Nothing Special   »   [go: up one dir, main page]

JP2016071864A - プロジェクタ装置 - Google Patents

プロジェクタ装置 Download PDF

Info

Publication number
JP2016071864A
JP2016071864A JP2015168412A JP2015168412A JP2016071864A JP 2016071864 A JP2016071864 A JP 2016071864A JP 2015168412 A JP2015168412 A JP 2015168412A JP 2015168412 A JP2015168412 A JP 2015168412A JP 2016071864 A JP2016071864 A JP 2016071864A
Authority
JP
Japan
Prior art keywords
projection
image
unit
control unit
original image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015168412A
Other languages
English (en)
Inventor
聡 神谷
Satoshi Kamiya
聡 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US14/859,197 priority Critical patent/US20160091987A1/en
Publication of JP2016071864A publication Critical patent/JP2016071864A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

【課題】ユーザの意図する位置に対して誤差を生じさせることなくタッチ操作することが可能なプロジェクタ装置を提供する。
【解決手段】プロジェクタ装置は、出力画像を投影する投影部と、出力画像が投影される投影面から投影部までの距離情報を検出し、かつ、ユーザによる指示操作を空間的に検出する検出部と、距離情報を基に、原画像の各画素が投影される空間的な位置を算出し、原画像を出力画像に幾何補正する制御部と、を備える。制御部は、算出結果を基に、指示操作によって指示された位置と原画像における画素の位置を対応づける。
【選択図】図1

Description

本開示は、ジェスチャ操作可能なプロジェクタ装置に関する。
特許文献1は、複数のカメラを設けて、フォーカス調整やあおり投射や投射対象物の表面の形状により生ずる投射画像の歪みの補正を行うことができ、スクリーンに対して、その外形に投射画像を合わせる形で補正を行うプロジェクタを開示する。また、指差し位置を検出し、投影したアイコンに応じた動作を行うことができるプロジェクタを開示する。
特開2005−229415号公報
しかしながら、特許文献1は、スクリーンに複数の対象点を投影して、指差し位置から最も近い対象点を指差し位置の座標として近似的に決定しているため、ユーザが意図する指差し位置とプロジェクタが認識する指差し位置に誤差が生じる。
本開示は、タッチした位置と原画像の位置を1対1で対応させることにより、ユーザの意図する位置に対して誤差を生じさせることなくタッチ操作することが可能なプロジェクタ装置を提供する。
本開示におけるプロジェクタ装置は、出力画像を投影する投影部と、出力画像が投影される投影面から投影部までの距離情報を検出し、かつ、ユーザによる指示操作を空間的に検出する検出部と、距離情報を基に、原画像の各画素が投影される空間的な位置を算出し、原画像を出力画像に幾何補正する制御部と、を備える。制御部は、算出結果を基に、指示操作によって指示された位置と原画像における画素の位置とを対応づける。
本開示におけるプロジェクタ装置は、幾何補正された投影画像であってもユーザの意図する位置に対して誤差を生じさせることなくタッチ操作可能である。
プロジェクタ装置が壁に画像を投影するイメージ図 プロジェクタ装置がテーブルに画像を投影するイメージ図 プロジェクタ装置の電気的構成を示すブロック図 距離検出部の電気的構成を示すブロック図 距離検出部により取得された距離情報を説明するための図 プロジェクタ装置の光学的構成を示すブロック図 プロジェクタ装置の動作を説明するための図 プロジェクタ装置の動作を説明するためのフローチャート プロジェクタ装置の動作を説明するためのフローチャート プロジェクタ装置の動作を説明するためのフローチャート
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
(実施の形態1)
以下、図1〜9を用いて、実施の形態1を説明する。
[1−1.構成]
[1−1−1.全体構成]
本開示に係るユーザインターフェース装置200を搭載したプロジェクタ装置100を説明する。
図1及び図2を用いて、プロジェクタ装置100による画像投影動作の概要を説明する。図1は、プロジェクタ装置100が投影面140としての壁140aに画像を投影するイメージ図である。図2は、プロジェクタ装置100が投影面140としてのテーブル140bに画像を投影するイメージ図である。
図1及び図2に示すように、プロジェクタ装置100は、投影部170と、駆動部110と、電源部120とを備える。投影部170と電源部120は、駆動部110を介して接続される。電源部120は、配線ダクト130に固定される。投影部170及び駆動部110を構成する各部と電気的に接続される配線は、電源部120及び配線ダクト130を介してコンセント等の電源と接続される。これにより、プロジェクタ装置100及び駆動部110に対して電力が供給される。投影部170は、開口部101を有している。投影部170は、開口部101を介して画像の投影を行う。
駆動部110は、投影部170の投影方向を変更するよう駆動することができる。駆動部110は、図1に示すように投影部170の投影方向を壁140aの方向になるよう駆動することができる。これにより、投影部170は、壁140aに対して投影画像152を投影することができる。同様に、駆動部110は、図2に示すように投影部170の投影方向をテーブル140bの方向になるよう駆動することができる。これにより、投影部170は、テーブル140bに対して投影画像152を投影することができる。駆動部110は、ユーザのマニュアル操作に基づいて駆動してもよいし、所定のセンサの検出結果に応じて自動的に駆動してもよい。また、壁140aに投影する画像と、テーブル140bに投影する画像とは、内容を異ならせてもよいし、同一のものにしてもよい。
プロジェクタ装置100は、ユーザインターフェース装置200を搭載している。これにより、プロジェクタ装置100は、投影面140(壁140a、テーブル140b)に投影された画像の投影領域141があたかもタッチパネルであるかのような操作感覚をユーザに提供することができる。すなわち、ユーザは、投影面140に投影された画像を指などでタッチ等して、ポインティング動作をすることができる。
[1−1−2.プロジェクタ装置の構成]
図3は、プロジェクタ装置100の電気的構成を示すブロック図である。プロジェクタ装置100は、ユーザインターフェース装置200、光源部300、画像生成部400、投影光学系500を備えている。ユーザインターフェース装置200は、制御部210、メモリ220、距離検出部230を備えている。
制御部210は、プロジェクタ装置100全体を制御する半導体素子である。すなわち、制御部210は、ユーザインターフェース装置200を構成する各部(メモリ220、距離検出部230)及び、光源部300、画像生成部400、投影光学系500の動作を制御する。制御部210は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。
メモリ220は、各種の情報を記憶する記憶素子である。メモリ220は、フラッシュメモリや強誘電体メモリなどで構成される。メモリ220は、プロジェクタ装置100(ユーザインターフェース装置200を含む)を制御するための制御プログラム等を記憶する。また、メモリ220は、制御部210から供給された各種の情報を記憶する。
距離検出部230は、例えば、TOF(Time−of−Flight)センサから構成され、対向する面までの距離を直線的に検出する。距離検出部230が壁140aと対向しているときは、距離検出部230から壁140aまでの距離を検出する。同様に、距離検出部230がテーブル140bと対向しているときは、距離検出部230からテーブル140bまでの距離を検出する。
図4Aは、距離検出部230の電気的構成を示すブロック図である。図4Aに示すように、距離検出部230は、赤外検出光を照射する赤外光源部231と、対向する面で反射した赤外検出光を受光する赤外受光部232とから構成される。赤外光源部231は、開口部101を介して、赤外検出光を周囲一面に拡散されるように照射する。赤外光源部231は、例えば、850nm〜950nmの波長の赤外光を、赤外検出光として用いる。
制御部210は、赤外光源部231が照射した赤外検出光の位相をメモリ220に記憶しておく。対向する面が距離検出部230から等距離になく、傾きや形状を有する場合、赤外受光部232の撮像面上に配列された複数の画素は、それぞれ別々のタイミングで反射光を受光する。別々のタイミングで受光するため、赤外受光部232で受光する赤外検出光は、各画素で位相が異なってくる。制御部210は、赤外受光部232が各画素で受光した赤外検出光の位相をメモリ220に記憶する。
制御部210は、赤外光源部231が照射した赤外検出光の位相と、赤外受光部232が各画素で受光した赤外検出光の位相とをメモリ220から読み出す。制御部210は、距離検出部230が照射した赤外検出光と、受光した赤外検出光との位相差に基づいて、距離検出部230から対向する面までの距離を測定することができる。
図4Bは、距離検出部230(赤外受光部232)により取得された距離情報を説明するための図である。距離検出部230は、受光した赤外検出光による赤外画像153を構成する画素の一つ一つについて距離を検出する。これにより、制御部210は、距離検出部230が受光した赤外画像153の画角全域対する距離の検出結果を画素単位で得ることができる。以下の説明では、図4Bに示すように、赤外画像153の横方向にX軸をとり、縦方向にY軸をとる。そして、検出した距離方向にZ軸をとる。制御部210は、距離検出部230の検出結果に基づいて、赤外画像153を構成する各画素について、XYZの三軸の座標(X、Y、Z)を取得できる。すなわち、制御部210は、距離検出部230の検出結果に基づいて、距離情報を取得できる。
上記では、距離検出部230としてTOFセンサを例示したが、本開示はこれに限定されない。すなわち、ランダムドットパターンのように、既知のパターンを投光してそのパターンのズレから距離を算出するものであっても良いし、ステレオカメラによる視差を利用したものであってもよい。
続いて、プロジェクタ装置100に搭載された部材のうち、ユーザインターフェース装置200以外の部材である光源部300、画像生成部400、投影光学系500の構成について、図5を用いて説明する。図5は、プロジェクタ装置100の光学的構成を示すブロック図である。図5に示すように、光源部300は、投影画像152を生成するために必要な光を、画像生成部400に対して供給する。画像生成部400は生成した画像を投影光学系500に供給する。投影光学系500は、画像生成部400から供給された画像に対してフォーカシング、ズーミング等の光学的変換を行う。投影光学系500は、開口部101と対向しており、開口部101から画像が投影される。投影光学系500は、図1及び図2に示す投影部170に対応する。
まず、光源部300の構成について説明する。図5に示すように、光源部300は、半導体レーザー310、ダイクロイックミラー330、λ/4板340、蛍光体ホイール360などを備えている。
半導体レーザー310は、例えば、波長440nm〜455nmのS偏光の青色光を発光する固体光源である。半導体レーザー310から出射されたS偏光の青色光は、導光光学系320を介してダイクロイックミラー330に入射される。
ダイクロイックミラー330は、例えば、波長440nm〜455nmのS偏光の青色光に対しては98%以上の高い反射率を有する一方、波長440nm〜455nmのP偏光の青色光及び、波長490nm〜700nmの緑色光〜赤色光に対しては偏光状態に関わらず95%以上の高い透過率を有する光学素子である。ダイクロイックミラー330は、半導体レーザー310から出射されたS偏光の青色光を、λ/4板340の方向に反射する。
λ/4板340は、直線偏光を円偏光に変換又は、円偏光を直線偏光に変換する偏光素子である。λ/4板340は、ダイクロイックミラー330と蛍光体ホイール360との間に配置される。λ/4板340に入射したS偏光の青色光は、円偏光の青色光に変換された後、レンズ350を介して蛍光体ホイール360に照射される。
蛍光体ホイール360は、高速回転が可能なように構成されたアルミ平板である。蛍光体ホイール360の表面には、拡散反射面の領域であるB領域と、緑色光を発光する蛍光体が塗付されたG領域と、赤色光を発光する蛍光体が塗付されたR領域とが複数形成されている。蛍光体ホイール360のB領域に照射された円偏光の青色光は拡散反射されて、円偏光の青色光として再びλ/4板340に入射する。λ/4板340に入射した円偏光の青色光は、P偏光の青色光に変換された後、再びダイクロイックミラー330に入射する。このときダイクロイックミラー330に入射した青色光は、P偏光であるためダイクロイックミラー330を透過して、導光光学系370を介して画像生成部400に入射する。
蛍光体ホイール360のG領域に照射された青色光は、G領域上に塗付された蛍光体を励起して緑色光を発光させる。G領域上から発光された緑色光は、ダイクロイックミラー330に入射する。このときダイクロイックミラー330に入射した緑色光は、ダイクロイックミラー330を透過して、導光光学系370を介して画像生成部400に入射する。同様に、蛍光体ホイール360のR領域に照射された青色光は、R領域上に塗付された蛍光体を励起して赤色光を発光させる。R領域上から発光された赤色光は、ダイクロイックミラー330に入射する。このときダイクロイックミラー330に入射した赤色光は、ダイクロイックミラー330を透過して、導光光学系370を介して画像生成部400に入射する。
蛍光体ホイール360は高速回転しているため、光源部300から画像生成部400へは、青色光、緑色光、赤色光が時分割されて出射する。
画像生成部400は、制御部210から供給される映像信号に応じた投影画像を生成する。画像生成部400は、DMD(Digital−Mirror−Device)420などを備えている。DMD420は、多数のマイクロミラーを平面に配列した表示素子である。DMD420は、制御部210から供給される映像信号に応じて、配列したマイクロミラーのそれぞれを偏向させて、入射する光を空間的に変調させる。
光源部300から画像生成部400へは、青色光、緑色光、赤色光が時分割で出射してくる。DMD420は、導光光学系410を介して、時分割に出射されてくる青色光、緑色光、赤色光を順に繰り返し受光する。DMD420は、それぞれの色の光が出射されてくるタイミングに同期して、マイクロミラーのそれぞれを偏向させる。これにより、画像生成部400は、映像信号に応じた投影画像152を生成する。DMD420は、映像信号に応じて、投影光学系500に進行させる光と、投影光学系500の有効範囲外へと進行させる光とにマイクロミラーを偏向させる。これにより、画像生成部400は、生成した投影画像152を、投影光学系500に対して供給することができる。
投影光学系500は、フォーカスレンズやズームレンズなどの光学部材510を備える。投影光学系500は、画像生成部400から進行してきた光を拡大して投影面140へ投影する。
上記では、プロジェクタ装置100の一例として、DMD420を用いたDLP(Digital―Light−Processing)方式による構成を説明したが、本開示はこれに限定されない。すなわち、プロジェクタ装置100として、液晶方式による構成を採用しても構わない。
上記では、プロジェクタ装置100の一例として、蛍光体ホイール360を用いて光源を時分割させた単板方式による構成を説明したが、本開示はこれに限定されない。すなわち、プロジェクタ装置100として、青色光、緑色光、赤色光の各種光源を備えた三板方式による構成を採用しても構わない。
上記では、投影画像152を生成するための青色光の光源と、距離を測定するための赤外光の光源とを別ユニットとする構成を説明したが、本開示はこれに限定されない。すなわち、投影画像152を生成するための青色光の光源と、距離を測定するための赤外光の光源とを統合したユニットとしても構わない。三板方式を採用する場合であれば、各色の光源と赤外光の光源とを統合したユニットとしても構わない。
[1−2.動作及び効果]
以上のように構成されたプロジェクタ装置100に搭載されたユーザインターフェース装置200について、その動作を以下説明する。
プロジェクタ装置100が、プロジェクタ装置100と正対しない面に対して画像を投影する場合、幾何的な補正を施さず投影すると画像に歪みが生じる。原画像150(制御部210に入力される画像)の形状と相似関係にある画像を投影する場合には、制御部210において、原画像150に幾何学的な補正処理をする必要がある。さらにユーザが、ユーザ自身の指をポインティング手段として、幾何学的な補正処理を施された投影画像152をタッチ操作する際には、タッチした位置(タッチ位置)と原画像150の面内における位置の正確な対応関係を算出する必要がある。
以下、図6から図9に従ってプロジェクタ装置100の動作を説明する。
[1−2−1.原画像を幾何補正して投影画像に変換するプロセス]
<センサ座標系における赤外画像を表す方程式の算出>
図6は、プロジェクタ装置100のユーザインターフェース装置200の動作を説明するための図であり、図7は、その動作のフローチャートである。まず、制御部210は、投影画像152(投影領域141)の中心点Oを示す距離検出部230における赤外画像153上の点Aの平面座標を決定し、点Aから一定間隔(等距離)にある赤外画像153上の3つの目標点を決定する。この目標点は、3以上の数であっても良い。そして、制御部210は、距離検出部230を原点(基準)とした座標系(センサ座標系)における3つの目標点のそれぞれの3次元座標(X,Y,Z)を、距離検出部230から得られる深度情報(距離情報)により算出する(ステップS1)。ここで、赤外画像153上の平面座標は、図4Bに示す赤外画像153を構成する画素の座標を意味しており、センサ座標系の3次元座標は、距離検出部230を基準とした場合の投影面140上の座標を意味している。
次に、制御部210は、ステップS1で算出された3つの目標点の3次元座標から、センサ座標系において、プロジェクタ装置100が投影する投影面140を、法線ベクトルnを持つ面の方程式として表す(ステップS2)。
<センサ座標系における投影領域の算出>
制御部210は、投影画像の幅方向を示すベクトルを算出するために、赤外画像153上の所定の2点B,Cを決定し、その平面座標をメモリ220に保存する(ステップS3)。ただし、この所定の2点は、プロジェクタ装置100の任意のアプリケーションによって制御部210が決定する。
次に、制御部210は、メモリ220に保存された赤外画像153上の2点B,Cの平面座標及び距離検出部230から得られる深度情報を入力値として、2点B,Cの3次元座標を算出する(ステップS4)。
制御部210は、図6に示すように、ステップS4で求めた2点B,Cの3次元座標により、投影画像152の幅方向を示す3次元の単位ベクトルwを算出する。制御部210は、ベクトルwとステップS2において算出した投影面140の法線ベクトルnの外積から、投影画像152の高さ方向を示す3次元の単位ベクトルhを算出する(ステップS5)。なお、制御部210は、2点B,Cの3次元座標により、先に、高さ方向を示す3次元の単位ベクトルhを算出してもよい。その場合には、制御部210は、投影画像152の高さ方向を示す3次元の単位ベクトルhと投影面140の法線ベクトルnの外積から、投影画像152の幅方向を示す3次元の単位ベクトルwを算出する。
制御部210は、投影画像152の中心点Oに対応する赤外画像153上の点Aの平面座標及び投影画像152(投影領域141)の幅方向のサイズW0と高さ方向のサイズH0をメモリ220に保存する。この点Aの座標及び幅方向のサイズW0、高さ方向のサイズH0は、プロジェクタ装置100の任意のアプリケーションによって制御部210が決定する。制御部210は、距離検出部230から得られる深度情報により、メモリ220に保存された赤外画像153上の点Aの平面座標をセンサ座標系の3次元座標として算出する(ステップS6)。
制御部210は、点Aの3次元座標を起点に、単位ベクトルw及び単位ベクトルh、幅方向のサイズW0及び高さ方向のサイズH0から、センサ座標系における画像の投影領域141を形成する4頂点の3次元座標を算出する(ステップS7)。
<センサ座標系からプロジェクタ座標系への変換>
プロジェクタ装置100は、原画像150を幾何補正した出力画像151を、投影部170から投影面140に出力する。そのため、制御部210は、ステップS7で算出されたセンサ座標系における投影領域141を示す4頂点の座標をプロジェクタ座標系に変換し、プロジェクタ座標系において原画像150から出力画像151を生成する必要がある。
メモリ220は、予めプロジェクタ座標系とセンサ座標系との相対的な姿勢関係を示すパラメータを保有している。制御部210は、図7に示すステップS7で算出したセンサ座標系における投影領域を規定する4頂点の座標をプロジェクタ座標系の座標に変換する(ステップS8)。
[1−2−2.出力画像生成プロセス]
次に、プロジェクタ装置100が投影するための出力画像151を生成するステップを、図8を用いて説明する。
制御部210は、プロジェクタ座標系において、プロジェクタ装置100が保有する幅方向と高さ方向の画素数及び画角に基づいて、任意の幅及び高さを持つ仮想のプロジェクタ面142を設定する(ステップS9)。プロジェクタ面142は出力画像151を設定するための面である。
次に、制御部210は、図7のステップS8で得られたプロジェクタ座標系における投影領域141を示す4頂点の座標から、プロジェクタ座標系における投影面140の方程式を算出する(ステップS10)。
次に、プロジェクタ面142の各画素PP(i,j)をプロジェクタ座標系の3次元座標(i,j,k)に変換する。そして、プロジェクタ座標系の座標に変換された各画素に対する3次元座標(i,j,k)を、逆投影変換して、それに対応する投影面140における各点Prj(s,t,u)の3次元座標を算出する。そして、出力画像151の各画素PP(i,j)の座標が、投影面140におけるプロジェクタ座標系の3次元座標(s,t,u)と対応付けられる(ステップS11)。
次に、制御部210は、図7のステップS8で算出した投影領域141の4頂点のうちの1つの頂点と投影面140上の点Prj(s,t,u)との幅方向の距離W1及び高さ方向の距離H1と、ステップS8で算出した4頂点で形成する投影領域の幅方向のサイズW0及び高さ方向のサイズH0のそれぞれの比率Wr及びHrを算出する。即ち、比率Wr=幅方向の距離W1/幅方向のサイズW0、比率Hr=高さ方向の距離H1/高さ方向のサイズH0、である。4頂点で囲まれた投影領域141には、原画像150を配置するように投影されることから、制御部210は、比率Wr及びHrと原画像150の幅方向及び高さ方向の画素数により投影面140上の点Prj(s,t,u)と原画像150の画素Pin(x,y)とを対応付ける(ステップS12)。
そして、制御部210は、出力画像151の画素PP(i,j)と原画像150の画素Pin(x,y)との対応関係を得る(ステップS13)。制御部210は、出力画像151の画素PP(i,j)のRGBレベル(画素値)に、対応する原画像150の画素Pin(x,y)のRGBレベルを代入することにより、原画像150に対して幾何的に補正処理を施した出力画像151を生成する。
これにより、正対しない投影面に対しても、歪みのない画像を投影することが可能となる。
[1−2−3.タッチ操作におけるタッチ位置の座標算出]
図9のフローチャートを用いて、ユーザが投影面140に投影された画像に対してタッチする等の指示操作をする場合の動作を説明する。
制御部210は、ユーザが、ユーザ自身の指をポインティング手段としてタッチ操作した位置に対応する赤外画像における指示点Sir(X,Y)の座標を取得する。そして、制御部210は、距離検出部230から得られる深度情報により、タッチ位置を表す赤外画像の指示点Sir(X,Y)からセンサ座標系における3次元座標(X,Y,Z)を算出する(ステップS14)。
次に、制御部210は、センサ座標系における指示点Sir(X,Y,Z)を、プロジェクタ座標系における指示点Sp(S,T,U)に座標変換する(ステップS15)。
次に、制御部210は、ステップS15で得られた指示点Sp(S,T,U)と図7のステップS8で算出したプロジェクタ座標系における投影領域を示す4頂点のうちの1頂点との幅方向の距離W2及び高さ方向の距離H2を算出する。そして、制御部210は、算出した幅方向の距離W2及び高さ方向の距離H2と投影領域141の幅方向のサイズW0及び高さ方向のサイズH0のそれぞれの比率Ws及びHsを算出する。即ち、比率Ws=幅方向の距離W2/幅方向のサイズW0、比率Hs=高さ方向の距離H2/高さ方向のサイズH0、である。4頂点で囲まれた投影領域141には、制御部210へ入力する原画像150が配置されることから、制御部210は、上記比率Ws及びHsと原画像150の幅方向及び高さ方向の画素数とにより、タッチ位置を表す指示点Sp(S,T,U)と原画像150の画素Pin(x,y)とを対応付ける(ステップS16)。
投影画像152をタッチ操作した位置と原画像150における位置(画素)を1対1で対応させることにより、プロジェクタ装置100は、ユーザの意図する位置に対して誤差を生じさせることなく指示操作を認識することが可能となる。
(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
本開示は、幾何補正を行った画像に対してもユーザによる指示操作が可能なプロジェクタ装置に適用可能である。
100 プロジェクタ装置
101 開口部
110 駆動部
120 電源部
130 配線ダクト
140 投影面
140a 壁
140b テーブル
141 投影領域
142 プロジェクタ面
150 原画像
151 出力画像
152 投影画像
153 赤外画像
170 投影部
200 ユーザインターフェース装置
210 制御部
220 メモリ
230 距離検出部
231 赤外光源部
232 赤外受光部
300 光源部
310 半導体レーザー
320、370、410 導光光学系
330 ダイクロイックミラー
340 λ/4板
350 レンズ
360 蛍光体ホイール
400 画像生成部
420 DMD
500 投影光学系
510 光学部材

Claims (4)

  1. 出力画像を投影する投影部と、
    前記出力画像が投影される投影面から前記投影部までの距離情報を検出し、かつ、ユーザによる指示操作を空間的に検出する検出部と
    前記距離情報を基に、原画像の各画素が投影される空間的な位置を算出し、前記原画像を前記出力画像に幾何補正する制御部と、を備え、
    前記制御部は、算出結果を基に、前記指示操作によって指示された位置と前記原画像における前記画素の位置とを対応づける、
    プロジェクタ装置。
  2. 前記制御部は、前記検出部から得られる前記距離情報により、前記指示操作された位置を表す3次元座標を算出する、
    請求項1に記載のプロジェクタ装置。
  3. 前記制御部は、前記投影面における前記出力画像が投影される投影領域を規定する4つの頂点の3次元座標を算出する、
    請求項2に記載のプロジェクタ装置。
  4. 前記制御部は、前記投影領域の4つ頂点のうちの任意の1つの頂点から前記指示操作された位置までの幅及び高さ方向の距離を算出し、
    算出された幅及び高さ方向の距離と前記投影領域の幅及び高さ方向のサイズとの比率から、前記指示操作された位置を前記原画像における前記画素の位置に対応付ける、
    請求項3に記載のプロジェクタ装置。
JP2015168412A 2014-09-26 2015-08-28 プロジェクタ装置 Pending JP2016071864A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/859,197 US20160091987A1 (en) 2014-09-26 2015-09-18 Projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197576 2014-09-26
JP2014197576 2014-09-26

Publications (1)

Publication Number Publication Date
JP2016071864A true JP2016071864A (ja) 2016-05-09

Family

ID=55867037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168412A Pending JP2016071864A (ja) 2014-09-26 2015-08-28 プロジェクタ装置

Country Status (1)

Country Link
JP (1) JP2016071864A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099260A (zh) * 2018-01-31 2019-08-06 精工爱普生株式会社 投射系统、投射系统的控制方法以及投影仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341029A (ja) * 2003-05-13 2004-12-02 Sharp Corp プロジェクタ
JP2008134793A (ja) * 2006-11-28 2008-06-12 Fujifilm Corp 電子的手書入力装置
JP2013061552A (ja) * 2011-09-14 2013-04-04 Ricoh Co Ltd プロジェクタ装置および操作検出方法
JP2013134661A (ja) * 2011-12-27 2013-07-08 Seiko Epson Corp 表示装置、プロジェクター及び表示システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341029A (ja) * 2003-05-13 2004-12-02 Sharp Corp プロジェクタ
JP2008134793A (ja) * 2006-11-28 2008-06-12 Fujifilm Corp 電子的手書入力装置
JP2013061552A (ja) * 2011-09-14 2013-04-04 Ricoh Co Ltd プロジェクタ装置および操作検出方法
JP2013134661A (ja) * 2011-12-27 2013-07-08 Seiko Epson Corp 表示装置、プロジェクター及び表示システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099260A (zh) * 2018-01-31 2019-08-06 精工爱普生株式会社 投射系统、投射系统的控制方法以及投影仪
CN110099260B (zh) * 2018-01-31 2022-07-01 精工爱普生株式会社 投射系统、投射系统的控制方法以及投影仪

Similar Documents

Publication Publication Date Title
JP6064150B2 (ja) 投影装置
US9723281B2 (en) Projection apparatus for increasing pixel usage of an adjusted projection area, and projection method and program medium for the same
US10999565B2 (en) Projecting device
JP6047763B2 (ja) ユーザインターフェース装置およびプロジェクタ装置
WO2018173739A1 (ja) プロジェクターおよびプロジェクターの制御方法
US20140285778A1 (en) Projection apparatus, projection method, and projection program medium
US20160191877A1 (en) Projector device and projection method
JP6201359B2 (ja) 投影システム、投影方法及び投影プログラム
US20160286186A1 (en) Projection apparatus
JP6191019B2 (ja) 投影装置及び投影方法
US9841847B2 (en) Projection device and projection method, for projecting a first image based on a position of a moving object and a second image without depending on the position
JP6307706B2 (ja) 投影装置
JP6167308B2 (ja) 投影装置
JP2004088169A (ja) 画像表示装置
JP6182739B2 (ja) 投影装置及び投影方法
JP2016122179A (ja) 投影装置及び投影方法
JP2016071864A (ja) プロジェクタ装置
JP2013083985A (ja) 投影装置、投影方法及びプログラム
CN114760451A (zh) 投影图像校正提示方法、装置、投影设备和存储介质
JP6439254B2 (ja) 画像投影装置、画像投影装置の制御方法、および画像投影装置の制御プログラム
US20160091987A1 (en) Projector
CN105578163B (zh) 一种信息处理方法及电子设备
JP2008216351A (ja) 投影装置、投影方法及びプログラム
JP2007264413A (ja) 投影装置、投影方法及びプログラム
JP2007264334A (ja) 投影装置、投影方法及びプログラム

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160920

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160920

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221