウム合金鍛造材を得ることができる。したがって、6000系アルミニウム合金熱間鍛造材の、自動車足回り部品など輸送機用への用途の拡大を図ることができる点で、多大な工業的な価値を有する。   According to the present invention, a 6000 series aluminum alloy forged material having high strength and high ductility can be obtained on the premise of having excellent corrosion resistance. Therefore, the 6000 series aluminum alloy hot forging material has a great industrial value in that it can be used for a transportation machine such as an automobile undercarriage part.

Claims (4)

質量%で、Si:0.7〜1.5%、Mg:0.6〜1.2%、Fe:0.01〜0.5%を各々含有するとともに、更に、Mn:0.05〜1.0%、Cr:0.01〜0.5%、Zr:0.01〜0.2%のうちの一種または二種以上を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金鍛造材であって、この鍛造材の最も厚肉な部分の肉厚中心の観察面における組織として、X線回折により測定された転位密度が平均で1.0×1014〜5.0×1016/mの範囲であり、SEM−EBSD法により測定された、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合が50%以上であり、倍率30万倍のTEMにより測定可能な析出物の平均数密度が5.0×10個/μm以上であることを特徴とする、強度と延性に優れたアルミニウム合金鍛造材。 In mass%, Si: 0.7 to 1.5%, Mg: 0.6 to 1.2%, Fe: 0.01 to 0.5%, respectively, and Mn: 0.05 to Aluminum alloy forging containing 1.0%, Cr: 0.01 to 0.5%, Zr: 0.01 to 0.2%, or two or more of the balance, Al and inevitable impurities The average dislocation density measured by X-ray diffraction is 1.0 × 10 14 to 5.0 × 10 16 / as the structure in the observation surface at the thickness center of the thickest part of the forged material. in the range of m 2, and measured by SEM-EBSD method, the average proportion of the low-angle grain boundaries of the orientation differences 2 ° or more crystal grains in the inclination angle 2 to 15 ° is 50% or more, magnification 300,000 × The average number density of precipitates that can be measured by TEM is 5.0 × 10 2 / μm 3 or more. This is a forged aluminum alloy with excellent strength and ductility. 前記アルミニウム合金鍛造材が、更に、質量%で、Cu:0.05〜1.0%、Ti:0.01〜0.1%、Zn:0.005〜0.25%の一種または二種以上を含有する請求項1に記載の強度と延性に優れたアルミニウム合金鍛造材。   The aluminum alloy forging material is further one or two kinds of Cu: 0.05 to 1.0%, Ti: 0.01 to 0.1%, Zn: 0.005 to 0.25% by mass%. The aluminum alloy forging material excellent in strength and ductility according to claim 1 containing the above. 前記アルミニウム合金鍛造材の引張強度が420MPa以上、0.2%耐力が400MPa以上、伸びが10%以上である請求項1または2に記載の強度と延性に優れたアルミニウム合金鍛造材。   The aluminum alloy forging material according to claim 1 or 2, wherein the aluminum alloy forging material has a tensile strength of 420 MPa or more, a 0.2% proof stress of 400 MPa or more, and an elongation of 10% or more. 質量%で、Si:0.7〜1.5%、Mg:0.6〜1.2%、Fe:0.01〜0.5%を各々含有するとともに、更に、Mn:0.05〜1.0%、Cr:0.01〜0.5%、Zr:0.01〜0.2%のうちの一種または二種以上を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金鋳塊を、均熱処理後に熱間鍛造して鍛造材とし、更に溶体化および焼入れ処理した前記鍛造材を温間加工した上で人工時効処理を施し、この人工時効処理後の鍛造材の最も厚肉な部分の肉厚中心の観察面における組織として、X線回折により測定された転位密度を平均で1.0×1014〜5.0×1016/mの範囲とし、SEM−EBSD法により測定された、方位差が2°以上の結晶粒の傾角2〜15°の小傾角粒界の平均割合を50%以上とし、倍率30万倍のTEMにより測定可能な析出物の平均数密度を5.0×10個/μm以上と各々したことを特徴とする、強度と延性に優れたアルミニウム合金鍛造材の製造方法。
In mass%, Si: 0.7 to 1.5%, Mg: 0.6 to 1.2%, Fe: 0.01 to 0.5%, respectively, and Mn: 0.05 to Aluminum alloy ingot containing 1.0%, Cr: 0.01-0.5%, Zr: 0.01-0.2%, or two or more, and the balance Al and inevitable impurities After forging, the forged material is hot-forged into a forged material, and further subjected to artificial aging treatment after warming the forged material that has undergone solution treatment and quenching treatment. The thickest forged material after this artificial aging treatment Measured by the SEM-EBSD method with the average dislocation density measured by X-ray diffraction in the range of 1.0 × 10 14 to 5.0 × 10 16 / m 2 as the structure on the observation surface at the thickness center of the part. Average fraction of low-angle grain boundaries with an inclination angle of 2 to 15 ° of crystal grains having an orientation difference of 2 ° or more The total number density of precipitates that can be measured by a TEM with a magnification of 300,000 times is 5.0 × 10 2 pieces / μm 3 or more, and has excellent strength and ductility. A method for producing aluminum alloy forgings.
JP2016036603A 2016-02-29 2016-02-29 Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor Pending JP2017155251A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016036603A JP2017155251A (en) 2016-02-29 2016-02-29 Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
US15/433,381 US20170247782A1 (en) 2016-02-29 2017-02-15 Forged aluminum alloy having excellent strength and ductility and method for producing the same
CN201710107790.7A CN107130149A (en) 2016-02-29 2017-02-27 Intensity and the excellent aluminum alloy forged material of ductility and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036603A JP2017155251A (en) 2016-02-29 2016-02-29 Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017155251A true JP2017155251A (en) 2017-09-07

Family

ID=59679363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036603A Pending JP2017155251A (en) 2016-02-29 2016-02-29 Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor

Country Status (3)

Country Link
US (1) US20170247782A1 (en)
JP (1) JP2017155251A (en)
CN (1) CN107130149A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461856A (en) * 2018-10-16 2019-03-12 浙江捷汽车零部件有限公司 T02 type aluminum battery case shell-machining process
JP2020056082A (en) * 2018-10-03 2020-04-09 株式会社ジーテクト Method of forming aluminum alloy
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2021066900A (en) * 2019-10-18 2021-04-30 株式会社豊田中央研究所 Hot-processed product and manufacturing method thereof
WO2021230080A1 (en) 2020-05-13 2021-11-18 日本軽金属株式会社 Aluminum alloy forging material and method for manufacturing same
CN113737064A (en) * 2021-08-31 2021-12-03 华中科技大学 Al-Mg-Si alloy for high-performance forge piece and preparation method thereof
WO2023209810A1 (en) 2022-04-26 2023-11-02 日本軽金属株式会社 Al-mg-si-ni alloy and al-mg-si-ni alloy material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401585B2 (en) 2017-11-28 2022-08-02 Questek Innovations Llc Multicomponent aluminum alloys for applications such as additive manufacturing
US11420249B2 (en) * 2018-01-12 2022-08-23 Accuride Corporation Aluminum wheels and methods of manufacture
CN108265171B (en) * 2018-02-01 2019-07-30 中国兵器工业第五九研究所 Anti-deformation heat treatment tooling and closing in cylinder high-strength anticorrosion heat treatment process
CN108535295B (en) * 2018-03-26 2019-10-25 钢铁研究总院 A method of steel Dislocations density is measured using EBSD
CN109136670B (en) * 2018-08-21 2019-11-26 中南大学 A kind of 6XXX line aluminium alloy and preparation method thereof
CN109530590B (en) * 2018-12-05 2021-05-28 西南铝业(集团)有限责任公司 Production process of central wing front beam frame die forging for airplane
JP7571376B2 (en) * 2020-03-11 2024-10-23 株式会社レゾナック Manufacturing method for Al-Mg-Si aluminum alloy forgings
CN113441665B (en) * 2021-06-29 2022-07-12 中南大学 Forging method and application of low-direction-sensitivity 7xxx series aluminum alloy
CN114951520B (en) * 2022-05-05 2023-12-22 武汉理工大学 Efficient low-consumption forging method for high-strength aluminum alloy
CN114990396B (en) * 2022-07-11 2023-02-24 上海交通大学 Ultrahigh-strength 7000 series aluminum alloy material and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2413165C3 (en) * 1973-04-16 1986-05-07 The Garrett Corp., Los Angeles, Calif. Countercurrent plate heat exchanger and process for its manufacture
JP3721020B2 (en) * 1999-10-06 2005-11-30 株式会社神戸製鋼所 High strength, high toughness aluminum alloy forging with excellent corrosion resistance
JP4712159B2 (en) * 2000-05-23 2011-06-29 住友軽金属工業株式会社 Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same
JP4774630B2 (en) * 2001-05-18 2011-09-14 日産自動車株式会社 Manufacturing method of aluminum forged parts
US7182825B2 (en) * 2004-02-19 2007-02-27 Alcoa Inc. In-line method of making heat-treated and annealed aluminum alloy sheet
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
JP2008063623A (en) * 2006-09-08 2008-03-21 Furukawa Sky Kk Method for producing aluminum alloy sheet for forming
JP5431233B2 (en) * 2010-03-31 2014-03-05 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
US9163304B2 (en) * 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
CN103882353B (en) * 2014-03-24 2016-04-06 北京工业大学 A kind of warm deformation technique improved containing erbium aluminum magnesium alloy intensity and resistant to damage performance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2022172234A (en) * 2017-10-23 2022-11-15 ノベリス・インコーポレイテッド High-strength, highly formable aluminum alloys and methods of making the same
JP2020056082A (en) * 2018-10-03 2020-04-09 株式会社ジーテクト Method of forming aluminum alloy
CN109461856A (en) * 2018-10-16 2019-03-12 浙江捷汽车零部件有限公司 T02 type aluminum battery case shell-machining process
JP2021066900A (en) * 2019-10-18 2021-04-30 株式会社豊田中央研究所 Hot-processed product and manufacturing method thereof
JP7194097B2 (en) 2019-10-18 2022-12-21 株式会社豊田中央研究所 Hot-worked product and its manufacturing method
WO2021230080A1 (en) 2020-05-13 2021-11-18 日本軽金属株式会社 Aluminum alloy forging material and method for manufacturing same
KR20230009438A (en) 2020-05-13 2023-01-17 니폰게이긴조쿠가부시키가이샤 Aluminum alloy forged material and manufacturing method thereof
CN113737064A (en) * 2021-08-31 2021-12-03 华中科技大学 Al-Mg-Si alloy for high-performance forge piece and preparation method thereof
WO2023209810A1 (en) 2022-04-26 2023-11-02 日本軽金属株式会社 Al-mg-si-ni alloy and al-mg-si-ni alloy material

Also Published As

Publication number Publication date
US20170247782A1 (en) 2017-08-31
CN107130149A (en) 2017-09-05

Similar Documents

Publication Publication Date Title
JP2017155251A (en) Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
EP2899287B1 (en) Aluminum alloy plate for automobile part
JP5901738B2 (en) Aluminum alloy forging and method for producing the same
JP5723192B2 (en) Aluminum alloy forging and method for producing the same
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
EP3009525A1 (en) Aluminium alloy forging and method for producing the same
Kindermann et al. Effects of microstructural heterogeneity and structural defects on the mechanical behaviour of wire+ arc additively manufactured Inconel 718 components
US20170283913A1 (en) Aluminum alloy sheet having high formability
JP6182490B2 (en) Aluminum alloy forging
JP2013220472A (en) Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT
US20150315689A1 (en) Heat resistant aluminum base alloy and wrought semifinsihed product fabrication method
JP6223670B2 (en) Aluminum alloy sheet for automobile parts
JP6223669B2 (en) Aluminum alloy sheet for automobile parts
JP4933891B2 (en) Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same
JP2009068098A (en) Titanium alloy sheet having high strength and superior formability, and manufacturing method therefor
JP2017133097A (en) Mechanical member and manufacturing method and extrusion material
JP2018111864A (en) Aluminum alloy forging material
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP2013227618A (en) α+β TYPE TITANIUM ALLOY PLATE, AND METHOD OF MANUFACTURING THE SAME
WO2017126413A1 (en) Machine component, method for producing same, and extruded material
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
Cai et al. Influence of solution heating rate on grain structures and fatigue crack propagation behaviors of an aviation Al-Li alloy sheet
JP7119153B1 (en) High-strength aluminum alloy extruded material and manufacturing method thereof
Kihoulou et al. Near Net Shape Manufacturing of Sheets from Al-Li-Based Alloy
JP7372532B2 (en) Titanium alloy round rod and connecting rod