Nothing Special   »   [go: up one dir, main page]

JP2016077954A - Biological nitrogen removal method - Google Patents

Biological nitrogen removal method Download PDF

Info

Publication number
JP2016077954A
JP2016077954A JP2014210504A JP2014210504A JP2016077954A JP 2016077954 A JP2016077954 A JP 2016077954A JP 2014210504 A JP2014210504 A JP 2014210504A JP 2014210504 A JP2014210504 A JP 2014210504A JP 2016077954 A JP2016077954 A JP 2016077954A
Authority
JP
Japan
Prior art keywords
nitrogen
ammonia
concentration
tank
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014210504A
Other languages
Japanese (ja)
Inventor
文武 西村
Fumitake Nishimura
文武 西村
聡 岡部
Satoshi Okabe
岡部  聡
真佐美 松田
Masami Matsuda
真佐美 松田
俊介 新井
Shunsuke Arai
俊介 新井
正義 今西
Masayoshi Imanishi
正義 今西
伸幸 兼森
Nobuyuki Kanemori
伸幸 兼森
馬目 章
Akira Manome
章 馬目
彰宏 國元
Akihiro Kunimoto
彰宏 國元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Eco Tech Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014210504A priority Critical patent/JP2016077954A/en
Publication of JP2016077954A publication Critical patent/JP2016077954A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological nitrogen removal method where, in the case the inhibitory substance of anaerobic ammonia oxidation reaction caused by anammox bacteria is contained in ammonia nitrogen-containing waste water, only by removing the inhibitory substance by a simple method, denitrification is performed more stably, using anammox bacteria.SOLUTION: Provided is a biological nitrogen removal method where ammonia nitrogen-containing waste water including a substance checking anaerobic ammonia oxidation reaction caused by anammox bacteria is treated, in which, in a nitritation step where the ammonia nitrogen-containing waste water is contacted with ammonia oxide bacteria to oxidize a part of the ammonia nitride into nitrite nitrogen, in the tank, using a nitritation tank including a fixed bed or a fluidized bed in which the amount of biological sludge per carrier surface area is 1.6 to 8.0 g-VSS/m, in the nitritation tank, the ammonia nitrogen is oxidized into nitrogen nitrate, and further, inhibiting substance is removed by biological sludge held to the carrier.SELECTED DRAWING: Figure 1

Description

本発明は、生物学的窒素除去方法に関し、より詳しくは、アンモニア性窒素含有廃水中に含まれる、独立栄養性脱窒微生物による嫌気的アンモニア酸化反応を阻害する物質を、アンモニア性窒素の一部を亜硝酸性窒素に酸化するための亜硝酸化工程(以下、単に「亜硝酸型硝化工程」と呼ぶ)で、生物汚泥を用いて低減することで、その処理効率の向上を図る生物学的窒素除去方法に関する。   The present invention relates to a biological nitrogen removal method, and more particularly, a substance that inhibits anaerobic ammonia oxidation reaction by autotrophic denitrifying microorganisms contained in ammoniacal nitrogen-containing wastewater is a part of ammoniacal nitrogen. A biological process that uses biological sludge to reduce the nitritation process to oxidize nitrite to nitrite nitrogen (hereinafter simply referred to as the “nitrite-type nitrification process”), thereby improving its treatment efficiency. The present invention relates to a nitrogen removal method.

窒素含有廃水の処理を、独立栄養性脱窒微生物(以下「アナモックス菌」と呼ぶ)を利用して浄化処理する技術が知られている。この技術では、亜硝酸型硝化工程で、窒素含有廃水中のアンモニア性窒素(NH4−N)の一部を亜硝酸性窒素(NO2−N)に酸化し、その後に、アナモックス菌を利用する嫌気性アンモニア酸化反応(以下「アナモックス反応」と呼ぶ)を行うアナモックス工程を導入しており、従来の硝化脱窒と比較して、曝気量の低減、メタノール等の有機物添加量の削減、余剰汚泥の低減が実現できるとされている(特許文献1)。 A technique for purifying nitrogen-containing wastewater using autotrophic denitrifying microorganisms (hereinafter referred to as “anammox bacteria”) is known. This technology oxidizes a part of ammonia nitrogen (NH 4 -N) in nitrogen-containing wastewater to nitrite nitrogen (NO 2 -N) in the nitrite type nitrification process, and then uses anammox bacteria Anammox process that performs anaerobic ammonia oxidation reaction (hereinafter referred to as “anammox reaction”) has been introduced. Compared with conventional nitrification denitrification, the amount of aeration is reduced, the amount of organic substances such as methanol is reduced, and surplus It is said that sludge can be reduced (Patent Document 1).

ここで、上記アナモックス工程において効率的かつ安定的に脱窒するためには、下記のアナモックス反応式より、亜硝酸型硝化工程で、処理水のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)の比率を1:1.32(0.43:0.57)とすることが望ましいことが知られている。

Figure 2016077954
Here, in order to efficiently and stably denitrify in the anammox process, ammonia nitrogen (NH 4 -N) and nitrite in the treated water are treated in the nitrite type nitrification process from the following anammox reaction formula. It is known that the ratio of nitrogen (NO 2 —N) is preferably 1: 1.32 (0.43: 0.57).
Figure 2016077954

これに対し、従来、亜硝酸化槽からの流出水のアンモニア性窒素と亜硝酸性窒素の比率を制御する方法として、NH4−N濃度測定装置を用いて、亜硝酸化槽からの流出水を自動サンプリングして、その全窒素濃度およびアンモニア性窒素(NH4−N)濃度を測定し、これを用いて前記した比が最適な濃度比率となるように亜硝酸型硝化工程を制御する方法が提案されている(特許文献2)。 On the other hand, conventionally, as a method for controlling the ratio of ammonia nitrogen and nitrite nitrogen in the effluent from the nitritation tank, an effluent from the nitrification tank is used by using an NH 4 -N concentration measuring device. Is used to automatically sample the total nitrogen concentration and ammonia nitrogen (NH 4 -N) concentration, and use this to control the nitrite type nitrification step so that the above-mentioned ratio becomes the optimum concentration ratio Has been proposed (Patent Document 2).

特開2003−33784号公報JP 2003-33784 A 特許第5006849号公報Japanese Patent No. 5006849

しかしながら、アナモックス菌は、他の細菌等に対する耐性に劣ることが知られており、その対策が考えられているが、本発明者らの詳細な検討の結果、さらに、廃水中に含まれるフェノール類等の有機物や重金属類等の無機物質によって、その生物活動が阻害され、これらの阻害物質の影響は無視できるものでなく、後述するように、従来、難しいとされてきたアナモックス菌によって処理する廃水のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)の比率を最適化できたとしても十分でなく、これらの物質を予め低減して、アナモックス反応に影響のない状態にしておかなければ、効率のよい生物処理が望めないことを見出した。 However, anammox bacteria are known to be inferior in resistance to other bacteria and the countermeasures are considered. However, as a result of detailed investigations by the present inventors, phenols contained in wastewater Biological activities are inhibited by organic substances such as organic substances and heavy metals, and the effects of these inhibitors are not negligible. As described later, wastewater treated by anammox bacteria, which has been considered difficult in the past Even if the ratio of ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO 2 -N) is optimized, it is not sufficient, and these substances are reduced in advance so that the anammox reaction is not affected If not, it has been found that efficient biological treatment cannot be expected.

すなわち、アンモニア性窒素と亜硝酸性窒素を含んだ廃水を、アナモックス菌を用いて脱窒する生物学的窒素除去方法において、処理する廃水中にアナモックス菌に対する阻害物質が存在し、その場合には、アナモックス反応が良好な状態で進行せず、安定的な窒素除去ができないという問題があった。より具体的には、アナモックス菌の増殖は極めて遅く、阻害物質によって一度菌体がダメージを受けてしまうと回復するまで長期間を要するため、阻害物質を含んだ廃水に対し、アナモックス菌を用いて脱窒する生物学的窒素除去方法を適用し、安定な処理をすることは困難であることがわかった。ここで、阻害物質としては、例えば、亜鉛等の重金属類、フェノール類、シアン類、チオシアン類等が挙げられる。これに対し、実際の廃水は、上記した阻害物質を含むものも多く、実用化にあたっては、阻害物質の問題は避けて通れない重要な課題であり、この点を解決することが、アナモックス菌を利用しての廃水処理方法を実用化する場合の大きな課題であり、その解決手段を見出すことが急務であると認識するに至った。   That is, in the biological nitrogen removal method in which wastewater containing ammonia nitrogen and nitrite nitrogen is denitrified using anammox bacteria, there is an inhibitor against anammox bacteria in the wastewater to be treated. The anammox reaction does not proceed in a good state, and there is a problem that stable nitrogen removal cannot be performed. More specifically, the growth of anammox bacteria is extremely slow, and once the cells are damaged by the inhibitor, it takes a long time to recover, so anammox bacteria are used against wastewater containing the inhibitor. It was found that it is difficult to apply a biological nitrogen removal method that denitrifies and to perform a stable treatment. Here, examples of the inhibitor include heavy metals such as zinc, phenols, cyans, and thiocyans. On the other hand, the actual wastewater contains many of the above-mentioned inhibitors, and the problem of inhibitors is an important issue that cannot be avoided in practical use. It was a big issue when putting the wastewater treatment method to practical use, and it came to recognition that finding the solution was an urgent task.

また、先にも述べたように、アナモックス菌を利用しての廃水処理の処理効率をさらに高めるためには、アナモックス工程で処理する窒素含有廃水を、アンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)との比率が確実に最適化されているものであることが望まれる。このために、前記した特許文献2に記載の技術では、廃水中のアンモニア性窒素(NH4−N)濃度を測定し、これによって、処理する廃水のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)との濃度比率を最適にするとしている。これに対し、現在、市販されているアンモニア性窒素(NH4−N)の測定装置は、連続測定用ではなく、測定対象水を自動サンプリングした後に、サンプリングした液をpH12の強アルカリ性に調整し、この調整された液の測定を行う方式であるため、その測定値が出るまでにタイムラグが発生してしまい、その制御が現状に即したものとはなっておらず、実廃水を、より効率よく処理するためには、この点についても改良すべき点がある。このため、アナモックス工程での処理を安定化するためには、アナモックス工程で処理する廃水中に含まれる阻害物質を、処理への影響がない程度まで低減できる手段の開発が必要であり、これに加えて、その処理効率を、従来よりも向上させ、これを安定化させるためには、アナモックス工程でアナモックス菌によって処理する実廃水のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)の比率を、タイムラグなく、より確実に最適化できるようにすることが望まれる。さらに、上記した生物学的窒素除去方法を工業的に実用化するためには、その前提として、その手段は、より簡便な方法で達成できるものでなければならないという要請がある。 As described above, in order to further increase the treatment efficiency of wastewater treatment using anammox bacteria, nitrogen-containing wastewater to be treated in the anammox process is separated from ammonia nitrogen (NH 4 -N) and sub- It is desirable that the ratio to nitrate nitrogen (NO 2 —N) is reliably optimized. Therefore, in the technique described in Patent Document 2 described above, by measuring the ammonium nitrogen (NH 4 -N) concentration in the waste water, whereby ammonia nitrogen wastewater treatment with (NH 4 -N) nitrous It is assumed that the concentration ratio with nitrate nitrogen (NO 2 —N) is optimized. On the other hand, the ammoniacal nitrogen (NH 4 -N) measuring device currently on the market is not for continuous measurement, but automatically samples the water to be measured, and then adjusts the sampled liquid to a strongly alkaline pH of 12. Since this is a method of measuring the adjusted liquid, there is a time lag until the measured value comes out, the control is not in line with the current situation, the actual wastewater is more efficient In order to handle well, there are also points to be improved on this point. For this reason, in order to stabilize the treatment in the Anammox process, it is necessary to develop means that can reduce the inhibitory substances contained in the wastewater treated in the Anammox process to a level that does not affect the treatment. In addition, in order to improve the treatment efficiency compared to the conventional method and stabilize the treatment efficiency, ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO) in actual wastewater treated with anammox bacteria in the anammox process are used. It is desirable to be able to optimize the 2- N) ratio more reliably without time lag. Furthermore, in order to put the biological nitrogen removal method described above into practical use, there is a requirement that the means must be able to be achieved by a simpler method.

したがって、本発明の目的は、アンモニア性窒素含有廃水中に、アナモックス菌によるアナモックス反応の阻害物質が含有されている場合に、簡便な方法で、予めこれらの阻害物質を、その活動に影響がない程度まで低減し、より安定した効率のよいアナモックス菌を利用した脱窒処理を可能にできる生物学的窒素除去方法を確立することにある。本発明の目的は、上記に加え、アナモックス菌によって処理する廃水中のアンモニア性窒素を、所望する割合で亜硝酸性窒素へと安定して酸化することを実現し、これによって、アナモックス菌による、より効率的な脱窒処理を可能にすることができるアンモニア性窒素含有廃水の亜硝酸型硝化方法を提供することである。本発明の最終的な目的は、上記した課題を解決することで、従来、優れた技術でありながら、アナモックス菌を利用したことに起因する特有の課題から、その実用化が難しいとされていたアナモックス反応を利用した窒素含有廃水を浄化処理する方法を、工業的に実用化できる効率のよい安定した処理技術に発展させることである。   Therefore, the object of the present invention is to prevent the inhibitory activity of these inhibitors in advance by a simple method when the ammonia nitrogen containing wastewater contains inhibitors of the anammox reaction by anammox bacteria. The purpose is to establish a biological nitrogen removal method that can reduce denitrification and enable denitrification treatment using more stable and efficient anammox bacteria. In addition to the above, the object of the present invention is to realize stable oxidation of ammoniacal nitrogen in wastewater treated with anammox bacteria to nitrite nitrogen at a desired ratio, It is to provide a nitrite type nitrification method of ammoniacal nitrogen-containing wastewater that can enable more efficient denitrification treatment. The final object of the present invention is to solve the above-mentioned problems. Conventionally, although it is an excellent technique, it has been considered difficult to put it to practical use due to unique problems caused by using anammox bacteria. The aim is to develop a method for purifying nitrogen-containing wastewater using the anammox reaction into an efficient and stable treatment technique that can be industrially put into practical use.

上記目的は、以下の本発明により達成される。すなわち、本発明は、独立栄養性脱窒微生物による嫌気的アンモニア酸化反応を阻害する、少なくとも、重金属類、フェノール類、チオシアン類、シアン類のいずれかの物質を含むアンモニア性窒素含有廃水を処理する生物学的窒素除去方法であって、独立栄養性脱窒微生物に接触させて嫌気的アンモニア酸化反応による脱窒を行う脱窒工程の前に設ける、アンモニア性窒素含有廃水をアンモニア酸化細菌と接触させてアンモニア性窒素の一部を亜硝酸性窒素に酸化する亜硝酸化工程で、槽内に、担体表面積あたりの生物汚泥量が1.6〜8.0g−VSS/m2である固定床又は流動床を有する亜硝酸化槽を用い、該亜硝酸化槽内で、アンモニア性窒素を亜硝酸性窒素に酸化するとともに、上記担体に保持された生物汚泥によって上記阻害物質を除去して、上記槽内の阻害物質を嫌気的アンモニア酸化反応に影響のない程度まで低減することを特徴とする生物学的窒素除去方法を提供する。 The above object is achieved by the present invention described below. That is, the present invention treats an ammoniacal nitrogen-containing wastewater containing at least one of heavy metals, phenols, thiocyans, and cyanes that inhibits anaerobic ammonia oxidation reaction by autotrophic denitrifying microorganisms. A biological nitrogen removal method comprising contacting an ammonia-containing nitrogen-containing wastewater with an ammonia-oxidizing bacterium, which is provided before a denitrification step in which an anaerobic ammonia oxidation reaction is performed by contacting an autotrophic denitrifying microorganism. In the nitritation step of oxidizing a part of ammonia nitrogen to nitrite nitrogen, the fixed bed or the amount of biological sludge per carrier surface area is 1.6 to 8.0 g-VSS / m 2 in the tank, or Using a nitritation tank having a fluidized bed, the ammonia nitrogen is oxidized to nitrite nitrogen in the nitritation tank, and the inhibition is performed by the biological sludge held on the carrier. Removing the quality, to provide a biological nitrogen removal method characterized by reducing the inhibitor of the vessel to the extent not affecting the anaerobic ammonium oxidation reactions.

本発明の生物学的窒素除去方法においては、上記した構成に加え、さらに下記のように構成することが好ましい。前記亜硝酸化槽内の生物汚泥濃度が200〜1000mg−VSS/Lであること;アンモニア性窒素含有廃水に含まれる阻害物質が重金属であり、その濃度が1.0mg/L以上である場合に、前記亜硝酸化槽のpHを8.0〜9.0になるように調整すること;アンモニア性窒素含有廃水に含まれる各阻害物質の濃度が、フェノール類である場合は10mg/L以上、チオシアン類である場合は10mg/L以上、シアン類である場合は0.01mg/L以上、であること;前記担体が、ポリウレタン製又はポリオレフィン製のスポンジであることが挙げられる。   In addition to the above-described configuration, the biological nitrogen removal method of the present invention preferably further includes the following configuration. The biological sludge concentration in the nitritation tank is 200 to 1000 mg-VSS / L; when the inhibitor contained in the ammoniacal nitrogen-containing wastewater is heavy metal and the concentration is 1.0 mg / L or more Adjusting the pH of the nitritation tank to 8.0 to 9.0; when the concentration of each inhibitor contained in the ammoniacal nitrogen-containing wastewater is phenols, 10 mg / L or more, In the case of thiocyans, it is 10 mg / L or more, and in the case of cyanides, it is 0.01 mg / L or more; it is mentioned that the carrier is a sponge made of polyurethane or polyolefin.

本発明の生物学的窒素除去方法のより好ましい形態としては、上記した構成に加え、さらに下記のように構成することが好ましい。さらに、遊離アンモニアガス選択性の隔膜式電極を用いたアンモニア測定装置をそれぞれに用い、前記亜硝酸化槽への流入水であるアンモニア性窒素含有廃水の遊離アンモニア(NH3)濃度aと、前記亜硝酸化槽内の遊離アンモニア(NH3)濃度b或いは前記亜硝酸化槽からの流出水の遊離アンモニア(NH3)濃度bをそれぞれ連続して測定し、得られた遊離アンモニア(NH3)濃度の各測定値に基づいてアンモニア性窒素(NH4−N)の濃度をそれぞれ算出し、上記遊離アンモニア(NH3)濃度aに基づいて算出したアンモニア性窒素(NH4−N)の濃度をAとし、上記遊離アンモニア(NH3)濃度bに基づいて算出したアンモニア性窒素(NH4−N)の濃度をBとした場合に、各時点におけるアンモニア性窒素(NH4−N)の濃度比B/Aが、目標とする範囲内となるように、前記亜硝酸化槽における曝気量を制御装置によって制御すること;前記目標とするアンモニア性窒素(NH4−N)の濃度比B/Aの範囲が、0.28〜0.58であることが挙げられる。 As a more preferable form of the biological nitrogen removal method of the present invention, in addition to the above-described structure, the following structure is also preferable. Furthermore, each using an ammonia measuring device using a free ammonia gas-selective diaphragm type electrode, the free ammonia (NH 3 ) concentration a of the ammoniacal nitrogen-containing wastewater that is the inflow water to the nitritation tank, free ammonia nitrite reduction vessel (NH 3) concentration b or free ammonia in the effluent water from the nitritation tank (NH 3) concentration b were measured continuously, resulting free ammonia (NH 3) based on the measured values of the density to calculate the concentration of ammonia nitrogen (NH 4 -N), respectively, the concentration of free ammonia (NH 3) ammonium nitrogen which is calculated based on the concentration a (NH 4 -N) Assuming that A is the concentration of ammonia nitrogen (NH 4 -N) calculated based on the free ammonia (NH 3 ) concentration b, B is ammonia nitrogen (NH 4 ) at each time point. The amount of aeration in the nitritation tank is controlled by a control device so that the concentration ratio B / A of 4- N) falls within the target range; the target ammoniacal nitrogen (NH 4 -N) ) In the range of the concentration ratio B / A is 0.28 to 0.58.

本発明によれば、アンモニア性窒素含有廃水中に、アナモックス菌によるアナモックス反応に対する阻害物質が含有されている場合に、簡便な方法で、これらの阻害物質を除去し、アナモックス反応による処理に影響のない程度まで低減することを達成した、より安定した効率のよい処理が可能な生物学的窒素除去方法が提供される。また、本発明の好ましい形態によれば、さらに、上記に加えて、流入水中のアンモニア性窒素を、所望する割合で亜硝酸性窒素へと安定して酸化することを実現し、これによって、アナモックス菌によるより効率的な脱窒処理を可能にした生物学的窒素除去方法の提供が可能になる。本発明によれば、優れた技術でありながら、アナモックス菌を利用したことに起因する特有の課題から、その実用化が難しいとされていたアナモックス反応を利用した窒素含有廃水を浄化処理する方法を、工業的に実用化できる効率のよい安定した処理技術に発展させることが可能になる。   According to the present invention, when an ammonia nitrogen-containing wastewater contains an inhibitor against an anammox reaction by anammox bacteria, these inhibitors are removed by a simple method, and the treatment by the anammox reaction is affected. There is provided a biological nitrogen removal method capable of more stable and efficient treatment that achieves a reduction to a certain extent. Further, according to a preferred embodiment of the present invention, in addition to the above, it is possible to stably oxidize ammonia nitrogen in the influent water to nitrite nitrogen at a desired ratio, thereby achieving anammox It is possible to provide a biological nitrogen removal method that enables more efficient denitrification treatment by bacteria. According to the present invention, there is provided a method for purifying nitrogen-containing wastewater using an anammox reaction, which has been considered difficult to put into practical use, due to peculiar problems resulting from the use of anammox bacteria while being an excellent technique. Therefore, it is possible to develop an efficient and stable processing technique that can be industrially put into practical use.

固定床を有する亜硝酸化槽を用いた本発明の生物学的窒素除去方法の基本フローを模式的に示す図である。It is a figure which shows typically the basic flow of the biological nitrogen removal method of this invention using the nitritation tank which has a fixed bed. 流動床を有する亜硝酸化槽を用いた本発明の生物学的窒素除去方法の基本フローを模式的に示す図である。It is a figure which shows typically the basic flow of the biological nitrogen removal method of this invention using the nitritation tank which has a fluidized bed. アンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)の濃度比を常に最適化させる制御装置の基本フローを模式的に示す図である。The basic flow of the control device to constantly optimize the concentration ratio of ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO 2 -N) is a diagram schematically showing.

以下、好ましい実施の形態を挙げて本発明をさらに詳細に説明する。先に述べたように、本発明者らは、アナモックス菌を利用して行う脱窒処理を、工業上、実用化できるものにするためには、その安定した処理を行う上で問題となる、処理対象の廃水中に含まれているアナモックス菌の活動を阻害する阻害物質を、簡便な手段で、アナモックス菌の反応を阻害しない濃度まで低減することが重要であるとの認識を持つに至った。本発明者らは、上記した課題を解決すべく鋭意検討の結果、アナモックス菌の活動に影響を与える量で阻害物質が含まれている実廃水に対して、その実廃水を、亜硝酸化工程の槽内に配置した生物汚泥を担持した固定床或いは流動床に通すという極めて簡便な処理を施すことで、廃水中に存在している阻害物質を、アナモックス菌の活動(反応)を阻害しない濃度にまで確実に低減することが達成できることを見いだして本発明に至った。   Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. As described above, the present inventors have a problem in carrying out the stable treatment in order to make the denitrification treatment using anammox bacteria industrially practical. Recognized that it is important to reduce the inhibitory substances contained in the wastewater to be treated to a concentration that does not inhibit the reaction of anammox by simple means. . As a result of intensive studies to solve the above-mentioned problems, the present inventors, for actual wastewater containing an inhibitor in an amount that affects the activity of anammox bacteria, By applying a very simple treatment of passing through a fixed bed or fluidized bed carrying biological sludge placed in the tank, the inhibitor present in the wastewater is brought to a concentration that does not inhibit the activity (reaction) of anammox bacteria. The inventors have found that it is possible to achieve a reliable reduction until the present invention.

また、本発明者らの検討によれば、アナモックス菌の活動に対する阻害物質としては、亜鉛等の重金属類、フェノール類、シアン類、チオシアン類が挙げられるが、いずれの場合も本発明の方法を実施することで、これらの阻害物質に起因するアナモックス菌の活動への影響を低減できる。本発明者らの検討によれば、アナモックス菌の活動が明らかに阻害されることが示されるこれらの阻害物質の廃水中における濃度としては、亜鉛等の重金属類である場合は1.0mg/L以上、フェノール類である場合は10mg/L以上、チオシアン類である場合は10mg/L以上、シアン類である場合は0.01mg/L以上、であるので、これらの物質の濃度を上記範囲よりも少なくすることが効率のよい処理を行うためには有効である。   Further, according to the study by the present inventors, examples of inhibitors against the activity of anammox bacteria include heavy metals such as zinc, phenols, cyans, and thiocyans. In any case, the method of the present invention is used. By carrying out, the influence on the activity of the anammox bacteria resulting from these inhibitors can be reduced. According to the study by the present inventors, the concentration of these inhibitors, which are clearly shown to inhibit the activity of anammox bacteria, in wastewater is 1.0 mg / L in the case of heavy metals such as zinc. The concentration of these substances is 10 mg / L or more in the case of phenols, 10 mg / L or more in the case of thiocyans, and 0.01 mg / L or more in the case of cyans. In order to perform efficient processing, it is effective to reduce the number.

より具体的には、本発明では、下記のように構成することで、上記した阻害物質が廃水中に存在することによって生じる、アナモックス反応への影響を除き、処理の安定化を達成している。まず、本発明において利用する、有機物を使用しない窒素の画期的な除去方法として注目されているアナモックス反応では、その処理効率を高めるために、アナモックス反応の前段階に、アンモニア性窒素含有廃水をアンモニア酸化細菌と接触させてアンモニア性窒素の一部を亜硝酸性窒素に酸化する亜硝酸化工程を必要としている。本発明では、この亜硝酸化工程で使用する処理槽(亜硝酸化槽)内に、担体表面積あたりの生物汚泥(活性汚泥)量が1.6〜8.0g−VSS/m2、より好ましくは、4.0〜8.0g−VSS/m2である固定床又は流動床を配置することで、処理する廃水中に存在する阻害物質を反応に影響のない程度の量まで除去し、低減するように構成する。すなわち、本発明では、アナモックス菌を利用して、効率のよい脱窒処理を行う場合に必要となる亜硝酸化工程において使用する亜硝酸化槽に、さらに、阻害物質除去槽としての機能を併せ持たせるという極めて簡便な構成によって、原理的には優れた方法でありながら、その実用化に課題のあったアナモックス菌を利用しての脱窒処理をより安定なものにできる。 More specifically, in the present invention, the treatment is stabilized by excluding the influence on the anammox reaction caused by the presence of the above-described inhibitory substances in the wastewater by the following configuration. . First, in the anammox reaction, which is attracting attention as an innovative method for removing nitrogen that does not use organic matter, which is used in the present invention, in order to increase the treatment efficiency, an ammonia nitrogen-containing wastewater is added before the anammox reaction. There is a need for a nitritation step that contacts ammonia-oxidizing bacteria to oxidize some of the ammoniacal nitrogen to nitrite nitrogen. In the present invention, the amount of biological sludge (activated sludge) per surface area of the carrier is 1.6 to 8.0 g-VSS / m 2 , more preferably in the treatment tank (nitritation tank) used in this nitritation step. Removes the inhibitory substances present in the wastewater to be treated to a level that does not affect the reaction, and reduces by arranging a fixed bed or fluidized bed of 4.0 to 8.0 g-VSS / m 2 To be configured. That is, in the present invention, the function as an inhibitor removal tank is further added to the nitritation tank used in the nitritation step required when performing efficient denitrification treatment using anammox bacteria. Although it is an excellent method in principle, the denitrification treatment using anammox bacteria, which has a problem in practical use, can be made more stable by an extremely simple configuration of having the structure.

本発明を特徴づける亜硝酸化工程で使用する処理槽内に配置させる、生物汚泥を担持した固定床或いは流動床の材料としては特に限定されず、活性炭、種々のプラスチック担体、スポンジ担体などがいずれも使用できる。中でも、スポンジ担体或いは多孔質担体、特にスポンジ担体を用いると、生物汚泥を高濃度に担持することができるので好ましい。また、本発明者らの検討によれば、特にスポンジ担体を用いた場合に、本発明が目的としている阻害物質の除去に対してより有効である。本発明で使用するスポンジ素材は特に限定されないが、ポリウレタン製又はポリオレフィン製のものが好ましい。中でも、ポリウレタン製のものが好適である。配置させる担体の量としても特に制限はないが、一般的に、生物処理反応槽の槽容量に対する担体の見掛け容量(細密充填した際の割合)で20〜50%程度、特に30〜40%程度とすることが好ましい。   The material of the fixed bed or fluidized bed carrying biological sludge disposed in the treatment tank used in the nitritation process characterizing the present invention is not particularly limited, and any of activated carbon, various plastic carriers, sponge carriers, etc. Can also be used. Among them, it is preferable to use a sponge carrier or a porous carrier, particularly a sponge carrier because biological sludge can be carried at a high concentration. Further, according to the study by the present inventors, in particular, when a sponge carrier is used, it is more effective for removing the inhibitory substance intended by the present invention. The sponge material used in the present invention is not particularly limited, but is preferably made of polyurethane or polyolefin. Among these, those made of polyurethane are preferred. Although there is no restriction | limiting in particular also as the quantity of the support | carrier to arrange | position, Generally, it is about 20-50% by the apparent capacity | capacitance (ratio at the time of dense packing) with respect to the tank capacity of a biological treatment reaction tank, Especially about 30-40% It is preferable that

また、本発明者らの検討によれば、上記したような材料からなる生物汚泥を担持した固定床或いは流動床が配置された亜硝酸化槽内の生物汚泥濃度は、200〜1000mg−VSS/L、さらには500〜1000mg−VSS/L程度とすることが好ましい。廃水中のアンモニア性窒素濃度は特に限定されないが、低窒素濃度(300mg/L以下)の廃水を高負荷で処理する場合は、固定床或いは流動床により生物汚泥濃度を高く維持できるため安定して亜硝酸性窒素を生成することを可能にする。   Further, according to the study by the present inventors, the biological sludge concentration in the nitritation tank in which the fixed bed or the fluidized bed carrying the biological sludge made of the material as described above is 200 to 1000 mg-VSS / L, more preferably about 500 to 1000 mg-VSS / L. The concentration of ammoniacal nitrogen in the wastewater is not particularly limited, but when treating wastewater with a low nitrogen concentration (300 mg / L or less) at a high load, the biological sludge concentration can be maintained high by a fixed bed or fluidized bed. Makes it possible to produce nitrite nitrogen.

また、本発明者らの検討によれば、アンモニア性窒素含有廃水に含まれるアナモックス菌に対する阻害物質が亜鉛等の重金属である場合には、上記した生物汚泥を担持した固定床或いは流動床を配置した亜硝酸化槽を使用することに加えて、処理槽内のpHを8.0〜9.0になるように調整することが有効であることがわかった。このようにすれば、アナモックス反応に影響を与えることが明らかな、廃水中の重金属の濃度が1.0mg/L以上である場合に、廃水中における重金属量を低減でき、その結果、処理の際のアナモックス反応が安定したものになる。   Further, according to the study by the present inventors, when the inhibitor against anammox bacteria contained in the ammoniacal nitrogen-containing wastewater is a heavy metal such as zinc, a fixed bed or fluidized bed carrying the biological sludge is disposed. In addition to using the nitritation tank, it has been found effective to adjust the pH in the treatment tank to 8.0 to 9.0. In this way, it is possible to reduce the amount of heavy metals in the wastewater when the concentration of heavy metals in the wastewater, which is clearly affected by the anammox reaction, is 1.0 mg / L or more. The anammox reaction becomes stable.

さらに、本発明の好ましい形態では、上記に加えて、下記に挙げるように構成することで、連続的に測定することが可能な遊離アンモニア(NH3)濃度の測定値を巧みに利用し、アナモックス工程に先だって行う亜硝酸型硝化工程において、曝気量を適宜に調整してアンモニア性窒素(NH4−N)の一部を適宜に亜硝酸性窒素(NO2−N)に酸化し、アナモックス工程に導入する廃水のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)の比率を所望の範囲内に、確実に安定して高精度に制御することを可能にする。 Furthermore, in a preferred embodiment of the present invention, in addition to the above, by configuring as described below, the measured value of free ammonia (NH 3 ) concentration that can be continuously measured is skillfully used, and anammox is used. In the nitrite type nitrification process performed prior to the process, the amount of aeration is adjusted as appropriate to partially oxidize a part of ammonia nitrogen (NH 4 —N) to nitrite nitrogen (NO 2 —N), and the anammox process The ratio of ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO 2 -N) in the wastewater introduced into the reactor can be reliably controlled within a desired range with high accuracy.

具体的には、亜硝酸型硝化工程の、亜硝酸化槽への流入水と、亜硝酸化槽内の硝化液或いは亜硝酸化槽からの流出水の遊離アンモニア濃度を連続測定し、これらの測定値に基づいて算出した亜硝酸化槽内の硝化液或いは亜硝酸化槽からの流出水のアンモニア性窒素濃度と、亜硝酸化槽への流入水のアンモニア性窒素の濃度比が目標値となるように、亜硝酸化槽における曝気量を制御装置によって制御する。このようにすることで、アナモックス工程に導入する廃水のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)の比率は、所望する範囲内となるように、確実に安定して制御される。すなわち、本発明者らの検討によれば、流入水中のアンモニア性窒素を所望する割合で亜硝酸性窒素へと酸化するアンモニア性窒素含有廃水の亜硝酸型硝化方法に、既存の遊離アンモニア測定装置を組み込み、該装置で遊離アンモニア(NH3)濃度を連続測定し、これらの値を利用して亜硝酸化槽における曝気量を制御することで、得られる硝化液のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)の比率は、アナモックス工程に最適な所望する範囲内に安定して高精度に維持されるようになる。 Specifically, in the nitrite type nitrification process, continuous measurement of the free ammonia concentration of the inflow water to the nitritation tank and the nitrification liquid in the nitritation tank or the outflow water from the nitritation tank, The concentration ratio of the ammonia nitrogen in the nitrification liquid in the nitrification tank or the effluent from the nitrification tank and the ammonia nitrogen concentration of the inflow water to the nitrification tank calculated based on the measured value is the target value. Thus, the amount of aeration in the nitritation tank is controlled by the control device. By doing so, the ratio of ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO 2 -N) in the wastewater introduced into the anammox process is surely stable so as to be within a desired range. To be controlled. That is, according to the study by the present inventors, an existing free ammonia measuring device is used in a nitrite type nitrification method for wastewater containing ammoniacal nitrogen that oxidizes ammoniacal nitrogen in the influent water to nitrite nitrogen at a desired ratio. , And continuously measuring the free ammonia (NH 3 ) concentration with the apparatus, and using these values to control the amount of aeration in the nitritation tank, ammonia nitrogen (NH 4 − The ratio of N) to nitrite nitrogen (NO 2 —N) is stably maintained with high accuracy within a desired range optimum for the anammox process.

図3に、上記の亜硝酸型硝化方法の基本フローを模式的に示した。図3を参照して説明すると、アンモニア性窒素測定装置1aを用い、図示した例では、流入水となる原水槽3中の遊離アンモニア(NH3)濃度aを連続測定し、その情報を制御装置2に送り、該装置でアンモニア性窒素(NH4−N)の濃度Aを連続算出する。これと並行して、図示した例では、亜硝酸化槽(亜硝酸型硝化槽)4内の硝化液の遊離アンモニア(NH3)濃度bを、アンモニア性窒素測定装置1a’を用いて連続測定し、その情報を制御装置2に送り、該装置でアンモニア性窒素(NH4−N)の濃度Bを連続算出する。そして、制御装置2で、各時点における上記で得たアンモニア性窒素(NH4−N)の濃度Aと、アンモニア性窒素(NH4−N)の濃度Bとの比を算出し、該比が設定した目標値の範囲内となるように、制御装置2から、亜硝酸化槽4の曝気装置5へと信号を送り、その曝気量を制御する。 FIG. 3 schematically shows the basic flow of the above nitrite type nitrification method. Referring to FIG. 3, an ammoniacal nitrogen measuring device 1a is used, and in the illustrated example, the free ammonia (NH 3 ) concentration a in the raw water tank 3 serving as inflow water is continuously measured, and the information is controlled by the control device. The concentration A of ammonia nitrogen (NH 4 —N) is continuously calculated by the apparatus. In parallel with this, in the illustrated example, the free ammonia (NH 3 ) concentration b of the nitrification liquid in the nitrification tank (nitrite type nitrification tank) 4 is continuously measured using the ammoniacal nitrogen measuring device 1a ′. Then, the information is sent to the control device 2, and the concentration B of ammoniacal nitrogen (NH 4 -N) is continuously calculated by the device. Then, the control device 2, and the concentration A of the obtained in ammonia nitrogen at each time point (NH 4 -N), calculates the ratio between the concentration B of ammonia nitrogen (NH 4 -N), is the ratio A signal is sent from the control device 2 to the aeration device 5 of the nitritation tank 4 so as to be within the set target value range, and the aeration amount is controlled.

先に述べたように、下記のアナモックス反応式より、アナモックス工程へ導入される処理対象の廃水中のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)の比率は、1:1.32(0.43:0.57)とすることが望ましい。このため、本発明で目標として設定する、アンモニア性窒素(NH4−N)の濃度Aと、アンモニア性窒素(NH4−N)の濃度Bとの比B/Aとしては、0.28〜0.58の範囲とすることが好ましい。本発明者らの検討によれば、目標値をこのような範囲に設定すれば、実廃水(流入水)中のアンモニア性窒素を、所望する割合で亜硝酸性窒素へと安定して酸化することが実現される。さらに、このように制御することで、その後に行うアナモックス菌による脱窒処理を、より効率的に安定して行うことができることを確認した。

Figure 2016077954
As described above, from the following anammox reaction formula, the ratio of ammonia nitrogen (NH 4 -N) and nitrite nitrogen (NO 2 -N) in the wastewater to be treated introduced into the anammox process is: It is desirable to set it as 1: 1.32 (0.43: 0.57). Therefore, to set as the target in the present invention, a concentration A of ammonium nitrogen (NH 4 -N), as the ratio B / A between the density B of the ammonium nitrogen (NH 4 -N) is 0.28~ A range of 0.58 is preferable. According to the study by the present inventors, when the target value is set in such a range, ammonia nitrogen in actual waste water (inflow water) is stably oxidized to nitrite nitrogen at a desired ratio. Is realized. Furthermore, by controlling in this way, it confirmed that the denitrification process by anammox bacteria performed after that could be performed more efficiently and stably.
Figure 2016077954

以下に、実施例および比較例を挙げて本発明をさらに詳細に説明する。
(実施例1)
図1に示した装置により処理を実施した。槽内に、塩化ビニル製からなる固定床を充填率60%で設置した容積50Lの亜硝酸化槽を用い、下水汚泥由来の活性汚泥を投入後、表1〜3に示した組成の人工廃水を原水として供給した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Example 1
Processing was performed by the apparatus shown in FIG. Using a 50-liter nitritation tank installed with a fixed bed made of vinyl chloride at a filling rate of 60% in the tank, after introducing activated sludge derived from sewage sludge, artificial wastewater having the composition shown in Tables 1 to 3 Was supplied as raw water.

Figure 2016077954
Figure 2016077954

Figure 2016077954
Figure 2016077954

Figure 2016077954
Figure 2016077954

処理は、HRTが3.0hrs、そのpHが7.6、水温が30〜33℃になるように制御した。そして、4週間程度馴養し、担体表面に生物膜が付着していることを確認した。このようにして調整した槽内の生物汚泥濃度は500mg−VSS/Lであった。そして、原水のアンモニア性窒素の約57%が亜硝酸性窒素となるように曝気量を適宜調整しながら処理を実施した。この時の窒素負荷は1.0kg−N/m3/dayである。 The treatment was controlled so that the HRT was 3.0 hrs, the pH was 7.6, and the water temperature was 30 to 33 ° C. And it was acclimatized for about 4 weeks, and it confirmed that the biofilm was adhering to the support | carrier surface. The biological sludge concentration in the tank thus adjusted was 500 mg-VSS / L. And it processed, adjusting aeration amount suitably so that about 57% of ammonia nitrogen of raw | natural water might turn into nitrite nitrogen. The nitrogen load at this time is 1.0 kg-N / m 3 / day.

亜硝酸化槽の馴養後に、図1に示す容積4Lのアナモックス槽に、アナモックスグラニュールを2L投入し、亜硝酸化処理水のpHを7.2に調整した後、アナモックス槽に上向流で、前記した廃水の流入を開始した。水温30℃〜33℃、窒素負荷は10kg−N/m3/dayで処理を実施した。原水、亜硝酸化処理後の処理水およびアナモックス槽の処理水の分析結果を、表4に示した。 After acclimatization of the nitritation tank, 2 L of anammox granule is introduced into the 4 liter anammox tank shown in FIG. 1 and the pH of the nitritation water is adjusted to 7.2. The inflow of waste water as described above was started. The treatment was performed at a water temperature of 30 ° C. to 33 ° C. and a nitrogen load of 10 kg-N / m 3 / day. Table 4 shows the analysis results of the raw water, the treated water after the nitritation treatment, and the treated water in the anammox tank.

Figure 2016077954
Figure 2016077954

(実施例2)
本実施例では、図2に示した流動床を用いた装置により処理を実施した。具体的には、槽内に、ポリウレタン製のスポンジ(10mm角)からなる流動床を見掛け容量で20%充填した容積50Lの亜硝酸化槽を用い、実施例1と同様に下水汚泥由来の活性汚泥を投入後、表1〜3に示した組成の人工廃水を原水として供給した。
(Example 2)
In this example, the treatment was carried out by the apparatus using the fluidized bed shown in FIG. Specifically, using a 50-liter nitritation tank filled with 20% apparent volume of a fluidized bed made of polyurethane sponge (10 mm square) in the tank, the activity derived from sewage sludge was the same as in Example 1. After introducing the sludge, artificial wastewater having the composition shown in Tables 1 to 3 was supplied as raw water.

処理条件は、HRTが2.0hrs、そのpHが7.6、水温が30〜33℃になるように制御した。そして、4週間程度馴養し、担体表面に生物膜が付着していることを確認した。このようにして調整した槽内の生物汚泥濃度は、実施例1の固定床と比較して高く、700mg−VSS/Lであった。そして、原水のアンモニア性窒素の約57%が亜硝酸性窒素となるように曝気量を適宜調整しながら処理を実施した。この時の窒素負荷は1.0kg−N/m3/dayである。原水、亜硝酸化処理後の処理水およびアナモックス槽の処理水の分析結果を、表5に示した。 The treatment conditions were controlled so that the HRT was 2.0 hrs, the pH was 7.6, and the water temperature was 30 to 33 ° C. And it was acclimatized for about 4 weeks, and it confirmed that the biofilm was adhering to the support | carrier surface. Thus, the biological sludge density | concentration in the tank adjusted was high compared with the fixed bed of Example 1, and was 700 mg-VSS / L. And it processed, adjusting aeration amount suitably so that about 57% of ammonia nitrogen of raw | natural water might turn into nitrite nitrogen. The nitrogen load at this time is 1.0 kg-N / m 3 / day. Table 5 shows the analysis results of the raw water, the treated water after the nitritation treatment, and the treated water in the anammox tank.

Figure 2016077954
Figure 2016077954

(比較例)
図2に示した装置の亜硝酸化槽で処理せず、表1に記載の人工廃水の窒素成分組成を硫酸アンモニウム236mg/Lと亜硝酸化ナトリウム246mg/Lに変更した原水を直接アナモックス槽に流入させた。アナモックス通水条件は、実施例1と同様にして処理を実施した。原水、アナモックス槽の処理水の分析結果を、表6に示した。
(Comparative example)
The raw water in which the nitrogen component composition of the artificial wastewater described in Table 1 was changed to 236 mg / L ammonium sulfate and 246 mg / L sodium nitrite was not directly treated in the nitritation tank of the apparatus shown in FIG. I let you. The treatment was performed in the same manner as in Example 1 under the anammox water passage conditions. Table 6 shows the analysis results of the raw water and the treated water in the anammox tank.

Figure 2016077954
Figure 2016077954

(実施例1、2と比較例の処理結果)
表4および表5の結果から明らかなように、実施例1或いは実施例2の処理方法で廃水を処理した場合、すなわち、阻害物質を含んだ原水を、固定床或いは流動床が設けられた亜硝酸化槽で処理すると、槽中の阻害物質の濃度が明らかに減少した。特に、実施例2の流動床を用いた亜硝酸化槽は、生物汚泥濃度を高く維持されており、実施例1の固定床を用いた亜硝酸化槽の場合よりも短いHRTで運転が可能であり、窒素処理能力および阻害物資除去の能力がより高いことが明らかとなった。一方、表6の結果より、比較例で実施したように阻害物質を含んだ原水を直接アナモックス槽へ導入した場合は、処理する廃水のアンモニア性窒素(NH4−N)と亜硝酸性窒素(NO2−N)との濃度比率を最適にしたとしても、実施例1や実施例2の場合に比べてアナモックスの処理性が明確に低下した。このことは、阻害物質を含むことによって生じていたアナモックス処理への影響が低減できたことを意味する。
(Processing results of Examples 1 and 2 and Comparative Example)
As is apparent from the results of Tables 4 and 5, when wastewater is treated by the treatment method of Example 1 or Example 2, that is, raw water containing an inhibitor is sublimated with a fixed bed or fluidized bed. Treatment in a nitration tank clearly reduced the concentration of inhibitor in the tank. In particular, the nitritation tank using the fluidized bed of Example 2 has a high biological sludge concentration, and can be operated with a shorter HRT than the nitritation tank using the fixed bed of Example 1. It was revealed that the nitrogen treatment ability and the ability to remove inhibitory substances were higher. On the other hand, from the results of Table 6, when raw water containing an inhibitory substance was directly introduced into the anammox tank, as in the comparative example, ammonia nitrogen (NH 4 -N) and nitrite nitrogen ( Even if the concentration ratio with NO 2 -N) was optimized, the processability of anammox was clearly reduced as compared with Examples 1 and 2. This means that the influence on the anammox treatment caused by including the inhibitor could be reduced.

(実施例3)
本実施例では、表1に記載した人工廃水のフェノールを500mg/L、チオシアンを100mg/Lに変更し、これらの阻害物質の濃度を高めた原水を用意し、この原水に対して実施例1、2と同様の手順でそれぞれ処理を行った。その結果、いずれの処理においても、亜硝酸化槽処理水中のフェノール濃度およびチオシアン濃度は10mg/L未満となった。すなわち、これらの阻害物質が高濃度域にある廃水に対しても、本発明で規定する固定床或いは流動床が設けられた亜硝酸化槽で処理することで、アナモックス処理への影響を低減できるレベルまで阻害物質濃度を減少できることが確認された。
(Example 3)
In this example, the artificial wastewater described in Table 1 was changed to phenol of 500 mg / L and thiocyan was changed to 100 mg / L, and raw water with increased concentrations of these inhibitors was prepared. 2 and 2, respectively. As a result, in both treatments, the phenol concentration and the thiocyan concentration in the nitritation tank treated water were less than 10 mg / L. That is, even when wastewater containing these inhibitory substances is in a high concentration region, the effect on the anammox treatment can be reduced by treating the wastewater in a nitritation tank provided with a fixed bed or fluidized bed as defined in the present invention. It was confirmed that the inhibitor concentration could be reduced to the level.

(実施例4)
表1に示した人工廃水に硫酸亜鉛をZnとして5mg/Lとなるように添加し、これを原水とし、図1に示した亜硝酸化槽内に固定床を有する装置により、該槽内のpHを7.5〜9.5に調整して処理を実施した。この亜硝酸化槽のpH条件以外は、実施例1と同じ条件で運転した。原水、亜硝酸化処理後の処理水亜鉛濃度およびアナモックス槽の窒素除去率(%)を、表7に示した。
Example 4
Zinc sulfate was added to the artificial waste water shown in Table 1 as Zn at 5 mg / L, and this was used as raw water, and by using an apparatus having a fixed bed in the nitritation tank shown in FIG. The treatment was carried out by adjusting the pH to 7.5 to 9.5. The operation was performed under the same conditions as in Example 1 except for the pH conditions of this nitritation tank. Table 7 shows the raw water, the zinc concentration of the treated water after the nitritation treatment, and the nitrogen removal rate (%) of the anammox tank.

Figure 2016077954
Figure 2016077954

表7に示した処理結果から、亜鉛を阻害物質として多く含む原水では、亜硝酸化槽のpH制御条件を8.0以上にした場合に処理水の亜鉛濃度が1mg/L以下に低減するので好ましいことが明らかとなった。そして、特に亜硝酸化槽のpHを、pH8.0〜9.0の範囲とした場合にアナモックスの窒素除去率が高いことがわかった。しかし、pH9.5にした場合は、pHの影響によって亜硝酸化槽内のアンモニア酸化菌の活性が低下したために亜硝酸の生成量が低減し、アナモックスに最適なアンモニア性窒素と亜硝酸性窒素の比率が崩れたため、結果的にアナモックスの窒素除去率が低下する傾向があることがわかった。一方、pH条件を7.5にした場合は、亜鉛濃度が半分程度しか除去されずアナモックスの窒素除去率も低いことがわかった。この結果より、亜鉛を阻害物質として多く含む場合は、亜硝酸化槽のpHを8.0〜9.0に調整することが有効であることを確認した。   From the treatment results shown in Table 7, in the raw water containing a large amount of zinc as an inhibitor, the zinc concentration of the treated water is reduced to 1 mg / L or less when the pH control condition of the nitritation tank is 8.0 or more. It became clear that it was preferable. And when the pH of the nitritation tank was made into the range of pH 8.0-9.0 especially, it turned out that the nitrogen removal rate of anamox is high. However, when the pH is adjusted to 9.5, the activity of ammonia oxidizing bacteria in the nitritation tank is reduced due to the influence of pH, so the amount of nitrite produced is reduced, and ammonia nitrogen and nitrite nitrogen that are optimal for anammox As a result, it was found that the nitrogen removal rate of Anammox tends to decrease. On the other hand, it was found that when the pH condition was 7.5, only about half of the zinc concentration was removed, and the nitrogen removal rate of Anammox was low. From this result, it was confirmed that it was effective to adjust the pH of the nitritation tank to 8.0 to 9.0 when zinc was contained as an inhibitory substance.

(実施例5)
被処理水として、下記のようにしてアンモニア性窒素(NH4−N)の濃度を連続して処理した実際の原水を用い、阻害物質を含むことによるアナモックス処理への影響を確認した。具体的には、被処理水として、遊離アンモニアガス選択性の隔膜式電極を用いたアンモニア測定装置で、並行して、亜硝酸化槽への流入水の遊離アンモニア(NH3)濃度aと、亜硝酸化槽内の硝化液の遊離アンモニア(NH3)濃度b或いは亜硝酸化槽からの流出水の遊離アンモニア(NH3)濃度bとを連続測定し、得られた遊離アンモニア(NH3)濃度の各測定値に基づいてアンモニア性窒素(NH4−N)の濃度をそれぞれに算出し、上記遊離アンモニア(NH3)濃度aに基づいて算出したアンモニア性窒素(NH4−N)の濃度をA、上記遊離アンモニア(NH3)濃度bに基づいて算出したアンモニア性窒素(NH4−N)の濃度をBとした場合に、各時点におけるアンモニア性窒素(NH4−N)の濃度比B/Aが、0.28〜0.58の範囲内となるように、上記亜硝酸化槽における曝気量を制御装置によって制御しながら連続して処理した実際の原水を用いた。そして、実施例1と同様の条件で処理を行ったところ、制御装置を用いることでより安定した処理が行えることが確認された。
(Example 5)
As the water to be treated, actual raw water continuously treated with ammonia nitrogen (NH 4 —N) concentration as described below was used, and the influence on the anammox treatment due to the inclusion of the inhibitory substance was confirmed. Specifically, as the water to be treated, an ammonia measuring device using a diaphragm-type electrode selective for free ammonia gas, and in parallel, the free ammonia (NH 3 ) concentration a of water flowing into the nitritation tank, free ammonia nitrification liquid nitritation tank (NH 3) free ammonia (NH 3) of the effluent from the concentration b or nitritation tank and density b measured continuously, resulting free ammonia (NH 3) based on the measured values of the density to calculate the concentration of ammonia nitrogen (NH 4 -N) in each concentration of the free ammonia (NH 3) ammonium nitrogen which is calculated based on the concentration a (NH 4 -N) Is the concentration ratio of ammonia nitrogen (NH 4 -N) at each time, where A is the concentration of ammonia nitrogen (NH 4 -N) calculated based on the free ammonia (NH 3 ) concentration b. B / A is 0. So as to be in the range of 8 to 0.58, using real raw water was continuously processed while controlling the aeration amount control device in the nitritation vessel. And when it processed on the conditions similar to Example 1, it was confirmed that a more stable process can be performed by using a control apparatus.

1a,1a’:アンモニア性窒素測定装置
2:制御装置
3:原水槽
4:亜硝酸化槽
5:曝気装置
1a, 1a ': Ammonia nitrogen measuring device 2: Control device 3: Raw water tank 4: Nitrite tank 5: Aeration device

Claims (7)

独立栄養性脱窒微生物による嫌気的アンモニア酸化反応を阻害する、少なくとも、重金属類、フェノール類、チオシアン類又はシアン類のいずれかの物質を含むアンモニア性窒素含有廃水を処理する生物学的窒素除去方法であって、
独立栄養性脱窒微生物に接触させて嫌気的アンモニア酸化反応による脱窒を行う脱窒工程の前に設ける、アンモニア性窒素含有廃水をアンモニア酸化細菌と接触させてアンモニア性窒素の一部を亜硝酸性窒素に酸化する亜硝酸化工程で、槽内に、担体表面積あたりの生物汚泥量が1.6〜8.0g−VSS/m2である固定床又は流動床を有する亜硝酸化槽を用い、該亜硝酸化槽内で、アンモニア性窒素を亜硝酸性窒素に酸化するとともに、上記担体に保持された生物汚泥によって上記阻害物質を除去して、上記槽内の阻害物質を嫌気的アンモニア酸化反応が失活しない程度まで低減することを特徴とする生物学的窒素除去方法。
Biological nitrogen removal method for treating ammonia nitrogen-containing wastewater containing at least one of heavy metals, phenols, thiocyans or cyanides, which inhibits anaerobic ammonia oxidation reaction by autotrophic denitrifying microorganisms Because
Ammonia nitrogen-containing wastewater is brought into contact with ammonia-oxidizing bacteria and placed in contact with autotrophic denitrifying microorganisms to perform denitrification by anaerobic ammonia oxidation reaction. In a nitritation step for oxidizing to basic nitrogen, a nitritation tank having a fixed bed or a fluidized bed in which the amount of biological sludge per carrier surface area is 1.6 to 8.0 g-VSS / m 2 is used in the tank. In the nitrification tank, ammonia nitrogen is oxidized to nitrite nitrogen, and the inhibitor is removed by biological sludge held on the carrier, and the inhibitor in the tank is anaerobically ammonia oxidized. A biological nitrogen removal method, characterized in that the reaction is reduced to such an extent that the reaction is not inactivated.
前記亜硝酸化槽内の生物汚泥濃度が200〜1000mg−VSS/Lである請求項1に記載の生物学的窒素除去方法。   The biological nitrogen removal method according to claim 1, wherein the biological sludge concentration in the nitritation tank is 200 to 1000 mg-VSS / L. アンモニア性窒素含有廃水に含まれる阻害物質が重金属であり、その濃度が1.0mg/L以上である場合に、前記亜硝酸化槽のpHを8.0〜9.0になるように調整する請求項1又は2に記載の生物学的窒素除去方法。   When the inhibitor contained in the ammoniacal nitrogen-containing wastewater is heavy metal and the concentration is 1.0 mg / L or more, the pH of the nitritation tank is adjusted to 8.0 to 9.0. The biological nitrogen removal method according to claim 1 or 2. アンモニア性窒素含有廃水に含まれる各阻害物質の濃度が、フェノール類である場合は10mg/L以上、チオシアン類である場合は10mg/L以上、シアン類である場合は0.01mg/L以上、である請求項1〜3のいずれか1項に記載の生物学的窒素除去方法。   The concentration of each inhibitor contained in the ammonia-containing nitrogen-containing wastewater is 10 mg / L or more in the case of phenols, 10 mg / L or more in the case of thiocyans, 0.01 mg / L or more in the case of cyans, The biological nitrogen removal method according to any one of claims 1 to 3. 前記担体が、ポリウレタン製又はポリオレフィン製のスポンジである請求項1〜4のいずれか1項に記載の生物学的窒素除去方法。   The biological nitrogen removal method according to any one of claims 1 to 4, wherein the carrier is a sponge made of polyurethane or polyolefin. さらに、遊離アンモニアガス選択性の隔膜式電極を用いたアンモニア測定装置を用い、前記亜硝酸化槽への流入水であるアンモニア性窒素含有廃水の遊離アンモニア(NH3)濃度aと、前記亜硝酸化槽内の遊離アンモニア(NH3)濃度b或いは前記亜硝酸化槽からの流出水の遊離アンモニア(NH3)濃度bをそれぞれ連続して測定し、得られた遊離アンモニア(NH3)濃度の各測定値に基づいてアンモニア性窒素(NH4−N)の濃度をそれぞれ算出し、上記遊離アンモニア(NH3)濃度aに基づいて算出したアンモニア性窒素(NH4−N)の濃度をAとし、上記遊離アンモニア(NH3)濃度bに基づいて算出したアンモニア性窒素(NH4−N)の濃度をBとした場合に、各時点におけるアンモニア性窒素(NH4−N)の濃度比B/Aが、目標とする範囲内となるように、前記亜硝酸化槽における曝気量を制御装置によって制御する請求項1〜5のいずれか1項に記載の生物学的窒素除去方法。 Further, using an ammonia measuring device using a free ammonia gas-selective diaphragm electrode, free ammonia (NH 3 ) concentration a of ammonia nitrogen-containing wastewater as inflow water to the nitritation tank, and the nitrous acid free ammonia (NH 3) concentration b or free ammonia in the effluent water from the nitritation tank (NH 3) concentration b were measured continuously in the reduction vessel, resulting free ammonia (NH 3) concentration the concentration of ammonia nitrogen (NH 4 -N) based on the measured values was calculated, the concentration of free ammonia (NH 3) ammonium nitrogen which is calculated based on the concentration a (NH 4 -N) and a , when the concentration of the free ammonia (NH 3) ammonia is calculated based on the concentration b nitrogen (NH 4 -N) is B, the ammonium nitrogen at each time point (NH 4 -N) The biological nitrogen removal method according to any one of claims 1 to 5, wherein an aeration amount in the nitritation tank is controlled by a control device so that a degree ratio B / A is within a target range. . 前記目標とするアンモニア性窒素(NH4−N)の濃度比B/Aの範囲が、0.28〜0.58である請求項6に記載の生物学的窒素除去方法。 The biological nitrogen removal method according to claim 6, wherein the range of the target ammonia nitrogen (NH 4 -N) concentration ratio B / A is 0.28 to 0.58.
JP2014210504A 2014-10-15 2014-10-15 Biological nitrogen removal method Pending JP2016077954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210504A JP2016077954A (en) 2014-10-15 2014-10-15 Biological nitrogen removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210504A JP2016077954A (en) 2014-10-15 2014-10-15 Biological nitrogen removal method

Publications (1)

Publication Number Publication Date
JP2016077954A true JP2016077954A (en) 2016-05-16

Family

ID=55957104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210504A Pending JP2016077954A (en) 2014-10-15 2014-10-15 Biological nitrogen removal method

Country Status (1)

Country Link
JP (1) JP2016077954A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947311B1 (en) 2018-02-05 2019-05-02 건국대학교 산학협력단 Treatment system and method for wastewater containing cyanide and heavy metal
KR101961251B1 (en) 2018-01-31 2019-07-17 세종대학교산학협력단 Treatment system and method for wastewater containing cyanide and heavy metal
KR102021719B1 (en) 2019-03-20 2019-09-17 건국대학교 산학협력단 Treatment system and method for wastewater containing heavy metal
WO2019198388A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen treatment method
JP2020049393A (en) * 2018-09-21 2020-04-02 松本工業株式会社 Sewage disposal method
CN112209560A (en) * 2019-07-11 2021-01-12 中国科学院城市环境研究所 Combined process treatment method of landfill leachate
CN113371828A (en) * 2021-07-02 2021-09-10 清华大学深圳国际研究生院 Moving bed biofilm reaction equipment and application
CN113979535A (en) * 2021-11-12 2022-01-28 广东工业大学 Nitrification-partial denitrification anaerobic ammonia oxidation sewage treatment system and sewage treatment method
WO2022062616A1 (en) * 2020-09-24 2022-03-31 北京工业大学 Method and equipment for implementing advanced nitrogen removal and sludge reduction of old landfill leachate by using sludge fermentation carbon source
CN116874077A (en) * 2023-08-25 2023-10-13 广东清研环境科技有限公司 Integrated short-cut nitrification-anaerobic ammoxidation reaction system and reaction process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168795A (en) * 1995-12-19 1997-06-30 Unitika Ltd Nitration of waste water containing ammonia nitrogen in high concentration
JPH09290296A (en) * 1996-04-30 1997-11-11 Mitsubishi Chem Eng Corp Biological denitrification treatment of cyan-containing coke-oven gas liquor
JPH11216493A (en) * 1998-01-29 1999-08-10 Kurita Water Ind Ltd Intermittent-aeration activated sludge treatment
JP2001079593A (en) * 1999-09-14 2001-03-27 Nippon Steel Corp Removing method of nitrogen in waste water
JP2006211908A (en) * 2005-02-01 2006-08-17 Mitsubishi Heavy Ind Ltd New microorganism and method for nitration-treating ammonia-containing water by utilizing the same
JP2007268368A (en) * 2006-03-30 2007-10-18 Hitachi Plant Technologies Ltd Entrapping immobilization carrier and wastewater treatment system using it
JP2010207785A (en) * 2009-03-12 2010-09-24 Nittetsu Kankyo Engineering Kk Wastewater treatment method and wastewater treatment apparatus
JP2011189249A (en) * 2010-03-12 2011-09-29 Nippon Steel Corp Biological nitrogen treatment method for ammonia-containing waste water
JP2011206765A (en) * 2010-03-12 2011-10-20 Nippon Steel Corp Biological nitrogen treatment method of waste water containing ammonia
JP5006849B2 (en) * 2008-07-10 2012-08-22 メタウォーター株式会社 Denitrification method of organic raw water by controlling nitrite type nitrification
WO2014030583A1 (en) * 2012-08-24 2014-02-27 株式会社クボタ System and method for treating wastewater containing suspended organic substance

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168795A (en) * 1995-12-19 1997-06-30 Unitika Ltd Nitration of waste water containing ammonia nitrogen in high concentration
JPH09290296A (en) * 1996-04-30 1997-11-11 Mitsubishi Chem Eng Corp Biological denitrification treatment of cyan-containing coke-oven gas liquor
JPH11216493A (en) * 1998-01-29 1999-08-10 Kurita Water Ind Ltd Intermittent-aeration activated sludge treatment
JP2001079593A (en) * 1999-09-14 2001-03-27 Nippon Steel Corp Removing method of nitrogen in waste water
JP2006211908A (en) * 2005-02-01 2006-08-17 Mitsubishi Heavy Ind Ltd New microorganism and method for nitration-treating ammonia-containing water by utilizing the same
JP2007268368A (en) * 2006-03-30 2007-10-18 Hitachi Plant Technologies Ltd Entrapping immobilization carrier and wastewater treatment system using it
JP5006849B2 (en) * 2008-07-10 2012-08-22 メタウォーター株式会社 Denitrification method of organic raw water by controlling nitrite type nitrification
JP2010207785A (en) * 2009-03-12 2010-09-24 Nittetsu Kankyo Engineering Kk Wastewater treatment method and wastewater treatment apparatus
JP2011189249A (en) * 2010-03-12 2011-09-29 Nippon Steel Corp Biological nitrogen treatment method for ammonia-containing waste water
JP2011206765A (en) * 2010-03-12 2011-10-20 Nippon Steel Corp Biological nitrogen treatment method of waste water containing ammonia
WO2014030583A1 (en) * 2012-08-24 2014-02-27 株式会社クボタ System and method for treating wastewater containing suspended organic substance

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961251B1 (en) 2018-01-31 2019-07-17 세종대학교산학협력단 Treatment system and method for wastewater containing cyanide and heavy metal
KR101947311B1 (en) 2018-02-05 2019-05-02 건국대학교 산학협력단 Treatment system and method for wastewater containing cyanide and heavy metal
JP7133339B2 (en) 2018-04-11 2022-09-08 株式会社日立製作所 Nitrogen treatment method
WO2019198388A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen treatment method
JP2019181378A (en) * 2018-04-11 2019-10-24 株式会社日立製作所 Nitrogen treatment method
JP2020049393A (en) * 2018-09-21 2020-04-02 松本工業株式会社 Sewage disposal method
KR102021719B1 (en) 2019-03-20 2019-09-17 건국대학교 산학협력단 Treatment system and method for wastewater containing heavy metal
CN112209560A (en) * 2019-07-11 2021-01-12 中国科学院城市环境研究所 Combined process treatment method of landfill leachate
WO2022062616A1 (en) * 2020-09-24 2022-03-31 北京工业大学 Method and equipment for implementing advanced nitrogen removal and sludge reduction of old landfill leachate by using sludge fermentation carbon source
CN113371828A (en) * 2021-07-02 2021-09-10 清华大学深圳国际研究生院 Moving bed biofilm reaction equipment and application
CN113979535A (en) * 2021-11-12 2022-01-28 广东工业大学 Nitrification-partial denitrification anaerobic ammonia oxidation sewage treatment system and sewage treatment method
CN116874077A (en) * 2023-08-25 2023-10-13 广东清研环境科技有限公司 Integrated short-cut nitrification-anaerobic ammoxidation reaction system and reaction process
CN116874077B (en) * 2023-08-25 2024-03-22 广东清研环境科技有限公司 Integrated short-cut nitrification-anaerobic ammoxidation reaction system and reaction process

Similar Documents

Publication Publication Date Title
JP2016077954A (en) Biological nitrogen removal method
Han et al. Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification
JP4951826B2 (en) Biological nitrogen removal method
US8323487B2 (en) Waste water treatment apparatus
JP5791359B2 (en) Wastewater treatment method
JP6532314B2 (en) Biological nitrogen removal method and apparatus for treating nitrogen containing wastewater
JP4453397B2 (en) Biological nitrogen removal method
JP4104845B2 (en) Method and apparatus for treatment of water containing phosphorus / ammonia
JP4872171B2 (en) Biological denitrification equipment
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP4106203B2 (en) How to remove nitrogen from water
JP2007125484A (en) Nitrogen-containing wastewater treatment method
JP2003024984A (en) Biological denitrification method and biological denitrification apparatus
JP2013081881A (en) Apparatus for treating ammonia nitrogen content wastewater
JP6164102B2 (en) Wastewater treatment method
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP2006204967A (en) Denitrification method and denitrification apparatus
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
JP5722087B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
JP4867099B2 (en) Biological denitrification method
JP4817056B2 (en) Method and apparatus for treating nitrogen-containing water
KR20110027457A (en) Method for treating wastewater using nitrification reaction in sequencing batch reactor
JP2005329399A (en) Method and apparatus for removing nitrogen
JP2006088057A (en) Method for treating ammonia-containing water
CN112292355A (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106