JP2017037960A - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP2017037960A JP2017037960A JP2015158313A JP2015158313A JP2017037960A JP 2017037960 A JP2017037960 A JP 2017037960A JP 2015158313 A JP2015158313 A JP 2015158313A JP 2015158313 A JP2015158313 A JP 2015158313A JP 2017037960 A JP2017037960 A JP 2017037960A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- layer
- insulating layer
- substrate
- dielectric constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
【課題】 電圧負荷変動に対して高速に応答しつつ、かつ電圧変換効率の低下を抑止することが可能な半導体装置を提供すること。
【解決手段】 半導体素子31と、主面11を有し、かつ半導体材料からなる基板1と、半導体素子31に導通し、かつ基板1に形成された導電層20と、半導体素子31を覆う封止樹脂4と、を備え、基板1には、主面11から窪む凹部14が形成され、凹部14は、半導体素子31を搭載する底面141と、主面11および底面141につながり、かつ底面141に対して傾斜している連絡面142と、を有し、基板1と導電層20との間に低誘電率絶縁層16が形成されている。
【選択図】 図2
【解決手段】 半導体素子31と、主面11を有し、かつ半導体材料からなる基板1と、半導体素子31に導通し、かつ基板1に形成された導電層20と、半導体素子31を覆う封止樹脂4と、を備え、基板1には、主面11から窪む凹部14が形成され、凹部14は、半導体素子31を搭載する底面141と、主面11および底面141につながり、かつ底面141に対して傾斜している連絡面142と、を有し、基板1と導電層20との間に低誘電率絶縁層16が形成されている。
【選択図】 図2
Description
本発明は、微細加工されたシリコン基板に各種半導体素子を搭載した半導体装置のうち、特にDC−DCコンバータのモジュールに搭載される半導体装置に関する。
近年、LSI製造技術を応用することで、シリコン基板を微細加工し、該シリコン基板に各種半導体素子を搭載した、いわゆるマイクロマシン(MEMS:Micro Electro Mechanical Systems)が普及しつつある。前記マイクロマシンの製造にあたっては、シリコン基板の微細加工手法として異方性エッチングが用いられている。前記異方性エッチングにより、シリコン基板に微細な凹部を精度良く形成することができ、該凹部内に各種半導体素子が搭載される。
たとえば特許文献1に、DC−DCコンバータのモジュールに搭載される半導体装置の一例が開示されている。該半導体装置は、リードフレームに半導体素子が搭載されたものであり、前記半導体装置内の寄生インダクタンスを減少させるために、端子と半導体素子との間のワイヤ長を短く設定している。前記寄生インダクタンスを減少させることで、特に高周波回路を構成する前記モジュールにおいて、電圧負荷変動に対して高速に応答しつつ、前記半導体装置の電圧変換効率の低下を抑止することができる。
ここで、DC−DCコンバータのモジュールに搭載される半導体装置を、前記マイクロマシンによるものとした場合、端子と半導体素子との導電経路はワイヤではなく、シリコン基板に形成されたCuなどの導電層が一般的である。シリコン基板は半導体材料であることから、シリコン基板と導電層との間にSiO2などの絶縁層が形成される。平面視における前記シリコン基板に対する前記導電層の面積の割合が比較的高い場合、前記絶縁層が誘電体となることで、前記絶縁層の寄生容量が増加する。特に高周波回路を構成するDC−DCコンバータのモジュールにおいて、前記寄生容量が増加すると前記モジュールにあわせて搭載されるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などへのスイッチング損失が増大する。前記スイッチング損失が増大すると、Dc−DCコンバータの電圧負荷変動に対する応答に遅延が生じ、電圧変換効率の低下が懸念される。前記マイクロマシンの微細化の進展や、DC−DCコンバータへの供給電流がより大きくなると、前記寄生容量がより増加する傾向となるため、電圧変換効率の低下の懸念がより増大する。
本発明は上記事情に鑑み、電圧負荷変動に対して高速に応答しつつ、かつ電圧変換効率の低下を抑止することが可能な半導体装置を提供することをその課題とする。
本発明によって提供される半導体装置は、半導体素子と、主面を有し、かつ半導体材料からなる基板と、前記半導体素子に導通し、かつ前記基板に形成された導電層と、前記半導体素子を覆う封止樹脂と、を備える半導体装置であって、前記基板には、前記主面から窪む凹部が形成され、前記凹部は、前記半導体素子を搭載する底面と、前記主面および前記底面につながり、かつ前記底面に対して傾斜している連絡面と、を有し、前記基板と前記導電層との間に低誘電率絶縁層が形成されていることを特徴としている。
本発明の実施の形態において好ましくは、前記低誘電率絶縁層の比誘電率は、2.0〜3.5である。
本発明の実施の形態において好ましくは、前記低誘電率絶縁層の厚さは、3〜20μmである。
本発明の実施の形態において好ましくは、前記低誘電率絶縁層は、無機化合物からなる。
本発明の実施の形態において好ましくは、前記低誘電率絶縁層は、SiOCからなる。
本発明の実施の形態において好ましくは、前記低誘電率絶縁層は、CVD法により形成される。
本発明の実施の形態において好ましくは、前記低誘電率絶縁層は、有機化合物からなる。
本発明の実施の形態において好ましくは、前記低伝導率絶縁層は、ポリイミド樹脂からなる。
本発明の実施の形態において好ましくは、前記低誘電率絶縁層は、塗布により形成される。
本発明の実施の形態において好ましくは、前記導電層は、互いに積層されたシード層およびめっき層を有し、前記シード層は、前記基板と前記めっき層との間に介在している。
本発明の実施の形態において好ましくは、前記めっき層の厚さは、前記シード層の厚さよりも厚い。
本発明の実施の形態において好ましくは、前記シード層および前記めっき層は、ともにCuからなる。
本発明の実施の形態において好ましくは、前記シード層は、スパッタリング法により形成される。
本発明の実施の形態において好ましくは、前記導電層は、前記主面に形成された主面導電部と、前記連絡面に形成された連絡面導電部と、前記底面に形成された底面導電部と、を含み、前記底面導電部に前記半導体素子が搭載されている。
本発明の実施の形態において好ましくは、前記主面導電部に導通し、かつ前記封止樹脂から露出している柱状部を有する複数の端子をさらに備える。
本発明の実施の形態において好ましくは、前記柱状部は、Cuからなる。
本発明の実施の形態において好ましくは、前記柱状部は、電解めっきにより形成される。
本発明の実施の形態において好ましくは、前記複数の端子は、前記封止樹脂から露出している前記柱状部の部位に形成されたパッド部をさらに有する。
本発明の実施の形態において好ましくは、前記底面は、前記基板の厚さ方向に対して直交し、かつ前記底面の平面視形状は矩形状である。
本発明の実施の形態において好ましくは、前記連絡面は、前記底面の四辺に沿って形成された複数面からなり、複数の前記連絡面の前記底面に対する傾斜角はいずれも同一である。
本発明の実施の形態において好ましくは、前記連絡面は、前記主面につながる第1連絡面と、前記底面につながる第2連絡面と、前記第1連絡面および前記第2連絡面につながる中間面と、を有する。
本発明の実施の形態において好ましくは、前記第1連絡面および前記第2連絡面は、それぞれ前記底面の四辺に沿って形成された複数面からなり、複数の前記第1連絡面および複数の前記第2連絡面の前記底面に対する傾斜角はいずれも同一である。
本発明の実施の形態において好ましくは、前記中間面は、前記基板の厚さ方向に対して直交し、かつ前記中間面の平面視形状は枠状である。
本発明の実施の形態において好ましくは、前記中間面に搭載されたインダクタをさらに備える。
本発明の実施の形態において好ましくは、前記半導体材料は、単結晶材料である。
本発明の実施の形態において好ましくは、前記半導体材料は、Siである。
本発明の実施の形態において好ましくは、前記主面は、(100)面である。
本発明の実施の形態において好ましくは、前記凹部は、異方性エッチングにより形成される。
本発明の実施の形態において好ましくは、前記主面、前記底面および前記連絡面に形成された絶縁層をさらに備え、前記絶縁層は前記基板と前記低誘電率絶縁層との間に介在している。
本発明の実施の形態において好ましくは、前記絶縁層の厚さは、1〜2μmである。
本発明の実施の形態において好ましくは、前記絶縁層は、SiO2からなる。
本発明の実施の形態において好ましくは、前記絶縁層は、熱酸化法により形成される。
本発明の実施の形態において好ましくは、前記導電層は、バリア層をさらに有し、前記バリア層に前記低誘電率絶縁層が接している。
本発明の実施の形態において好ましくは、前記バリア層は、Tiからなる。
本発明の実施の形態において好ましくは、前記バリア層は、スパッタリング法により形成される。
本発明によれば、前記基板において前記絶縁層と前記導電層との間に前記低誘電率絶縁層が形成されている。また、前記低誘電率絶縁層の比誘電率は、前記絶縁層の比誘電率よりも低く設定されている。このような構成をとることで、平面視における単位面積当たりの前記絶縁層の寄生容量が減少する。前記寄生容量の減少により、DC−DCコンバータのモジュールのうち、特に高周波回路を構成する前記半導体装置に起因した、MOSFETなどへのスイッチング損失が低減する。したがって、電圧負荷変動に対して高速に応答しつつ、電圧変換効率の低下を抑止することが可能となる。
本発明のその他の特徴および利点は、添付図面に基づき以下に行う詳細な説明によって、より明らかとなろう。
本発明にかかる半導体装置の実施の形態について、添付図面に基づいて説明する。
〔第1実施形態〕
図1〜図5に基づき、本発明の第1実施形態にかかる半導体装置A10について説明する。説明の便宜上、平面図の縦方向を第1方向Xと、第1方向Xに対して直角である平面図の横方向を第2方向Yとそれぞれ定義する。第1方向Xおよび第2方向Yは、ともに半導体装置A10(または後述する基板1)の厚さ方向Zに対して直角である。
図1〜図5に基づき、本発明の第1実施形態にかかる半導体装置A10について説明する。説明の便宜上、平面図の縦方向を第1方向Xと、第1方向Xに対して直角である平面図の横方向を第2方向Yとそれぞれ定義する。第1方向Xおよび第2方向Yは、ともに半導体装置A10(または後述する基板1)の厚さ方向Zに対して直角である。
図1は、半導体装置A10を示す要部平面図である。図2は、図1のII−II線(一点鎖線)に沿う断面図である。図3は、図1のIII−III線に沿う断面図である。図4は、図1のIV−IV線に沿う断面図である。図5は、図2の部分拡大図である。図1は、理解の便宜上、後述する絶縁層15、低誘電率絶縁層16および封止樹脂4を省略している。
本実施形態の半導体装置A10は、基板1、絶縁層15、低誘電率絶縁層16、導電層20、複数の端子24、半導体素子31、接合層32および封止樹脂4を備えている。また、本実施形態においては、半導体素子31は、MOSFETなどを作動させるためのゲートドライバなどの回路が形成された集積回路(IC)であり、半導体装置A10は、DC−DCコンバータのモジュールに搭載される装置である。半導体装置A10は、前記モジュールの回路基板に表面実装される形式のものである。なお、本実施形態においては、半導体装置A10は平面視矩形状である。
基板1は、半導体素子31を搭載し、半導体装置A10の基礎となる部材である。基板1は、単結晶材料である半導体材料からなり、本実施形態においては、Siの単結晶材料である。図1に示すように、基板1は、平面視矩形状である。基板1は、主面11、裏面12、側面13および凹部14を有する。
主面11は、図2および図3に示す基板1の上面である。主面11に複数の端子24が形成されているため、主面11は半導体装置A10を前記モジュールの回路基板に実装する際に利用される面である。裏面12は、図2および図3に示す基板1の下面である。半導体装置A10が実装された際、裏面12は上方を向く。図2および図3に示すように、主面11および裏面12は、ともに基板1の厚さ方向Zに対して直交している。主面11および裏面12は、基板1の厚さ方向Zにおいて互いに反対側を向いている。主面11および裏面12は、ともに平たんである。本実施形態においては、主面11は(100)面である。また、本実施形態においては、基板1には、主面11から窪む凹部14が形成されている。凹部14が形成されていることにより、図1に示すように平面視において主面11は、凹部14を囲む枠状となっている。
図2および図3に示すように、側面13は、主面11と裏面12との間に挟まれた、第1方向X、または第2方向Yの外側を向く4つの面である。本実施形態においては、複数の側面13は、いずれも主面11および裏面12に直交している。また、複数の側面13は、いずれも平たんである。
図1〜図3に示すように、基板1には、主面11から窪む凹部14が形成されている。凹部14は、基板1の厚さ方向Zにおいて基板1を貫通していない。凹部14は、底面141および連絡面142を有する。本実施形態においては、凹部14は平面視矩形状である。底面141は、半導体素子31が搭載される面である。底面141は、基板1の厚さ方向Zに対して直交し、かつ底面141の平面視形状は矩形状である。底面141は平たんである。
図1〜図3に示すように、連絡面142は、主面11および底面141につながる面である。基板1の厚さ方向Zにおいて、図2および図3に示す連絡面142の上端が主面11につながり、図2および図3に示す連絡面142の下端が底面141につながっている。連絡面142は、底面141に対して傾斜している。本実施形態においては、連絡面142は4つの複数面からなり、複数の連絡面142が底面141の四辺に沿って形成されている。ここで、本実施形態においては、主面11を(100)面としているため、複数の連絡面142はいずれも(111)面からなる。したがって、複数の連絡面142の底面141に対するそれぞれの傾斜角はいずれも同一であり、その角度は54.74°である。なお、本実施形態においては、凹部14は異方性エッチングにより形成される。
絶縁層15は、図2〜図5に示すように基板1の主面11、底面141および連絡面142の全体を覆うように形成された、電気絶縁性を有する被膜である。本実施形態においては、絶縁層15はSiO2からなり、絶縁層15の厚さは1〜2μmである。基板1は半導体材料であるとともに、図1に示すように導電層20は基板1に形成されることから、基板1において導電層20が形成される部位は電気絶縁性を確保する必要がある。なお、本実施形態においては、絶縁層15は熱酸化法により形成される。
低誘電率絶縁層16は、基板1と導電層20との間に形成された、絶縁層15よりも比誘電率が低い、いわゆるLow−K材料からなる被膜である。図2〜図5に示すように、低誘電率絶縁層16は絶縁層15の全体を覆い、かつ絶縁層15に接している。したがって、絶縁層15は基板1と低誘電率絶縁層16との間に介在している。本実施形態においては、低誘電率絶縁層16の比誘電率は2.0〜3.5であり、絶縁層15の比誘電率よりも低い。また、本実施形態においては、低誘電率絶縁層16の厚さは3〜20μmである。低誘電率絶縁層16は、無機化合物、または有機化合物からなる。低誘電率絶縁層16が無機化合物からなる場合、たとえばSiOC(シリコンオキシカーバイド)が挙げられ、この場合、低誘電率絶縁層16はCVD法により形成される。また、低誘電率絶縁層16が有機化合物からなる場合、たとえばポリイミド樹脂が挙げられ、この場合、低誘電率絶縁層16は塗布により形成される。
導電層20は、複数の端子24とともに半導体装置A10と前記モジュールの回路基板との導電経路を構成する部材である。図1に示すように、導電層20は、基板1の主面11、底面141および連絡面142に形成されている。また、図2、図3および図5に示すように、導電層20は接合層32を介して半導体素子31に導通している。本実施形態においては、複数の連絡面142のうち、導電層20が形成されている面は第1方向Xに離間した一対の連絡面142であり、第2方向Yに離間した一対の連絡面142には導電層20が形成されていない。
図2〜図5に示すように、導電層20は低誘電率絶縁層16に接して形成され、バリア層201、シード層202およびめっき層203を有する。図5に示すように、バリア層201に低誘電率絶縁層16が接している。本実施形態においては、バリア層201はTiからなる。シード層202はバリア層201に接している。また、めっき層203はシード層202に接している。本実施形態においては、シード層202およびめっき層203は、ともにCuからなる。バリア層201、シード層202およびめっき層203は互いに積層され、シード層202はバリア層201とめっき層203との間、すなわち基板1とめっき層203との間に介在している。シード層202およびめっき層203がCuであることから、バリア層201は絶縁層15および低誘電率絶縁層16へのCu拡散防止のために形成される。本実施形態においては、バリア層201の厚さは10〜30nmである。シード層202は、めっき層203の円滑な形成を図る目的で形成される。本実施形態においては、シード層202の厚さは200〜300nmである。また、本実施形態においては、めっき層203の厚さは3〜10μmであり、シード層202の厚さよりも厚い。なお、本実施形態においては、バリア層201およびシード層202は、ともにスパッタリング法により形成される。また、めっき層203は、電解めっきにより形成される。
導電層20は、主面導電部21、連絡面導電部22および底面導電部23を含む。
図1に示すように、主面導電部21は、主面11に形成された平面視帯状の部位である。本実施形態においては、主面導電部21は、第2方向Yに沿った主面11と連絡面142との交線において連絡面導電部22につながり、該交線から第1方向Xに沿って延出している。そして、主面導電部21は直角に屈曲した後、第2方向Yに沿って延出し、複数の端子24につながっている。
図1に示すように、連絡面導電部22は、第1方向Xに離間した一対の連絡面142に形成された平面視矩形状の部位である。本実施形態においては、連絡面導電部22は、第1方向Xに平行となるように形成されている。また、基板1の厚さ方向Zにおいて、連絡面導電部22の図2に示す上端が主面導電部21につながり、連絡面導電部22の図2に示す下端が底面導電部23につながっている。
図1に示すように、底面導電部23は、底面141に形成された平面視矩形状の部位である。本実施形態においては、底面導電部23は、第2方向Yに沿った底面141と連絡面142との交線において連絡面導電部22につながり、該交線から底面141の内側に向かって延出している。図2および図3に示すように、底面導電部23に半導体素子31が搭載されている。
複数の端子24は、半導体装置A10を前記モジュールの回路基板に実装するために用いられる部材である。複数の端子24は、いずれも主面導電部21につながっている。複数の端子24は、導電層20および接合層32を介して半導体素子31に導通している。本実施形態においては、複数の端子24はそれぞれ、柱状部241およびパッド部242を有する。
図1、図2および図4に示すように、柱状部241は、主面導電部21に導通する部位である。基板1の厚さ方向Zにおいて、柱状部241の下端が主面導電部21につながり、上端が封止樹脂4から露出している。本実施形態においては、柱状部241の形状は円柱であり、かつ柱状部241はたとえばCuからなる。なお、本実施形態においては、柱状部241は電解めっきにより形成される。
図1〜図4に示すように、パッド部242は、封止樹脂4から露出している柱状部241の上端に形成された、平面視矩形状の部位である。パッド部242は、柱状部241の上端の全体に接している。また、パッド部242は、平面視において主面導電部21および封止樹脂4のそれぞれの一部ずつと重なっている。本実施形態においては、パッド部242は、たとえば互いに積層されたNi層、Pd層およびAu層からなる。なお、本実施形態においては、パッド部242は無電解めっきにより形成される。
なお、図1に示す導電層20および複数の端子24の配置形態は一例であり、実際の半導体装置A10における導電層20および複数の端子24の配置形態は、これに限定されない。
図1、図2および図3に示すように、半導体素子31は、底面141に形成された底面導電部23に接合層32を介して搭載されている。本実施形態においては、半導体素子31は、たとえばMOSFETなどを作動させるためのゲートドライバなどの回路が形成された集積回路である。また、接合層32は、半導体素子31を底面導電部23に固着によって搭載し、かつ半導体素子31と底面導電部23との導通を確保するものである。接合層32は、図5に示す半導体素子31の下面に配置された素子端子(図示略)を覆って形成されたはんだバンプからなり、半導体素子31はFCB(Flip Chip Bonding)により底面導電部23に搭載されている。
封止樹脂4は、たとえば電気絶縁性を有する黒色のエポキシ樹脂からなる。図2、図3および図4に示すように、封止樹脂4は凹部14内に充填され、かつ平面視において柱状部241が形成された部位を除いた主面11を覆っている。半導体素子31は、封止樹脂4に覆われている。本実施形態においては、封止樹脂4は、樹脂主面41および樹脂側面43を有する。樹脂主面41および樹脂側面43は、半導体装置A10においていずれも露出した面である。
図2、図3および図4に示すように、樹脂主面41は主面11と同方向を向く面である。樹脂主面41は平たんである。樹脂主面41は、複数の柱状部241の図2および図4に示すそれぞれの上端と面一である。また、樹脂側面43は、樹脂主面41と低誘電率絶縁層16との間に挟まれた、第1方向X、または第2方向Yの外側を向く4つの面である。複数の樹脂側面43は、いずれも平たんである。本実施形態においては、複数の樹脂側面43はそれぞれ、基板1の側面13と面一である。
次に、図6〜図27に基づき、半導体装置A10の製造方法の一例について説明する。図6〜図9および図11〜図26は、半導体装置A10の製造方法にかかる工程を示す断面図である。該断面は、図2に示す断面と同一である。図10は、図9に示す工程を経たときの後述する基板81の状態を示す斜視図である。図27は、半導体装置A10の製造方法にかかる工程を示す平面図である。
最初に、図6に示すように基板81を用意する。基板81は、半導体装置A10の基板1の集合体である。基板81は、単結晶材料である半導体材料からなり、本実施形態においてはSiの単結晶である。基板81は、主面811、裏面812およびマスク層881を有する。主面811は、図6の上方を向く面である。裏面812は、図6の下方を向く面である。主面811および裏面812は、基板81の厚さ方向Zにおいて互いに反対側を向いている。主面811および裏面812は、ともに平たんである。本実施形態においては、主面811は(100)面である。マスク層881は、主面811に形成された、たとえばSi3N4からなる層である。マスク層881は、プラズマCVD法により形成される。
次いで、図7に示すように、マスク層881に対してフォトリソグラフィによりパターニングを行った後、ドライエッチングの代表例である反応性イオンエッチング(RIE:Reactive Ion Etching)により、マスク層881を部分的に除去する。このとき、マスク層881がSi3N4からなる層であれば、たとえばCF4をエッチングガスとする。これにより、マスク層881には、第1方向Xおよび第2方向Yのそれぞれに離間した複数の開口部が形成される。前記複数の開口部は、いずれも平面視矩形状である(図示略)。なお、図7は、ある一つの前記開口部の断面を示している。
次いで、図8に示すように、主面811から窪むように、基板81に凹部814を形成する。凹部814が、半導体装置A10の凹部14に相当する。凹部814は、平面視矩形状の底面814aと、主面811および底面814aにつながる連絡面814bとを有する。本実施形態においては、連絡面814bは、底面814aの四辺に沿って形成された4つの複数面で、複数の連絡面814bのそれぞれの下端は、底面814aにつながっている。また、複数の連絡面814bのそれぞれの上端は、主面811につながっている。凹部814は、アルカリ溶液を用いた異方性エッチングにより形成される。前記アルカリ溶液は、たとえばKOH(水酸化カリウム)溶液、またはTMAH(水酸化テトラメチルアンモニウム)溶液である。本実施形態においては、主面811を(100)面としているため、複数の連絡面814bはいずれも(111)面からなる。該工程により、マスク層881に形成された前記複数の開口部のそれぞれにおいて、凹部814が形成される。
次いで、図9に示すように、マスク層881がSi3N4からなる層であれば、たとえばCF4をエッチングガスとした反応性イオンエッチング、または加熱リン酸溶液を用いたウェットエッチングにより、主面811に形成されたマスク層881を全て除去する。図10は、マスク層881を全て除去したときの基板81の状態を斜視図として示したものである。図10に示すように、第1方向Xおよび第2方向Yのそれぞれに離間した複数の凹部814が、基板81の主面811が窪むように形成される。参考に、基板81における半導体装置A10の基板1に相当する範囲を、図10に想像線(二点鎖線)で示す。
次いで、図11に示すように、基板81に絶縁層815を形成する。絶縁層815が、半導体装置A10の絶縁層15に相当する。本実施形態においては、絶縁層815はSiO2からなり、その厚さは1〜2μmである。絶縁層815は、主面811に加え、凹部814を構成する底面814aおよび連絡面814bを熱酸化法により酸化させることで形成される。
次いで、図12に示すように、基板81に形成された絶縁層815の全体を覆うように、低誘電率絶縁層816を形成する。低誘電率絶縁層816が、半導体装置A10の低誘電率絶縁層16に相当する。低誘電率絶縁層816の比誘電率は2.0〜3.5であり、その厚さは3〜20μmである。低誘電率絶縁層816が無機化合物のSiOCからなる場合、低誘電率絶縁層816はCVD法により形成される。また、低誘電率絶縁層816が有機化合物のポリイミド樹脂からなる場合、低誘電率絶縁層816は塗布により形成される。
次いで、凹部814を含む基板81に導電層82を形成する。導電層82を形成する工程では、バリア層821およびシード層822を形成する工程と、めっき層823を形成する工程とを含む。
まず、図13に示すように、基板81にバリア層821およびシード層822をそれぞれ形成する。バリア層821およびシード層822の形成範囲は、絶縁層815、または低誘電率絶縁層816の形成範囲と同一である。先に、低誘電率絶縁層816に接するバリア層821を形成し、その後、バリア層821に接するシード層822を形成する。バリア層821およびシード層822は、ともにスパッタリング法により形成される。本実施形態においては、バリア層821はTiからなり、その厚さは10〜30nmである。また、本実施形態においては、シード層822はCuからなり、その厚さは200〜300nmである。
次いで、基板81にフォトリソグラフィによって導電層82を形成するためのパターニングを行う。図14に示すように、基板81に第1レジスト層882を形成する。第1レジスト層882の形成範囲は、絶縁層815、または低誘電率絶縁層816の形成範囲と同一である。第1レジスト層882は、レジストをたとえばスプレー塗布することにより形成される。本実施形態においては、前記レジストはポジ型レジストである。
次いで、図15に示すように、基板81に形成された第1レジスト層882に対して、露光・現像を行う。第1レジスト層882はポジ型レジストからなるため、露光された第1レジスト層882の部分が現像に用いられる現像液によって除去される。該工程により、複数の凹部814を含む基板81へのパターニングが完了する。
次いで、図16に示すように、基板81にめっき層823を形成する。めっき層823は、第1レジスト層882が現像により除去された部分、すなわちシード層822が露出した部分に形成される。めっき層823は、電解めっきにより形成される。本実施形態においては、めっき層823はCuからなり、その厚さは3〜10μmである。該工程により、導電層82の形成が完了する。
次いで、図17に示すように、基板81に形成された第1レジスト層882を全て除去する。
次いで、図18に示すように、基板81に第2レジスト層883を形成する。本実施形態においては、第2レジスト層883の形成範囲、材質および形成方法は、第1レジスト層882と同一である。ただし、第2レジスト層883の厚さは、後述する柱状導電体824の形成高さに整合するよう、第1レジスト層882よりも厚く設定する必要がある。
次いで、図19に示すように、基板81に形成された第2レジスト層883に対して、フォトリソグラフィによりパターニングを行う。このとき、第2レジスト層883に貫通孔883aが複数形成される。貫通孔883aの形状は円柱である。貫通孔883aからめっき層823が露出する。
次いで、図20に示すように、基板81に形成された導電層82に複数の柱状導電体824を形成する。柱状導電体824が、半導体装置A10の端子24の柱状部241に相当する。複数の柱状導電体824の形成にあたっては、基板81に形成されたシード層822および貫通孔883aから露出するめっき層823を活用した電解めっきにより、たとえばCuを貫通孔883a内に埋設させることで形成を行う。このとき、複数の柱状導電体824の上端はそれぞれ、第2レジスト層883の上面と面一となる。
次いで、図21に示すように、基板81に形成された第2レジスト層883を全て除去する。
次いで、図22に示すように、めっき層823に覆われていないバリア層821およびシード層822を全て除去する。バリア層821およびシード層822は、たとえばウェットエッチングにより除去される。バリア層821およびシード層822が除去された部分から低誘電率絶縁層816が露出する。このとき、めっき層823および複数の柱状導電体824についても、バリア層821およびシード層822の層厚に相当する厚さの分だけ該ウェットエッチングにより除去される。該工程を経た導電層82が、半導体装置A10の導電層20に相当する。
次いで、図23に示すように、各々の凹部14の底面814aに形成された導電層82に半導体素子831を搭載する。半導体素子831が、半導体装置A10の半導体素子31に相当する。半導体素子831の搭載にあたっては、図23に示す半導体素子831の下面に配置された素子端子(図示略)を覆って形成された複数のはんだバンプ(図示略)に、フラックス(図示略)を塗布する。そして、リフローを併用したFCBにより、半導体素子831が導電層82に固着されることで搭載を行う。このとき、前記複数のはんだバンプは、溶融・固化を経て導電性を有する接合層832となる。接合層832が、半導体装置A10の接合層32に相当する。
次いで、図24に示すように、基板81に封止樹脂84を形成する。封止樹脂84が、半導体装置A10の封止樹脂4に相当する。封止樹脂84は、基板81に形成された複数の凹部814を充填し、かつ複数の柱状導電体824および半導体素子831を完全に覆うように形成する。封止樹脂84は、たとえば電気絶縁性を有する黒色のエポキシ樹脂からなる。
次いで、図25に示すように、封止樹脂84の上部を研削し、複数の柱状導電体824の上端を封止樹脂84から露出させる。このとき、封止樹脂84の上面が樹脂主面841となり、複数の柱状導電体824の上端はそれぞれ、樹脂主面841と面一となる。
次いで、図26に示すように、複数の柱状導電体824のそれぞれの上端に、パッド層825を複数形成する。パッド層825が、半導体装置A10の端子24のパッド部242に相当する。本実施形態においては、パッド層825は、たとえば無電解めっきによりNiめっき層、Pdめっき層およびAuめっき層の順に各めっき層を積層することで形成される。
次いで、図27に示すように、基板81を第1方向Xおよび第2方向Yに配置された切断線CLに沿って切断(ダイシング)することで、半導体素子831ごとの個片に分割する。切断にあたっては、たとえばプラズマダイシングにより行う。前記個片が半導体装置A10となる。以上の工程を経ることにより、半導体装置A10が製造される。
次に、半導体装置A10の作用効果について説明する。
本実施形態によれば、図2〜図5に示すように、基板1において絶縁層15と導電層20との間に低誘電率絶縁層16が形成されている。また、低誘電率絶縁層16の比誘電率は、絶縁層15の比誘電率よりも低く設定されている。このような構成をとることで、平面視における単位面積当たりの絶縁層15の寄生容量が減少する。前記寄生容量の減少により、DC−DCコンバータのモジュールのうち、特に高周波回路を構成する半導体装置A10に起因した、MOSFETなどへのスイッチング損失が低減する。したがって、電圧負荷変動に対して高速に応答しつつ、電圧変換効率の低下を抑止することが可能となる。
半導体装置A10の微細化を追求すると、平面視において基板1に対する導電層20の面積の割合が高くなり、絶縁層15の寄生容量が増加する傾向となる。このような場合において本実施形態による構成をとることで、前記寄生容量の増加を効率的に抑止することができ、半導体装置A10の微細化と電圧変換効率の低下抑止の双方の効果が得られる。
また、本実施形態によれば、図2、図3および図4に示すように、柱状部241を有した端子24を形成することで、基板1の主面11に対して封止樹脂4が突出した形態となっている。ここで、凹部14は、半導体装置A10の製造などの都合上、その深さなどが制限されやすく、条件によっては凹部14内に搭載される半導体素子31が主面11から突出することがある。このような場合であっても、半導体素子31の設計変更を行わなくとも半導体素子31を封止樹脂4によって完全に覆い、半導体装置A10のパッケージを適切に行うことができる。
〔第2実施形態〕
図28〜図30に基づき、本発明の第2実施形態にかかる半導体装置A20について説明する。なお、これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略することとする。
図28〜図30に基づき、本発明の第2実施形態にかかる半導体装置A20について説明する。なお、これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略することとする。
図28は、半導体装置A10を示す要部平面図である。図29は、図28のXXIX−XXIX線(一点鎖線)に沿う断面図である。図30は、図28のXXX−XXX線に沿う断面図である。図28は、理解の便宜上、絶縁層15、低誘電率絶縁層16、封止樹脂4、後述するインダクタ51およびインダクタ接合層52を省略し、インダクタ51およびインダクタ接合層52を想像線(二点鎖線)で示している。本実施形態においては、半導体装置A20は平面視矩形状である。
本実施形態の半導体装置A20は、凹部14の形状と、導電層20、半導体素子31および接合層32の配置形態とが異なる点と、さらにインダクタ51およびインダクタ接合層52を備えている点について、先述した半導体装置A10と異なる。
図28〜図30に示すように、連絡面142は、主面11につながる第1連絡面142aと、底面141につながる第2連絡面142bと、第1連絡面142aおよび第2連絡面142bにつながる中間面142cとを有する。本実施形態においては、第1連絡面142aおよび第2連絡面142bは、それぞれ底面141の四辺に沿って形成された複数面からなり、複数の第1連絡面142aおよび複数の第2連絡面142bは、底面141に対していずれも傾斜している。また、複数の第1連絡面142aおよび複数の第2連絡面142bの底面141に対する傾斜角はいずれも同一であり、その角度は54.74°である。なお、本実施形態においては、凹部14は、半導体装置A10と同様に異方性エッチングにより形成される。中間面142cは、基板1の厚さ方向Zに対して直交し、かつ中間面142cの平面視形状は枠状である。
図28に示すように、本実施形態においては、接合層32を介して導電層20に導通している半導体素子31の素子端子(図示略)の数は6つである。このうち、4つの前記素子端子は、導電層20を介して複数の端子24に導通している。また、2つの素子端子は、導電層20およびインダクタ接合層52を介してインダクタ51に導通している。底面141および第2方向Yに離間した一対の連絡面142において、半導体素子31およびインダクタ51の相互に導通する導電層20が形成されている。図28および図30に示すように、中間面142cに形成された連絡面導電部22に、インダクタ51がインダクタ接合層52を介して搭載されている。なお、図28に示す導電層20および複数の端子24の配置形態は一例であり、実際の半導体装置A20における導電層20および複数の端子24の配置形態は、これに限定されない。
インダクタ51は、図28および図30に示すように、中間面142cに搭載されている。本実施形態においては、インダクタ51はチップ化されたチョークコイルである。インダクタ51は半導体素子31と同様に、封止樹脂4により完全に覆われている。また、インダクタ接合層52は接合層32と同様に、インダクタ51を主面導電部21に固着によって搭載し、かつインダクタ51と中間面142cに形成された連絡面導電部22との導通を確保するものである。インダクタ接合層52は、図30に示すインダクタ51の下面に配置されたインダクタ端子(図示略)を覆って形成されたはんだバンプからなり、インダクタ51は半導体素子31と同様に、FCBにより中間面142cに形成された連絡面導電部22に搭載されている。
本実施形態においても、電圧負荷変動に対して高速に応答しつつ、半導体装置A20の電圧変換効率の低下を抑止することが可能となる。また、半導体装置A20はインダクタ51を備えているため、DC−DCコンバータのモジュールのコンパクト化に寄与する。このとき、平面視において基板1に対する導電層20の面積の割合が半導体装置A10よりも高くなるため、絶縁層15の寄生容量の増加に伴う半導体装置A20の電圧変換効率の低下が懸念される。ゆえに、本実施形態の構成とすることで、絶縁層15の寄生容量の増加が回避され、半導体装置A20の電圧変換効効率の低下の懸念が払拭される。
本発明にかかる半導体装置は、先述した実施の形態に限定されるものではない。本発明にかかる半導体装置の各部の具体的な構成は、種々に設計変更自在である。
A10,A20:半導体装置
1:基板
11:主面
12:裏面
13:側面
14:凹部
141:底面
142:連絡面
142a:第1連絡面
142b:第2連絡面
142c:中間面
15:絶縁層
16:低誘電率絶縁層
20:導電層
201:バリア層
202:シード層
203:めっき層
21:主面導電部
22:連絡面導電部
23:底面導電部
24:端子
241:柱状部
242:パッド部
31:半導体素子
32:接合層
4:封止樹脂
41:樹脂主面
43:樹脂側面
51:インダクタ
52:インダクタ接合層
81:基板
811:主面
812:裏面
814:凹部
814a:底面
814b:連絡面
815:絶縁層
816:低誘電率絶縁層
82:導電層
821:バリア層
822:シード層
823:めっき層
824:柱状導電体
825:パッド層
831:半導体素子
832:接合層
84:封止樹脂
841:樹脂主面
881:マスク層
882:第1レジスト層
883:第2レジスト層
883a:貫通孔
X:第1方向
Y:第2方向
Z:厚さ方向
CL:切断線
1:基板
11:主面
12:裏面
13:側面
14:凹部
141:底面
142:連絡面
142a:第1連絡面
142b:第2連絡面
142c:中間面
15:絶縁層
16:低誘電率絶縁層
20:導電層
201:バリア層
202:シード層
203:めっき層
21:主面導電部
22:連絡面導電部
23:底面導電部
24:端子
241:柱状部
242:パッド部
31:半導体素子
32:接合層
4:封止樹脂
41:樹脂主面
43:樹脂側面
51:インダクタ
52:インダクタ接合層
81:基板
811:主面
812:裏面
814:凹部
814a:底面
814b:連絡面
815:絶縁層
816:低誘電率絶縁層
82:導電層
821:バリア層
822:シード層
823:めっき層
824:柱状導電体
825:パッド層
831:半導体素子
832:接合層
84:封止樹脂
841:樹脂主面
881:マスク層
882:第1レジスト層
883:第2レジスト層
883a:貫通孔
X:第1方向
Y:第2方向
Z:厚さ方向
CL:切断線
Claims (35)
- 半導体素子と、
主面を有し、かつ半導体材料からなる基板と、
前記半導体素子に導通し、かつ前記基板に形成された導電層と、
前記半導体素子を覆う封止樹脂と、を備え、
前記基板には、前記主面から窪む凹部が形成され、
前記凹部は、前記半導体素子を搭載する底面と、前記主面および前記底面につながり、かつ前記底面に対して傾斜している連絡面と、を有し、
前記基板と前記導電層との間に低誘電率絶縁層が形成されていることを特徴とする、半導体装置。 - 前記低誘電率絶縁層の比誘電率は、2.0〜3.5である、請求項1に記載の半導体装置。
- 前記低誘電率絶縁層の厚さは、3〜20μmである、請求項1または2に記載の半導体装置。
- 前記低誘電率絶縁層は、無機化合物からなる、請求項1ないし3のいずれかに記載の半導体装置。
- 前記低誘電率絶縁層は、SiOCからなる、請求項4に記載の半導体装置。
- 前記低誘電率絶縁層は、CVD法により形成される、請求項4または5に記載の半導体装置。
- 前記低誘電率絶縁層は、有機化合物からなる、請求項1ないし3のいずれかに記載の半導体装置。
- 前記低伝導率絶縁層は、ポリイミド樹脂からなる、請求項7に記載の半導体装置。
- 前記低誘電率絶縁層は、塗布により形成される、請求項7または8に記載の半導体装置。
- 前記導電層は、互いに積層されたシード層およびめっき層を有し、前記シード層は、前記基板と前記めっき層との間に介在している、請求項1ないし9のいずれかに記載の半導体装置。
- 前記めっき層の厚さは、前記シード層の厚さよりも厚い、請求項10に記載の半導体装置。
- 前記シード層および前記めっき層は、ともにCuからなる、請求項11に記載の半導体装置。
- 前記シード層は、スパッタリング法により形成される、請求項10ないし12のいずれかに記載の半導体装置。
- 前記導電層は、前記主面に形成された主面導電部と、前記連絡面に形成された連絡面導電部と、前記底面に形成された底面導電部と、を含み、前記底面導電部に前記半導体素子が搭載されている、請求項1ないし13のいずれかに記載の半導体装置。
- 前記主面導電部に導通し、かつ前記封止樹脂から露出している柱状部を有する複数の端子をさらに備える、請求項14に記載の半導体装置。
- 前記柱状部は、Cuからなる、請求項15に記載の半導体装置。
- 前記柱状部は、電解めっきにより形成される、請求項15または16に記載の半導体装置。
- 前記複数の端子は、前記封止樹脂から露出している前記柱状部の部位に形成されたパッド部をさらに有する、請求項15ないし17のいずれかに記載の半導体装置。
- 前記底面は、前記基板の厚さ方向に対して直交し、かつ前記底面の平面視形状は矩形状である、請求項1ないし18のいずれかに記載の半導体装置。
- 前記連絡面は、前記底面の四辺に沿って形成された複数面からなり、複数の前記連絡面の前記底面に対する傾斜角はいずれも同一である、請求項19に記載の半導体装置。
- 前記連絡面は、前記主面につながる第1連絡面と、前記底面につながる第2連絡面と、前記第1連絡面および前記第2連絡面につながる中間面と、を有する、請求項19に記載の半導体装置。
- 前記第1連絡面および前記第2連絡面は、それぞれ前記底面の四辺に沿って形成された複数面からなり、複数の前記第1連絡面および複数の前記第2連絡面の前記底面に対する傾斜角はいずれも同一である、請求項21に記載の半導体装置。
- 前記中間面は、前記基板の厚さ方向に対して直交し、かつ前記中間面の平面視形状は枠状である、請求項21または22に記載の半導体装置。
- 前記中間面に搭載されたインダクタをさらに備える、請求項21ないし23に記載の半導体装置。
- 前記半導体材料は、単結晶材料である、請求項1ないし24のいずれかに記載の半導体装置。
- 前記半導体材料は、Siである、請求項25に記載の半導体装置。
- 前記主面は、(100)面である、請求項26に記載の半導体装置。
- 前記凹部は、異方性エッチングにより形成される、請求項26または27に記載の半導体装置。
- 前記主面、前記底面および前記連絡面に形成された絶縁層をさらに備え、前記絶縁層は前記基板と前記低誘電率絶縁層との間に介在している、請求項1ないし28のいずれかに記載の半導体装置。
- 前記絶縁層の厚さは、1〜2μmである、請求項29に記載の半導体装置。
- 前記絶縁層は、SiO2からなる、請求項29または30に記載の半導体装置。
- 前記絶縁層は、熱酸化法により形成される、請求項31に記載の半導体装置。
- 前記導電層は、バリア層をさらに有し、前記バリア層に前記低誘電率絶縁層が接している、請求項29ないし32のいずれかに記載の半導体装置。
- 前記バリア層は、Tiからなる、請求項33に記載の半導体装置。
- 前記バリア層は、スパッタリング法により形成される、請求項33または34に記載の半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015158313A JP2017037960A (ja) | 2015-08-10 | 2015-08-10 | 半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015158313A JP2017037960A (ja) | 2015-08-10 | 2015-08-10 | 半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017037960A true JP2017037960A (ja) | 2017-02-16 |
Family
ID=58047448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015158313A Pending JP2017037960A (ja) | 2015-08-10 | 2015-08-10 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017037960A (ja) |
-
2015
- 2015-08-10 JP JP2015158313A patent/JP2017037960A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9455219B2 (en) | Wiring substrate and method of manufacturing the same | |
JP4979213B2 (ja) | 回路基板、回路基板の製造方法および回路装置 | |
JP6606331B2 (ja) | 電子装置 | |
US20080150109A1 (en) | Electronic component | |
JP2011501410A (ja) | 頑健な多層配線要素および埋設された超小型電子素子とのアセンブリ | |
JP2017152646A (ja) | 電子部品、電子装置及び電子機器 | |
KR102468796B1 (ko) | 인쇄 회로 기판 및 이를 포함하는 반도체 패키지 | |
JP2001244360A (ja) | 半導体装置及びその製造方法、回路基板並びに電子機器 | |
US10410944B2 (en) | Semiconductor device | |
JP2020136507A (ja) | 半導体装置および半導体装置の製造方法 | |
US10985083B2 (en) | Semiconductor device and method for manufacturing the same | |
JP4844391B2 (ja) | 半導体装置並びに配線基板及びその製造方法 | |
JP2017036966A (ja) | 半導体装置 | |
CN105702658A (zh) | 半导体封装件及其制法 | |
JP7201296B2 (ja) | 半導体装置およびその製造方法 | |
TWI591780B (zh) | 使用微影圖案化聚合物基板之無載體矽中介層 | |
JP6533066B2 (ja) | 電子装置 | |
JP4844392B2 (ja) | 半導体装置及び配線基板 | |
TW201203510A (en) | Semiconductor device | |
JP7230462B2 (ja) | 半導体装置およびその製造方法 | |
JP2017037960A (ja) | 半導体装置 | |
JP6580889B2 (ja) | 半導体装置 | |
JP7252386B2 (ja) | 半導体装置および半導体装置の製造方法 | |
JP6571446B2 (ja) | 半導体装置 | |
JP2008227161A (ja) | 半導体装置 |