JP2013220472A - Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT - Google Patents
Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT Download PDFInfo
- Publication number
- JP2013220472A JP2013220472A JP2012095699A JP2012095699A JP2013220472A JP 2013220472 A JP2013220472 A JP 2013220472A JP 2012095699 A JP2012095699 A JP 2012095699A JP 2012095699 A JP2012095699 A JP 2012095699A JP 2013220472 A JP2013220472 A JP 2013220472A
- Authority
- JP
- Japan
- Prior art keywords
- forging
- aluminum alloy
- temperature
- based aluminum
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Forging (AREA)
Abstract
Description
本発明は、強度及び耐熱性に優れたAl−Cu系アルミニウム合金鍛造品に関する。 The present invention relates to an Al—Cu-based aluminum alloy forged product excellent in strength and heat resistance.
航空・宇宙機材用、自動車・鉄道等の輸送機材用、或いは、エンジン部品やコンプレッサー等の機械部品用として用いられるAl−Cu系アルミニウム合金は、軽量かつ高強度の特徴を有しているため広範囲の用途に用いられている。特に、100℃以上の高温環境中で回転する回転インペラーや回転ローターなどでは、耐熱性に優れたAl−Cu系アルミニウム合金が好適に用いられている。 Al-Cu aluminum alloys used for aerospace equipment, transportation equipment such as automobiles and railways, or mechanical parts such as engine parts and compressors have a wide range of characteristics due to their light weight and high strength. It is used for In particular, in a rotating impeller or rotating rotor that rotates in a high temperature environment of 100 ° C. or higher, an Al—Cu aluminum alloy having excellent heat resistance is suitably used.
このような用途において、特に船舶や大型機械に用いられるものは、例えば直径30cm以上のサイズを有する大型のAl−Cu系アルミニウム合金素材を機械加工して製造されている。このような大型のAl−Cu系アルミニウム合金素材は、主に鋳造された材料を熱間鍛造により鍛錬された後に、溶体化処理と言われる高温での加熱保持後に急冷(焼入れ)して製造される場合が多い。 In such applications, especially those used for ships and large machines are manufactured by machining a large Al—Cu aluminum alloy material having a diameter of 30 cm or more, for example. Such a large Al—Cu-based aluminum alloy material is manufactured by mainly forging a cast material by hot forging and then rapidly cooling (quenching) after holding at a high temperature called a solution treatment. There are many cases.
大型Al−Cu系アルミニウム合金素材の製造で行われる熱間鍛造は、大型の材料の鍛錬に適する自由鍛造と呼ばれる方法が用いられる場合が多い。自由鍛造とは、次のような製造技術である。まず、油圧等の機構によって上下に駆動する一対の金敷と呼ばれる鋼製の平板の間にアルミニウム合金素材を挿入し、金敷間で所定量の圧縮変形を加える。次いで、アルミニウム合金素材を一旦取り出して素材の向きを所定方向に適宜変更し、再度金敷間に挿入して再び圧縮変形を行う。このような圧縮変形操作を繰り返すことにより、アルミニウム合金の鋳塊中に元来存在する空隙等の鋳造欠陥を消滅せしめ、アルミニウム合金材料の強度や延性といった特性を向上させるものである。 In hot forging performed in the production of a large Al—Cu-based aluminum alloy material, a method called free forging suitable for forging a large material is often used. Free forging is a manufacturing technique as follows. First, an aluminum alloy material is inserted between a pair of steel flat plates called anvils that are driven up and down by a mechanism such as hydraulic pressure, and a predetermined amount of compressive deformation is applied between the anvils. Next, the aluminum alloy material is once taken out, the direction of the material is appropriately changed to a predetermined direction, inserted again between the anvils, and then subjected to compression deformation again. By repeating such a compressive deformation operation, casting defects such as voids originally existing in the ingot of the aluminum alloy are eliminated, and characteristics such as strength and ductility of the aluminum alloy material are improved.
自由鍛造では、上述のような材料の鍛錬により特性を向上させる目的の他に、最終的な製品形状に極力近い形でアルミニウム合金素材を提供することも目的とする。すなわち、一対の金敷による圧縮変形を駆使して、数十回にわたる圧縮変形と金敷内での材料置き換えの繰り返しによって、目的とする様々な製品形状に仕上げていくものである。 The purpose of free forging is to provide an aluminum alloy material in a form as close as possible to the final product shape, in addition to the purpose of improving the characteristics by forging the material as described above. That is, by making full use of the compression deformation by a pair of anvils, the desired various product shapes are finished by repeated compression deformation and material replacement in the anvil several times.
このように出来るだけ製品形状に近い形で自由鍛造を終えた後に、アルミニウム合金素材に高温で加熱保持する溶体化処理を施してから焼入れ処理を行うと、素材の一部に非常に粗大な結晶粒が生成してしまう。このような粗大結晶粒の生成は、最終製品の外観性能を損なうと共に、耐熱性や材料強度の低下の原因となる。その結果、材料の品質が低下するという不具合が生じる。 In this way, after free forging is completed as close to the product shape as possible, the aluminum alloy material is subjected to a solution treatment that is heated and held at a high temperature and then subjected to a quenching treatment. Grain is generated. The generation of such coarse crystal grains impairs the appearance performance of the final product and causes a decrease in heat resistance and material strength. As a result, there arises a problem that the quality of the material is lowered.
このような粗大結晶粒の生成を防止する方法として、例えば特許文献1には、アルミニウム合金に添加される遷移元素であるCr、Zr、Feの添加量を最適化することが記載されている。このような添加量の最適化によって、材料中に形成されるこれら元素を主成分とする分散粒子の分布密度を高め、溶体化処理中に生成する再結晶粒の粒界移動をこれらの分散粒子でピン止めすることにより、粗大な結晶粒の発生を防止するものである。 As a method for preventing the formation of such coarse crystal grains, for example, Patent Document 1 describes optimizing the addition amount of Cr, Zr, and Fe, which are transition elements added to an aluminum alloy. By optimizing the amount added, the distribution density of the dispersed particles mainly composed of these elements formed in the material is increased, and the grain boundary movement of the recrystallized grains generated during the solution treatment is controlled by these dispersed particles. By pinning with, the generation of coarse crystal grains is prevented.
本発明者らは、自由鍛造されるAl−Cu系アルミニウム合金材の鍛造後に行われる溶体化処理時に発生する粗大結晶粒の抑制方法について種々検討した。その結果、Al−Cu系アルミニウム合金材の自由鍛造においては、上記特許文献1に開示された方法では十分な再現性をもって確実に粗大結晶粒の生成を防止できない問題があることが判明した。 The present inventors have studied various methods for suppressing coarse crystal grains generated during solution treatment performed after forging of a free-forged Al—Cu-based aluminum alloy material. As a result, it has been found that in the free forging of an Al—Cu based aluminum alloy material, there is a problem that the method disclosed in Patent Document 1 cannot reliably prevent the formation of coarse crystal grains with sufficient reproducibility.
本発明の目的は、Al−Cu系アルミニウム合金材の自由鍛造後の溶体化処理中において粗大な結晶粒が生成するのを防止し、優れた耐熱性と強度を有するAl−Cu系アルミニウム合金鍛造材を提供することである。 It is an object of the present invention to prevent the formation of coarse crystal grains during solution treatment after free forging of an Al—Cu based aluminum alloy material, and to forge an Al—Cu based aluminum alloy having excellent heat resistance and strength. Is to provide materials.
本願発明者らは、上記の課題を解決するために、まず粗大な結晶粒の発生位置と自由鍛造工程との関連性を明確にした。その上で、粗大な結晶粒の発生メカニズムを解明することにより粗大粒の生成防止を図り、健全な組織からなるAl−Cu系アルミニウム合金鍛造材が得られることを見出した。 In order to solve the above-described problems, the inventors of the present application first clarified the relationship between the generation position of coarse crystal grains and the free forging process. On that basis, the generation mechanism of coarse crystal grains was clarified to prevent the formation of coarse grains, and it was found that an Al—Cu-based aluminum alloy forging material having a sound structure can be obtained.
本発明は請求項1において、自由鍛造により製造されるAl−Cu系アルミニウム合金であって、400℃以上の温度に素材を加熱してから開始される一連の熱間自由鍛造工程において、鍛造品全体のうちの一部分における圧縮歪率が50%を超えて鍛造される部分的大歪鍛造プロセスを含む場合に、少なくとも部分的大歪が加わることになる素材の一部分を400℃以上の温度に保った状態で部分的大歪鍛造を行うようにして一連の熱間自由鍛造プロセスを終了し、その後、鍛造品を加熱保持する溶体化処理工程とこれに続いて急冷する焼き入れ処理工程を行った後の鍛造品のミクロ組織が、平均粒径30μm以下の微細なサブグレインを含有する熱間加工組織よりなることを特徴とする強度及び耐熱性に優れるAl−Cu系アルミニウム合金鍛造品とした。 The present invention is the Al—Cu-based aluminum alloy manufactured by free forging according to claim 1, and is a forged product in a series of hot free forging processes started after heating the material to a temperature of 400 ° C. or higher. When including a partial large strain forging process in which the compressive strain rate in a portion of the entire portion is forged to exceed 50%, at least a portion of the material to which the partial large strain is applied is maintained at a temperature of 400 ° C. or more. A series of hot free forging processes were completed in such a way that partial large strain forging was performed, and then a solution treatment process for heating and holding the forged product, followed by a quenching process process for rapid cooling. Al-Cu-based aluminum excellent in strength and heat resistance, characterized in that the microstructure of the later forged product is a hot-worked structure containing fine subgrains having an average particle size of 30 μm or less It was a gold forgings.
本発明は請求項2では請求項1において、熱間自由鍛造工程での部分的大歪鍛造プロセスにおいて部分的に大歪が加わることになる領域が、鍛造品の外表面に位置する突起状領域であり、かつ、当該突起状領域の断面角の最小値を120°以下とした。 The present invention is the projecting region in which the region where the large strain is partially applied in the partial large strain forging process in the hot free forging step is located on the outer surface of the forged product. And the minimum value of the cross-sectional angle of the projecting region is 120 ° or less.
本発明は請求項3では請求項1又は2において、前記熱間自由鍛造工程において、部分的大歪鍛造プロセスに至る前に、素材の材料温度が350℃以下の温度で鍛造を行い、これを再加熱してから部分的大歪鍛造を行うものとした。 In the third aspect of the present invention, in the first or second aspect of the invention, in the hot free forging step, forging is performed at a material temperature of 350 ° C. or lower before reaching the partial large strain forging process. Partial large strain forging was performed after reheating.
本発明は請求項4では請求項1〜3のいずれか一項において、前記熱間自由鍛造工程において、部分的大歪鍛造を行う前に、鍛造に用いる金敷温度を200℃以上に加熱するとともに、部分的大歪鍛造を行う際の金敷と素材の接触時間を5秒以内とした。
According to the present invention, in
本発明は請求項5では請求項1〜4のいずれか一項において、前記Al−Cu系アルミニウム合金が、Cu:2.0〜6.0mass%、Si:0.02〜1.5mass%を含有し、Mn:0.05〜1.2mass%、Cr:0.01〜0.4mass%、Zr:0.01〜0.3mass%、Sc:0.01〜0.5mass%、V:0.01〜0.3mass%、Ni:0.02〜1.2mass%及びFe:0.02〜1.2mass%の1種又は2種以上を更に含有し、残部Al及び不可避的不純物からなるものとした。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the Al-Cu-based aluminum alloy has Cu: 2.0-6.0 mass%, Si: 0.02-1.5 mass%. Contained, Mn: 0.05 to 1.2 mass%, Cr: 0.01 to 0.4 mass%, Zr: 0.01 to 0.3 mass%, Sc: 0.01 to 0.5 mass%, V: 0 .01 to 0.3 mass%, Ni: 0.02 to 1.2 mass%, and Fe: 0.02 to 1.2 mass%, or further containing one or more, and the balance consisting of Al and inevitable impurities It was.
本発明は請求項6では請求項5において、前記Al−Cu系アルミニウム合金が、Mg:0.02〜2.0mass%及びAg:0.01〜2.0mass%の少なくとも一方を更に含有するものとした。 According to a sixth aspect of the present invention, in the sixth aspect, the Al-Cu-based aluminum alloy further contains at least one of Mg: 0.02-2.0 mass% and Ag: 0.01-2.0 mass%. It was.
本発明により、Al−Cu系アルミニウム合金材の自由鍛造後の溶体化処理中において粗大結晶粒の生成を防止し、優れた耐熱性と強度を有するAl−Cu系アルミニウム合金鍛造材が得られる。 According to the present invention, the formation of coarse crystal grains can be prevented during the solution treatment after free forging of an Al—Cu-based aluminum alloy material, and an Al—Cu-based aluminum alloy forged material having excellent heat resistance and strength can be obtained.
以下に、本発明の実施の形態を詳細にすると共に、各構成の意義について説明する。
1.粗大な結晶粒の発生位置と自由鍛造の工程との相関
先ず、粗大な結晶粒の発生位置と自由鍛造の工程の相関について詳細に検討した。その結果、自由鍛造工程のうち、アルミニウム合金材の一部分に特に大きな歪が付与された部分において、粗大な結晶粒が発生することが明らかになった。更に詳細に検討したところ、粗大な結晶粒は、ある一定の歪率以下では発生することがなく、それを超える歪が一連の鍛造プロセスのうちの1回の圧縮変形により付与された場合に発生することが判明した。その一定の歪率(以下、「臨界歪率」と記す)とは、下記式で定義される圧縮歪率の50%値であることも判明した。
圧縮歪率(%)={(L0−L1)/L0}×100
ここで、式中L0はアルミニウム合金材中の任意の部分における圧縮方向の変形前の長さを示し、L1はL0の圧縮方向の変形後の長さを示す。
Hereinafter, the embodiment of the present invention will be described in detail, and the significance of each component will be described.
1. Correlation between the generation position of coarse crystal grains and the free forging process First, the correlation between the generation position of coarse crystal grains and the free forging process was examined in detail. As a result, it has been clarified that coarse crystal grains are generated in a portion in which a particularly large strain is applied to a part of the aluminum alloy material in the free forging process. When examined in more detail, coarse crystal grains do not occur below a certain strain rate, but occur when a strain exceeding that is applied by a single compression deformation in a series of forging processes. Turned out to be. The constant strain rate (hereinafter referred to as “critical strain rate”) was also found to be a 50% value of the compressive strain rate defined by the following equation.
Compression strain rate (%) = {(L 0 −L 1 ) / L 0 } × 100
Here, L 0 in the formula indicates the length of the arbitrary part in the aluminum alloy material before deformation in the compression direction, and L 1 indicates the length of L 0 after deformation in the compression direction.
ここで、重要な知見は、一連の鍛造プロセスにおいて複数回の圧縮変形によって累積的に臨界歪率に達した場合には粗大な結晶粒が発生することはなく、1回の圧縮変形によって臨界歪率を超えた変形によってのみ粗大結晶粒が発生し得ることである。 Here, an important finding is that in the series of forging processes, when the critical strain rate is cumulatively reached by multiple compression deformations, coarse crystal grains are not generated, and the critical strain is generated by one compression deformation. Coarse crystal grains can be generated only by deformation exceeding the rate.
更に重要な知見として、このような臨界歪率の存在には、変形時におけるアルミニウム合金材の温度が大きな影響を与えることが判明した。即ち、変形時のアルミニウム合金材温度が400℃未満の場合においてこのような臨界歪率が存在し、400℃以上の場合にはこのような臨界歪率が存在しないことである。従って、変形時のアルミニウム合金材温度が400℃以上において臨界歪率以上の変形が付与された場合でも、粗大結晶粒は生成することがない。 More importantly, it has been found that the temperature of the aluminum alloy material during deformation greatly affects the existence of such a critical strain rate. That is, such a critical strain rate exists when the temperature of the aluminum alloy material at the time of deformation is less than 400 ° C., and such a critical strain rate does not exist when the temperature is 400 ° C. or higher. Therefore, even when the deformation of the critical strain rate or higher is imparted when the temperature of the aluminum alloy material during deformation is 400 ° C. or higher, coarse crystal grains are not generated.
次に、上述の粗大な結晶粒の発生位置と自由鍛造の工程との相関のメカニズムについて説明する。
まず、粗大な結晶粒の生成理由を説明する。熱間自由鍛造によってAl−Cu系アルミニウム合金材に変形を加えると、合金材中には歪エネルギーが蓄積すると同時に、歪率が増大するにつれて徐々に再結晶核が形成され始める。その後、合金材に高温で加熱保持する溶体化処理を施すと、合金材中に形成された少数の再結晶核の粒界が蓄積された歪エネルギーを駆動力として移動し、結晶粒が大きく成長していくことによって粗大化するものである。これが、粗大な結晶粒の形成メカニズムである。
Next, the correlation mechanism between the above-mentioned coarse crystal grain generation position and the free forging process will be described.
First, the reason for generating coarse crystal grains will be described. When deformation is applied to an Al—Cu-based aluminum alloy material by hot free forging, strain energy accumulates in the alloy material, and at the same time, recrystallization nuclei begin to form gradually as the strain rate increases. After that, when the alloy material is subjected to a solution treatment that is heated and held at a high temperature, the grain boundaries of a small number of recrystallization nuclei formed in the alloy material move using the accumulated strain energy as a driving force, and the crystal grains grow greatly. By doing so, it becomes coarse. This is the formation mechanism of coarse crystal grains.
2.臨界歪率
次に、粗大な結晶粒の発生に関して、臨界歪率が存在する理由について説明する。Al−Cu系アルミニウム合金材の熱間自由鍛造は、室温よりも高い、通常、約250℃以上の温度において行われる。ここで、歪率が増大していく場合でも、合金材中で回復(転位の消滅による歪エネルギーの解放)が同時に生じることにより歪は過度に蓄積されることはない。その結果、歪率が臨界歪率未満であれば、引続き行われる溶体化処理において再結晶粒が形成されることがなく、粗大な結晶粒も生成しない。
2. Next, the reason why the critical strain rate exists regarding the generation of coarse crystal grains will be described. The hot free forging of the Al—Cu-based aluminum alloy material is performed at a temperature higher than room temperature, usually about 250 ° C. or higher. Here, even when the strain rate increases, the strain does not accumulate excessively due to the simultaneous recovery (release of strain energy due to the disappearance of dislocations) in the alloy material. As a result, when the strain rate is less than the critical strain rate, recrystallized grains are not formed in the subsequent solution treatment, and coarse crystal grains are not generated.
しかしながら、一方向の圧縮変形により大きな歪が付与される場合は、元々存在する結晶粒の形状が徐々に扁平になると同時に結晶粒内にサブグレインが形成されていく。その結果、歪率が臨界歪率に達すると結晶粒の端部に存在するサブグレインが結晶粒から分断され、この分断された粒が再結晶核となり粗大な結晶粒の生成原因となるのである。 However, when a large strain is imparted by compressive deformation in one direction, the shape of the originally existing crystal grains gradually becomes flat, and at the same time, subgrains are formed in the crystal grains. As a result, when the strain rate reaches the critical strain rate, the subgrains existing at the ends of the crystal grains are separated from the crystal grains, and the separated grains become recrystallization nuclei and cause the formation of coarse crystal grains. .
上記式で定義される圧縮歪率の50%値が臨界歪率となるのは、元々存在する結晶粒の形状が扁平な形状となって端部で粒が分断されるのに必要な幾何学的な形状として、歪率50%以上が必要となるからである。一方で、複数回の圧縮変形プロセスで累積的に臨界歪率を超えた場合に粗大な結晶粒が発生しない理由は、以下の通りである。すなわち、通常の自由鍛造において複数回に分けて圧縮変形される場合、合金材に対して常に同一の方向で連続的に圧縮変形されることはなく1回の鍛造毎に合金材の方向が変えられるので、異なる方向において圧縮変形されるためである。このため、素材中に元々存在する結晶粒は種々の方向からの圧縮変形が繰り返される結果、一方向に扁平になることが無いので端部での粒の分断が生じない。このように、粒の分断が生じないため、再結晶核が形成されず粗大結晶粒が発生しないのである。 The 50% value of the compressive strain rate defined by the above formula is the critical strain rate. The geometrical shape required for the crystal grains originally present to be flat and the grains to be divided at the ends. This is because a distortion rate of 50% or more is required as a typical shape. On the other hand, the reason why coarse crystal grains are not generated when the critical strain rate is cumulatively exceeded by a plurality of compression deformation processes is as follows. In other words, when a normal free forging is compressed and deformed in multiple steps, the alloy material is not always continuously compressed and deformed in the same direction, and the direction of the alloy material is changed for each forging. This is because they are compressed and deformed in different directions. For this reason, the crystal grains originally present in the material are not flattened in one direction as a result of repeated compression and deformation from various directions, so that the grains are not divided at the ends. In this way, since the grain is not divided, recrystallization nuclei are not formed and coarse crystal grains are not generated.
更に、変形時のアルミニウム合金材温度が400℃以上の場合に、粗大な結晶粒を発生させる臨界歪率が消滅する原因、すなわち、熱間自由鍛造工程中にアルミニウム合金材中に圧縮歪率の50%値を超えるような大きな歪部が部分的に形成されるような場合に、このような部分的な大歪部を400℃以上の温度で熱間鍛造することにより、粗大な結晶粒の発生を防止する原因について説明する。400℃以上で変形を行った場合には、元々存在する結晶粒の変形中における粒界移動が活発になり、マクロ的な圧縮変形方向と反対方向への粒界移動が生じるため、実質的に結晶粒が扁平な形状とならず、結晶粒端部での粒の分断が生ず、再結晶核が形成されない。このため、引続き行われる溶体化処理において粗大な結晶粒が生じないのである。 Furthermore, when the temperature of the aluminum alloy material during deformation is 400 ° C. or higher, the cause of the disappearance of the critical strain rate that generates coarse crystal grains, that is, the compressive strain rate in the aluminum alloy material during the hot free forging process. In the case where a large strained part exceeding 50% is partially formed, by hot forging such a partially large strained part at a temperature of 400 ° C. or more, coarse crystal grains The cause for preventing the occurrence will be described. When the deformation is performed at 400 ° C. or higher, the grain boundary movement during the deformation of the originally existing crystal grains becomes active, and the grain boundary movement in the direction opposite to the macroscopic compression deformation direction occurs. The crystal grains do not have a flat shape, and no grain splitting occurs at the ends of the crystal grains, and no recrystallization nuclei are formed. For this reason, coarse crystal grains do not occur in the subsequent solution treatment.
3.Al−Cu系アルミニウム合金材の組成
本発明で用いるAl−Cu系アルミニウム合金材の組成は、Cu:2.0〜6.0mass%(以下、単に「%」と記す)、Si:0.02〜1.5%を必須添加元素とする。また、Mg:0.02〜2.0%及びAg:0.01〜2.0%の少なくとも一方を第1の選択的添加元素とする。更に、Mn:0.05〜1.2%、Cr:0.01〜0.4%、Zr:0.01〜0.3%、Sc:0.01〜0.5%、V:0.01〜0.3%、Ni:0.02〜1.2%及びFe:0.02〜1.2%の1種又は2種以上を第2の選択的添加元素とする。このように、本発明で用いるAl−Cu系アルミニウム合金材は、上記必須元素、第1及び第2の選択元素、ならびに、残部のAl及び不可避的不純物からなる。以下に、これらの成分元素の役割と含有量の規定理由を説明する。
3. Composition of Al—Cu-based aluminum alloy material The composition of the Al—Cu-based aluminum alloy material used in the present invention is Cu: 2.0 to 6.0 mass% (hereinafter, simply referred to as “%”), Si: 0.02 ˜1.5% is an essential additive element. Further, at least one of Mg: 0.02 to 2.0% and Ag: 0.01 to 2.0% is used as the first selective additive element. Furthermore, Mn: 0.05 to 1.2%, Cr: 0.01 to 0.4%, Zr: 0.01 to 0.3%, Sc: 0.01 to 0.5%, V: 0.0. One or more of 01 to 0.3%, Ni: 0.02 to 1.2%, and Fe: 0.02 to 1.2% are used as the second selective additive element. As described above, the Al—Cu-based aluminum alloy material used in the present invention is composed of the above essential elements, the first and second selective elements, and the balance of Al and inevitable impurities. Below, the role of these component elements and the reasons for the definition of their contents will be explained.
Cu:
Cuは本発明で用いるAl−Cu系アルミニウム合金材において基本となる必須添加元素である。Cuは溶体化処理によりマトリクス中に固溶し、その後急冷することによりマトリクス中に過飽和状態で固溶する。そして、引き続き行われる時効処理により、微細析出物としてマトリクス中に析出して材料強度を向上させる。更にCuは、熱間自由鍛造中の変形に伴って材料中に生じる移動転位に固着して相互作用することにより、転位の消滅を阻害してサブグレイン組織の形成を促す。前述のように、このようなサブグレイン組織の形成によって材料中に粗大な結晶粒が生じ易くなる。Cu含有量が2.0%未満では、時効処理により十分な強度の向上が図れず高強度の鍛造品が得られない。一方、Cu含有量が6.0%を超えると、Cuを含有する晶出粒子が鋳造時に多量に生成して、鍛造品の延性が大幅に損なわれる。更に、多量のサブグレイン組織が形成され、粗大な結晶粒の生成が多くなる。従って、Cu含有量は2.0〜6.0%の範囲とする。なお、好ましいCu含有量は2.5〜5.0%の範囲である。
Cu:
Cu is an essential additive element in the Al—Cu-based aluminum alloy material used in the present invention. Cu is solid-dissolved in the matrix by solution treatment, and then rapidly cooled, and then solid-dissolves in the matrix in a supersaturated state. And by subsequent aging treatment, it precipitates in the matrix as fine precipitates to improve the material strength. Furthermore, Cu adheres to and interacts with dislocations generated in the material as a result of deformation during hot free forging, thereby inhibiting the disappearance of dislocations and promoting the formation of a subgrain structure. As described above, the formation of such a subgrain structure facilitates the formation of coarse crystal grains in the material. If the Cu content is less than 2.0%, sufficient strength cannot be improved by the aging treatment, and a high-strength forged product cannot be obtained. On the other hand, if the Cu content exceeds 6.0%, a large amount of crystallized particles containing Cu are produced during casting, and the ductility of the forged product is greatly impaired. Furthermore, a large amount of subgrain structure is formed, and the generation of coarse crystal grains increases. Therefore, the Cu content is in the range of 2.0 to 6.0%. In addition, preferable Cu content is 2.5 to 5.0% of range.
Si:
SiもまたCuに次いで、本発明で用いるAl−Cu系アルミニウム合金材において基本となる必須添加元素である。SiもCuと同様に溶体化処理によりマトリクス中に固溶して、その後の急冷処理によりマトリクス中に過飽和固溶する。そして、引き続き行われる時効処理によりSiを含有する微細析出物をマトリクス中に形成して、材料の強度向上に寄与する。Si含有量が0.02%未満では、Siを含有する析出物量が不十分となり強度向上効果が十分に得られない。Si願含有量が1.5%を超えると、Siを含有する晶出粒子が鋳造時に多量に生成して鍛造品の延性が大幅に損なわれる。従って、Si含有量は0.02〜1.5%の範囲とする。なお、好ましいSi含有量は0.05〜1.0%の範囲である。
Si:
Si is also an essential additive element in the Al—Cu-based aluminum alloy material used in the present invention after Cu. Si, like Cu, is dissolved in the matrix by solution treatment, and then supersaturated in the matrix by rapid cooling treatment. And the fine precipitate containing Si is formed in a matrix by the aging process performed continuously, and it contributes to the strength improvement of material. When the Si content is less than 0.02%, the amount of precipitates containing Si is insufficient, and the effect of improving the strength cannot be obtained sufficiently. If the Si application content exceeds 1.5%, a large amount of crystallized particles containing Si are produced during casting, and the ductility of the forged product is greatly impaired. Therefore, the Si content is in the range of 0.02 to 1.5%. In addition, preferable Si content is 0.05 to 1.0% of range.
Mg:
MgはCu、Siに次いで、本発明で用いるAl−Cu系アルミニウム合金材において基本となる第1の選択的添加元素である。MgもCuと同様に溶体化処理によりマトリクス中に固溶して、その後の急冷処理によりマトリクス中に過飽和固溶する。そして、引き続き行われる時効処理によりMgとCuから構成される非常に微細な析出物をマトリクス中に形成して、材料の強度向上に寄与する。更に、MgもCuと同様に熱間自由鍛造中における材料の変形に伴って材料中に生じる移動転位に固着して相互作用することにより、転位の消滅を阻害してサブグレインの形成を促す。前述のように、このようなサブグレイン組織の形成によって材料中に粗大な結晶粒が生じ易くなる。Mg含有量が0.02%未満の場合は、MgとCuにより構成される析出物が少なく、材料強度向上の実質的な効果が得られない。Mg含有量が2.0%を超えると、Mgを含有する晶出粒子が鋳造時に多量に生成して、鍛造素材の延性が大幅に低下する。更に、多量のサブグレイン組織が形成され、粗大な結晶粒の生成が多くなる。従って、Mg含有量は0.02〜2.0%の範囲とするのが好ましい。なお、更に好ましいMg含有量は0.05〜1.5%の範囲である。
Mg:
Mg, after Cu and Si, is the first selective additive element that is fundamental in the Al—Cu-based aluminum alloy material used in the present invention. Similarly to Cu, Mg is also solid-dissolved in the matrix by solution treatment, and then is supersaturated in the matrix by rapid cooling treatment. Then, a very fine precipitate composed of Mg and Cu is formed in the matrix by the subsequent aging treatment, which contributes to the improvement of the strength of the material. Further, Mg, like Cu, sticks and interacts with moving dislocations generated in the material during deformation of the material during hot free forging, thereby inhibiting the disappearance of dislocations and promoting the formation of subgrains. As described above, the formation of such a subgrain structure facilitates the formation of coarse crystal grains in the material. When the Mg content is less than 0.02%, there are few precipitates composed of Mg and Cu, and a substantial effect of improving the material strength cannot be obtained. If the Mg content exceeds 2.0%, a large amount of crystallized particles containing Mg are produced during casting, and the ductility of the forged material is greatly reduced. Furthermore, a large amount of subgrain structure is formed, and the generation of coarse crystal grains increases. Therefore, the Mg content is preferably in the range of 0.02 to 2.0%. A more preferable Mg content is in the range of 0.05 to 1.5%.
Ag:
AgもまたCu、Siに次いで、本発明で用いるAl−Cu系アルミニウム合金材において基本となる第1の選択的添加元素である。AgはAl−Cu系合金に添加することにより、Cuを含有する析出物の構造を変化させ、析出物分布を高密微細にする効果を発揮する。その結果、時効処理後の強度が高まるとともに、耐熱性も大幅に向上させる効果がある。Agの含有量が0.01%未満の場合は、析出物の分布密度への影響が軽微で強度向上が殆ど認められない。Ag含有量が2.0%を超えると、Agを含有する晶出粒子が鋳造時に多量に生成して、鍛造品の延性が大幅に低下する。従って、Ag含有量は0.01〜2.0%の範囲が好ましい。なお、更に好ましいAg含有量は0.05〜1.5%の範囲である。
Ag:
Ag is also the first selective additive element that is fundamental in the Al—Cu-based aluminum alloy material used in the present invention after Cu and Si. When Ag is added to the Al—Cu alloy, the structure of the precipitate containing Cu is changed, and the effect of making the precipitate distribution highly dense and fine is exhibited. As a result, the strength after the aging treatment is increased and the heat resistance is greatly improved. When the Ag content is less than 0.01%, the influence on the distribution density of the precipitates is slight and almost no improvement in strength is observed. If the Ag content exceeds 2.0%, a large amount of crystallized particles containing Ag is produced during casting, and the ductility of the forged product is greatly reduced. Therefore, the Ag content is preferably in the range of 0.01 to 2.0%. A more preferable Ag content is in the range of 0.05 to 1.5%.
Mn、Cr、Zr、Sc、V、Ni、Fe:
Mn、Cr、Zr、Sc、V、Ni、Feは、Mg、Agに次ぐ第2の選択的添加元素である。これら各元素は、均質化処理時に、これらの元素を主成分とする微細な分散粒子としてマトリクス中に均一に析出する。これらの分散粒子は、一般的に、再結晶時に粒界の移動を妨げることにより結晶粒を安定化して組織を微細にする効果を奏する。しかしながら、本発明の課題である粗大な結晶粒の発生抑制に関しては、その発生メカニズムが一般的な場合と異なり特殊である。従って、これらの元素の添加のみでは、粗大な結晶粒の発生を十分に防止することができない。また、これらの元素を主成分とする分散粒子は、Al−Cu系アルミニウム合金の耐熱性を大幅に高める効果もある。以上の理由から、Al−Cu系アルミニウム合金にこれら所定量の元素を1種又は2種以上添加するのが好ましい。
Mn, Cr, Zr, Sc, V, Ni, Fe:
Mn, Cr, Zr, Sc, V, Ni, and Fe are the second selective additive elements after Mg and Ag. Each of these elements is uniformly deposited in the matrix as fine dispersed particles mainly composed of these elements during the homogenization treatment. These dispersed particles generally have the effect of stabilizing the crystal grains and making the structure fine by preventing the movement of grain boundaries during recrystallization. However, regarding the suppression of the generation of coarse crystal grains, which is the subject of the present invention, the generation mechanism is special unlike the general case. Therefore, the addition of these elements alone cannot sufficiently prevent the generation of coarse crystal grains. Further, the dispersed particles containing these elements as main components also have an effect of significantly increasing the heat resistance of the Al—Cu based aluminum alloy. For these reasons, it is preferable to add one or more of these predetermined amounts of elements to the Al—Cu based aluminum alloy.
Mnの含有量は0.05〜1.2%、Crの含有量は0.01〜0.4%、Zrの含有量は0.01〜0.3%、Scの含有量は0.01〜0.5%、Vの含有量は0.01〜0.3%、Niの含有量は0.02〜1.2%、Feの含有量は0.02〜1.2%とするのが好ましい。いずれの元素についても、各々の規定量未満の場合は、分散粒子の生成が不十分なため、結晶粒の安定化効果が十分に得られない。また、いずれの元素についても、各々の規定量以上の場合は、鋳造時にこれらの元素を主成分とする非常に粗大な化合物が晶出して(巨大晶出粒子と呼ばれる)、Al−Cu系アルミニウム合金鍛造品の延性及び靭性が大幅に低下する。 The Mn content is 0.05-1.2%, the Cr content is 0.01-0.4%, the Zr content is 0.01-0.3%, and the Sc content is 0.01%. -0.5%, V content is 0.01-0.3%, Ni content is 0.02-1.2%, Fe content is 0.02-1.2% Is preferred. For any element, if the amount is less than the respective prescribed amount, the formation of dispersed particles is insufficient, so that the effect of stabilizing the crystal grains cannot be sufficiently obtained. In addition, when any element exceeds the specified amount, a very coarse compound containing these elements as a main component is crystallized during casting (referred to as giant crystallized particles), and Al—Cu-based aluminum. The ductility and toughness of alloy forgings are greatly reduced.
上記の必須添加元素、第1及び第2の選択的添加元素の他は基本的には不可避不純物とAlよりなる。しかしながら、鋳塊組織を微細にするためにTi:0.01〜0.15%を単独で又はB:0.0001〜0.05%とともに含有してもよい。Tiが0.01%未満の場合は、鋳塊組織を微細する効果が十分に得られない。また、同様にBが0.0001%未満の場合も鋳塊組織を微細する効果が十分に得られない。一方、Tiが0.15%を超えると、鋳造時にTiAl3の粗大化合物が晶出して材料の延性及び靭性が大幅に低下する。また、Bが0.05%を超えると、鋳造時にTiB2の粗大化合物が晶出して材料の延性及び靭性が大幅に低下する。なお、Ti単独で、或いは、Ti及びBを共に添加する他に、耐食性を高めるための元素としてZnを微量添加してもよい。本発明では、1.0%以下のZnであれば所期の効果を損なうことなくAl−Cu系アルミニウム合金材に含有させることが可能である。 In addition to the above essential additive elements and the first and second selective additive elements, they are basically composed of inevitable impurities and Al. However, in order to make the ingot structure fine, Ti: 0.01 to 0.15% may be contained alone or together with B: 0.0001 to 0.05%. When Ti is less than 0.01%, the effect of refining the ingot structure cannot be sufficiently obtained. Similarly, when B is less than 0.0001%, the effect of refining the ingot structure cannot be sufficiently obtained. On the other hand, if Ti exceeds 0.15%, a coarse compound of TiAl 3 is crystallized during casting, and the ductility and toughness of the material are significantly reduced. On the other hand, when B exceeds 0.05%, a coarse compound of TiB 2 is crystallized during casting, and the ductility and toughness of the material are significantly reduced. In addition to Ti alone or in addition to both Ti and B, a trace amount of Zn may be added as an element for enhancing corrosion resistance. In the present invention, 1.0% or less of Zn can be contained in the Al—Cu-based aluminum alloy material without impairing the desired effect.
4.Al−Cu系アルミニウム合金鍛造品の製造方法
本発明に係るAl−Cu系アルミニウム合金鍛造品は、Al−Cu系アルミニウム合金材を400℃以上の温度に加熱してから開始される一連の熱間自由鍛造工程と;当該一連の熱間自由鍛造工程後のAl−Cu系アルミニウム合金材を加熱保持する溶体化処理工程と;当該溶体化処理工程後のAl−Cu系アルミニウム合金材を急冷する焼き入れ処理工程と;当該焼き入れ処理工程後のAl−Cu系アルミニウム合金材を時効処理する時効処理工程と;を備える。そして、熱間自由鍛造工程において、鍛造品全体のうちの一部分における圧縮歪率が50%を超えて鍛造される部分的大歪鍛造プロセスを含む場合に、少なくとも部分的大歪が加わることになる素材の一部分を400℃以上の温度に保った状態で部分的大歪鍛造を行うようにして一連の熱間鍛造プロセスを終了する。
4). Manufacturing method of Al-Cu-based aluminum alloy forged product The Al-Cu-based aluminum alloy forged product according to the present invention is a series of hot processes started after heating the Al-Cu-based aluminum alloy material to a temperature of 400 ° C or higher. A free forging step; a solution treatment step for heating and holding the Al-Cu aluminum alloy material after the series of hot free forging steps; and a baking for rapidly cooling the Al-Cu aluminum alloy material after the solution treatment step And an aging treatment step of aging treatment of the Al—Cu aluminum alloy material after the quenching treatment step. And in a hot free forging process, when the partial large strain forging process in which the compressive strain rate in a part of the entire forged product exceeds 50% is included, at least partial large strain is applied. A series of hot forging processes is completed by performing partial large strain forging while maintaining a part of the material at a temperature of 400 ° C. or higher.
4−1.溶解工程、鋳造工程、均質化処理工程及び面削工程
本発明に用いるAl−Cu系アルミニウム合金材は、通常の方法に従ってアルミニウム合金を溶解、鋳造することによって鋳塊として得られる。すなわち、上記合金組成に調整されたアルミニウム合金を溶解工程にかけて溶湯を調製する。次いで、この溶湯を半連続鋳造法(DC鋳造法、ホットトップ鋳造法)や連続圧延鋳造法等の通常の方法による鋳造工程にかけて鋳塊を製造する。
4-1. Melting step, casting step, homogenizing treatment step and chamfering step The Al—Cu-based aluminum alloy material used in the present invention is obtained as an ingot by melting and casting an aluminum alloy according to a normal method. That is, an aluminum alloy adjusted to the above alloy composition is subjected to a melting step to prepare a molten metal. Next, this molten metal is subjected to a casting process by a normal method such as a semi-continuous casting method (DC casting method, hot top casting method) or a continuous rolling casting method to produce an ingot.
更に、上記鋳塊は、通常の方法に従って均質化処理と面削が施される。すなわち、上記鋳塊は、450〜550℃の温度範囲で1時間以上加熱保持される均質化処理にかけられる。均質化処理が施された鋳塊は室温まで冷却後に切断され、表面を面削する面削工程にかけられる。なお、面削工程は、均質化処理工程前に行ってもよい。 Further, the ingot is subjected to homogenization treatment and chamfering according to a normal method. That is, the ingot is subjected to a homogenization treatment in which the ingot is heated and held for 1 hour or more in a temperature range of 450 to 550 ° C. The ingot that has been subjected to the homogenization treatment is cut after cooling to room temperature and subjected to a chamfering process in which the surface is chamfered. The chamfering process may be performed before the homogenization process.
4−2.熱間自由鍛造工程
均質化処理工程後に面削工程にかける場合には、面削したアルミニウム合金鋳塊を400℃以上の温度に加熱後に一連の熱間自由鍛造工程が開始される。これに代わって、面削工程後に均質化処理工程にかける場合には、均質化処理と連続的して400℃以上の温度において一連の熱間自由鍛造工程が開始される。
4-2. Hot free forging process When subjected to the chamfering process after the homogenization process, a series of hot free forging processes are started after heating the chamfered aluminum alloy ingot to a temperature of 400 ° C or higher. Instead of this, when the homogenization process is performed after the chamfering process, a series of hot free forging processes are started at a temperature of 400 ° C. or higher continuously with the homogenization process.
熱間自由鍛造工程は、種々の方向からAl−Cu系アルミニウム合金材に繰り返し圧縮変形を加えることにより空隙等の欠陥を多く含む鋳塊組織を消滅せしめ、合金材の種々の機械的特性を向上させる鍛錬の工程と、鍛造後に機械加工が施され最終品の形状に加工されるために最適な形状へと加工する工程に大きく分類される。 The hot free forging process eliminates the ingot structure containing many defects such as voids by repeatedly compressing and deforming Al-Cu aluminum alloy material from various directions, and improves various mechanical properties of the alloy material. It is roughly classified into a forging process to be performed and a process for machining into an optimum shape in order to be machined after forging and processed into a final product shape.
上記鍛錬の工程においては、部分的大歪部が形成される鍛造段階が含まれない限り、熱間自由鍛造されるAl−Cu系アルミニウム合金材の温度に制限はない。本発明において部分的大歪部とは、部分的な歪率が50%を超える臨界歪率以上の変形を付与された部分をいう。 In the forging process, there is no limitation on the temperature of the Al—Cu-based aluminum alloy material that is hot forged unless it includes a forging step in which a partially large strained portion is formed. In the present invention, the partial large strain portion refers to a portion to which a deformation having a partial strain rate exceeding 50% and a critical strain rate or more is given.
上述のように熱間自由鍛造温度は制限されるものではないが、鍛造温度が250℃未満では加工に要する負荷が大きくなるため、電力等のエネルギーを多量に消費して経済性に劣る。本発明では、400℃以上の温度から鍛造を開始して鍛造中に合金材温度が徐々に低下していき、最終的には350℃以下、好ましくは270〜350℃の温度で鍛造を終了するのが好ましい。このように終了温度が350℃以下、好ましくは270〜350℃の範囲では、アルミニウム合金材中により微細なサブグレイン組織が形成され、最終的な合金材の耐熱性と強度の向上に寄与する。 As described above, the hot free forging temperature is not limited. However, if the forging temperature is less than 250 ° C., the load required for processing increases, so that a large amount of energy such as electric power is consumed, resulting in poor economic efficiency. In the present invention, forging is started from a temperature of 400 ° C. or higher, and the temperature of the alloy material gradually decreases during forging. Finally, forging is terminated at a temperature of 350 ° C. or lower, preferably 270 to 350 ° C. Is preferred. Thus, when the end temperature is 350 ° C. or less, preferably in the range of 270 to 350 ° C., a finer subgrain structure is formed in the aluminum alloy material, which contributes to the improvement of the heat resistance and strength of the final alloy material.
なお、鍛錬工程及び最適な形状へと加工する工程ともに一貫して、400℃以上の温度を保って鍛造を行っても粗大粒の発生は防止できるが、この場合の温度範囲は、400〜480℃の温度範囲で行うことが好ましい。480℃を超えた温度で鍛造が行われた場合、最終的なサブグレインサイズが30μmを超えて粗大となり、各種特性が低下する。また、部分的大歪が加わるプロセスについて400℃以上の温度とする場合も同様に、400〜480℃の温度範囲で行うことが好ましい。480℃を超えた温度で部分的大歪が加わる加工が行われたが場合も、サブグレインサイズが30μmを超えて粗大となり、各種特性が低下する。 In addition, although the forging process and the process to process into an optimum shape are consistently performed, forging can be performed even if forging is performed at a temperature of 400 ° C. or higher, the temperature range in this case is 400 to 480. It is preferable to carry out in the temperature range of ° C. When forging is performed at a temperature exceeding 480 ° C., the final subgrain size exceeds 30 μm and becomes coarse, and various properties are deteriorated. Similarly, when the temperature is set to 400 ° C. or higher for a process in which a partial large strain is applied, it is preferably performed in a temperature range of 400 to 480 ° C. Even when a process in which a partial large strain is applied at a temperature exceeding 480 ° C., the subgrain size exceeds 30 μm and becomes coarse, and various characteristics are deteriorated.
このような鍛錬の工程において部分的大歪部が形成されることになる場合には、少なくとも部分的大歪部となる領域の温度を400℃以上の状態になるように温度調整して熱間自由鍛造する必要がある。この領域の温度が400℃未満の場合には、上述の理由によって、引続き実施される溶体化処理時に粗大な結晶粒が形成され、材料特性が低下する。 In the case where a partial large strain portion is to be formed in such a training process, the temperature of the region that becomes at least the partial large strain portion is adjusted to a temperature of 400 ° C. or higher. Free forging is required. When the temperature in this region is less than 400 ° C., coarse crystal grains are formed during the subsequent solution treatment for the reasons described above, and the material characteristics are deteriorated.
上記最適な形状へと加工する工程についても基本的には鍛錬の工程と同様であるが、この最適な形状へと加工する工程において部分的大歪部が形成される場合が多い。具体的には、鍛錬の工程で形成された合金材外表面に位置する突起部の領域に鍛造による圧縮変形を加えて突起部の領域を平坦にし、或いは、より多角の形状に変形して全体形状を円形に近い形状にする場合に、突起部において部分的な変形が集中する状態となる。その結果、このような部分的な変形が集中した突起部が、部分的大歪部となるのである。そこで、このような部分的大歪部が形成される前段階において、少なくとも当該部分的大歪部となる領域を400℃以上の温度で熱間鍛造することにより、部分的大歪部における臨界歪率を消滅させることができる。本発明では、このような部分的大歪部を形成させない鍛造段階を一連の熱間自由鍛造工程中に設けることによって、粗大結晶粒の生成を有効に防止できる。 The process of processing into the optimum shape is basically the same as the forging process, but a partial large strain portion is often formed in the process of processing into the optimal shape. Specifically, the area of the protrusion located on the outer surface of the alloy material formed in the forging process is subjected to compression deformation by forging to flatten the area of the protrusion, or deformed into a more polygonal shape as a whole. When the shape is close to a circle, partial deformation concentrates on the protrusion. As a result, the protrusions where such partial deformations are concentrated become partial large strain portions. Therefore, at the stage before such a partial large strain portion is formed, at least a region that becomes the partial large strain portion is hot-forged at a temperature of 400 ° C. or higher, so that the critical strain in the partial large strain portion is obtained. The rate can be extinguished. In the present invention, the formation of coarse crystal grains can be effectively prevented by providing a forging step in which such a partial large strain portion is not formed during a series of hot free forging steps.
ここで、部分的大歪部となる領域である突起部の形態について説明する。図1に示すように、Al−Cu系アルミニウム合金材の突起部の圧縮変形方向を隆起方向とし、この隆起方向に平行で突起部の先端を通る線を隆起方向線とする。そして、突起部における突起の度合いは、隆起方向線を含む任意の面によって突起部を切断した際に、当該面上に示される突起部先端の角度である断面角によって規定される。この断面角が小さいほど鋭角となって圧縮変形による歪が大きくなるが、本発明では、この断面角の最小値を120°以下としても部分的大歪部の形成を防止でき、断面角が限りなく0°に近い突起部であっても、部分的大歪部の形成の防止が可能である。なお、突起部の先端が一定の曲率を有している(即ち、先端が丸みを帯びている)場合や、突起部の先端が平坦な場合には、突起部の全体形状を構成する直線部分を延長した交点を先端と仮定して隆起方向線を含む任意の面によって突起部を切断した際に、当該面上に示される仮想の突起部先端の角度を断面角とする。このような丸みを帯びている先端や平坦な先端の場合には、この先端部分を鍛造によって圧縮変形した場合の歪率への影響は軽微であることから、上述のように仮想の突起部先端に基づいて断面角を規定するのが実質的に適当である。 Here, a description will be given of the form of the protrusion, which is a region that becomes a partial large strain portion. As shown in FIG. 1, the compression deformation direction of the protruding portion of the Al—Cu-based aluminum alloy material is defined as a protruding direction, and a line parallel to the protruding direction and passing through the tip of the protruding portion is defined as a protruding direction line. The degree of protrusion in the protrusion is defined by the cross-sectional angle that is the angle of the tip of the protrusion shown on the surface when the protrusion is cut by an arbitrary surface including the protruding direction line. The smaller the cross-sectional angle, the sharper the angle and the greater the strain due to compressive deformation.In the present invention, even if the minimum value of the cross-sectional angle is 120 ° or less, the formation of a partially large strain portion can be prevented, and the cross-sectional angle is limited. Even if the protrusion is close to 0 °, it is possible to prevent the formation of a partial large strain portion. In addition, when the tip of the projection has a certain curvature (that is, the tip is rounded) or when the tip of the projection is flat, the straight portion constituting the overall shape of the projection When the projection is cut by an arbitrary surface including the ridge direction line, assuming that the intersection point extending from is the tip, the cross-sectional angle is the angle of the virtual projection tip shown on the surface. In the case of such a rounded tip or a flat tip, since the effect on the distortion rate when this tip portion is compressively deformed by forging is negligible, the tip of the virtual projection as described above It is substantially appropriate to define the cross-sectional angle based on
鍛造に用いる金敷の温度は、200℃以上とするのが好ましい。金敷温度が200℃未満の場合は、鍛造材の温度が規定以内であっても金敷との接触時に鍛造材からの抜熱が生じる。その結果、圧縮変形時の実質的な材料温度が規定よりも低くなり、粗大粒が発生する場合がある。また、金敷温度の上限値は特に規定するものではないが、金敷温度が360℃を超えると、鍛造時に用いる潤滑油の金敷への焼付きが生じ易くなるため、金敷温度は360℃以下とするのが好ましい。 The temperature of the anvil used for forging is preferably 200 ° C. or higher. When the anvil temperature is less than 200 ° C., heat is extracted from the forged material when contacting the anvil even if the temperature of the forged material is within the specified range. As a result, the substantial material temperature at the time of compressive deformation becomes lower than specified, and coarse particles may be generated. The upper limit of the anvil temperature is not particularly specified, but if the anvil temperature exceeds 360 ° C., seizure of the lubricant used for forging to the anvil is likely to occur, so the anvil temperature is set to 360 ° C. or less. Is preferred.
鍛造時の圧縮変形時において、鍛造材と金敷が接触する時間は5秒以内とするのが好ましい。5秒を超えて鍛造材と金敷が接触すると、鍛造材から金敷への抜熱が顕著となり、圧縮変形時の実質的な材料温度が規定よりも低くなり、粗大粒が発生する場合がある。また、接触時間の下限値は特に規定するものではないが、鍛造機の機構上、極めて短時間の接触での圧縮変形は困難であり、通常、実質的に1秒以上の接触時間を要する。 At the time of compressive deformation at the time of forging, it is preferable that the time for which the forged material comes into contact with the anvil is within 5 seconds. When the forged material and the anvil come into contact with each other for more than 5 seconds, the heat removal from the forged material to the anvil becomes remarkable, the substantial material temperature at the time of compressive deformation becomes lower than the specified value, and coarse grains may be generated. Further, the lower limit value of the contact time is not particularly specified, but due to the mechanism of the forging machine, it is difficult to compress and deform in a very short time contact, and usually a contact time of substantially 1 second or more is required.
4−3.溶体化処理工程
一連の熱間自由鍛造プロセスが完了した後に、アルミニウム合金材の溶体化処理を行う。溶体化処理を行う前に、アルミニウム合金材を最終的な製品サイズに近い適当なサイズに切断しておいてもよく、或いは、熱間自由鍛造した状態で溶体処理を行ってから切断してもよい。溶体化処理工程では、アルミニウム合金材を、通常450℃以上の温度に加熱保持することによって、合金の主要添加成分であるCu、Mgをマトリクス中に固溶させる。加熱保持温度が450℃未満ではCu、Mgが十分に固溶せず、最終的に十分に高強度が得られない場合がある。加熱保持温度の上限は特に規定するものではないが、530℃を超えるとCuの添加量に応じて一部溶融が生じて、材料特性が低下する場合がある。加熱保持時間については、Cu、Mgを十分に固溶させるために1時間以上とするのが好ましい。なお、加熱保持時間を10時間以上としても効果が飽和して不経済となる。従って、加熱保持時間は1〜10時間とするのが好ましい。
4-3. Solution Treatment Process After a series of hot free forging processes is completed, a solution treatment of the aluminum alloy material is performed. Before performing the solution treatment, the aluminum alloy material may be cut to an appropriate size close to the final product size, or may be cut after performing the solution treatment in a hot free forged state. Good. In the solution treatment step, the aluminum alloy material is heated and held at a temperature of usually 450 ° C. or higher, so that Cu and Mg as the main additive components of the alloy are dissolved in the matrix. If the heating and holding temperature is less than 450 ° C., Cu and Mg are not sufficiently dissolved, and finally there is a case where sufficiently high strength cannot be obtained. The upper limit of the heating and holding temperature is not particularly specified, but if it exceeds 530 ° C., partial melting may occur depending on the amount of Cu added, and the material characteristics may deteriorate. The heating and holding time is preferably 1 hour or longer in order to sufficiently dissolve Cu and Mg. Even if the heating and holding time is 10 hours or more, the effect is saturated and uneconomical. Therefore, the heating and holding time is preferably 1 to 10 hours.
4−4.焼入れ工程
アルミニウム合金材は、溶体化処理工程の後に急冷する焼入れ工程にかけられる。この焼入れにより、高温で固溶させたCuやMgを常温で過飽和固溶した状態にすることができ、引き続き行われる時効処理で素材の強度を高めることができようになる。急冷による焼入れは、通常、アルミニウム合金材を水中に投入することによって行われる。しかしながら、急冷のために水以外の冷媒を適宜選択して用いてもよい。水中に投入する場合の水温については特に限定されるものではないが、室温程度(例えば20℃程度)から80℃の範囲で選択するのが好ましい。大型のアルミニウム合金材などで焼き入れ後の残留応力を小さくするためには、60〜80℃の水温とするのが好ましい。
4-4. Quenching step The aluminum alloy material is subjected to a quenching step of quenching after the solution treatment step. By this quenching, Cu or Mg dissolved at high temperature can be brought into a supersaturated solid solution at room temperature, and the strength of the material can be increased by the subsequent aging treatment. Quenching by rapid cooling is usually performed by introducing an aluminum alloy material into water. However, a coolant other than water may be appropriately selected and used for rapid cooling. There is no particular limitation on the water temperature when it is poured into water, but it is preferable to select the temperature within the range of about room temperature (for example, about 20 ° C.) to 80 ° C. In order to reduce the residual stress after quenching with a large aluminum alloy material or the like, the water temperature is preferably 60 to 80 ° C.
4−5.時効処理
溶体化処理と焼入れによってCuやMgを過飽和に固溶せしめた後に、アルミニウム合金材は時効処理工程にかけられる。時効処理は、常温で所定時間保持する自然時効、或いは、所定温度に加熱して所定時間保持する人工時効が用いられる。時効処理によって、アルミニウム合金材の強度を高めることができる。本発明では、時効処理条件を特に規定するものではないが、例えば、自然時効では10〜30℃程度の室温において24時間以上保持し、人工時効では150〜210℃の温度範囲で4〜120時間程度保持する。
4-5. Aging treatment After dissolving Cu and Mg in a supersaturated state by solution treatment and quenching, the aluminum alloy material is subjected to an aging treatment step. For the aging treatment, natural aging that is held at room temperature for a predetermined time or artificial aging that is heated to a predetermined temperature and held for a predetermined time is used. The strength of the aluminum alloy material can be increased by the aging treatment. In the present invention, the aging treatment conditions are not particularly specified. For example, natural aging is maintained at a room temperature of about 10 to 30 ° C. for 24 hours or more, and artificial aging is performed at a temperature range of 150 to 210 ° C. for 4 to 120 hours. Hold the degree.
なお、アルミニウム合金材に高い寸法精度の加工を施す場合において、アルミニウム合金材に残留応力が存在すると加工精度が大きく阻害される。このため、残留応力を解消することを目的として、溶体化処理と焼入れを行ってから時効処理を行うまでの間にアルミニウム合金材に冷間で圧縮変形を加えてもよい。この場合の圧縮変形率は1〜5%の範囲とするのが好ましい。 In addition, when processing aluminum alloy material with high dimensional accuracy, if there is residual stress in the aluminum alloy material, the processing accuracy is greatly hindered. For this reason, for the purpose of eliminating the residual stress, the aluminum alloy material may be cold-deformed and deformed between the solution treatment and quenching and before the aging treatment. In this case, the compression deformation rate is preferably in the range of 1 to 5%.
以下に本発明を実施例及び比較例によって具体的に説明する。なお、これら実施例及び比較例によって、本発明の技術的範囲が限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The technical scope of the present invention is not limited by these examples and comparative examples.
表1に示す合金組成に調整したAl−Cu系アルミニウム合金を溶解し、DC鋳造法により鋳造して鋳塊を作製した。これらの鋳塊を500℃に加熱して、6時間保持する均質化処理工程を経た後に鋳塊表面を面削し、300mm×300mm×600mmのサイズに切断して熱間自由鍛造用サンプルとした。 An Al—Cu-based aluminum alloy adjusted to the alloy composition shown in Table 1 was melted and cast by a DC casting method to produce an ingot. These ingots were heated to 500 ° C. and subjected to a homogenization treatment step for 6 hours, and then the ingot surface was chamfered and cut into a size of 300 mm × 300 mm × 600 mm to obtain a sample for hot free forging. .
上記熱間自由鍛造用サンプルを450℃まで加熱した後に、熱間自由鍛造を開始した。鋳塊組織に含まれる欠陥を消滅させるために行う鍛錬の工程に関しては、図2に示す方法にて行った。すなわち、第1回目の鍛錬において、主圧縮変形方向に圧縮変形した。次いで、第2回目の鍛錬において、主圧縮変形方向に直交する図中の左右方向に圧縮変形した。更に、第3回目の鍛錬において、再び主圧縮変形方向に圧縮変形した。 After the hot free forging sample was heated to 450 ° C., hot free forging was started. The forging process performed to eliminate defects contained in the ingot structure was performed by the method shown in FIG. That is, in the first training, it was compressed and deformed in the main compression deformation direction. Subsequently, in the second training, compression deformation was performed in the left-right direction in the figure orthogonal to the main compression deformation direction. Furthermore, in the third training, it was again compressed and deformed in the main compression deformation direction.
上記鍛錬の工程を終了後、通常は、その後の部品形状に加工されるために最適な形状へと加工する工程に移行する。しかしながら、鍛造の条件と組織変化の対応関係を調査することを目的として、鍛錬の工程を終了後に直ちに水焼入れを行い室温まで冷却して、この時点での熱間自由鍛造組織を一旦凍結した。鍛錬工程後に室温まで冷却した試料により、図3に示す形状の試験サンプルを必要数作製した。 After finishing the training process, the process usually proceeds to a process of processing into an optimal shape in order to be processed into a subsequent part shape. However, for the purpose of investigating the correspondence between forging conditions and structural changes, water quenching was performed immediately after the forging process was completed, and the hot free forging structure at this point was once frozen. A required number of test samples having the shape shown in FIG. 3 were prepared using samples cooled to room temperature after the forging process.
この試験サンプルを、以下に説明する大歪プロセス再現熱間自由鍛造シミュレーション試験に供した。本試験で用いた試験装置の概略を図4に示す。本試験装置は、通常の大型の熱間自由鍛造機と同様に、試験サンプルを圧縮加工するための上下一対の金敷が備えられており、下側の金敷上に試験サンプルを乗せて、上側の金敷を下方に任意の速度で駆動させることにより、試験サンプルの圧縮加工を行うものである。また、本試験装置には、試験サンプルの周囲に誘導加熱コイルが設けられている。この誘導加熱コイルにより、試験サンプルを任意の試験温度まで20℃/秒以上の昇温速度で急速に加熱してその温度に保持することができ、圧縮変形中も同様に試験サンプル温度を一定に保持することができる。なお、これら上下の金敷内部には加熱ヒーターが埋め込まれており、金敷の温度を任意の設定温度に保持することができる。 This test sample was subjected to a large strain process reproduction hot free forging simulation test described below. An outline of the test apparatus used in this test is shown in FIG. This test apparatus is equipped with a pair of upper and lower anvils for compressing a test sample, like a normal large-sized hot free forging machine, placing the test sample on the lower anvil, The test sample is compressed by driving the anvil downward at an arbitrary speed. In addition, the test apparatus is provided with an induction heating coil around the test sample. With this induction heating coil, a test sample can be rapidly heated to a desired test temperature at a heating rate of 20 ° C./second or more and maintained at that temperature, and the test sample temperature can be kept constant during compression deformation as well. Can be held. In addition, a heater is embedded in the upper and lower anvils, and the temperature of the anvil can be maintained at an arbitrary set temperature.
この熱間自由鍛造シミュレーションの試験装置に、図3に示す試験サンプルをセットした。これを20℃/秒以上の昇温速度で試験サンプルを急速昇温した後に直ちに1mm/秒の金敷駆動速度で、試験サンプルの圧縮変形試験を行った。変形終了後に直ちに試験サンプルを装置から取り出しで、大気中にて室温まで放冷した。 The test sample shown in FIG. 3 was set in this hot free forging simulation test apparatus. A test sample was subjected to a compressive deformation test at an anvil driving speed of 1 mm / second immediately after the test sample was rapidly heated at a temperature increase rate of 20 ° C./second or more. Immediately after the deformation, the test sample was taken out from the apparatus and allowed to cool to room temperature in the atmosphere.
熱間自由鍛造の開始温度(鍛錬の工程の開始温度)、鍛錬の工程の終了温度を表2に示す。更に、熱間自由鍛造シミュレーション試験の条件である、熱間圧縮変形のための試料サンプルの加熱・変形温度(=変形時の試料サンプル温度)、試料サンプルの断面角の最小値、圧縮歪率、上下の金敷温度、ならびに、試料サンプルと金敷の接触時間を同じく表2に示した。なお、表2における圧縮歪率とは、所定の変形量を与えることにより試料サンプルにおいて部分的に生じた最大の圧縮変形率(変形量から別途各部分での変形率を数値計算により求めた数値)である。 Table 2 shows the start temperature of hot free forging (starting temperature of the forging process) and the end temperature of the forging process. Furthermore, the conditions of the hot free forging simulation test are the heating and deformation temperature of the sample sample for hot compressive deformation (= the sample sample temperature at the time of deformation), the minimum value of the cross section angle of the sample sample, the compressive strain rate, Table 2 also shows the upper and lower anvil temperature and the contact time between the sample sample and the anvil. The compressive strain rate in Table 2 is the maximum compressive deformation rate partially generated in the sample sample by giving a predetermined deformation amount (a numerical value obtained by numerically calculating the deformation rate in each part separately from the deformation amount). ).
以上のようにして作製した圧縮変形試験後の試料サンプルを、500℃の温度に加熱して4時間保持する溶体化処理を行った。次いで、この試料サンプルを直ちに25℃の水中に投入する水焼入れを行い急冷した。更に、焼入れ後の試料サンプルに、190℃で10時間の人工時効処理を施した後に、以下の手順で鍛造品の特性評価を行った。 The sample solution after the compression deformation test produced as described above was subjected to a solution treatment for heating to a temperature of 500 ° C. and holding for 4 hours. Subsequently, this sample sample was immediately quenched by water quenching in 25 ° C. water. Furthermore, after subjecting the sample sample after quenching to artificial aging treatment at 190 ° C. for 10 hours, the characteristics of the forged product were evaluated by the following procedure.
まず、図5(a)に示すマクロ組織観察用サンプル切断面の位置で、圧縮変形試験後の試験サンプルを切断した。次いで、切断面を機械研磨後に、王水(32%塩酸660mml+65%硝酸340ml)に30秒間浸漬することによりマクロエッチングを行い、純水で洗浄後に乾燥した。その後、マクロエッチング面を目視で観察することによって、鍛造品における粗大な結晶粒の有無を観察した。更に、マクロエッチング面を撮影した画像データの画像処理を行うことによって、観察面全体に対する粗大結晶粒の発生領域が占める面積比を測定した。 First, the test sample after the compression deformation test was cut at the position of the cut surface for observing the macrostructure shown in FIG. Next, after mechanically polishing the cut surface, macroetching was performed by immersing in aqua regia (32% hydrochloric acid 660 ml + 65% nitric acid 340 ml) for 30 seconds, washing with pure water, and drying. Thereafter, the presence or absence of coarse crystal grains in the forged product was observed by visually observing the macroetched surface. Furthermore, by performing image processing of image data obtained by photographing the macroetched surface, the area ratio occupied by the generation region of coarse crystal grains with respect to the entire observation surface was measured.
また、この断面の図5(b)に示す位置より、EBSD測定用の試験片を採取した。この試験片の表面を鏡面研磨仕上げした後、電子線後方散乱回折解析装置付きの走査型電子顕微鏡(SEM)にセットしてEBSD測定を行った。具体的には、SEMの加速電圧200kVにて、測定時のSEM倍率500倍、測定エリア200μm×150μm、測定ステップ間隔0.4μmの測定条件にてEBSD測定を行った。このEBSD測定により得たEBSD像のイメージクオリティマップ(亜結晶粒界と亜結晶粒内のコントラストが明確に映し出されて、亜結晶粒を識別することが可能である)により、材料中に元々存在した結晶粒の内部に形成されたサブグレイン組織の平均粒径を求めた。平均粒径は、イメージクオリティマップにおいて、縦・横に直交する合計4本の直線を引いて、この直線を横切る結晶粒の数で測定に用いた直線の総長さを割り算することによって求めた。 Moreover, the test piece for EBSD measurement was extract | collected from the position shown in FIG.5 (b) of this cross section. After the surface of this test piece was mirror-polished, it was set in a scanning electron microscope (SEM) equipped with an electron beam backscatter diffraction analyzer, and EBSD measurement was performed. Specifically, EBSD measurement was performed under the measurement conditions of an SEM acceleration voltage of 200 kV, an SEM magnification of 500 times during measurement, a measurement area of 200 μm × 150 μm, and a measurement step interval of 0.4 μm. Image quality map of EBSD image obtained by this EBSD measurement (contrast between sub-grain boundaries and sub-crystal grains is clearly shown and sub-grains can be identified), originally present in the material The average grain size of the subgrain structure formed inside the crystal grains was determined. The average particle size was determined by drawing a total of four straight lines perpendicular to the vertical and horizontal directions and dividing the total length of the straight lines used for measurement by the number of crystal grains crossing the straight lines in the image quality map.
更に、図5(b)に示す位置より、図6に示す形状の引張試験片(板厚:1mm)を採取した。この引張試験片を用いて室温にてクロスヘッド速度10mm/分の条件で引張試験を行ない、鍛造品の強度を耐力値で評価した。また、同じく図5(b)に示す位置より、図7示す形状のクリープ試験片(板厚:8mm)を採取した。このクリープ試験片に高温で一定荷重を負荷して、材料が破断するまでのクリープ寿命を測定するクリープ試験を行った。クリープ試験は、室温での引張試験で評価した耐力値の10%の荷重負荷条件で、100℃の温度条件にて、負荷開始から破断するまでの時間(クリープ寿命)を測定した。 Further, a tensile test piece (plate thickness: 1 mm) having the shape shown in FIG. 6 was taken from the position shown in FIG. Using this tensile test piece, a tensile test was performed at room temperature under a crosshead speed of 10 mm / min, and the strength of the forged product was evaluated by a proof stress value. Similarly, a creep test piece (plate thickness: 8 mm) having the shape shown in FIG. 7 was collected from the position shown in FIG. A creep test was performed in which a constant load was applied to the creep test piece at a high temperature to measure the creep life until the material broke. The creep test was performed by measuring the time from the start of loading to rupture (creep life) under a load condition of 10% of the proof stress evaluated in the tensile test at room temperature and at a temperature condition of 100 ° C.
以下、表2に示した条件で行なった上記試験結果について表3に示す。条件No.1、2、3、4、6では、本発明の範囲の合金Aを用いて本発明の範囲で熱間自由鍛造を行なったものである。条件No.1、2、3、4、6のいずれにおいても、マクロ組織観察において粗大な結晶粒の発生はなく、高い耐力値と耐熱性(クリープ寿命が長い)を有していた。なお、EBSP分析による亜結晶粒(サブグレイン)の平均粒径も表3に併せて示す。 Hereinafter, the test results obtained under the conditions shown in Table 2 are shown in Table 3. Condition No. In 1, 2, 3, 4, and 6, hot free forging was performed within the scope of the present invention using the alloy A within the scope of the present invention. Condition No. In any one of 1, 2, 3, 4, and 6, coarse crystal grains were not generated in the macro structure observation, and had high proof stress and heat resistance (long creep life). In addition, Table 3 also shows the average grain size of sub-crystal grains (subgrains) by EBSP analysis.
これに対して条件No.5は、部分的大ひずみ鍛造プロセスが480℃を超える温度範囲で行われたため、粗大粒は発生しないが、サブグレインサイズが30μmを超えて粗大になり、耐力値及びクリープ寿命が低下している。 On the other hand, Condition No. No. 5, since the partial large strain forging process was performed in a temperature range exceeding 480 ° C., coarse grains were not generated, but the subgrain size exceeded 30 μm and became coarse, and the proof stress value and the creep life were reduced. .
また、条件No.7では、部分的大ひずみ鍛造プロセスを含む一連の鍛造プロセスが、480℃を超える温度範囲で行われた。その結果、粗大粒は発生しないが、サブグレインサイズが粗大になり、耐力値及びクリープ寿命が低下している。 In addition, Condition No. In 7, a series of forging processes including a partial large strain forging process were performed at a temperature range above 480 ° C. As a result, coarse grains do not occur, but the subgrain size becomes coarse, and the proof stress value and the creep life are reduced.
これに対して、条件8は大歪プロセスを再現する熱間自由鍛造シミュレーション試験における試料サンプルの加熱・変形温度が低過ぎた。このため、圧縮歪率が本発明で規定する50%以上の領域中において粗大な結晶粒が発生した。条件8では、熱間自由鍛造シミュレーション試験における試料サンプルの加熱・変形温度のみが異なる条件1に比べて、鍛造品の耐力値が低く、クリープ寿命も50%程度に短くなって耐熱性が低かった。 On the other hand, in the condition 8, the heating / deformation temperature of the sample sample in the hot free forging simulation test reproducing the large strain process was too low. For this reason, coarse crystal grains were generated in the region where the compressive strain rate was 50% or more defined in the present invention. In condition 8, compared to condition 1 in which only the heating and deformation temperature of the sample sample in the hot free forging simulation test is different, the proof stress value of the forged product is low, the creep life is shortened to about 50%, and the heat resistance is low. .
条件9では、大歪プロセスを再現する熱間自由鍛造シミュレーション試験における圧縮歪率が本発明で規定する範囲よりも小さい。従って、部分的大歪部が形成されず、シミュレーション試験における試料サンプルの加熱・変形温度が本発明で規定する範囲より低い390℃であっても鍛造品に粗大な結晶粒が発生することなく、高い耐力値と耐熱性を有していた。 In condition 9, the compressive strain rate in the hot free forging simulation test that reproduces the large strain process is smaller than the range defined in the present invention. Therefore, a partially large strain portion is not formed, and even if the heating and deformation temperature of the sample sample in the simulation test is 390 ° C. lower than the range specified in the present invention, coarse crystal grains are not generated in the forged product, It had high proof stress and heat resistance.
条件10では、シミュレーション試験に供した試験片形状として、突起部の断面角の最小値が130°と大きいたものを用いた。このため、この部分における圧縮歪率が40%と本発明で規定する範囲よりも小さい。従って、部分的大歪部が形成されず、シミュレーション試験における試料サンプルの加熱・変形温度が、本発明の範囲よりも低い380℃であっても、鍛造品に粗大な結晶粒が発生することなく、高い耐力値と耐熱性を有していた。
In
条件11では、熱間自由鍛造の開始温度が本発明で規定する温度範囲よりも低過ぎた。そのため、熱間自由鍛造開始初期における熱間加工抵抗が大きく、試料サンプルに大きな荷重が負荷され、熱間自由鍛造の初期において多く存在する鋳造欠陥を起点として鍛造割れが生じた。このため、鍛錬工程を完了することができず、以降の大歪プロセス再現熱間自由鍛造シミュレーション試験を実施することができなかった。 In condition 11, the hot free forging start temperature was too lower than the temperature range defined in the present invention. For this reason, the hot working resistance at the beginning of hot free forging was large, a large load was applied to the sample sample, and forging cracks occurred starting from casting defects that existed in the early stage of hot free forging. For this reason, the forging process could not be completed, and the subsequent large strain process reproduction hot free forging simulation test could not be carried out.
条件12では、大歪プロセスを再現する熱間自由鍛造シミュレーション試験における、金敷の温度が本発明の範囲よりも低過ぎた。このため、金敷によって試料サンプルを圧縮変形している最中に試料サンプルの熱が金敷に多量に奪われた。その結果、変形途中において試料サンプル温度が低下し、シミュレーション試験における試料サンプルの加熱・変形温度が、本発明で規定する範囲よりも低下してしまった。このため、圧縮歪率が本発明で規定する50%以上の領域中において、粗大な結晶粒が発生した。条件12では、熱間自由鍛造シミュレーション試験において、試料サンプルの加熱・変形温度、金敷温度、ならびに、試料サンプルと金敷との接触時間が異なる条件1に比べて、鍛造品の耐力値が低く、クリープ寿命も短くなって耐熱性が低かった。 Under condition 12, the temperature of the anvil in the hot free forging simulation test reproducing the large strain process was too lower than the range of the present invention. For this reason, during the compression deformation of the sample sample by the anvil, a large amount of heat of the sample sample was taken away by the anvil. As a result, the sample sample temperature decreased during the deformation, and the heating / deformation temperature of the sample sample in the simulation test was lower than the range defined in the present invention. For this reason, coarse crystal grains were generated in the region where the compressive strain rate was 50% or more defined in the present invention. In condition 12, in the hot free forging simulation test, the proof stress value of the forged product is lower than that in condition 1 in which the heating / deformation temperature of the sample sample, the anvil temperature, and the contact time between the sample sample and the anvil are different, and creep. The service life was shortened and the heat resistance was low.
条件13では、大歪プロセスを再現する熱間自由鍛造シミュレーション試験での圧縮変形の最中における、試料サンプルと金敷の接触時間が本発明で規定する範囲よりも長過ぎた。このため、金敷によって試料サンプルを圧縮変形している長い接触時間中に、試料サンプルの熱が金敷に多量に奪われた。その結果、変形の途中において、試料サンプル温度が実施的に本発明で規定する温度範囲よりも低下してしまった。このため、圧縮歪率が本発明で規定した50%以上の領域中において、粗大な結晶粒が発生した。条件13では、熱間自由鍛造シミュレーション試験において、試料サンプルの加熱・変形温度、金敷温度、ならびに、試料サンプルと金敷との接触時間が異なる条件1に比べて、鍛造品の耐力値が低く、クリープ寿命も短くなって耐熱性が低かった。 Under condition 13, the contact time between the sample sample and the anvil during the compression deformation in the hot free forging simulation test reproducing the large strain process was too longer than the range defined in the present invention. For this reason, during the long contact time in which the sample sample was compressed and deformed by the anvil, a large amount of heat from the sample sample was taken away by the anvil. As a result, in the middle of deformation, the sample sample temperature was practically lower than the temperature range defined in the present invention. For this reason, coarse crystal grains were generated in the region where the compressive strain rate was 50% or more defined in the present invention. In condition 13, in the hot free forging simulation test, the proof stress value of the forged product is lower than that in condition 1 in which the heating / deformation temperature of the sample sample, the anvil temperature, and the contact time between the sample sample and the anvil differ. The service life was shortened and the heat resistance was low.
条件14と条件15は、本発明の範囲内の合金Bについての試験結果である。条件14は、本発明で既定する試験条件で試験した。一方、条件15は、熱間自由鍛造シミュレーション試験における、加熱・変形温度が本発明の規定範囲よりも低く、その他の全ての試験条件は条件14と同じである。条件14では粗大な結晶粒が発生せず、条件15では粗大な結晶粒が発生した。そのため、条件15では条件14に比べて、鍛造品の耐力値が低く、かつ、クリープ寿命が短くなって耐熱性が低かった。 Conditions 14 and 15 are test results for Alloy B within the scope of the present invention. Condition 14 was tested under the test conditions defined in the present invention. On the other hand, the condition 15 is a hot free forging simulation test in which the heating / deformation temperature is lower than the specified range of the present invention, and all other test conditions are the same as the condition 14. Under condition 14, coarse crystal grains were not generated, and under condition 15, coarse crystal grains were generated. Therefore, in condition 15, compared to condition 14, the proof stress value of the forged product was low, the creep life was shortened, and the heat resistance was low.
条件16と条件17は、本発明の発明内の合金Cについての試験結果である。条件16は、本発明で既定する試験条件で試験した。一方、条件17は、熱間自由鍛造シミュレーション試験における、加熱・変形温度が本発明の規定範囲よりも低く、その他の全ての試験条件は条件16と同じである。条件16では粗大な結晶粒が発生せず、条件17では粗大な結晶粒が発生した。そのため、条件17では条件16に比べて、鍛造品の耐力値が低く、かつ、クリープ寿命は短くなって耐熱性が低かった。 Conditions 16 and 17 are the test results for Alloy C within the invention of the present invention. Condition 16 was tested under the test conditions defined in the present invention. On the other hand, in condition 17, the heating and deformation temperature in the hot free forging simulation test is lower than the specified range of the present invention, and all other test conditions are the same as condition 16. Under condition 16, coarse crystal grains were not generated, and under condition 17, coarse crystal grains were generated. Therefore, in condition 17, as compared with condition 16, the yield value of the forged product was low, the creep life was shortened, and the heat resistance was low.
条件18〜23は、それぞれ本発明の発明内の合金D〜Iを用いて本発明で規定する試験条件で試験したものである。そのため、これら条件では粗大な結晶粒が発生せず、それぞれの条件における合金成分に応じた高い耐力値と耐熱性(クリープ寿命が長い)を有していた。 Conditions 18 to 23 were tested under the test conditions specified in the present invention using the alloys D to I in the invention of the present invention. Therefore, coarse crystal grains were not generated under these conditions, and had high proof stress and heat resistance (long creep life) according to the alloy components in each condition.
本発明により、Al−Cu系アルミニウム合金材の自由鍛造後の溶体化処理中において粗大な結晶粒が生成するのを防止し、優れた耐熱性と強度を有するAl−Cu系アルミニウム合金鍛造材を提供することができる。 According to the present invention, it is possible to prevent the formation of coarse crystal grains during solution treatment after free forging of an Al—Cu based aluminum alloy material, and to provide an Al—Cu based aluminum alloy forged material having excellent heat resistance and strength. Can be provided.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012095699A JP2013220472A (en) | 2012-04-19 | 2012-04-19 | Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012095699A JP2013220472A (en) | 2012-04-19 | 2012-04-19 | Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013220472A true JP2013220472A (en) | 2013-10-28 |
Family
ID=49591832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012095699A Pending JP2013220472A (en) | 2012-04-19 | 2012-04-19 | Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013220472A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015002177A1 (en) * | 2013-07-04 | 2015-01-08 | 昭和電工株式会社 | Method for producing starting material for cutting |
WO2017068865A1 (en) * | 2015-10-22 | 2017-04-27 | 昭和電工株式会社 | Method for manufacturing heat-resistant aluminum alloy material |
JPWO2018143113A1 (en) * | 2017-01-31 | 2019-02-14 | 株式会社寺方工作所 | Non-magnetic high-strength stainless steel processed product, manufacturing method thereof, and manufacturing apparatus thereof |
CN109921014A (en) * | 2017-12-13 | 2019-06-21 | 荆门市格林美新材料有限公司 | Ni-based anode material for lithium-ion batteries and preparation method thereof with subgrain structure |
CN110724865A (en) * | 2019-11-01 | 2020-01-24 | 北京工业大学 | Al-Cu-Mg-Ag-Si-Sc heat-resistant alloy and preparation process thereof |
JP2020090726A (en) * | 2020-03-05 | 2020-06-11 | 昭和電工株式会社 | Manufacturing method of heat resistant aluminum alloy material |
JP2020090727A (en) * | 2020-03-05 | 2020-06-11 | 昭和電工株式会社 | Manufacturing method of heat resistant aluminum alloy material |
CN112941434A (en) * | 2020-12-28 | 2021-06-11 | 西南铝业(集团)有限责任公司 | Method for controlling high-precision size of precision die forging of passenger observation window frame |
CN113322400A (en) * | 2020-02-28 | 2021-08-31 | 株式会社神户制钢所 | Aluminum alloy forged material and method for producing same |
US20210388471A1 (en) * | 2017-02-17 | 2021-12-16 | Drahtwerk Elisental W. Erdmann Gmbh & Co. | Aluminum alloy, wire and connecting element made of the aluminum alloy |
CN114875285A (en) * | 2022-04-11 | 2022-08-09 | 临沂矿业集团菏泽煤电有限公司彭庄煤矿 | Heat treatment method for corrosion resistance treatment of key alloy component of mining equipment |
CN117551950A (en) * | 2024-01-11 | 2024-02-13 | 中北大学 | Al-Cu-Mg-Ag alloy with excellent long-term thermal stability and heat treatment process thereof |
CN118186320A (en) * | 2024-04-15 | 2024-06-14 | 北京航空航天大学宁波创新研究院 | Preparation method of high-strength high-plasticity additive manufacturing aluminum alloy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009149954A (en) * | 2007-12-21 | 2009-07-09 | Showa Denko Kk | Forging mother material of aluminum alloy |
JP2011214093A (en) * | 2010-03-31 | 2011-10-27 | Kobe Steel Ltd | Aluminum alloy forging and method for manufacturing same |
-
2012
- 2012-04-19 JP JP2012095699A patent/JP2013220472A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009149954A (en) * | 2007-12-21 | 2009-07-09 | Showa Denko Kk | Forging mother material of aluminum alloy |
JP2011214093A (en) * | 2010-03-31 | 2011-10-27 | Kobe Steel Ltd | Aluminum alloy forging and method for manufacturing same |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015002177A1 (en) * | 2013-07-04 | 2017-02-23 | 昭和電工株式会社 | Manufacturing method of cutting material |
WO2015002177A1 (en) * | 2013-07-04 | 2015-01-08 | 昭和電工株式会社 | Method for producing starting material for cutting |
WO2017068865A1 (en) * | 2015-10-22 | 2017-04-27 | 昭和電工株式会社 | Method for manufacturing heat-resistant aluminum alloy material |
JPWO2018143113A1 (en) * | 2017-01-31 | 2019-02-14 | 株式会社寺方工作所 | Non-magnetic high-strength stainless steel processed product, manufacturing method thereof, and manufacturing apparatus thereof |
US20210388471A1 (en) * | 2017-02-17 | 2021-12-16 | Drahtwerk Elisental W. Erdmann Gmbh & Co. | Aluminum alloy, wire and connecting element made of the aluminum alloy |
CN109921014A (en) * | 2017-12-13 | 2019-06-21 | 荆门市格林美新材料有限公司 | Ni-based anode material for lithium-ion batteries and preparation method thereof with subgrain structure |
CN109921014B (en) * | 2017-12-13 | 2021-10-01 | 荆门市格林美新材料有限公司 | Nickel-based lithium ion battery anode material with sub-crystal structure and preparation method thereof |
CN110724865A (en) * | 2019-11-01 | 2020-01-24 | 北京工业大学 | Al-Cu-Mg-Ag-Si-Sc heat-resistant alloy and preparation process thereof |
CN113322400A (en) * | 2020-02-28 | 2021-08-31 | 株式会社神户制钢所 | Aluminum alloy forged material and method for producing same |
JP2020090726A (en) * | 2020-03-05 | 2020-06-11 | 昭和電工株式会社 | Manufacturing method of heat resistant aluminum alloy material |
JP2020090727A (en) * | 2020-03-05 | 2020-06-11 | 昭和電工株式会社 | Manufacturing method of heat resistant aluminum alloy material |
CN112941434A (en) * | 2020-12-28 | 2021-06-11 | 西南铝业(集团)有限责任公司 | Method for controlling high-precision size of precision die forging of passenger observation window frame |
CN114875285A (en) * | 2022-04-11 | 2022-08-09 | 临沂矿业集团菏泽煤电有限公司彭庄煤矿 | Heat treatment method for corrosion resistance treatment of key alloy component of mining equipment |
CN114875285B (en) * | 2022-04-11 | 2023-10-03 | 临沂矿业集团菏泽煤电有限公司彭庄煤矿 | Heat treatment method for corrosion resistance treatment of key alloy parts of mining equipment |
CN117551950A (en) * | 2024-01-11 | 2024-02-13 | 中北大学 | Al-Cu-Mg-Ag alloy with excellent long-term thermal stability and heat treatment process thereof |
CN117551950B (en) * | 2024-01-11 | 2024-04-09 | 中北大学 | Al-Cu-Mg-Ag alloy with excellent long-term thermal stability and heat treatment process thereof |
CN118186320A (en) * | 2024-04-15 | 2024-06-14 | 北京航空航天大学宁波创新研究院 | Preparation method of high-strength high-plasticity additive manufacturing aluminum alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013220472A (en) | Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT | |
JP6057363B1 (en) | Method for producing Ni-base superalloy | |
JP6420553B2 (en) | Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member | |
JP6540179B2 (en) | Hot-worked titanium alloy bar and method of manufacturing the same | |
JP5652730B1 (en) | Ni-base superalloy and manufacturing method thereof | |
JP2017155251A (en) | Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor | |
EP3009525A1 (en) | Aluminium alloy forging and method for producing the same | |
JP5298368B2 (en) | Titanium alloy plate with high strength and excellent formability and manufacturing method thereof | |
CN111868287A (en) | Method for producing Ni-based superalloy and Ni-based superalloy | |
JP2015124409A (en) | Aluminum alloy wire material, production method of it, and aluminum alloy member | |
US9347558B2 (en) | Wrought and cast aluminum alloy with improved resistance to mechanical property degradation | |
EP3012337B1 (en) | Hot-forged ti-al-based alloy and method for producing same | |
JP7223121B2 (en) | High-strength fastener material by forged titanium alloy and its manufacturing method | |
JP6120200B2 (en) | Ni-base superalloy and turbine disk using the same | |
CN107614718A (en) | High-strength aluminum alloy hot forging material | |
JP5605232B2 (en) | Hot rolling method of α + β type titanium alloy | |
JP2009068098A (en) | Titanium alloy sheet having high strength and superior formability, and manufacturing method therefor | |
KR20210119507A (en) | bar | |
JP5088876B2 (en) | Titanium alloy plate with high strength and excellent formability and manufacturing method thereof | |
JP6642843B2 (en) | Manufacturing method of Ni-base super heat-resistant alloy | |
JP6185347B2 (en) | Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy | |
JP6536317B2 (en) | α + β-type titanium alloy sheet and method of manufacturing the same | |
JP2018111864A (en) | Aluminum alloy forging material | |
JP2024518681A (en) | Materials for manufacturing high strength fasteners and methods for manufacturing same | |
JP5929251B2 (en) | Iron alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161018 |