Nothing Special   »   [go: up one dir, main page]

JP4872171B2 - Biological denitrification equipment - Google Patents

Biological denitrification equipment Download PDF

Info

Publication number
JP4872171B2
JP4872171B2 JP2001235030A JP2001235030A JP4872171B2 JP 4872171 B2 JP4872171 B2 JP 4872171B2 JP 2001235030 A JP2001235030 A JP 2001235030A JP 2001235030 A JP2001235030 A JP 2001235030A JP 4872171 B2 JP4872171 B2 JP 4872171B2
Authority
JP
Japan
Prior art keywords
concentration
limit value
nitrite nitrogen
raw water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001235030A
Other languages
Japanese (ja)
Other versions
JP2003047990A (en
Inventor
麗 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001235030A priority Critical patent/JP4872171B2/en
Publication of JP2003047990A publication Critical patent/JP2003047990A/en
Application granted granted Critical
Publication of JP4872171B2 publication Critical patent/JP4872171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アンモニア性窒素と亜硝酸性窒素を含有する原水を、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒微生物の作用で生物脱窒する装置に係り、特に、この生物脱窒において、原水中の高濃度亜硝酸性窒素による脱窒微生物の阻害を防止して安定かつ効率的な生物脱窒を行うための生物脱窒装置に関する。
【0002】
【従来の技術】
排液中に含まれるアンモニア性窒素は河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排液処理工程で効率的に除去する必要がある。一般に、排水中のアンモニア性窒素は、アンモニア性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌である脱窒菌により、有機物を電子供与体として利用して窒素ガスにまで分解する脱窒工程との2段階の生物反応を経て窒素ガスにまで分解される。
【0003】
しかし、このような従来の硝化脱窒法では、脱窒工程において電子供与体としてメタノールなどの有機物を多量に必要とし、また硝化工程では多量の酸素が必要であるため、ランニングコストが高いという欠点がある。
【0004】
これに対して、近年、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性微生物(自己栄養細菌)を利用し、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒する方法が提案された。この方法であれば、有機物の添加は不要であるため、従属栄養性の脱窒菌を利用する方法と比べて、コストを低減することができる。また、独立栄養性の微生物は収率が低く、汚泥の発生量が従属栄養性微生物と比較すると著しく少ないので、余剰汚泥の発生量を抑えることができる。更に、従来の硝化脱窒法で観察されるNOの発生がなく、環境に対する負荷を低減できるといった特長もある。
【0005】
この独立栄養性脱窒微生物(以下「ANAMMOX微生物」と称す場合がある。)を利用する生物脱窒プロセスは、Strous, M, et al., Appl. Microbiol. Biotechnol., 50, p.589-596 (1998) に報告されており、以下のような反応でアンモニア性窒素と亜硝酸性窒素が反応して窒素ガスに分解されると考えられている。
【0006】
【化1】

Figure 0004872171
【0007】
上記生物脱窒法で反応に関与するANAMMOX微生物は、高濃度の亜硝酸性窒素の存在下では阻害を受け、活性が低下する。脱窒槽内が不完全混合(例えばプラグフロー型)である場合には、原水注入口付近の亜硝酸性窒素濃度が局所的に高くなる場合がある。このため、脱窒槽に流入する原水の亜硝酸性窒素濃度が高い場合には、処理水を循環させるなどして原水を希釈し、脱窒槽内の亜硝酸性窒素濃度を上記阻害濃度よりも低く保つことが行われている。
【0008】
【発明が解決しようとする課題】
原水の亜硝酸性窒素濃度が一定であれば、所定量の処理水の循環により、脱窒槽に高濃度亜硝酸性窒素が流入することによるANAMMOX微生物の阻害を防止することができるが、原水の亜硝酸性窒素濃度が変動する場合には、このような処理水の循環では高濃度亜硝酸性窒素によるANAMMOX微生物の阻害を防止し得ない。即ち、高い亜硝酸性窒素濃度の原水が脱窒槽に流入することにより、脱窒槽の原水流入口付近の亜硝酸性窒素濃度が上昇し、この部分のANAMMOX微生物が阻害を受ける。そして、脱窒槽の原水流入口付近のANAMMOX微生物が阻害を受けて、活性が低下することにより、分解し得ずに脱窒槽内に残留した亜硝酸性窒素により脱窒槽内の亜硝酸性窒素濃度が上昇し、更にANAMMOX微生物がこの高濃度亜硝酸性窒素により阻害を受けてより一層活性が低下することとなる。なお、このANAMMOX微生物が阻害を受ける亜硝酸性窒素(NO−N)濃度の下限は約100mg−N/Lであるとされている。
【0009】
本発明は上記従来の問題点を解決し、原水の亜硝酸性窒素濃度が変動する場合において、脱窒槽に流入する亜硝酸性窒素によるANAMMOX微生物の阻害を確実に防止して、安定かつ効率的な生物脱窒を行うための生物脱窒装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1の生物脱窒装置は、アンモニア性窒素と亜硝酸性窒素を含有する原水の流入口と、処理液の流出口とを有し、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒微生物の作用により生物脱窒する脱窒槽と、該脱窒槽内の原水流入口付近の液の亜硝酸性窒素濃度を測定する亜硝酸性窒素濃度測定手段と、該亜硝酸性窒素濃度測定手段の出力信号に基づいて該脱窒槽に流入する原水の流量を調節する手段とを備える生物脱窒装置であって、予め該脱窒槽内液の亜硝酸性窒素濃度の上限値(以下「設定上限値」と称す)と下限値(以下「設定下限値」と称す)を設定しておき、該亜硝酸性窒素濃度測定手段で測定された該脱窒槽内液の亜硝酸性窒素濃度が該設定上限値を越えた場合には、該原水の流量を調節する手段により原水流入量を低減させ、逆に該設定下限値を下回る場合には原水流入量を増加させることを特徴とする。
【0011】
請求項の生物脱窒装置は、アンモニア性窒素と亜硝酸性窒素を含有する原水の流入口と、処理液の流出口とを有し、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒微生物の作用により生物脱窒する脱窒槽と、原水を希釈するための希釈水を供給する希釈水供給手段と、前記脱窒槽内の原水流入口付近の液の亜硝酸性窒素濃度を測定する亜硝酸性窒素濃度測定手段と、該亜硝酸性窒素濃度測定手段の出力信号に基づいて前記希釈水供給手段が供給する希釈水の供給量を調節する手段とを備える生物脱窒装置であって、予め該脱窒槽内液の亜硝酸性窒素濃度の上限値(以下「設定上限値」と称す)と下限値(以下「設定下限値」と称す)を設定しておき、該亜硝酸性窒素濃度測定手段で測定された該脱窒槽内液の亜硝酸性窒素濃度が該設定上限値を越えた場合には、該希釈水の供給量を調節する手段により希釈水の供給量を増加させ、逆に該設定下限値を下回る場合には希釈水の供給量を低減させることを特徴とする。
【0012】
脱窒槽内の原水流入口付近の液の亜硝酸性窒素濃度に基づいて、この亜硝酸性窒素濃度が予め設定された上限値を超える場合には亜硝酸性窒素の流入量を低減させ、予め設定された下限値を下回る場合には亜硝酸性窒素の流入量を増加させることにより、高濃度亜硝酸性窒素が流入することによる脱窒槽内のANAMMOX微生物の阻害を確実に防止して安定かつ効率的な生物脱窒処理を行うことが可能となる。
【0013】
請求項1の生物脱窒装置では、測定された亜硝酸性窒素濃度に基づいて、脱窒槽に流入する原水の流入量を制御することにより、脱窒槽に流入する亜硝酸性窒素量を調節する。
【0014】
請求項の生物脱窒装置では、測定された亜硝酸性窒素濃度に基づいて、原水を希釈する希釈水の供給量を調節して脱窒槽の流入水の亜硝酸性窒素濃度を制御し、これにより脱窒槽に流入する亜硝酸性窒素量を調節する。
【0015】
【発明の実施の形態】
以下に図面を参照して本発明の生物脱窒装置の実施の形態を詳細に説明する。
【0016】
図1は、本発明の生物脱窒装置の実施の形態を示す系統図である。
【0017】
図1に示す生物脱窒装置は、脱窒槽として、内部にANAMMOX微生物のグラニュール汚泥床が形成されたUSB(Upflow Sludge Bed;上向流汚泥床)反応槽1を有し、この反応槽1の底部に原水の流入配管2が接続されている。反応槽1の上部には気液固分離装置3が設けられ、この気液固分離装置3から、処理水の排出配管4が引き出されている。この処理水の排出配管4に分岐して処理水の一部を循環水として原水流入配管2に戻す循環配管5が設けられている。Pは原水ポンプ、Pは循環ポンプである。
【0018】
この生物脱窒装置において、原水は、配管5からの循環水と共に配管2からUSB反応槽1の底部に導入される。USB反応槽1に導入された原水は、ANAMMOX微生物のグラニュール汚泥床を上向流で上昇する間に、ANAMMOX微生物により生物脱窒処理され、処理水が配管4より系外へ排出される。また、処理水の一部は配管5より原水導入配管2に循環される。
【0019】
この生物脱窒装置では、USB反応槽1の底部の原水流入部分から槽内液を引き抜き、この液の亜硝酸性窒素濃度を測定した後、USB反応槽1に戻す配管6A,6Bと亜硝酸イオンセンサー設置部6が設けられている。即ち、反応槽1の原水流入部から、配管6Aより引き抜いた槽内液の亜硝酸イオン濃度を亜硝酸イオンセンサー設置部6で測定した後、測定後の液を配管6Bより再び反応槽1に戻すように構成されている。
【0020】
亜硝酸イオンセンサーとしては、市販品、例えば電気化学計器(株)製の亜硝酸イオン電極等を用いることができる。
【0021】
図1の生物脱窒装置では、このような亜硝酸イオンセンサーで測定した亜硝酸イオン濃度に基づいて原水ポンプPの作動を制御する。
【0022】
即ち、予め槽内液の亜硝酸イオン濃度の上限値(以下「設定上限値」と称す場合がある。)と下限値(以下「設定下限値」と称す場合がある。)を設定しておき、槽内液の亜硝酸イオン濃度がこの上限値を越えた場合には原水流入量を低減させ、逆に下限値を下回る場合には原水流入量を増加させる。
【0023】
前述の如く、ANAMMOX微生物はNO−N濃度100mg/L以上で阻害を受け、200mg/L以上で活性は殆ど失われる。従って、設定上限値は200mg−N/Lよりも低い値に設定する必要がある。一方、槽内の微生物はフロック状、或いは生物膜状に存在しており、フロック或いは生物膜中に基質を十分に浸透させ、内部の微生物を有効に利用するためには、バルク中の基質濃度は高い方が好ましい。設定上限値は目標とする処理効率やその他の条件によっても異なるが、一般的にはNO−N濃度で50〜200mg−N/L程度、特に75〜150mg/Lとするのが好ましい。一方、設定下限値が過度に低いとANAMMOX微生物の活性阻害を確実に防止することができるが、処理効率が悪くなることから、設定下限値は目標とする処理効率やその他の条件によっても異なるが、一般的にはNO−N濃度で5〜70mg−N/L程度、特に20〜50mg/Lとするのが好ましい。
【0024】
本発明では、例えば、次のようにして原水流入量の調節を行うことができる。
【0025】
(1) 予め原水流入量の基準値を定めておき、槽内液のNO−N濃度が設定上限値を超えた場合には、原水流入量を基準値よりも若干、例えば5〜50%低減し、槽内液のNO−N濃度が設定下限値を下回った場合には原水流入量を基準値に戻す。
【0026】
(2) 槽内液のNO−N濃度が設定上限値を超えた場合には、原水流入量を現状よりも若干、例えば5〜50%低減させ、槽内液のNO−N濃度が設定下限値を下回った場合には原水流入量を現状よりも若干、例えば5〜50%増加させる。
【0027】
(3) 上記(1)(2)において、槽内液のNO−N濃度と設定上限値又は設定下限値との差の大きさにより、原水流入量の低減量又は増加量を変える。即ち、例えば槽内液のNO−N濃度が設定上限値よりも大幅に高い場合には、原水流入量を大幅に低減させ、槽内液のNO−N濃度が設定上限値よりもわずかに高い場合には原水流入量をわずかに低減させる。
【0028】
図1の生物脱窒装置では、このような亜硝酸イオンセンサーで測定した亜硝酸イオン濃度に基づいて原水ポンプPの作動を制御するが、循環ポンプPの作動を制御して、原水を希釈する循環水量を調節しても良い。
【0029】
この場合には、槽内液の亜硝酸イオン濃度がこの設定上限値を超えた場合には循環水量を増加させ、逆に設定値を下回る場合には循環水量を低減させる。
【0030】
例えば、次のようにして循環水量の調節を行うことができる。
【0031】
(1) 予め循環水量の基準値を定めておき、槽内液のNO−N濃度が設定上限値を超えた場合には、循環水量を基準値よりも若干、例えば5〜50%増加させ、槽内液のNO−N濃度が設定下限値を下回った場合には循環水量を基準値に戻す。
【0032】
(2) 槽内液のNO−N濃度が設定上限値を超えた場合には、循環水量を現状よりも若干、例えば5〜50%増加させ、槽内液のNO−N濃度が設定下限値を下回った場合には循環水量を現状よりも若干、例えば5〜50%低減させる。
【0033】
(3) 上記(1)(2)において、槽内液のNO−N濃度と設定上限値又は設定下限値との差の大きさにより、循環水量の低減量又は増加量を変える。即ち、例えば槽内液のNO−N濃度が設定上限値よりも大幅に高い場合には、循環水量を大幅に増加させ、槽内液のNO−N濃度が設定上限値よりもわずかに高い場合には循環水量をわずかに増加させる。
【0034】
このようにして循環水量を調節することにより、反応槽1の流入水の亜硝酸性窒素濃度を調整し、反応槽1の原水流入部の亜硝酸性窒素濃度を好適な濃度範囲に維持することができる。
【0035】
なお、循環水とは別の希釈水の供給手段を設け、この希釈水の供給ポンプの作動を制御するようにしても良い。また、希釈水(循環水)量と原水量とを共に制御しても良い。この場合には、原水量を増加すると共に希釈水量を低減するか、或いは原水量を低減すると共に希釈水量を増加させて、反応槽に流入する流入水量を一定とすることもでき、好ましい。
【0036】
亜硝酸イオンセンサーによる測定は連続測定であっても間欠的な測定であっても良い。間欠的に測定を行う場合、測定頻度には特に制限はなく、原水の水質やその他の処理条件の変動による槽内液の亜硝酸イオン濃度の変動の可能性に基づいて適宜測定されるが、一般的には0.1〜24hrに1回の頻度で測定することが好ましい。
【0037】
なお、図1に示す生物脱窒装置では、亜硝酸イオンセンサー設置部を反応槽1の外部に設け、反応槽1から槽内液を引き抜いて亜硝酸性窒素濃度を測定しているが、亜硝酸イオンセンサー設置部を反応槽1内の原水流入口部分に設け、反応槽1内において槽内液の亜硝酸性窒素濃度を直接測定しても良い。
【0038】
また、図1に示す生物脱窒装置は、脱窒槽としてANAMMOX微生物のグラニュール汚泥を保持するUSB反応槽を用いたものであるが、本発明において、脱窒槽の型式に特に制限はなく、汚泥懸濁法、固定床、流動床、担体添加法などのいずれの型式のものであっても良い。
【0039】
例えば、生物脱窒装置として、汚泥懸濁式の脱窒槽を用いる場合には、脱窒槽の後段に沈殿槽等の固液分離手段が設けられ、分離汚泥が脱窒槽に返送されるが、このような場合、亜硝酸イオンセンサーは脱窒槽の原水の流入口付近に設ければ良い。
【0040】
本発明の生物脱窒方法において、処理対象となる原水は、アンモニア性窒素及び亜硝酸性窒素を含む水であり、有機物及び有機性窒素を含むものであってもよいが、これらは脱窒処理前に予めアンモニア性窒素になる程度まで分解しておくことが好ましく、また、溶存酸素濃度が高い場合には、必要に応じて溶存酸素を除去しておくことが好ましい。原水は無機物を含んでいてもよい。また、原水はアンモニア性窒素を含む液と亜硝酸性窒素を含む液を混合したものであってもよい。例えば、アンモニア性窒素を含む排水をアンモニア酸化微生物の存在下に好気性処理を行い、アンモニア性窒素の一部、好ましくはその1/2を亜硝酸に部分酸化したものを原水とすることができる。更には、アンモニア性窒素を含む排水の一部をアンモニア酸化微生物の存在下に好気性処理を行い、アンモニア性窒素を亜硝酸に酸化し、アンモニア性窒素を含む排水の残部と混合したものを原水としても良い。
【0041】
一般的には、下水、し尿、嫌気性硝化脱離液等のアンモニア性窒素、有機性窒素及び有機物を含む排水が処理対象となる場合が多いが、この場合、これらを好気性又は嫌気性処理して有機物を分解し、有機性窒素をアンモニア性窒素に分解し、さらに部分亜硝酸化或いは、一部についての亜硝酸化を行った液を原水とすることが好ましい。
【0042】
原水のアンモニア性窒素と亜硝酸性窒素の割合はモル比でアンモニア性窒素1に対して亜硝酸性窒素0.5〜2、特に1〜1.5とするのが好ましい。原水中のアンモニア性窒素及び亜硝酸性窒素の濃度はそれぞれ5〜1000mg/L、5〜200mg/Lであることが好ましいが、処理水を循環して希釈すればこの限りではない。
【0043】
原水の生物脱窒条件としては、例えば反応槽内液の温度が10〜40℃、特に20〜35℃、pHが5〜9、特に6〜8、溶存酸素濃度が0〜2.5mg/L、特に0〜0.2mg/L、BOD濃度が0〜50mg/L、特に0〜20mg/L、窒素負荷が0.1〜10kg−N/m・day、特に0.2〜5kg−N/m・dayの範囲とするのが好ましい。
【0044】
図1に示す如く、UASB反応槽1内にグラニュール汚泥を形成する場合、微生物だけではグラニュール形成に期間を要するので、核となる物質を添加し、その核の周りにANAMMOX微生物の生物膜を形成させることが望ましい。この場合、核として、例えば微生物グラニュールや非生物的な単体を挙げることができる。
【0045】
核として用いられる微生物グラニュールとしては、メタン菌グラニュール等の嫌気性微生物や従属栄養性脱窒菌グラニュール等を挙げることができる。メタン菌グラニュールは、UASB法もしくはEGSB法でメタン発酵が行われているメタン発酵槽で使用されているものを適用できる。また、従属栄養性脱窒グラニュールは、UASB又はEGSB等の通常の脱窒槽で利用されるものを適用できる。これらのグラニュールはそのままの状態で、又はその破砕物として用いることができる。独立栄養性脱窒微生物はこのような微生物グラニュールに付着しやすく、グラニュールの形成に要する時間が短縮される。また、核として非生物的な材料を用いるよりも経済的である。
【0046】
核として用いられる非生物的な材料としては、例えば、活性炭、ゼオライト、ケイ砂、ケイソウ土、焼成セラミック、イオン交換樹脂等、好ましくは活性炭、ゼオライト等よりなる、粒径50〜200μm、好ましくは50〜100μmで、平均比重1.01〜2.5、好ましくは1.1〜2.0の担体を挙げることができる。
【0047】
このようにして形成されるANAMMOX微生物のグラニュール汚泥は、平均粒径が0.25〜3mm、好ましくは0.25〜2mm、より好ましくは0.25〜1.5mm程度、平均比重が1.01〜2.5、好ましくは1.1〜2.0であることが望ましい。グラニュールの粒度が小さいほど比表面積が大きくなるので、高い汚泥濃度を維持し、脱窒処理を効率よく行う点で好ましい。
【0048】
【発明の効果】
以上詳述した通り、本発明の生物脱窒装置によれば、ANAMMOX微生物による生物脱窒処理において、原水の亜硝酸性窒素濃度が変動する場合であっても、脱窒槽に流入する亜硝酸性窒素によるANAMMOX微生物の阻害を確実に防止して、安定かつ効率的な生物脱窒を行うことができる。
【図面の簡単な説明】
【図1】 本発明の生物脱窒装置の実施の形態を示す系統図である。
【符号の説明】
1 USB反応槽
3 気液固分離装置
6 亜硝酸イオンセンサー設置部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for biologically denitrifying raw water containing ammonia nitrogen and nitrite nitrogen by the action of a denitrification microorganism using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. In particular, in this biological denitrification, the present invention relates to a biological denitrification apparatus for preventing the denitrification microorganisms from being inhibited by high-concentration nitrite nitrogen in raw water and performing stable and efficient biological denitrification.
[0002]
[Prior art]
Ammonia nitrogen contained in the effluent is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the effluent treatment process. In general, ammonia nitrogen in wastewater is oxidized by ammonia oxidizing bacteria to nitrite nitrogen, and nitrifying nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria. Nitrite nitrogen and nitrate nitrogen are denitrified bacteria, which are heterotrophic bacteria, and are converted into nitrogen gas through a two-stage biological reaction with a denitrification process that decomposes organic matter into nitrogen gas using an electron donor. Disassembled.
[0003]
However, such a conventional nitrification denitrification method requires a large amount of organic matter such as methanol as an electron donor in the denitrification step, and also requires a large amount of oxygen in the nitrification step, so that the running cost is high. is there.
[0004]
In contrast, in recent years, ammonia nitrogen and nitrite nitrogen are reacted using autotrophic microorganisms (autotrophic bacteria) using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A method of denitrifying by letting go was proposed. If this method is used, it is not necessary to add an organic substance, so that the cost can be reduced as compared with a method using heterotrophic denitrifying bacteria. Moreover, since the yield of autotrophic microorganisms is low and the amount of sludge generated is significantly less than that of heterotrophic microorganisms, the amount of surplus sludge generated can be suppressed. Furthermore, there is also a feature that there is no generation of N 2 O observed by the conventional nitrification denitrification method, and the burden on the environment can be reduced.
[0005]
A biodenitrification process using this autotrophic denitrifying microorganism (hereinafter sometimes referred to as “ANAMMOX microorganism”) is described in Strous, M, et al., Appl. Microbiol. Biotechnol., 50, p.589- 596 (1998), and it is considered that ammonia nitrogen and nitrite nitrogen react and decompose into nitrogen gas in the following reaction.
[0006]
[Chemical 1]
Figure 0004872171
[0007]
The ANAMOX microorganisms involved in the reaction in the biological denitrification method are inhibited in the presence of a high concentration of nitrite nitrogen, and the activity decreases. When the inside of the denitrification tank is incompletely mixed (for example, plug flow type), the concentration of nitrite nitrogen near the raw water inlet may be locally increased. For this reason, when the nitrite nitrogen concentration in the raw water flowing into the denitrification tank is high, the raw water is diluted by circulating the treated water, etc., so that the nitrite nitrogen concentration in the denitrification tank is lower than the above inhibitory concentration. Keeping it is done.
[0008]
[Problems to be solved by the invention]
If the concentration of nitrite nitrogen in the raw water is constant, the circulation of a predetermined amount of treated water can prevent the inhibition of ANAMOX microorganisms due to the flow of high concentration nitrite nitrogen into the denitrification tank. When the nitrite nitrogen concentration fluctuates, such treatment water circulation cannot prevent the inhibition of the ANAMMOX microorganism by the high concentration nitrite nitrogen. That is, when raw water having a high nitrite nitrogen concentration flows into the denitrification tank, the nitrite nitrogen concentration in the vicinity of the raw water inlet of the denitrification tank rises, and this part of the ANAMMOX microorganism is inhibited. And the NAMMOX microorganisms in the vicinity of the raw water inlet of the denitrification tank are hindered and the activity is reduced, so that the concentration of nitrite nitrogen in the denitrification tank can not be decomposed due to the nitrite nitrogen remaining in the denitrification tank. In addition, the ANAMMOX microorganism is inhibited by this high concentration of nitrite nitrogen, and the activity is further reduced. Note that the lower limit of the concentration of nitrite nitrogen (NO 2 —N) at which the ANAMOX microorganism is inhibited is about 100 mg-N / L.
[0009]
The present invention solves the above-mentioned conventional problems, and in the case where the concentration of nitrite nitrogen in the raw water fluctuates, it reliably prevents the inhibition of ANAMMOX microorganisms by nitrite nitrogen flowing into the denitrification tank, and is stable and efficient. An object of the present invention is to provide a biological denitrification apparatus for performing biological denitrification.
[0010]
[Means for Solving the Problems]
The biological denitrification apparatus according to claim 1 has an inlet of raw water containing ammonia nitrogen and nitrite nitrogen and an outlet of the treatment liquid, wherein ammonia nitrogen is an electron donor, and nitrite nitrogen A denitrification tank that biologically denitrifies by the action of a denitrifying microorganism with an electron acceptor as an electron acceptor, a nitrite nitrogen concentration measuring means for measuring a nitrite nitrogen concentration in a liquid near the raw water inlet in the denitrification tank, A biological denitrification device comprising means for adjusting the flow rate of raw water flowing into the denitrification tank based on an output signal of the nitrite nitrogen concentration measurement means, wherein the nitrite nitrogen concentration of the liquid in the denitrification tank is previously An upper limit value (hereinafter referred to as “set upper limit value”) and a lower limit value (hereinafter referred to as “set lower limit value”) are set, and the sub-nitrogen concentration in the denitrification tank measured by the nitrite nitrogen concentration measuring means is set. When the nitrate nitrogen concentration exceeds the set upper limit, it is necessary to adjust the flow rate of the raw water. By reducing the raw water inflow, if less than the set lower limit value in the opposite, characterized in that to increase the raw water inflow.
[0011]
The biological denitrification apparatus according to claim 4 has an inlet of raw water containing ammonia nitrogen and nitrite nitrogen and an outlet of the treatment liquid, wherein ammonia nitrogen is used as an electron donor, and nitrite nitrogen A denitrification tank that biologically denitrifies by the action of a denitrifying microorganism using an electron acceptor, dilution water supply means for supplying dilution water for diluting the raw water, Nitrite nitrogen concentration measuring means for measuring nitrate nitrogen concentration, and means for adjusting the supply amount of dilution water supplied by the dilution water supply means based on an output signal of the nitrite nitrogen concentration measurement means It is a biological denitrification device, in which an upper limit value (hereinafter referred to as “set upper limit value”) and a lower limit value (hereinafter referred to as “set lower limit value”) of the nitrite nitrogen concentration in the liquid in the denitrification tank are set in advance. The subnitration of the liquid in the denitrification tank measured by the nitrite nitrogen concentration measuring means When the acidic nitrogen concentration exceeds the set upper limit value, the supply amount of the dilution water is increased by means for adjusting the supply amount of the dilution water. It is characterized by reducing the amount .
[0012]
Based on the nitrite nitrogen concentration in the liquid near the raw water inlet in the denitrification tank, if this nitrite nitrogen concentration exceeds a preset upper limit value, the inflow of nitrite nitrogen is reduced in advance. When the set lower limit is not reached, the inflow of nitrite nitrogen is increased to reliably prevent the inhibition of ANAMMOX microorganisms in the denitrification tank due to the inflow of high-concentration nitrite nitrogen. An efficient biological denitrification process can be performed.
[0013]
In the biological denitrification apparatus according to claim 1, the amount of nitrite nitrogen flowing into the denitrification tank is adjusted by controlling the amount of raw water flowing into the denitrification tank based on the measured nitrite nitrogen concentration. .
[0014]
In the biological denitrification apparatus according to claim 4 , based on the measured nitrite nitrogen concentration, the supply amount of dilution water for diluting the raw water is adjusted to control the nitrite nitrogen concentration of the inflow water of the denitrification tank, This adjusts the amount of nitrite nitrogen flowing into the denitrification tank.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a biological denitrification apparatus of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a system diagram showing an embodiment of the biological denitrification apparatus of the present invention.
[0017]
The biological denitrification apparatus shown in FIG. 1 has a USB (Upflow Sludge Bed) reaction tank 1 in which a granular sludge bed of ANAMOX microorganisms is formed as a denitrification tank. The raw water inflow pipe 2 is connected to the bottom of the pipe. A gas-liquid solid separation device 3 is provided in the upper part of the reaction tank 1, and a treated water discharge pipe 4 is drawn out from the gas-liquid solid separation device 3. A circulation pipe 5 is provided which branches to the treated water discharge pipe 4 and returns a part of the treated water to the raw water inflow pipe 2 as circulating water. P 1 is the raw water pump, P 2 is a circulation pump.
[0018]
In this biological denitrification apparatus, raw water is introduced into the bottom of the USB reaction tank 1 from the pipe 2 together with the circulating water from the pipe 5. The raw water introduced into the USB reaction tank 1 is biologically denitrified by the ANAMOX microorganisms while rising upward in the granulated sludge bed of the ANAMOX microorganisms, and the treated water is discharged out of the system through the pipe 4. A part of the treated water is circulated from the pipe 5 to the raw water introduction pipe 2.
[0019]
In this biological denitrification device, the liquid in the tank is drawn out from the raw water inflow portion at the bottom of the USB reaction tank 1, and after measuring the nitrite nitrogen concentration of this liquid, the pipes 6A and 6B and the nitrous acid returned to the USB reaction tank 1 An ion sensor installation unit 6 is provided. That is, after the nitrite ion concentration of the liquid in the tank extracted from the pipe 6A from the raw water inflow part of the reaction tank 1 is measured by the nitrite ion sensor installation part 6, the liquid after the measurement is returned to the reaction tank 1 from the pipe 6B. It is configured to return.
[0020]
As the nitrite ion sensor, a commercially available product such as a nitrite ion electrode manufactured by Electrochemical Instrument Co., Ltd. can be used.
[0021]
In the biological denitrification apparatus of FIG. 1, the operation of the raw water pump P 1 is controlled based on the nitrite ion concentration measured by such a nitrite ion sensor.
[0022]
That is, an upper limit value (hereinafter sometimes referred to as “set upper limit value”) and a lower limit value (hereinafter sometimes referred to as “set lower limit value”) of the nitrite ion concentration of the liquid in the tank are set in advance. When the concentration of nitrite ions in the liquid in the tank exceeds this upper limit value, the raw water inflow rate is reduced, and conversely, when it falls below the lower limit value, the raw water inflow rate is increased.
[0023]
As described above, ANAMOX microorganisms are inhibited when the NO 2 -N concentration is 100 mg / L or more, and the activity is almost lost at 200 mg / L or more. Therefore, the set upper limit value needs to be set to a value lower than 200 mg-N / L. On the other hand, the microorganisms in the tank are present in the form of flocs or biofilms, and in order to sufficiently infiltrate the substrate into the flocs or biofilms and effectively use the internal microorganisms, the substrate concentration in the bulk Is preferably higher. Although the set upper limit value varies depending on the target processing efficiency and other conditions, it is generally preferable that the NO 2 —N concentration is about 50 to 200 mg-N / L, particularly 75 to 150 mg / L. On the other hand, if the set lower limit value is excessively low, inhibition of the activity of the ANAMOX microorganism can be surely prevented. However, since the processing efficiency deteriorates, the set lower limit value varies depending on the target processing efficiency and other conditions. In general, the NO 2 —N concentration is preferably about 5 to 70 mg-N / L, particularly 20 to 50 mg / L.
[0024]
In the present invention, for example, the raw water inflow can be adjusted as follows.
[0025]
(1) When the reference value of the raw water inflow amount is set in advance and the NO 2 -N concentration of the liquid in the tank exceeds the set upper limit value, the raw water inflow amount is slightly lower than the reference value, for example, 5 to 50%. reduced, back to the reference value raw water inflow when the NO 2 -N concentration in the bath within the liquid falls below a set limit value.
[0026]
(2) When the NO 2 -N concentration of the liquid in the tank exceeds the set upper limit, the raw water inflow amount is reduced slightly, for example, 5 to 50%, and the NO 2 -N concentration of the liquid in the tank is reduced. When it falls below the set lower limit, the raw water inflow is increased slightly, for example, 5 to 50% from the current level.
[0027]
(3) In (1) and (2 ) above, the amount of reduction or increase in the amount of raw water inflow is changed according to the difference between the NO 2 -N concentration of the liquid in the tank and the set upper limit value or the set lower limit value. That is, for example, when the NO 2 -N concentration of the liquid in the tank is significantly higher than the set upper limit value, the amount of raw water inflow is greatly reduced, and the NO 2 -N concentration of the liquid in the tank is slightly lower than the set upper limit value. If it is too high, the raw water inflow will be slightly reduced.
[0028]
In the biological denitrification apparatus of FIG. 1, the operation of the raw water pump P 1 is controlled based on the nitrite ion concentration measured by such a nitrite ion sensor, but the operation of the circulation pump P 2 is controlled to control the raw water. The amount of circulating water to be diluted may be adjusted.
[0029]
In this case, when the nitrite ion concentration of the liquid in the tank exceeds the set upper limit value, the circulating water amount is increased, and conversely, when the nitrite ion concentration is lower than the set value, the circulating water amount is decreased.
[0030]
For example, the amount of circulating water can be adjusted as follows.
[0031]
(1) A reference value for the circulating water amount is set in advance, and when the NO 2 -N concentration of the liquid in the tank exceeds the set upper limit value, the circulating water amount is increased slightly, for example, 5 to 50% from the reference value. When the NO 2 -N concentration of the liquid in the tank falls below the set lower limit value, the amount of circulating water is returned to the reference value.
[0032]
(2) When the NO 2 -N concentration of the liquid in the tank exceeds the set upper limit value, the amount of circulating water is increased slightly, for example 5 to 50%, and the NO 2 -N concentration of the liquid in the tank is set When it falls below the lower limit, the amount of circulating water is reduced slightly, for example, 5 to 50% from the current level.
[0033]
(3) In (1) and (2 ) above, the amount of reduction or increase in the circulating water amount is changed according to the difference between the NO 2 —N concentration of the liquid in the tank and the set upper limit value or the set lower limit value. That is, for example, when the NO 2 -N concentration of the liquid in the tank is significantly higher than the set upper limit value, the amount of circulating water is greatly increased, and the NO 2 -N concentration of the liquid in the tank is slightly lower than the set upper limit value. If it is high, increase the amount of circulating water slightly.
[0034]
By adjusting the amount of circulating water in this way, the concentration of nitrite nitrogen in the inflow water of the reaction tank 1 is adjusted, and the concentration of nitrite nitrogen in the raw water inflow part of the reaction tank 1 is maintained in a suitable concentration range. Can do.
[0035]
In addition, you may make it provide the supply means of dilution water different from circulating water, and control the action | operation of this dilution water supply pump. Moreover, you may control both the amount of dilution water (circulation water) and the amount of raw | natural water. In this case, the amount of inflow water flowing into the reaction tank can be made constant by increasing the amount of raw water and decreasing the amount of diluted water, or reducing the amount of raw water and increasing the amount of diluted water.
[0036]
The measurement by the nitrite ion sensor may be continuous measurement or intermittent measurement. When measuring intermittently, the measurement frequency is not particularly limited, and is measured appropriately based on the possibility of fluctuations in the concentration of nitrite ions in the liquid in the tank due to fluctuations in the quality of raw water and other treatment conditions, Generally, it is preferable to measure at a frequency of once every 0.1 to 24 hours.
[0037]
In the biological denitrification apparatus shown in FIG. 1, a nitrite ion sensor installation part is provided outside the reaction tank 1, and the liquid in the tank is extracted from the reaction tank 1 to measure the nitrite nitrogen concentration. A nitrate ion sensor installation portion may be provided at the raw water inlet portion in the reaction tank 1, and the nitrite nitrogen concentration of the liquid in the tank may be directly measured in the reaction tank 1.
[0038]
The biological denitrification apparatus shown in FIG. 1 uses a USB reaction tank that holds granulated sludge of ANAMMOX microorganisms as the denitrification tank, but in the present invention, there is no particular limitation on the type of the denitrification tank, and the sludge Any type of suspension method, fixed bed, fluidized bed, carrier addition method and the like may be used.
[0039]
For example, when a sludge suspension type denitrification tank is used as a biological denitrification apparatus, a solid-liquid separation means such as a precipitation tank is provided at the subsequent stage of the denitrification tank, and the separated sludge is returned to the denitrification tank. In such a case, a nitrite ion sensor may be provided in the vicinity of the raw water inlet of the denitrification tank.
[0040]
In the biological denitrification method of the present invention, the raw water to be treated is water containing ammoniacal nitrogen and nitrite nitrogen, and may contain organic matter and organic nitrogen. It is preferable to decompose it to ammonia nitrogen beforehand, and when the dissolved oxygen concentration is high, it is preferable to remove the dissolved oxygen as necessary. The raw water may contain an inorganic substance. The raw water may be a mixture of a liquid containing ammonia nitrogen and a liquid containing nitrite nitrogen. For example, wastewater containing ammonia nitrogen can be subjected to aerobic treatment in the presence of ammonia oxidizing microorganisms, and a portion of ammonia nitrogen, preferably 1/2 of which can be partially oxidized to nitrous acid, can be used as raw water. . Furthermore, a portion of the wastewater containing ammonia nitrogen is subjected to aerobic treatment in the presence of ammonia oxidizing microorganisms, the ammonia nitrogen is oxidized to nitrous acid and mixed with the remainder of the waste water containing ammonia nitrogen. It is also good.
[0041]
In general, wastewater containing ammonia nitrogen, organic nitrogen and organic matter such as sewage, human waste, anaerobic nitrification and desorption liquid is often treated. In this case, these are treated aerobically or anaerobically. Thus, it is preferable to use a liquid obtained by decomposing organic matter, decomposing organic nitrogen into ammonia nitrogen, and further performing partial nitritation or partial nitritation.
[0042]
The ratio of ammonia nitrogen to nitrite nitrogen in the raw water is preferably 0.5 to 2, particularly 1 to 1.5, with respect to ammonia nitrogen 1 in terms of molar ratio. The concentrations of ammonia nitrogen and nitrite nitrogen in the raw water are preferably 5 to 1000 mg / L and 5 to 200 mg / L, respectively, but this is not limited as long as the treated water is circulated and diluted.
[0043]
As biological denitrification conditions of raw water, for example, the temperature of the liquid in the reaction tank is 10 to 40 ° C., particularly 20 to 35 ° C., the pH is 5 to 9, particularly 6 to 8, and the dissolved oxygen concentration is 0 to 2.5 mg / L. In particular, 0 to 0.2 mg / L, BOD concentration is 0 to 50 mg / L, particularly 0 to 20 mg / L, nitrogen load is 0.1 to 10 kg-N / m 3 · day, especially 0.2 to 5 kg-N It is preferable to be in the range of / m 3 · day.
[0044]
As shown in FIG. 1, when granule sludge is formed in the UASB reaction tank 1, it takes a period of time to form granules only with microorganisms. Therefore, a substance serving as a nucleus is added, and a biofilm of ANAMMOX microorganisms around the nucleus. It is desirable to form. In this case, examples of the nucleus include microbial granules and abiotic simple substances.
[0045]
Examples of the microorganism granules used as the nucleus include anaerobic microorganisms such as methane bacteria granules and heterotrophic denitrifying bacteria granules. As the methane bacteria granule, those used in a methane fermentation tank in which methane fermentation is performed by the UASB method or the EGSB method can be applied. Further, as the heterotrophic denitrification granule, those used in a normal denitrification tank such as UASB or EGSB can be applied. These granules can be used as they are or as crushed materials thereof. Autotrophic denitrifying microorganisms are likely to adhere to such microbial granules, and the time required for granule formation is shortened. It is also more economical than using abiotic materials as the core.
[0046]
Examples of the abiotic material used as the core include activated carbon, zeolite, silica sand, diatomaceous earth, fired ceramic, ion exchange resin, and the like, preferably made of activated carbon, zeolite, and the like, and a particle size of 50 to 200 μm, preferably 50. A carrier having an average specific gravity of 1.01 to 2.5, preferably 1.1 to 2.0, can be mentioned.
[0047]
The granulated sludge of the ANAMOX microorganism thus formed has an average particle size of 0.25 to 3 mm, preferably 0.25 to 2 mm, more preferably about 0.25 to 1.5 mm, and an average specific gravity of 1. It is desirable that it is 01 to 2.5, preferably 1.1 to 2.0. The smaller the granule particle size, the larger the specific surface area, which is preferable in that a high sludge concentration is maintained and denitrification is efficiently performed.
[0048]
【Effect of the invention】
As described in detail above, according to the biological denitrification apparatus of the present invention, in the biological denitrification treatment by the ANAMOX microorganism, even if the concentration of nitrite nitrogen in the raw water fluctuates, the nitrite that flows into the denitrification tank Stable and efficient biological denitrification can be performed by reliably preventing the inhibition of the ANAMMOX microorganism by nitrogen.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a biological denitrification apparatus of the present invention.
[Explanation of symbols]
1 USB reaction tank 3 Gas-liquid solid separation device 6 Nitrite ion sensor installation part

Claims (7)

アンモニア性窒素と亜硝酸性窒素を含有する原水の流入口と、処理液の流出口とを有し、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒微生物の作用により生物脱窒する脱窒槽と、
該脱窒槽内の原水流入口付近の液の亜硝酸性窒素濃度を測定する亜硝酸性窒素濃度測定手段と、
該亜硝酸性窒素濃度測定手段の出力信号に基づいて該脱窒槽に流入する原水の流量を調節する手段と
を備える生物脱窒装置であって、
予め該脱窒槽内液の亜硝酸性窒素濃度の上限値(以下「設定上限値」と称す)と下限値(以下「設定下限値」と称す)を設定しておき、該亜硝酸性窒素濃度測定手段で測定された該脱窒槽内液の亜硝酸性窒素濃度が該設定上限値を越えた場合には、該原水の流量を調節する手段により原水流入量を低減させ、逆に該設定下限値を下回る場合には原水流入量を増加させることを特徴とする生物脱窒装置。
The denitrifying microorganism has an inlet for raw water containing ammonia nitrogen and nitrite nitrogen and an outlet for the treatment liquid, and uses ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A denitrification tank that biologically denitrifies by action,
Nitrite nitrogen concentration measuring means for measuring the nitrite nitrogen concentration of the liquid near the raw water inlet in the denitrification tank;
A biological denitrification apparatus comprising: means for adjusting a flow rate of raw water flowing into the denitrification tank based on an output signal of the nitrite nitrogen concentration measurement means ,
An upper limit value (hereinafter referred to as “setting upper limit value”) and a lower limit value (hereinafter referred to as “setting lower limit value”) of the nitrite nitrogen concentration of the liquid in the denitrification tank are set in advance, and the nitrite nitrogen concentration When the concentration of nitrite nitrogen in the liquid in the denitrification tank measured by the measuring means exceeds the set upper limit value, the raw water inflow amount is reduced by means for adjusting the flow rate of the raw water, and conversely the set lower limit value. A biological denitrification device characterized by increasing the raw water inflow when the value is lower .
請求項1において、前記設定上限値はNOIn Claim 1, the set upper limit value is NO. 2 −N濃度で50〜200mg−N/Lの範囲で設定され、前記設定下限値はNO-N concentration is set in the range of 50 to 200 mg-N / L, and the lower limit value is NO. 2 −N濃度で5〜70mg−N/Lの範囲で設定されることを特徴とする生物脱窒装置。A biological denitrification apparatus, wherein the N concentration is set in a range of 5 to 70 mg-N / L. 請求項2において、予め原水流入量の基準値を定めておき、前記脱窒槽内液のNOIn Claim 2, the reference | standard value of raw | natural water inflow amount is defined previously, NO of the liquid in the said denitrification tank 2 −N濃度が前記設定上限値を超えた場合には、原水流入量を基準値よりも5〜50%低減し、該脱窒槽内液のNOWhen the -N concentration exceeds the set upper limit, the raw water inflow is reduced by 5 to 50% from the reference value, and the NO in the denitrification tank is reduced. 2 −N濃度が前記設定下限値を下回った場合には原水流入量を基準値に戻すか、或いは、原水流入量を現状よりも5〜50%増加させることを特徴とする生物脱窒装置。A biological denitrification apparatus characterized in that when the N concentration falls below the set lower limit, the raw water inflow is returned to the reference value or the raw water inflow is increased by 5 to 50% from the current level. アンモニア性窒素と亜硝酸性窒素を含有する原水の流入口と、処理液の流出口とを有し、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒微生物の作用により生物脱窒する脱窒槽と、
原水を希釈するための希釈水を供給する希釈水供給手段と、
前記脱窒槽内の原水流入口付近の液の亜硝酸性窒素濃度を測定する亜硝酸性窒素濃度測定手段と、
該亜硝酸性窒素濃度測定手段の出力信号に基づいて前記希釈水供給手段が供給する希釈水の供給量を調節する手段と
を備える生物脱窒装置であって、
予め該脱窒槽内液の亜硝酸性窒素濃度の上限値(以下「設定上限値」と称す)と下限値(以下「設定下限値」と称す)を設定しておき、該亜硝酸性窒素濃度測定手段で測定された該脱窒槽内液の亜硝酸性窒素濃度が該設定上限値を越えた場合には、該希釈水の供給量を調節する手段により希釈水の供給量を増加させ、逆に該設定下限値を下回る場合には希釈水の供給量を低減させることを特徴とする生物脱窒装置。
The denitrifying microorganism has an inlet for raw water containing ammonia nitrogen and nitrite nitrogen and an outlet for the treatment liquid, and uses ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A denitrification tank that biologically denitrifies by action,
Dilution water supply means for supplying dilution water for diluting the raw water;
Nitrite nitrogen concentration measuring means for measuring the nitrite nitrogen concentration of the liquid in the vicinity of the raw water inlet in the denitrification tank;
A biological denitrification apparatus comprising: means for adjusting a supply amount of dilution water supplied by the dilution water supply means based on an output signal of the nitrite nitrogen concentration measurement means ;
An upper limit value (hereinafter referred to as “setting upper limit value”) and a lower limit value (hereinafter referred to as “setting lower limit value”) of the nitrite nitrogen concentration of the liquid in the denitrification tank are set in advance, and the nitrite nitrogen concentration When the concentration of nitrite nitrogen in the liquid in the denitrification tank measured by the measuring means exceeds the set upper limit value, the dilution water supply amount is increased by means for adjusting the dilution water supply amount, and the reverse In addition, the biological denitrification apparatus reduces the supply amount of dilution water when the set lower limit value is not reached .
請求項4において、前記設定上限値はNOIn Claim 4, the set upper limit value is NO. 2 −N濃度で50〜200mg−N/Lの範囲で設定され、前記設定下限値はNO-N concentration is set in the range of 50 to 200 mg-N / L, and the lower limit value is NO. 2 −N濃度で5〜70mg−N/Lの範囲で設定されることを特徴とする生物脱窒装置。A biological denitrification apparatus, wherein the N concentration is set in a range of 5 to 70 mg-N / L. 請求項5において、前記脱窒槽は処理液の一部を循環水として原水の流入口に戻す循環配管を有し、該循環水を前記希釈水とすることを特徴とする生物脱窒装置。6. The biological denitrification apparatus according to claim 5, wherein the denitrification tank has a circulation pipe for returning a part of the processing liquid as circulating water to the raw water inlet, and the circulating water is used as the dilution water. 請求項6において、予め循環水量の基準値を定めておき、前記脱窒槽内液のNOIn Claim 6, the reference value of circulating water amount is defined beforehand, and NO of the liquid in the said denitrification tank 2 −N濃度が前記設定上限値を超えた場合には、循環水量を基準値よりも5〜50%増加させ、前記脱窒槽内液のNOWhen the -N concentration exceeds the set upper limit value, the amount of circulating water is increased by 5 to 50% from the reference value, and the NO in the denitrification tank is increased. 2 −N濃度が前記設定下限値を下回った場合には循環水量を基準値に戻すか、或いは、循環水量を現状よりも5〜50%低減させることを特徴とする生物脱窒装置。A biological denitrification apparatus characterized by returning the circulating water amount to a reference value when the -N concentration falls below the set lower limit value or reducing the circulating water amount by 5 to 50% from the current level.
JP2001235030A 2001-08-02 2001-08-02 Biological denitrification equipment Expired - Fee Related JP4872171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235030A JP4872171B2 (en) 2001-08-02 2001-08-02 Biological denitrification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235030A JP4872171B2 (en) 2001-08-02 2001-08-02 Biological denitrification equipment

Publications (2)

Publication Number Publication Date
JP2003047990A JP2003047990A (en) 2003-02-18
JP4872171B2 true JP4872171B2 (en) 2012-02-08

Family

ID=19066536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235030A Expired - Fee Related JP4872171B2 (en) 2001-08-02 2001-08-02 Biological denitrification equipment

Country Status (1)

Country Link
JP (1) JP4872171B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037257A (en) * 2017-11-23 2018-05-15 南京大学 It is a kind of to study test method and the device that iron ion influences Anammox efficiency

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185925A (en) * 2003-12-25 2005-07-14 昭彦 ▲吉▼田 Treatment method of organic waste liquid of high concentration, circulation treatment method of organic waste liquid and circulating treatment apparatus therefor
JP2005238166A (en) * 2004-02-27 2005-09-08 Kurita Water Ind Ltd Anaerobic ammonoxidation treatment method
JP4910266B2 (en) * 2004-03-01 2012-04-04 栗田工業株式会社 Nitrification method and treatment method of ammonia-containing nitrogen water
CN1938233B (en) * 2004-03-30 2010-12-29 财团法人熊本高新技术产业财团 Method for treating ammonia-containing wastewater
JP4945891B2 (en) * 2004-10-18 2012-06-06 株式会社日立プラントテクノロジー Operation method of anaerobic ammonia oxidation equipment
JP4688059B2 (en) * 2004-10-29 2011-05-25 株式会社日立プラントテクノロジー Anaerobic ammonia oxidation apparatus and operation method thereof
JP5043671B2 (en) * 2004-11-05 2012-10-10 水ing株式会社 Biological denitrification method and apparatus
JP4375567B2 (en) * 2005-03-04 2009-12-02 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007190510A (en) * 2006-01-20 2007-08-02 Hitachi Zosen Corp Biological wastewater treatment method
JP2009136725A (en) * 2007-12-04 2009-06-25 Hitachi Plant Technologies Ltd Ammonia-containing waste water treatment apparatus
JP5141967B2 (en) * 2008-06-02 2013-02-13 株式会社石垣 Biological denitrification equipment
CN102336472B (en) * 2011-09-08 2013-07-31 大连理工大学 Electrically enhanced ANAMMOX device
JP6493867B2 (en) * 2014-06-06 2019-04-03 住友重機械工業株式会社 Anaerobic treatment device, anaerobic treatment method, and display device for anaerobic treatment device
CN108046426A (en) * 2018-01-03 2018-05-18 北京交通大学 Reduce the method that nitrate nitrogen generates in anaerobic ammonium oxidation process
CN109809558B (en) * 2019-03-19 2021-08-17 东北大学 Composite denitrification reactor based on sulfur-based filler and denitrification treatment process
CN109761453A (en) * 2019-03-20 2019-05-17 哈尔滨工业大学(威海) The method that marine culture wastewater is handled by denitrifying ammoxidation approach using ocean anaerobic ammonia oxidizing bacteria

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155999A (en) * 1985-12-27 1987-07-10 Hitachi Plant Eng & Constr Co Ltd Method for controlling biological nitrification and denitrification process
JPH08108195A (en) * 1994-10-14 1996-04-30 Meidensha Corp Method and apparatus for removing nitrogen in water
JP3707083B2 (en) * 1994-10-28 2005-10-19 栗田工業株式会社 Nitrification apparatus and method of operating nitrification apparatus
JP3460745B2 (en) * 1995-01-17 2003-10-27 株式会社荏原製作所 Biological nitrification denitrification method and apparatus
JP3937664B2 (en) * 1999-10-12 2007-06-27 栗田工業株式会社 Biological nitrogen removal method and apparatus
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor
JP5055667B2 (en) * 2001-07-16 2012-10-24 栗田工業株式会社 Biological denitrification method and biological denitrification apparatus
JP2003024984A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037257A (en) * 2017-11-23 2018-05-15 南京大学 It is a kind of to study test method and the device that iron ion influences Anammox efficiency

Also Published As

Publication number Publication date
JP2003047990A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
JP4951826B2 (en) Biological nitrogen removal method
US7329352B2 (en) Nitrifying method of treating water containing ammonium-nitrogen
JP4872171B2 (en) Biological denitrification equipment
JP4572504B2 (en) Biological denitrification method
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
US8323487B2 (en) Waste water treatment apparatus
JP4882175B2 (en) Nitrification method
JPWO2004074191A1 (en) Ammonia nitrogen-containing water treatment method
JP4453397B2 (en) Biological nitrogen removal method
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4867098B2 (en) Biological denitrification method and apparatus
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JPH08192185A (en) Biologically nitrifying and denitrifying method
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4923348B2 (en) Biological denitrification method
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP2003024984A (en) Biological denitrification method and biological denitrification apparatus
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP4867099B2 (en) Biological denitrification method
JP2004255269A (en) Denitrification method and denitrification apparatus
CN108439588A (en) The pulling flow type reaction unit and method of nitrosation-anaerobic ammoxidation process stabilizing operation
JP3837757B2 (en) Method for treating selenium-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4872171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees